[go: up one dir, main page]

EP4061552B1 - Method, control device and rolling mill for the adjustment of an outlet temperature of a metal strip exiting a rolling train - Google Patents

Method, control device and rolling mill for the adjustment of an outlet temperature of a metal strip exiting a rolling train Download PDF

Info

Publication number
EP4061552B1
EP4061552B1 EP20797072.4A EP20797072A EP4061552B1 EP 4061552 B1 EP4061552 B1 EP 4061552B1 EP 20797072 A EP20797072 A EP 20797072A EP 4061552 B1 EP4061552 B1 EP 4061552B1
Authority
EP
European Patent Office
Prior art keywords
strip
rolling
metal strip
roll stand
process model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20797072.4A
Other languages
German (de)
French (fr)
Other versions
EP4061552A1 (en
Inventor
Frank Theobald
Jörn Sieghart
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Group GmbH
Original Assignee
SMS Group GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=73014499&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP4061552(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by SMS Group GmbH filed Critical SMS Group GmbH
Publication of EP4061552A1 publication Critical patent/EP4061552A1/en
Application granted granted Critical
Publication of EP4061552B1 publication Critical patent/EP4061552B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B2003/001Aluminium or its alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2271/00Mill stand parameters
    • B21B2271/02Roll gap, screw-down position, draft position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2275/00Mill drive parameters
    • B21B2275/02Speed
    • B21B2275/06Product speed

Definitions

  • the invention relates to a method and a control device for setting an exit temperature of a metal strip exiting an at least two-stand rolling train.
  • the invention relates to a rolling mill for rolling a metal strip, having at least one at least two-stand rolling train and at least one control device for setting an outlet temperature of the metal strip emerging from the rolling train.
  • Metal strips are rolled in rolling mills to a desired outlet thickness.
  • the metal strip coming out of a rolling mill is wound up into a spool or coil.
  • a temperature of the coiled metal strip is important for the quality of the respective metal strip, in particular for metal strips made from certain aluminum alloys.
  • the temperature of such a metal strip must be kept within a relatively narrow temperature range in order to achieve specified mechanical properties of the metal strip.
  • DE 20 2014 011 231 U1 relates to a system having a first stand having a first pair of work rolls for reducing a thickness of a material to a first specified point, a second stand having a second pair of work rolls for reducing the thickness of the material to a second specified point, and a temperature sensor positioned to measure the temperature of the material as it exits the second rack.
  • the system also includes a controller coupled to the temperature sensor, the first frame, and the second frame to adjust at least one of the first specified point and the second specified point based on the temperature of the material measured by the temperature sensor with the it exits the second rack.
  • EP 2 697 002 B1 relates to a control method for a rolling mill, wherein a temperature is determined for strip sections of a strip upstream of a first rolling stand of the rolling mill, which the strip sections have, with a strip model using the temperatures determined the temperatures of the strip sections for the time of rolling of the respective strip section in the first roll stand are predicted, with at least one respective control parameter for rolling the strip sections in the first roll stand being determined using the predicted temperatures of the strip sections, and with an adjusting device acting on the first roll stand during the rolling of the respective strip section, taking into account the respective determined Control parameter is controlled.
  • the temperatures of the strip sections are forecast for the time of rolling of the respective strip section in the first roll stand using the strip model with a first forecast horizon.
  • the first forecast horizon corresponds to a plurality of strip sections to be rolled in the first roll stand.
  • a control variable curve for the control device is applied for the first forecast horizon.
  • a profile of a roll gap formed by work rolls of the first roll stand is influenced by the course of the manipulated variable.
  • a respective roll gap profile is predicted, which the work rolls of the first roll stand form at the time of rolling the respective strip section.
  • the set manipulated variable curve is optimized using the roll gap profile predicted for the strip sections and a respective target profile.
  • the current value of the optimized manipulated variable profile corresponds to the control parameter and is specified as the manipulated variable for the actuating device.
  • EP 3 089 833 B1 relates to a system having a first stand having a first pair of work rolls to reduce a thickness of a material to a first set point, a second stand having a second pair of work rolls to reduce the thickness of the material to a second set point reduce, and one Temperature sensor arranged to measure the temperature of the material as it leaves the second stand.
  • the system also includes a controller coupled to the temperature sensor, the first stand, and the second stand to set at least one of the first set point and the second set point based on the temperature of the material exiting the second stand as measured by the temperature sensor. set.
  • One object of the invention is to provide a method for adjusting an outlet temperature of a metal strip leaving a rolling mill that can be implemented more cost-effectively, with which a metal strip of higher quality can be produced.
  • This object is solved by the independent patent claim.
  • Advantageous configurations are in the following description and the dependent Patent claims reproduced, these configurations, each taken individually or in various combinations of at least two of these configurations with one another, can represent a further developing, in particular also preferred or advantageous, aspect of the invention.
  • the outlet temperature is determined by means of a process model, taking into account a relationship between a strip deformation and/or a cooling rate of the metal strip by at least one cooling medium and by the contact of the metal strip with at least one fixed Rolling train component and / or a rolling speed in a last roll stand of the rolling train on the one hand and the outlet temperature set on the other hand.
  • a deviation with the intervention-related deviation associated deviation of the outlet temperature from a setpoint temperature contained in the context is determined, the strip forming in the last roll stand and in one or more upstream roll stands of the rolling mill being changed by means of the process model depending on the deviation in the outlet temperature such that the outlet temperature corresponds to the setpoint temperature.
  • connection between the strip forming and/or the rolling speed in the last roll stand of the rolling train on the one hand and the outlet temperature, particularly at the respective operating point, on the other hand can be calculated using a higher-level pass schedule computer.
  • a working point is to be understood as meaning all the setting values (relating to the physical properties of forming, thickness, speed, temperature) of an area within which rolling is carried out (target pass schedule), as well as the areas in between that are passed through to reach the area.
  • target pass schedule target pass schedule
  • Operating points are taken into account. Four operating points are particularly favorable within the meaning of the invention, since they contain all the important key points of the rolling process without requiring too much computing time to determine them.
  • the pass schedule computer is set up to define this relationship as a set state and to transfer coefficients corresponding to the set state to the (mathematical) process model.
  • the pass schedule computer can be set up to transfer corresponding coefficients to a device for controlling actuators of the rolling train.
  • coefficients can consist of one or more terms or of terms composed of them, of the sizes listed below by way of example: ⁇ P ⁇ ⁇ T , ⁇ f ⁇ ⁇ T , ⁇ M ⁇ ⁇ T , ⁇ v ⁇ ⁇ T , ⁇ Q ⁇ ⁇ ⁇ T , ⁇ T f ⁇ ⁇ T , ⁇ ⁇ h ⁇ ⁇ T , ⁇ f v ⁇ ⁇ T , ⁇ l vn ⁇ ⁇ T .
  • T is the temperature
  • P is the rolling power
  • F is the rolling force
  • M is the rolling torque
  • v is the rolling speed
  • Tf is the fluid temperature
  • Q is the fluid volume flow
  • h is the thickness of the rolling stock
  • ⁇ h is the decrease
  • I VN is the length of a strip at constant strip speed and fv the advance.
  • the cooling medium can be air, water, oil or an emulsion, for example.
  • the rolling train component can be, for example, a roll or a work roll.
  • the process model can be set up to monitor directly or indirectly whether a current state of the rolling train corresponds to the setting state. If this set condition is not reached during rolling operation due to other controller interventions, or if the strip forming and/or the cooling rate of the metal strip changes due to the application of a cooling medium to the metal strip and contact of the metal strip with at least one fixed rolling train component and/or the rolling speed in the roll gap of the last roll stand, for example due to interventions by operating personnel, the process model according to the invention can use the coefficients supplied by the pass schedule computer to determine the deviation of the strip forming and/or the rolling speed in the last roll stand from the related deviations caused by the intervention contained setting values for strip forming and / or the rolling speed in the last rolling stand determine a deviation associated with the intervention-related deviation of the outlet temperature from a setpoint temperature contained in the context.
  • the process model is also set up to change the strip forming in the last rolling stand and in one or more rolling stands of the rolling train that are upstream with respect to a strip conveying direction through the rolling train, depending on the determined deviation of the outlet temperature, in such a way that the outlet temperature corresponds to the setpoint temperature. Consequently, the outlet temperature of the metal strip is set using the process model, taking into account the relationship described above.
  • the process model can change the strip forming and/or the rolling speed and/or the cooling rate or the associated amount of coolant in the last roll stand and the one or more upstream roll stands such that the outlet temperature of the metal strip returns to the setpoint temperature.
  • the metal strip can be an aluminum strip or steel strip, for example.
  • the rolling train can be a cold rolling tandem train, for example.
  • the last rolling stand of the rolling train is the last rolling stand with regard to a mass flow or a direction of movement of the metal strip through the rolling train.
  • the rolling train has at least two, three or more roll stands.
  • the direction of movement of the metal strip through the mill can also change, e.g. B. with a reversing stitch.
  • the model-based temperature setting according to the invention has the advantage that ideally it does not require any sensors. This reduces investment, commissioning and maintenance expenses. A simple off-line temperature measurement on the wound coil would be sufficient for process model validation.
  • the process model also ensures that temperature setting and thickness control are decoupled, so that the quality of the end product can be increased by minimizing mutual interference between different controls.
  • the Dynamics of the temperature setting is at a uniformly high level for different products thanks to the process model.
  • the invention thus represents a model-based approach to a temperature setting that is fully integrated into a rolling mill control architecture, which requires less investment than the prior art, for example by eliminating the expensive thermal imaging camera that is customary with aluminum strips, less commissioning effort, lower operating costs, in particular maintenance costs and replacement costs , higher control quality and dynamics, better product quality and greater reliability.
  • An essential advantage of the invention compared to a conventional temperature controller is that the outlet temperature can already be set at an earlier point in time in the rolling process, particularly in the case of a plant in batch operation.
  • the method according to the invention works more evenly over the length of the strip and is more dynamic, since the process data are determined directly in the roll gap and are not subject to dead time due to the transport to the temperature measuring point.
  • Another advantage is that the method according to the invention allows higher rates of change over time for setting the target temperature.
  • a change in a decrease in strip thickness of the metal strip in the last roll stand that is required to achieve the setpoint temperature is determined by means of the process model as a function of the deviation in the outlet temperature, and a roll gap height in one or more upstream roll stands is increased by one of the change in the strip thickness of the metal strip in changed in the opposite direction corresponding to the amount corresponding to the last stand. If, for example, the rolling speed of the pass schedule calculated by the pass schedule computer or setting condition is not reached, the outlet temperature of the metal strip is too low. The process model can then increase the strip deformation in the last roll stand in order to achieve a desired exit temperature of the metal strip even with the lower rolling speed.
  • the process model uses the coefficients supplied by the pass schedule computer to calculate a required change in strip forming in one or more upstream roll stands, so that, together with the strip forming required to set the desired exit temperature of the metal strip in the last roll stand, a desired exit thickness of the metal strip remains unchanged remains.
  • the process model calculates, for example, a percentage change in the decrease or reduction in the thickness of the metal strip in the last roll stand of +15% that is required to achieve the desired exit temperature of the metal strip
  • the decrease or reduction in the thickness of the metal strip in one or more upstream roll stands is as follows compensates that the total decrease remains constant.
  • the strip thickness of the metal strip is initially reduced, for example from 0.4 mm to 0.3 mm in the penultimate roll stand and from 0.3 mm to 0.2 mm in the last roll stand, and if there is a deviation in the exit temperature of the metal strip, this can Process model change the strip forming using the last two roll stands in such a way that the strip thickness is reduced from 0.4 mm to 0.345 mm with the penultimate roll stand and from 0.345 mm to 0.2 mm with the last roll stand, so that the outlet thickness of the metal strip is not affected becomes.
  • the respective manipulated variable is the roll gap height of the respective roll stand calculated by the process model.
  • a separate stand model contained in the process model is used for the last roll stand and for one or more upstream roll stands, which is adapted at time intervals by forcing the respective roll stand without metal strip.
  • the (mathematical) framework model is a framework model calibrated by the impression (calibration process). The work rolls of the respective roll stand are brought into contact with one another during the bucking, with adjustment paths, forces and the like being able to be recorded, for example by means of the process model, in order to adapt the stand model.
  • a cooling model contained in the process model is used, with which a cooling of the metal strip through optional application of different coolants and a cooling of the metal strip due to contact with work rolls is calculated.
  • the various coolants can be air, water, oil or an emulsion, for example.
  • the contact of the metal strip with the work rolls results in a flow of heat, via which heat flows away from the metal strip via the work rolls, so that the metal strip is cooled.
  • the cooling model can take into account the flow temperatures, volume flows and residence times in the relevant parts of the plant.
  • the cooling capacity can be calculated using coefficients that are determined by the pass schedule calculator.
  • an inlet temperature level of a coil made from the metal strip before it enters the rolling train is taken into account in the process model. This information is also required for setting up the system.
  • the primary distinction to be made here is whether it is a coil that has been cooled to room temperature or a coil that has been heated above room temperature as a result of hot rolling or annealing processes. This can be done by manually or inline measuring the temperature in the infeed of the rolling train or by calculating the cooling based on data from process steps over time from production planning.
  • changes in the strip deformations in the last roll stand and one or more upstream roll stands are precontrolled by means of a tracking module, in that the respective change in strip thickness is shifted into the respective roll stand with a respectively measured strip speed.
  • the tracking module ensures that the variations in the manipulated variables calculated by the coefficients in the downstream roll stands occur at the right time, so that when the correct exit temperature is set, there are never any disturbances in the thickness.
  • the tracking module can be used in a transient range in which the thickness of the Changes metal strips, redistribute the strip forming in the nips of the last roll stand and one or more upstream roll stands, so that a desired outlet thickness of the metal strip is not disturbed.
  • the temperature change based on the rolled strip length as a function of the strip speed is determined by means of the process model.
  • changes in roll gap heights in the last roll stand and one or more upstream roll stands are compensated by means of the process model by changes in the speeds of work rolls of the last roll stand or the one or more upstream roll stands, the speeds being determined using a or the mass flow contained in the process model through the rolling mill can be determined.
  • the changes in overfeeds and strip thicknesses can be pre-controlled by the redistribution of forming in such a way that, ideally, the thickness control downstream of the last roll stand does not interfere. This can be achieved, for example, in that a change in the adjustment in the last roll stand and in one or more upstream roll stands is compensated for by the change in speed in the affected roll stand(s) that corresponds to the mass flow.
  • a strip tension remains unchanged, regardless of whether a tension control affects the adjustment or the stand speed.
  • changes in the overfeed of the metal strip are made by means of the process model when the strip speed is corrected taken into account when the process model has determined a deviation in the strip forming and/or the rolling speed in the last rolling stand due to an intervention by an actuator of another control device of the rolling train.
  • the lead changes can be taken into account, for example, via difference quotients of the pass schedule model when correcting the speed. If the process model detects a deviation in strip forming from the set state due to the intervention of an actuator, for example a thickness control or tension control, the process model can apply the speed correction analogously.
  • the process model can work continuously and the strip forming can be continuously distributed between the roll stands and advance changes can also be pre-controlled, ideally there is no disruption to a desired exit thickness of the metal strip. If, for example, the reduction in the last rolling stand is less than that provided for in the settlement (input variables: outlet thickness, rolling torque and rolling force in the last rolling stand), then the reduction in one or more upstream rolling stands is reduced, so that the reduction in the last rolling stand can be increased. The greater deformation then leads to the desired increase in the outlet temperature.
  • the changes in speed and overfeed that occur during the rearrangement are pre-controlled by the changed mass flow balance and overfeed coefficients doverfeed/dreduction in the roll stands concerned, so that tension and thickness disturbances do not occur during the rearrangement.
  • connection between the strip forming and/or the cooling rate of the metal strip by at least one cooling medium and by at least one fixed rolling train component and/or the rolling speed in the last rolling stand on the one hand and the exit temperature on the other hand is determined with the aid of temperature measurements at the end of the rolling train expiring metal band adapted.
  • the actual coil temperature can be measured with a hand-held measuring device at the end of a rolling program.
  • Inline temperature measurement is more convenient but more complex.
  • the measured values of the respective temperature measurement can be sent automatically to the pass schedule computer, which calculates and compares the measured temperature with a calculated temperature value and adapts the calculated temperature value to the measured value.
  • other model parameters can also be adapted.
  • a control device for setting an exit temperature of a metal strip exiting an at least two-stand rolling train is set up in such a way that it carries out the method according to one of the above-mentioned configurations.
  • control device can be given as a separate device or can be realized by a software implementation in existing system electronics of a rolling mill.
  • the control device can be used as a predictive temperature controller of a rolling mill based on a process model.
  • a rolling mill according to the invention for rolling a metal strip has at least one at least two-stand rolling train and at least one above-mentioned control device for setting an outlet temperature of the metal strip emerging from the tandem rolling train, the rolling train having at least one fixed rolling train component for contact with the rolled strip and means for loading the metal strip having a coolant medium.
  • the rolling mill can be designed as a multi-stand cold rolling tandem train, in particular for the production of aluminum strip.
  • figure 1 shows a schematic representation of an exemplary embodiment of a rolling mill 1 according to the invention for rolling a metal strip 2.
  • the rolling mill 1 has a three-stand rolling train 3 and a control device 4, shown symbolically, for setting an outlet temperature of the metal strip 2 emerging from the rolling train 3.
  • the control device 4 is set up to carry out a method according to the invention for setting the exit temperature of the metal strip 2 exiting the rolling train 3 .
  • P 1 is the target rolling capacity of the first roll stand 5 and P' 1 is the actual rolling capacity of the first roll stand 5.
  • h 10 is the inlet thickness of the rolled strip 2 entering the first roll stand 5 and h 11 is the outlet thickness of the first roll stand 5 expiring rolled strip 2, where ⁇ h 1 , the decrease in the thickness of Rolled strip 2 in the first roll stand 5 is.
  • v 1 is the strip speed of the rolled strip 2 leaving the first roll stand 5 and S 12 is the strip tension in the rolled strip 2 between the first roll stand 5 and a second roll stand 6 downstream of the first roll stand 5.
  • P 2 is the target rolling capacity of the second rolling stand 6 and P' 2 is the actual rolling capacity of the second rolling stand 6.
  • h 20 is the entry thickness of the rolled strip 2 entering the second rolling stand 6 and h 21 is the exit thickness of the rolling strip 2 exiting the second rolling stand 6 Rolled strip 2, where ⁇ h 2 is the decrease in the thickness of the rolled strip 2 in the second roll stand 6.
  • v 2 is the strip speed of the rolled strip 2 leaving the second roll stand 6 and S 23 is the strip tension in the rolled strip 2 between the second roll stand 6 and a third or last roll stand 7 downstream of the second roll stand 6.
  • P 3 is the target rolling capacity of the third rolling stand 7 and P' 3 is the actual rolling capacity of the third rolling stand 7.
  • h 30 is the entry thickness of the rolled strip 2 entering the third rolling stand 7 and h 31 is the exit thickness of the rolling strip 2 exiting the third rolling stand 7 Rolled strip 2, where ⁇ h 3 is the decrease in the thickness of the rolled strip 2 in the third roll stand 7.
  • v 3 is the strip speed of the rolled strip 2 leaving the third roll stand 7.
  • T is the target temperature of the cold or hot strip 2 leaving the rolling train 3 and T' is the actual temperature of the cold or hot strip 2 leaving the rolling train 3, where ⁇ T is the temperature difference between the target temperature and the actual temperature is.
  • figure 2 shows a schematic representation of a further embodiment of a rolling mill according to the invention for rolling a metal strip, not shown, of the rolling mill, only a pass schedule computer 8 and the process model 9 with reference to a roll stand n are shown.
  • An inlet temperature T0 of the hot strip, an outlet temperature T of the hot strip, a reduction in thickness ⁇ h within the roll stand n and material and system data A are fed to the pass schedule computer 8 . From this, the pass schedule calculator 8 determines on the right in figure 2 shown coefficients and setting values, which are fed to the process model 9 together.
  • the process model 9 is also given the current rolling power P(n) of roll stand n, a current rolling torque M(n) of roll stand n, a current rolling force F(n) of roll stand n, a current rolling speed v(n) of roll stand n, a current roll deformation ⁇ h(n) in roll stand n, a current coolant temperature Tf(n) at roll stand n and a current coolant volume flow Q(n) at roll stand n. Furthermore, optionally calibration curves K(n) of the roll stand n and optionally a measured actual temperature T are supplied to the process model 9 .
  • the process model 9 determines a rolling speed change ⁇ v(n) over time t and a decrease change ⁇ h(n) over time t for the roll stand n.
  • the process model 9 has a stand model 10, a cooling model 11 and a tracking module 12 .
  • FIG 3A shows a schematic representation of a framework model 10 of an embodiment of a process model according to the invention.
  • the stand model 10 is supplied with the current rolling force F(n) of a roll stand n and a current roll deformation ⁇ h(n) in the roll stand n. Furthermore, a framework module G(n) and a belt module B(n) are supplied to the framework model 10 . From this, the stand model 10 determines a setting position deviation ⁇ s(n) from a setting value s(n) of the roll stand n.
  • the stand model 10 can be used in the process model figure 2 be implemented.
  • FIG 3B shows a schematic representation of a cooling model 11 of an exemplary embodiment of a process model according to the invention.
  • the cooling model 11 a current rolling speed v(n) of roll stand n, a current coolant temperature Tf(n) at roll stand n and a current coolant volume flow Q(n) at roll stand n are supplied. Furthermore, the cooling model 11 system data A (n) are supplied. From this, the cooling model 11 determines a strip temperature deviation ⁇ T(n) from a set value T(n) at the roll stand n.
  • the cooling model 11 can be included in the process model figure 2 be implemented.
  • FIG 3C shows a schematic representation of a tracking module 12 of an embodiment of a process model according to the invention.
  • the tracking module 12 receives the data from the skeleton model Figure 3A determined adjustment position deviation ⁇ s(n) of roll stand n and the current rolling speed v(n) of roll stand n. Furthermore, the tracking module 12 system data A (n) are supplied. From this, tracking module 12 determines a change in rolling speed ⁇ v(n) over time t and a change in decrease ⁇ h(n) over time t for roll stand n. Tracking module 12 can be found in the process model figure 2 be implemented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Description

Die Erfindung betrifft ein Verfahren und eine Steuervorrichtung zum Einstellen einer Auslauftemperatur eines aus einer wenigstens zweigerüstigen Walzstraße auslaufenden Metallbands. Zudem betrifft die Erfindung eine Walzanlage zum Walzen eines Metallbands, aufweisend wenigstens eine wenigstens zweigerüstige Walzstraße und wenigstens eine Steuervorrichtung zum Einstellen einer Auslauftemperatur des aus der Walzstraße austretenden Metallbands.The invention relates to a method and a control device for setting an exit temperature of a metal strip exiting an at least two-stand rolling train. In addition, the invention relates to a rolling mill for rolling a metal strip, having at least one at least two-stand rolling train and at least one control device for setting an outlet temperature of the metal strip emerging from the rolling train.

Metallbänder werden in Walzstraßen auf eine gewünschte Auslaufdicke gewalzt. Das aus einer Walzstraße auslaufende Metallband wird zu einer Spule bzw. einem Coil aufgehaspelt. Eine Temperatur des aufgehaspelten Metallbands ist insbesondere für Metallbänder aus bestimmten Aluminiumlegierungen von Bedeutung für die Qualität des jeweiligen Metallbands. Die Temperatur eines solchen Metallbands muss innerhalb eines relativ engen Temperaturbereichs gehalten werden, um spezifizierte mechanische Eigenschaften des Metallbands zu erreichen.Metal strips are rolled in rolling mills to a desired outlet thickness. The metal strip coming out of a rolling mill is wound up into a spool or coil. A temperature of the coiled metal strip is important for the quality of the respective metal strip, in particular for metal strips made from certain aluminum alloys. The temperature of such a metal strip must be kept within a relatively narrow temperature range in order to achieve specified mechanical properties of the metal strip.

DE 20 2014 011 231 U1 betrifft ein System mit einem ersten Gestell, das ein erstes Paar von Arbeitswalzen zum Reduzieren einer Dicke eines Materials auf einen ersten festgelegten Punkt aufweist, einem zweiten Gestell, das ein zweites Paar von Arbeitswalzen zum Reduzieren der Dicke des Materials auf einen zweiten festgelegten Punkt aufweist, und einem Temperatursensor, der dazu positioniert ist, die Temperatur des Materials zu messen, wenn es aus dem zweiten Gestell austritt. Zudem weist das System ein Steuergerät auf, das mit dem Temperatursensor, dem ersten Gestell und dem zweiten Gestell gekoppelt ist, um wenigstens einen aus dem ersten festgelegten Punkt und dem zweiten festgelegten Punkt auf Grundlage der von dem Temperatursensor gemessenen Temperatur des Materials anzupassen, mit der es aus dem zweiten Gestell austritt. DE 20 2014 011 231 U1 relates to a system having a first stand having a first pair of work rolls for reducing a thickness of a material to a first specified point, a second stand having a second pair of work rolls for reducing the thickness of the material to a second specified point, and a temperature sensor positioned to measure the temperature of the material as it exits the second rack. The system also includes a controller coupled to the temperature sensor, the first frame, and the second frame to adjust at least one of the first specified point and the second specified point based on the temperature of the material measured by the temperature sensor with the it exits the second rack.

EP 2 697 002 B1 betrifft ein Steuerverfahren für eine Walzstraße, wobei für Bandabschnitte eines Bands vor einem ersten Walzgerüst der Walzstraße jeweils eine Temperatur ermittelt wird, die die Bandabschnitte aufweisen, wobei mittels eines Bandmodells anhand der ermittelten Temperaturen die Temperaturen der Bandabschnitte für den Zeitpunkt des Walzens des jeweiligen Bandabschnitts in dem ersten Walzgerüst prognostiziert werden, wobei unter Verwendung der prognostizierten Temperaturen der Bandabschnitte mindestens ein jeweiliger Steuerparameter für das Walzen der Bandabschnitte in dem ersten Walzgerüst ermittelt wird, und wobei eine auf das erste Walzgerüst wirkende Stelleinrichtung während des Walzens des jeweiligen Bandabschnitts unter Berücksichtigung des jeweiligen ermittelten Steuerparameters gesteuert wird. Die Temperaturen der Bandabschnitte werden für den Zeitpunkt des Walzens des jeweiligen Bandabschnitts in dem ersten Walzgerüst mittels des Bandmodells mit einem ersten Prognosehorizont prognostiziert. Der erste Prognosehorizont korrespondiert mit mehreren in dem ersten Walzgerüst zu walzenden Bandabschnitten. Für den ersten Prognosehorizont wird ein Stellgrößenverlauf für die Stelleinrichtung angesetzt. Mittels des Stellgrößenverlaufs wird ein Profil eines von Arbeitswalzen des ersten Walzgerüsts gebildeten Walzspalts beeinflusst. Mittels eines Walzgerüstmodells für das erste Walzgerüst wird unter Verwendung der prognostizierten Temperaturen der Bandabschnitte und des angesetzten Stellgrößenverlaufs für die mit dem ersten Prognosehorizont korrespondierenden Bandabschnitte ein jeweiliges Walzspaltprofil prognostiziert, das die Arbeitswalzen des ersten Walzgerüsts zum Zeitpunkt des Walzens des jeweiligen Bandabschnitts bilden. Der angesetzte Stellgrößenverlauf wird anhand des für die Bandabschnitte prognostizierten Walzenspaltprofils und eines jeweiligen Sollprofils optimiert. Der aktuelle Wert des optimierten Stellgrößenverlaufs entspricht dem Steuerparameter und wird der Stelleinrichtung als Stellgröße vorgegeben. EP 2 697 002 B1 relates to a control method for a rolling mill, wherein a temperature is determined for strip sections of a strip upstream of a first rolling stand of the rolling mill, which the strip sections have, with a strip model using the temperatures determined the temperatures of the strip sections for the time of rolling of the respective strip section in the first roll stand are predicted, with at least one respective control parameter for rolling the strip sections in the first roll stand being determined using the predicted temperatures of the strip sections, and with an adjusting device acting on the first roll stand during the rolling of the respective strip section, taking into account the respective determined Control parameter is controlled. The temperatures of the strip sections are forecast for the time of rolling of the respective strip section in the first roll stand using the strip model with a first forecast horizon. The first forecast horizon corresponds to a plurality of strip sections to be rolled in the first roll stand. A control variable curve for the control device is applied for the first forecast horizon. A profile of a roll gap formed by work rolls of the first roll stand is influenced by the course of the manipulated variable. By means of a roll stand model for the first roll stand, using the forecast temperatures of the strip sections and the set manipulated variable curve for the strip sections corresponding to the first forecast horizon, a respective roll gap profile is predicted, which the work rolls of the first roll stand form at the time of rolling the respective strip section. The set manipulated variable curve is optimized using the roll gap profile predicted for the strip sections and a respective target profile. The current value of the optimized manipulated variable profile corresponds to the control parameter and is specified as the manipulated variable for the actuating device.

EP 3 089 833 B1 betrifft ein System mit einem ersten Ständer, der ein erstes Paar von Arbeitswalzen aufweist, um eine Dicke eines Materials auf einen ersten Setzpunkt zu reduzieren, einem zweiten Ständer, der ein zweites Paar von Arbeitswalzen aufweist, um die Dicke des Materials auf einen zweiten Setzpunkt zu reduzieren, und einem Temperatursensor, der angeordnet ist, um die Temperatur des Materials, wie es den zweiten Ständer verlässt, zu messen. Zudem weist das System einen Controller auf, der mit dem Temperatursensor, dem ersten Ständer und dem zweiten Ständer gekoppelt ist, um zumindest einen des ersten Setzpunkts und des zweiten Setzpunkts basierend auf der vom Temperatursensor gemessenen Temperatur des Materials, wie es den zweiten Ständer verlässt, einzustellen. EP 3 089 833 B1 relates to a system having a first stand having a first pair of work rolls to reduce a thickness of a material to a first set point, a second stand having a second pair of work rolls to reduce the thickness of the material to a second set point reduce, and one Temperature sensor arranged to measure the temperature of the material as it leaves the second stand. The system also includes a controller coupled to the temperature sensor, the first stand, and the second stand to set at least one of the first set point and the second set point based on the temperature of the material exiting the second stand as measured by the temperature sensor. set.

Der Artikel " Study on Temperature Prediction Modell of Cold Rolling Strip", Chen Junyi et al., International Conference on Artificial Intelligence and Big Data, 2018 der die Basis für den Oberbegriff von Anspruch 1 bildet, offenbart ein Temperaturvorhersagemodell für ein Kaltwalzverfahren, wobei eine Auslauftemperatur eines in einer Tandemwalzstraße gewalzten Metallbands unter Verwendung von die Auslauftemperatur beeinflussenden Parametern berechnet wird, die vorab unter Verwendung eines Partikelschwarmoptimierungsverfahrens optimiert worden sind.The item " Study on Temperature Prediction Model of Cold Rolling Strip", Chen Junyi et al., International Conference on Artificial Intelligence and Big Data, 2018 which forms the basis for the preamble of claim 1, discloses a temperature prediction model for a cold rolling process, wherein an outlet temperature of a metal strip rolled in a tandem rolling mill is calculated using parameters influencing the outlet temperature, which have been optimized in advance using a particle swarm optimization method.

Herkömmlich wird beim Kaltwalzen von Aluminiumband in einer Walzstraße die Bandtemperatur direkt gemessen, was aufwändig und teuer ist. Diese Temperaturmessung kann aufgrund eines Sensorfehlers oder einer falschen Ausrichtung eines Sensors gestört werden oder ganz ausfallen. Zudem wird durch Voreilungsänderungen bei einer Lastumverteilung zwischen Walzgerüsten einer Walzstraße eine Auslaufdicke des Metallbands kurzzeitig gestört, da eine Dickenmonitorregelung im letzten Walzgerüst durch eine Transporttotzeit zum Dickenmesssystem Dynamiknachteile aufweist. Ein herkömmlicher Temperaturregler muss daher sehr langsam arbeiten, um eine Zieldicke des Metallbands möglichst wenig zu beinträchtigen.Conventionally, when aluminum strip is cold-rolled in a rolling train, the strip temperature is measured directly, which is time-consuming and expensive. This temperature measurement can be disrupted or lost entirely due to a sensor error or misalignment of a sensor. In addition, a run-out thickness of the metal strip is briefly disrupted by changes in lead when the load is redistributed between rolling stands of a rolling train, since a thickness monitor control in the last rolling stand has dynamic disadvantages due to a transport dead time for the thickness measuring system. A conventional temperature controller therefore has to work very slowly in order to affect a target thickness of the metal strip as little as possible.

Eine Aufgabe der Erfindung ist es, ein kostengünstiger realisierbares Verfahren zum Einstellen einer Auslauftemperatur eines aus einer Walzstraße auslaufenden Metallbands zu schaffen, mit dem ein Metallband mit höherer Qualität herstellbar ist. Diese Aufgabe wird durch den unabhängigen Patentanspruch gelöst. Vorteilhafte Ausgestaltungen sind in der nachfolgenden Beschreibung und den abhängigen Patentansprüchen wiedergegeben, wobei diese Ausgestaltungen jeweils für sich genommen oder in verschiedener Kombination von wenigstens zwei dieser Ausgestaltungen miteinander einen weiterbildenden, insbesondere auch bevorzugten oder vorteilhaften, Aspekt der Erfindung darstellen können.One object of the invention is to provide a method for adjusting an outlet temperature of a metal strip leaving a rolling mill that can be implemented more cost-effectively, with which a metal strip of higher quality can be produced. This object is solved by the independent patent claim. Advantageous configurations are in the following description and the dependent Patent claims reproduced, these configurations, each taken individually or in various combinations of at least two of these configurations with one another, can represent a further developing, in particular also preferred or advantageous, aspect of the invention.

Gemäß einem erfindungsgemäßen Verfahren zum Einstellen einer Auslauftemperatur eines aus einer wenigstens zweigerüstigen Walzstraße auslaufenden Metallbands wird die Auslauftemperatur mittels eines Prozessmodells unter Berücksichtigung eines Zusammenhangs zwischen einer Bandumformung und/oder einer Abkühlrate des Metallbands durch wenigstens ein Kühlmedium und durch den Kontakt des Metallbands mit wenigstens einer festen Walzstraßenkomponente und/oder einer Walzgeschwindigkeit in einem letzten Walzgerüst der Walzstraße einerseits und der Auslauftemperatur andererseits eingestellt. Zudem wird nach einer unter Verwendung des Prozessmodells erfolgten Ermittlung einer eingriffsbedingten Abweichung der Bandumformung und/oder der Walzgeschwindigkeit in dem letzten Walzgerüst von in dem Zusammenhang enthaltenen Setzwerten für die Bandumformung und/oder die Walzgeschwindigkeit in dem letzten Walzgerüst mittels des Prozessmodells eine mit der eingriffsbedingten Abweichung verbundene Abweichung der Auslauftemperatur von einer in dem Zusammenhang enthaltenen Solltemperatur ermittelt, wobei die Bandumformung in dem letzten Walzgerüst und in einem oder mehreren vorgelagerten Walzgerüsten der Walzstraße mittels des Prozessmodells in Abhängigkeit der Abweichung der Auslauftemperatur derart geändert wird, dass die Auslauftemperatur der Solltemperatur entspricht.According to a method according to the invention for setting an outlet temperature of a metal strip leaving an at least two-stand rolling train, the outlet temperature is determined by means of a process model, taking into account a relationship between a strip deformation and/or a cooling rate of the metal strip by at least one cooling medium and by the contact of the metal strip with at least one fixed Rolling train component and / or a rolling speed in a last roll stand of the rolling train on the one hand and the outlet temperature set on the other hand. In addition, after the process model has been used to determine an intervention-related deviation in strip forming and/or the rolling speed in the last rolling stand from the setting values for strip forming and/or the rolling speed in the last rolling stand contained in the context using the process model, a deviation with the intervention-related deviation associated deviation of the outlet temperature from a setpoint temperature contained in the context is determined, the strip forming in the last roll stand and in one or more upstream roll stands of the rolling mill being changed by means of the process model depending on the deviation in the outlet temperature such that the outlet temperature corresponds to the setpoint temperature.

Der Zusammenhang zwischen der Bandumformung und/oder der Walzgeschwindigkeit in dem letzten Walzgerüst der Walzstraße einerseits und der Auslauftemperatur, insbesondere an dem jeweiligen Arbeitspunkt, andererseits kann mittels eines übergeordneten Stichplanrechners berechnet werden. Unter einem Arbeitspunkt sind alle Einstellwerte (betreffend die physikalischen Eigenschaften Umformung, Dicke, Geschwindigkeit, Temperatur) eines Bereichs zu verstehen, innerhalb dem gewalzt wird (Soll-Stichplan), sowie die Bereiche dazwischen, die zum Erreichen des Bereichs durchfahren werden. Es können ein oder beliebig viele Arbeitspunkte berücksichtigt werden. Als besonders günstig im Sinne der Erfindung sind vier Arbeitspunkte, da sie alle wichtigen Eckpunkte des Walzprozesses beinhalten, ohne zu viel Rechenzeit zu deren Ermittlung zu benötigen. Der Stichplanrechner ist eingerichtet, diesen Zusammenhang als Setzzustand festzulegen und dem Setzzustand entsprechende Koeffizienten an das (mathematische) Prozessmodell zu übergeben. Zusätzlich kann der Stichplanrechner eingerichtet sein, entsprechende Koeffizienten an eine Einrichtung zu Ansteuerung von Stellgliedern der Walzstraße zu übergeben. Diese Koeffizienten können aus einem oder mehreren Termen oder aus daraus zusammengesetzten Termen der im Folgenden beispielhaft aufgeführten Größen bestehen: P ΔT , F ΔT , M ΔT , v ΔT , Q ˙ ΔT , T f ΔT , Δh ΔT , f v ΔT , l vn ΔT .

Figure imgb0001
The connection between the strip forming and/or the rolling speed in the last roll stand of the rolling train on the one hand and the outlet temperature, particularly at the respective operating point, on the other hand can be calculated using a higher-level pass schedule computer. A working point is to be understood as meaning all the setting values (relating to the physical properties of forming, thickness, speed, temperature) of an area within which rolling is carried out (target pass schedule), as well as the areas in between that are passed through to reach the area. There can be one or any number Operating points are taken into account. Four operating points are particularly favorable within the meaning of the invention, since they contain all the important key points of the rolling process without requiring too much computing time to determine them. The pass schedule computer is set up to define this relationship as a set state and to transfer coefficients corresponding to the set state to the (mathematical) process model. In addition, the pass schedule computer can be set up to transfer corresponding coefficients to a device for controlling actuators of the rolling train. These coefficients can consist of one or more terms or of terms composed of them, of the sizes listed below by way of example: P ΔT , f ΔT , M ΔT , v ΔT , Q ˙ ΔT , T f ΔT , Δh ΔT , f v ΔT , l vn ΔT .
Figure imgb0001

Dabei ist T die Temperatur, P die Walzleistung, F die Walzkraft, M das Walzmoment, v die Walzgeschwindigkeit, Tf die Fluidtemperatur, Q der Fluidvolumenstrom, h die Walzgutdicke, Δh die Abnahme, IVN die Länge eines Bandes bei konstanter Bandgeschwindigkeit und fv die Voreilung.where T is the temperature, P is the rolling power, F is the rolling force, M is the rolling torque, v is the rolling speed, Tf is the fluid temperature, Q is the fluid volume flow, h is the thickness of the rolling stock, Δh is the decrease, I VN is the length of a strip at constant strip speed and fv the advance.

Das Kühlmedium kann beispielsweise Luft, Wasser, Öl oder eine Emulsion sein. Die Walzstraßenkomponente kann beispielsweise eine Rolle oder eine Arbeitswalze sein.The cooling medium can be air, water, oil or an emulsion, for example. The rolling train component can be, for example, a roll or a work roll.

Das Prozessmodell kann eingerichtet sein, mittelbar oder unmittelbar zu überwachen, ob ein momentaner Zustand der Walzstraße dem Setzzustand entspricht. Wird dieser Setzzustand im Walzbetrieb durch anderweitige Reglereingriffe nicht erreicht oder ändert sich die Bandumformung und/oder die Abkühlrate des Metallbands durch eine Beaufschlagung des Metallbands mit einem Kühlmedium und durch einen Kontakt des Metallbands mit wenigstens einer festen Walzstraßenkomponente und/oder die Walzgeschwindigkeit in dem Walzspalt des letzten Walzgerüsts, beispielsweise aufgrund von Eingriffen eines Bedienpersonals, kann das erfindungsgemäße Prozessmodell aus den vom Stichplanrechner gelieferten Koeffizienten die mit der entsprechend eingriffsbedingten Abweichung der Bandumformung und/oder der Walzgeschwindigkeit in dem letzten Walzgerüst von den in dem Zusammenhang enthaltenen Setzwerten für die Bandumformung und/oder die Walzgeschwindigkeit in dem letzten Walzgerüst eine mit der eingriffsbedingten Abweichung verbundene Abweichung der Auslauftemperatur von einer in dem Zusammenhang enthaltenen Solltemperatur ermitteln. Das Prozessmodell ist zudem eingerichtet, die Bandumformung in dem letzten Walzgerüst und in einem oder mehreren bezüglich einer Bandförderrichtung durch die Walzstraße vorgelagerten Walzgerüsten der Walzstraße in Abhängigkeit der ermittelten Abweichung der Auslauftemperatur derart zu ändern, dass die Auslauftemperatur der Solltemperatur entspricht. Folglich wird die Auslauftemperatur des Metallbands mittels des Prozessmodells unter Berücksichtigung des oben beschriebenen Zusammenhangs eingestellt. Dazu kann das Prozessmodell die Bandumformung und/oder die Walzgeschwindigkeit und/oder die Abkühlrate bzw. die damit einhergehende Kühlmittelmenge in dem letzten Walzgerüst und dem einen oder den mehreren vorgelagerten Walzgerüsten dahingehend ändern, dass die Auslauftemperatur des Metallbands auf die Solltemperatur zurückkehrt.The process model can be set up to monitor directly or indirectly whether a current state of the rolling train corresponds to the setting state. If this set condition is not reached during rolling operation due to other controller interventions, or if the strip forming and/or the cooling rate of the metal strip changes due to the application of a cooling medium to the metal strip and contact of the metal strip with at least one fixed rolling train component and/or the rolling speed in the roll gap of the last roll stand, for example due to interventions by operating personnel, the process model according to the invention can use the coefficients supplied by the pass schedule computer to determine the deviation of the strip forming and/or the rolling speed in the last roll stand from the related deviations caused by the intervention contained setting values for strip forming and / or the rolling speed in the last rolling stand determine a deviation associated with the intervention-related deviation of the outlet temperature from a setpoint temperature contained in the context. The process model is also set up to change the strip forming in the last rolling stand and in one or more rolling stands of the rolling train that are upstream with respect to a strip conveying direction through the rolling train, depending on the determined deviation of the outlet temperature, in such a way that the outlet temperature corresponds to the setpoint temperature. Consequently, the outlet temperature of the metal strip is set using the process model, taking into account the relationship described above. For this purpose, the process model can change the strip forming and/or the rolling speed and/or the cooling rate or the associated amount of coolant in the last roll stand and the one or more upstream roll stands such that the outlet temperature of the metal strip returns to the setpoint temperature.

Das Metallband kann beispielsweise ein Aluminiumband oder Stahlband sein. Die Walzstraße kann beispielsweise eine Kaltwalztandemstraße sein. Das letzte Walzgerüst der Walzstraße ist das letzte Walzgerüst bezüglich eines Massenflusses bzw. einer Bewegungsrichtung des Metallbands durch die Walzstraße. Entsprechendes gilt für das wenigstens eine vorgelagerte Walzgerüst der Walzstraße. Die Walzstraße weist wenigstens zwei, drei oder mehrere Walzgerüste auf. Die Bewegungsrichtung des Metallbandes durch die Walzstraße kann sich auch ändern, z. B. bei einem Reversierstich.The metal strip can be an aluminum strip or steel strip, for example. The rolling train can be a cold rolling tandem train, for example. The last rolling stand of the rolling train is the last rolling stand with regard to a mass flow or a direction of movement of the metal strip through the rolling train. The same applies to the at least one upstream roll stand of the rolling train. The rolling train has at least two, three or more roll stands. The direction of movement of the metal strip through the mill can also change, e.g. B. with a reversing stitch.

Die erfindungsgemäße modellbasierte Temperatureinstellung hat den Vorteil, dass sie im Idealfall keinerlei Sensorik benötigt. Dadurch werden Investitions-, Inbetriebnahme- und Maintenance-Aufwendungen gesenkt. Zur Prozessmodellvalidierung würde schon eine einfache off-line Temperaturmessung am aufgewickelten Coil ausreichen. Das Prozessmodell sorgt darüber hinaus für eine Entkopplung von Temperatureinstellung und Dickenregelung, so dass die Qualität des Endprodukts erhöht werden kann, indem wechselseitige Störungen verschiedener Regelungen minimiert werden. Die Dynamik der Temperatureinstellung ist durch das Prozessmodell für unterschiedliche Produkte auf einem einheitlich hohen Niveau. Die Erfindung stellt somit einen modellbasierten Ansatz einer in eine Walzstraßenregelungsarchitektur voll integrierten Temperatureinstellung dar, der gegenüber dem Stand der Technik mit einem geringeren Investitionsbedarf, beispielsweise durch einen Wegfall der bei Aluminiumbändern üblichen, teuren Wärmebildkamera, einem geringeren Inbetriebnahmeaufwand, geringeren Betriebskosten, insbesondere Wartungskosten und Ersatzkosten, einer höheren Regelgüte und Dynamik, einer besseren Produktqualität und einer größeren Zuverlässigkeit verbunden ist.The model-based temperature setting according to the invention has the advantage that ideally it does not require any sensors. This reduces investment, commissioning and maintenance expenses. A simple off-line temperature measurement on the wound coil would be sufficient for process model validation. The process model also ensures that temperature setting and thickness control are decoupled, so that the quality of the end product can be increased by minimizing mutual interference between different controls. The Dynamics of the temperature setting is at a uniformly high level for different products thanks to the process model. The invention thus represents a model-based approach to a temperature setting that is fully integrated into a rolling mill control architecture, which requires less investment than the prior art, for example by eliminating the expensive thermal imaging camera that is customary with aluminum strips, less commissioning effort, lower operating costs, in particular maintenance costs and replacement costs , higher control quality and dynamics, better product quality and greater reliability.

Ein wesentlicher Vorteil der Erfindung gegenüber einem herkömmlichen Temperaturregler besteht darin, dass die Auslauftemperatur insbesondere bei einer Anlage im Batchbetrieb bereits zu einem früheren Zeitpunkt des Walzprozesses eingestellt werden kann. Zudem ist von Vorteil, dass das erfindungsgemäße Verfahren über die Bandlänge gleichmäßiger arbeitet und dynamischer ist, da die Prozessdaten direkt im Walzspalt ermittelt werden und nicht durch den Transport zur Temperaturmessstelle totzeitbehaftet sind. Weiter ist von Vorteil, dass das erfindungsgemäße Verfahren höhere Änderungsraten über die Zeit zur Einstellung der Zieltemperatur zulässt.An essential advantage of the invention compared to a conventional temperature controller is that the outlet temperature can already be set at an earlier point in time in the rolling process, particularly in the case of a plant in batch operation. In addition, it is advantageous that the method according to the invention works more evenly over the length of the strip and is more dynamic, since the process data are determined directly in the roll gap and are not subject to dead time due to the transport to the temperature measuring point. Another advantage is that the method according to the invention allows higher rates of change over time for setting the target temperature.

Gemäß einer vorteilhaften Ausgestaltung wird mittels des Prozessmodells in Abhängigkeit der Abweichung der Auslauftemperatur eine zur Erreichung der Solltemperatur erforderliche Änderung einer Abnahme einer Banddicke des Metallbands in dem letzten Walzgerüst ermittelt und eine Walzspalthöhe in einem oder mehreren vorgelagerten Walzgerüsten um einen der Änderung der Banddicke des Metallbands in dem letzten Walzgerüst entsprechenden Betrag in entgegengesetzter Richtung geändert. Wird beispielsweise die Walzgeschwindigkeit des von dem Stichplanrechner berechneten Stichplans bzw. Setzzustands nicht erreicht, ist die Auslauftemperatur des Metallbands zu gering. Das Prozessmodell kann dann die Bandumformung in dem letzten Walzgerüst erhöhen, um eine gewünschte Auslauftemperatur des Metallbands auch mit der geringeren Walzgeschwindigkeit zu erreichen. Mit der Änderung der Bandumformung in dem letzten Walzgerüst allein wäre jedoch eine Störung der Zieldicke des Metallbands verbunden. Eine Dickenregelung der Walzstraße würde diese Dickenänderung ausregeln und den Anfangszustand wieder herstellen. Um dies zu verhindern, berechnet das Prozessmodell mit den vom Stichplanrechner gelieferten Koeffizienten auch eine erforderliche Veränderung der Bandumformung in einem oder mehreren vorgelagerten Walzgerüsten, damit zusammen mit der zur Einstellung der gewünschten Auslauftemperatur des Metallbands erforderlichen Bandumformung in dem letzten Walzgerüst eine gewünschte Auslaufdicke des Metallbands unverändert bleibt. Berechnet das Prozessmodell beispielsweise eine zur Erreichung der gewünschten Auslauftemperatur des Metallbands erforderliche prozentuale Änderung der Abnahme bzw. Reduktion der Dicke des Metallbands in dem letzten Walzgerüst von +15%, wird die Abnahme bzw. Reduktion der Dicke des Metallbands in einem oder mehreren vorgelagerten Walzgerüsten so kompensiert, dass die Gesamtabnahme konstant bleibt. Wird die Banddicke des Metallbands zunächst beispielsweise von 0,4 mm auf 0,3 mm in dem vorletzten Walzgerüst und von 0,3 mm auf 0,2 mm in dem letzten Walzgerüst reduziert und liegt eine vorgenannte Abweichung der Auslauftemperatur des Metallbands vor, kann das Prozessmodell die Bandumformungen mittels der letzten beiden Walzgerüste derart ändern, dass die Banddicke mit dem vorletzten Walzgerüst von 0,4 mm auf 0,345 mm und mit dem letzten Walzgerüst von 0,345 mm auf 0,2 mm reduziert wird, so dass die Auslaufdicke des Metallbands nicht beeinflusst wird. Die jeweilige Stellgröße ist dabei die von dem Prozessmodell berechnete Walzspalthöhe des jeweiligen Walzgerüsts.According to an advantageous embodiment, a change in a decrease in strip thickness of the metal strip in the last roll stand that is required to achieve the setpoint temperature is determined by means of the process model as a function of the deviation in the outlet temperature, and a roll gap height in one or more upstream roll stands is increased by one of the change in the strip thickness of the metal strip in changed in the opposite direction corresponding to the amount corresponding to the last stand. If, for example, the rolling speed of the pass schedule calculated by the pass schedule computer or setting condition is not reached, the outlet temperature of the metal strip is too low. The process model can then increase the strip deformation in the last roll stand in order to achieve a desired exit temperature of the metal strip even with the lower rolling speed. With the change of band reshaping in the However, the last roll stand alone would disrupt the target thickness of the metal strip. A thickness control of the rolling mill would compensate for this change in thickness and restore the initial state. To prevent this, the process model uses the coefficients supplied by the pass schedule computer to calculate a required change in strip forming in one or more upstream roll stands, so that, together with the strip forming required to set the desired exit temperature of the metal strip in the last roll stand, a desired exit thickness of the metal strip remains unchanged remains. If the process model calculates, for example, a percentage change in the decrease or reduction in the thickness of the metal strip in the last roll stand of +15% that is required to achieve the desired exit temperature of the metal strip, the decrease or reduction in the thickness of the metal strip in one or more upstream roll stands is as follows compensates that the total decrease remains constant. If the strip thickness of the metal strip is initially reduced, for example from 0.4 mm to 0.3 mm in the penultimate roll stand and from 0.3 mm to 0.2 mm in the last roll stand, and if there is a deviation in the exit temperature of the metal strip, this can Process model change the strip forming using the last two roll stands in such a way that the strip thickness is reduced from 0.4 mm to 0.345 mm with the penultimate roll stand and from 0.345 mm to 0.2 mm with the last roll stand, so that the outlet thickness of the metal strip is not affected becomes. The respective manipulated variable is the roll gap height of the respective roll stand calculated by the process model.

Gemäß einer weiteren vorteilhaften Ausgestaltung wird für das letzte Walzgerüst und für ein oder mehrere vorgelagerte Walzgerüste jeweils ein in dem Prozessmodell enthaltenes eigenes Gerüstmodell verwendet, das in zeitlichen Abständen durch ein Abdrücken des jeweiligen Walzgerüsts ohne Metallband adaptiert wird. Das (mathematische) Gerüstmodell ist ein durch das Abdrücken (Kalibriervorgang) kalibriertes Gerüstmodell. Beim Abdrücken werden die Arbeitswalzen des jeweiligen Walzgerüsts in Kontakt miteinander gebracht, wobei Stellwege, Kräfte und dergleichen, beispielsweise mittels des Prozessmodells, erfasst werden können, um das Gerüstmodell zu adaptieren.According to a further advantageous embodiment, a separate stand model contained in the process model is used for the last roll stand and for one or more upstream roll stands, which is adapted at time intervals by forcing the respective roll stand without metal strip. The (mathematical) framework model is a framework model calibrated by the impression (calibration process). The work rolls of the respective roll stand are brought into contact with one another during the bucking, with adjustment paths, forces and the like being able to be recorded, for example by means of the process model, in order to adapt the stand model.

Gemäß einer weiteren vorteilhaften Ausgestaltung wird ein in dem Prozessmodell enthaltenes Kühlmodell verwendet, mit dem eine Abkühlung des Metallbands durch eine wahlweise Beaufschlagung mit verschiedene Kühlmitteln und eine Abkühlung des Metallbands aufgrund eines Kontakts mit Arbeitswalzen berechnet wird. Die verschiedenen Kühlmittel können beispielsweise Luft, Wasser, Öl oder eine Emulsion sein. Durch den Kontakt des Metallbands mit den Arbeitswalzen ist ein Wärmestrom gegeben, über den Wärme von dem Metallband über die Arbeitswalzen abfließt, so dass das Metallband gekühlt wird. Bei der Berechnung der jeweiligen Abkühlung des Metallbands können von dem Kühlmodell Vorlauftemperaturen, Volumenströme und Verweildauern in den betreffenden Anlagenteilen berücksichtigt werden. Die Berechnung der Kühlleistung kann durch Koeffizienten erfolgen, die vom Stichplanrechner ermittelt werden.According to a further advantageous embodiment, a cooling model contained in the process model is used, with which a cooling of the metal strip through optional application of different coolants and a cooling of the metal strip due to contact with work rolls is calculated. The various coolants can be air, water, oil or an emulsion, for example. The contact of the metal strip with the work rolls results in a flow of heat, via which heat flows away from the metal strip via the work rolls, so that the metal strip is cooled. When calculating the respective cooling of the metal strip, the cooling model can take into account the flow temperatures, volume flows and residence times in the relevant parts of the plant. The cooling capacity can be calculated using coefficients that are determined by the pass schedule calculator.

Gemäß einer weiteren vorteilhaften Ausgestaltung wird ein Einlauftemperaturniveau eines Coils aus dem Metallband vor einem Eintritt in die Walzstraße im Prozessmodell berücksichtigt. Diese Information ist auch für die Anlagensetzung erforderlich. Hierbei ist in erster Linie zu unterscheiden, ob es sich um ein auf Raumtemperatur abgekühltes Coil oder um ein aufgrund von Warmwalz- oder Glühprozessen noch über Raumtemperatur erwärmtes Coil handelt. Dieses kann durch eine manuelle oder inline Temperaturmessung im Zulauf der Walzstraße oder durch eine Berechnung der Abkühlung aufgrund von Daten von Prozessschritten über die Zeit aus der Produktionsplanung erfolgen.According to a further advantageous embodiment, an inlet temperature level of a coil made from the metal strip before it enters the rolling train is taken into account in the process model. This information is also required for setting up the system. The primary distinction to be made here is whether it is a coil that has been cooled to room temperature or a coil that has been heated above room temperature as a result of hot rolling or annealing processes. This can be done by manually or inline measuring the temperature in the infeed of the rolling train or by calculating the cooling based on data from process steps over time from production planning.

Gemäß einer weiteren vorteilhaften Ausgestaltung werden Änderungen der Bandumformungen in dem letzten Walzgerüst und einem oder mehreren vorgeschalteten Walzgerüsten mittels eines Trackingmoduls vorgesteuert, indem die jeweilige Änderung der Banddicke mit einer jeweilig gemessenen Bandgeschwindigkeit in das jeweilige Walzgerüst verschoben wird. Das Trackingmodul sorgt dafür, dass die durch die Koeffizienten berechneten Variationen der Stellgrößen in nachgelagerte Walzgerüste zeitrichtig erfolgen, so dass es bei der Einstellung der richtigen Auslauftemperatur in keinem Zeitpunkt zu Dickenstörungen kommt. Das Trackingmodul kann in einem transienten Bereich, in dem sich die Dicke des Metallbands ändert, eine Umverteilung der Bandumformung in den Walzspalten des letzten Walzgerüsts und einem oder mehreren vorgelagerten Walzgerüsten vornehmen, damit eine gewünschte Auslaufdicke des Metallbands nicht gestört wird. Da die jeweilige Änderung der Banddicke des Metallbands mit der gemessenen Bandgeschwindigkeit in das nachfolgende, insbesondere letzten, Walzgerüst verschoben wird, wird in dem nachfolgenden Walzgerüst eine Änderung der Anstellung in dem Walzspalt des nachfolgenden Walzgerüsts zeitrichtig wie in dem vorhergehenden, insbesondere einem oder mehrerer vorgelagerten, Walzgerüst(en) gestartet.According to a further advantageous embodiment, changes in the strip deformations in the last roll stand and one or more upstream roll stands are precontrolled by means of a tracking module, in that the respective change in strip thickness is shifted into the respective roll stand with a respectively measured strip speed. The tracking module ensures that the variations in the manipulated variables calculated by the coefficients in the downstream roll stands occur at the right time, so that when the correct exit temperature is set, there are never any disturbances in the thickness. The tracking module can be used in a transient range in which the thickness of the Changes metal strips, redistribute the strip forming in the nips of the last roll stand and one or more upstream roll stands, so that a desired outlet thickness of the metal strip is not disturbed. Since the respective change in the strip thickness of the metal strip is shifted with the measured strip speed into the following, in particular last, rolling stand, a change in the adjustment in the roll gap of the following rolling stand is time-correct in the following rolling stand as in the preceding, in particular one or more upstream, Rolling stand(s) started.

Gemäß einer weiteren vorteilhaften Ausgestaltung wird mittels des Prozessmodells die Temperaturänderung aufgrund der gewalzten Bandlänge als Funktion der Bandgeschwindigkeit ermittelt.According to a further advantageous embodiment, the temperature change based on the rolled strip length as a function of the strip speed is determined by means of the process model.

Gemäß einer weiteren vorteilhaften Ausgestaltung werden Änderungen von Walzspalthöhen in dem letzten Walzgerüst und einem oder mehreren vorgelagerten Walzgerüsten mittels des Prozessmodells durch Änderungen von Drehzahlen von Arbeitswalzen des letzten Walzgerüsts bzw. des einen oder der mehreren vorgelagerten Walzgerüste kompensiert werden, wobei die Drehzahlen unter Verwendung eines ermittelten oder in dem Prozessmodell enthaltenen Massenflusses durch die Walzstraße ermittelt werden. Die Änderungen von Voreilungen und Banddicken können durch die Umformungsumverteilung so vorgesteuert werden, dass die Dickenregelung hinter dem letzten Walzgerüst im Idealfall keine Störung erreicht. Dieses kann beispielsweise dadurch erreicht werden, dass eine Änderung der Anstellung im letzten Walzgerüst und in einem oder mehreren vorgelagerten Walzgerüsten durch die dem Massenfluss entsprechende Änderung der Drehzahl in dem/den betroffenen Walzgerüst(en) kompensiert wird. Dadurch bleibt ein Bandzug, egal ob eine Zugregelung auf die Anstellung oder die Gerüstgeschwindigkeit wirkt, unverändert.According to a further advantageous embodiment, changes in roll gap heights in the last roll stand and one or more upstream roll stands are compensated by means of the process model by changes in the speeds of work rolls of the last roll stand or the one or more upstream roll stands, the speeds being determined using a or the mass flow contained in the process model through the rolling mill can be determined. The changes in overfeeds and strip thicknesses can be pre-controlled by the redistribution of forming in such a way that, ideally, the thickness control downstream of the last roll stand does not interfere. This can be achieved, for example, in that a change in the adjustment in the last roll stand and in one or more upstream roll stands is compensated for by the change in speed in the affected roll stand(s) that corresponds to the mass flow. As a result, a strip tension remains unchanged, regardless of whether a tension control affects the adjustment or the stand speed.

Gemäß einer weiteren vorteilhaften Ausgestaltung werden mittels des Prozessmodells Voreilungsänderungen des Metallbands bei einer Korrektur der Bandgeschwindigkeit berücksichtigt, wenn das Prozessmodell eine Abweichung der Bandumformung und/oder der Walzgeschwindigkeit in dem letzten Walzgerüst aufgrund eines Eingriffs eines Stellglieds einer anderweitigen Regelungseinrichtung der Walzstraße ermittelt hat. Die Voreilungsänderungen können beispielsweise über Differenzenquotienten des Stichplanmodells bei der Geschwindigkeitskorrektur berücksichtigt werden. Erkennt das Prozessmodell eine Abweichung der Bandumformung vom Setzzustand aufgrund eines Eingriffs eines Stellglieds, beispielsweise einer Dickenregelung oder Zugregelung, kann das Prozessmodell die Geschwindigkeitskorrektur analog aufschalten. Da das Prozessmodell kontinuierlich arbeiten kann und die Bandumformung kontinuierlich zwischen den Walzgerüsten verteilen kann und zudem Voreilungsänderungen vorgesteuert werden können, ergibt sich im Idealfall keine Störung einer gewünschten Auslaufdicke des Metallbands. Ist beispielsweise die Abnahme im letzten Walzgerüst geringer als in der Setzung vorgesehen (Eingangsgrößen: Auslaufdicke, Walzmoment und Walzkraft im letzten Walzgerüst), dann wird die Abnahme in einem oder mehreren vorgelagerten Walzgerüsten reduziert, so dass die Abnahme im letzten Walzgerüst erhöht werden kann. Die größere Umformung führt dann zu der gewünschten Erhöhung der Auslauftemperatur. Die bei der Umlagerung auftretenden Geschwindigkeits- und Voreilungsänderungen werden durch die veränderte Massenstrombilanz und Voreilungskoeffizienten dVoreilung/dAbnahme in den betroffenen Walzgerüsten vorgesteuert, so dass es während der Umlagerung nicht zu Zug- und Dickenstörungen kommt.According to a further advantageous embodiment, changes in the overfeed of the metal strip are made by means of the process model when the strip speed is corrected taken into account when the process model has determined a deviation in the strip forming and/or the rolling speed in the last rolling stand due to an intervention by an actuator of another control device of the rolling train. The lead changes can be taken into account, for example, via difference quotients of the pass schedule model when correcting the speed. If the process model detects a deviation in strip forming from the set state due to the intervention of an actuator, for example a thickness control or tension control, the process model can apply the speed correction analogously. Since the process model can work continuously and the strip forming can be continuously distributed between the roll stands and advance changes can also be pre-controlled, ideally there is no disruption to a desired exit thickness of the metal strip. If, for example, the reduction in the last rolling stand is less than that provided for in the settlement (input variables: outlet thickness, rolling torque and rolling force in the last rolling stand), then the reduction in one or more upstream rolling stands is reduced, so that the reduction in the last rolling stand can be increased. The greater deformation then leads to the desired increase in the outlet temperature. The changes in speed and overfeed that occur during the rearrangement are pre-controlled by the changed mass flow balance and overfeed coefficients doverfeed/dreduction in the roll stands concerned, so that tension and thickness disturbances do not occur during the rearrangement.

Gemäß einer weiteren vorteilhaften Ausgestaltung wird der Zusammenhang zwischen der Bandumformung und/oder der Abkühlrate des Metallbands durch wenigstens ein Kühlmedium und durch wenigstens eine feste Walzstraßenkomponente und/oder der Walzgeschwindigkeit in dem letzten Walzgerüst einerseits und der Auslauftemperatur andererseits mithilfe von Temperaturmessungen an dem aus der Walzstraße auslaufenden Metallband adaptiert. Beispielsweise kann die tatsächliche Coil-Temperatur beispielsweise mit einem Handmessgerät am Ende eines Walzprogrammes gemessen werden. Komfortabler aber aufwändiger ist eine inline-Temperaturmessung. Die Messwerte der jeweiligen Temperaturmessung können automatisch an den Stichplanrechner geschickt werden, der die gerechnete und gemessene Temperatur mit einem berechneten Temperaturwert vergleicht und den berechneten Temperaturwert an den Messwert adaptiert. Hierbei können zusätzlich auch andere Modellparameter adaptiert werden.According to a further advantageous embodiment, the connection between the strip forming and/or the cooling rate of the metal strip by at least one cooling medium and by at least one fixed rolling train component and/or the rolling speed in the last rolling stand on the one hand and the exit temperature on the other hand is determined with the aid of temperature measurements at the end of the rolling train expiring metal band adapted. For example, the actual coil temperature can be measured with a hand-held measuring device at the end of a rolling program. Inline temperature measurement is more convenient but more complex. The measured values of the respective temperature measurement can be sent automatically to the pass schedule computer, which calculates and compares the measured temperature with a calculated temperature value and adapts the calculated temperature value to the measured value. In this case, other model parameters can also be adapted.

Eine erfindungsgemäße Steuervorrichtung zum Einstellen einer Auslauftemperatur eines aus einer wenigstens zweigerüstigen Walzstraße auslaufenden Metallbands ist so eingerichtet, dass sie das Verfahren nach einer der oben genannten Ausgestaltungen durchführt.A control device according to the invention for setting an exit temperature of a metal strip exiting an at least two-stand rolling train is set up in such a way that it carries out the method according to one of the above-mentioned configurations.

Mit der Steuervorrichtung sind die oben mit Bezug auf das Verfahren genannten Vorteile entsprechend verbunden. Die Steuervorrichtung kann als separate Vorrichtung gegeben oder durch eine Softwareimplementierung in eine vorhandene Anlageelektronik einer Walzanlage realisiert sein. Die Steuervorrichtung kann als prädiktiver Temperaturregler einer Walzanlage auf der Basis eines Prozessmodells eingesetzt werden.The advantages mentioned above in relation to the method are correspondingly associated with the control device. The control device can be given as a separate device or can be realized by a software implementation in existing system electronics of a rolling mill. The control device can be used as a predictive temperature controller of a rolling mill based on a process model.

Eine erfindungsgemäße Walzanlage zum Walzen eines Metallbands weist wenigstens eine wenigstens zweigerüstige Walzstraße und wenigstens eine oben genannte Steuervorrichtung zum Einstellen einer Auslauftemperatur des aus der Tandemwalzstraße austretenden Metallbands auf, wobei die Walzstraße wenigstens eine feste Walzstraßenkomponente für den Kontakt mit dem Walzband und Mittel zur Beaufschlagung des Metallbandes mit einem Kühlmittelmedium aufweist.A rolling mill according to the invention for rolling a metal strip has at least one at least two-stand rolling train and at least one above-mentioned control device for setting an outlet temperature of the metal strip emerging from the tandem rolling train, the rolling train having at least one fixed rolling train component for contact with the rolled strip and means for loading the metal strip having a coolant medium.

Mit der Walzanlage sind die oben mit Bezug auf das Verfahren genannten Vorteile entsprechend verbunden. Die Walzanlage kann als mehrgerüstige Kaltwalztandemstraße ausgebildet sein, insbesondere zur Herstellung von Aluminiumband.The advantages mentioned above in relation to the method are correspondingly associated with the rolling plant. The rolling mill can be designed as a multi-stand cold rolling tandem train, in particular for the production of aluminum strip.

Im Folgenden wird die Erfindung unter Bezugnahme auf die anliegenden Figuren anhand bevorzugter Ausführungsform beispielhaft erläutert, wobei die nachfolgend erläuterten Merkmale sowohl jeweils für sich genommen als auch in Kombination von wenigstens zwei dieser Merkmale miteinander einen vorteilhaften oder weiterbildenden Aspekt der Erfindung darstellen können. Es zeigen:

Figur 1
eine schematische Darstellung eines Ausführungsbeispiels für eine erfindungsgemäße Walzanlage;
Figur 2
eine schematische Darstellung eines weiteren Ausführungsbeispiels für eine erfindungsgemäße Walzanlage;
Figur 3A
eine schematische Darstellung eines Gerüstmodells eines Ausführungsbeispiels für ein erfindungsgemäßes Prozessmodell;
Figur 3B
eine schematische Darstellung eines Kühlmodells eines Ausführungsbeispiels für ein erfindungsgemäßes Prozessmodell; und
Figur 3C
eine schematische Darstellung eines Trackingmoduls eines Ausführungsbeispiels für ein erfindungsgemäßes Prozessmodell.
In the following, the invention is explained by way of example with reference to the enclosed figures using preferred embodiments, with the features explained below being able to represent an advantageous or further developing aspect of the invention both individually and in combination with at least two of these features. Show it:
figure 1
a schematic representation of an embodiment of a rolling mill according to the invention;
figure 2
a schematic representation of a further embodiment of a rolling mill according to the invention;
Figure 3A
a schematic representation of a framework model of an embodiment of a process model according to the invention;
Figure 3B
a schematic representation of a cooling model of an embodiment of a process model according to the invention; and
Figure 3C
a schematic representation of a tracking module of an embodiment of a process model according to the invention.

In den Figuren sind gleiche bzw. funktionsgleiche Bauteile mit denselben Bezugszeichen versehen. Eine wiederholte Beschreibung dieser Bauteile kann weggelassen sein.Identical or functionally identical components are provided with the same reference symbols in the figures. Repeated description of these components may be omitted.

Figur 1 zeigt eine schematische Darstellung eines Ausführungsbeispiels für eine erfindungsgemäße Walzanlage 1 zum Walzen eines Metallbands 2. Die Walzanlage 1 weist eine dreigerüstige Walzstraße 3 und eine symbolisch gezeigte Steuervorrichtung 4 zum Einstellen einer Auslauftemperatur des aus der Walzstraße 3 austretenden Metallbands 2 auf. Die Steuervorrichtung 4 ist zur Durchführung eines erfindungsgemäßen Verfahrens zum Einstellen der Auslauftemperatur des aus der Walzstraße 3 auslaufenden Metallbands 2 eingerichtet. figure 1 shows a schematic representation of an exemplary embodiment of a rolling mill 1 according to the invention for rolling a metal strip 2. The rolling mill 1 has a three-stand rolling train 3 and a control device 4, shown symbolically, for setting an outlet temperature of the metal strip 2 emerging from the rolling train 3. The control device 4 is set up to carry out a method according to the invention for setting the exit temperature of the metal strip 2 exiting the rolling train 3 .

In Figur 1 sind verschiedene Größen und deren Zusammenhänge dargestellt. Dabei ist P1 die Soll-Walzleistung des ersten Walzgerüsts 5 und P'1 die Ist-Walzleistung des ersten Walzgerüsts 5. h10 ist die Einlaufdicke des in das erste Walzgerüst 5 einlaufenden Walzbands 2 und h11 ist die Auslaufdicke des aus dem ersten Walzgerüst 5 auslaufenden Walzbands 2, wobei Δh1 die Abnahme der Dicke des Walzbands 2 in dem ersten Walzgerüst 5 ist. v1 ist die Bandgeschwindigkeit des das erste Walzgerüst 5 verlassenden Walzbands 2 und S12 ist der Bandzug in dem Walzband 2 zwischen dem ersten Walzgerüst 5 und einem dem ersten Walzgerüst 5 nachgeschalteten zweiten Walzgerüst 6.In figure 1 different variables and their relationships are shown. P 1 is the target rolling capacity of the first roll stand 5 and P' 1 is the actual rolling capacity of the first roll stand 5. h 10 is the inlet thickness of the rolled strip 2 entering the first roll stand 5 and h 11 is the outlet thickness of the first roll stand 5 expiring rolled strip 2, where Δh 1 , the decrease in the thickness of Rolled strip 2 in the first roll stand 5 is. v 1 is the strip speed of the rolled strip 2 leaving the first roll stand 5 and S 12 is the strip tension in the rolled strip 2 between the first roll stand 5 and a second roll stand 6 downstream of the first roll stand 5.

P2 die Soll-Walzleistung des zweiten Walzgerüsts 6 und P'2 die Ist-Walzleistung des zweiten Walzgerüsts 6. h20 ist die Einlaufdicke des in das zweite Walzgerüst 6 einlaufenden Walzbands 2 und h21 ist die Auslaufdicke des aus dem zweiten Walzgerüst 6 auslaufenden Walzbands 2, wobei Δh2 die Abnahme der Dicke des Walzbands 2 in dem zweiten Walzgerüst 6 ist. v2 ist die Bandgeschwindigkeit des das zweite Walzgerüst 6 verlassenden Walzbands 2 und S23 ist der Bandzug in dem Walzband 2 zwischen dem zweiten Walzgerüst 6 und einem dem zweiten Walzgerüst 6 nachgeschalteten dritten bzw. letzten Walzgerüst 7.P 2 is the target rolling capacity of the second rolling stand 6 and P' 2 is the actual rolling capacity of the second rolling stand 6. h 20 is the entry thickness of the rolled strip 2 entering the second rolling stand 6 and h 21 is the exit thickness of the rolling strip 2 exiting the second rolling stand 6 Rolled strip 2, where Δh 2 is the decrease in the thickness of the rolled strip 2 in the second roll stand 6. v 2 is the strip speed of the rolled strip 2 leaving the second roll stand 6 and S 23 is the strip tension in the rolled strip 2 between the second roll stand 6 and a third or last roll stand 7 downstream of the second roll stand 6.

P3 die Soll-Walzleistung des dritten Walzgerüsts 7 und P'3 die Ist-Walzleistung des dritten Walzgerüsts 7. h30 ist die Einlaufdicke des in das dritten Walzgerüst 7 einlaufenden Walzbands 2 und h31 ist die Auslaufdicke des aus dem dritten Walzgerüst 7 auslaufenden Walzbands 2, wobei Δh3 die Abnahme der Dicke des Walzbands 2 in dem dritten Walzgerüst 7 ist. v3 ist die Bandgeschwindigkeit des das dritte Walzgerüst 7 verlassenden Walzbands 2.P 3 is the target rolling capacity of the third rolling stand 7 and P' 3 is the actual rolling capacity of the third rolling stand 7. h 30 is the entry thickness of the rolled strip 2 entering the third rolling stand 7 and h 31 is the exit thickness of the rolling strip 2 exiting the third rolling stand 7 Rolled strip 2, where Δh 3 is the decrease in the thickness of the rolled strip 2 in the third roll stand 7. v 3 is the strip speed of the rolled strip 2 leaving the third roll stand 7.

T ist die Soll-Temperatur des aus der Walzstraße 3 auslaufenden Kalt- oder Warmbands 2 und T' ist die Ist-Temperatur des aus der Walzstraße 3 auslaufenden Kalt- oder Warmbands 2, wobei ΔT die Temperaturdifferenz zwischen der Soll-Temperatur und der Ist-Temperatur ist.T is the target temperature of the cold or hot strip 2 leaving the rolling train 3 and T' is the actual temperature of the cold or hot strip 2 leaving the rolling train 3, where ΔT is the temperature difference between the target temperature and the actual temperature is.

Im unteren Bereich von Figur 1 sind die Zusammenhänge zwischen den oben genannten Größen gezeigt, die ein erfindungsgemäßes Einstellen der Auslauftemperatur T' ermöglichen.In the lower area of figure 1 shows the relationships between the variables mentioned above, which allow the outlet temperature T′ to be set according to the invention.

Figur 2 zeigt eine schematische Darstellung eines weiteren Ausführungsbeispiels für eine erfindungsgemäße Walzanlage zum Walzen eines nicht gezeigten Metallbands, wobei von der Walzanlage lediglich ein Stichplanrechner 8 und das Prozessmodell 9 mit Bezug auf ein Walzgerüst n gezeigt sind. figure 2 shows a schematic representation of a further embodiment of a rolling mill according to the invention for rolling a metal strip, not shown, of the rolling mill, only a pass schedule computer 8 and the process model 9 with reference to a roll stand n are shown.

Dem Stichplanrechner 8 werden eine Einlauftemperatur T0 des Warmbands, eine Auslauftemperatur T des Warmbands, eine Dickenabnahme Δh innerhalb des Walzgerüsts n sowie Material- und Anlagendaten A zugeführt. Der Stichplanrechner 8 ermittelt hieraus rechts in Figur 2 gezeigte Koeffizienten und Setzwerte, die gemeinsam dem Prozessmodell 9 zugeführt werden.An inlet temperature T0 of the hot strip, an outlet temperature T of the hot strip, a reduction in thickness Δh within the roll stand n and material and system data A are fed to the pass schedule computer 8 . From this, the pass schedule calculator 8 determines on the right in figure 2 shown coefficients and setting values, which are fed to the process model 9 together.

Dem Prozessmodell 9 werden zudem die aktuelle Walzleistung P(n) des Walzgerüsts n, ein aktuelles Walzmoment M(n) des Walzgerüsts n, eine aktuelle Walzkraft F(n) des Walzgerüsts n, eine aktuelle Walzgeschwindigkeit v(n) des Walzgerüsts n, eine aktuelle Walzumformung Δh(n) in dem Walzgerüst n, eine aktuelle Kühlmitteltemperatur Tf(n) an dem Walzgerüst n und ein aktueller Kühlmittelvolumenstrom Q(n) an dem Walzgerüst n zugeführt. Des Weiteren werden dem Prozessmodell 9 optional Kalibrierkurven K(n) des Walzgerüsts n und optional eine gemessene Ist-Temperatur T zugeführt. Hieraus ermittelt das Prozessmodell 9 eine Walzgeschwindigkeitsänderung Δv(n) über die Zeit t und eine Abnahmeänderung Δh(n) über die Zeit t für das Walzgerüst n. Zu diesem Zweck weist das Prozessmodell 9 ein Gerüstmodell 10, ein Kühlmodell 11 und ein Trackingmodul 12 auf.The process model 9 is also given the current rolling power P(n) of roll stand n, a current rolling torque M(n) of roll stand n, a current rolling force F(n) of roll stand n, a current rolling speed v(n) of roll stand n, a current roll deformation Δh(n) in roll stand n, a current coolant temperature Tf(n) at roll stand n and a current coolant volume flow Q(n) at roll stand n. Furthermore, optionally calibration curves K(n) of the roll stand n and optionally a measured actual temperature T are supplied to the process model 9 . From this, the process model 9 determines a rolling speed change Δv(n) over time t and a decrease change Δh(n) over time t for the roll stand n. For this purpose, the process model 9 has a stand model 10, a cooling model 11 and a tracking module 12 .

Figur 3A zeigt eine schematische Darstellung eines Gerüstmodells 10 eines Ausführungsbeispiels für ein erfindungsgemäßes Prozessmodell. Dem Gerüstmodell 10 werden die aktuelle Walzkraft F(n) eines Walzgerüsts n und eine aktuelle Walzumformung Δh(n) in dem Walzgerüst n zugeführt. Des Weiteren werden dem Gerüstmodell 10 ein Gerüstmodul G(n) und ein Bandmodul B(n) zugeführt. Hieraus ermittelt das Gerüstmodell 10 eine Anstellpositionsabweichung Δs(n) von einem Setzwert s(n) des Walzgerüsts n. Das Gerüstmodell 10 kann in dem Prozessmodell aus Figur 2 implementiert sein. Figure 3A shows a schematic representation of a framework model 10 of an embodiment of a process model according to the invention. The stand model 10 is supplied with the current rolling force F(n) of a roll stand n and a current roll deformation Δh(n) in the roll stand n. Furthermore, a framework module G(n) and a belt module B(n) are supplied to the framework model 10 . From this, the stand model 10 determines a setting position deviation Δs(n) from a setting value s(n) of the roll stand n. The stand model 10 can be used in the process model figure 2 be implemented.

Figur 3B zeigt eine schematische Darstellung eines Kühlmodells 11 eines Ausführungsbeispiels für ein erfindungsgemäßes Prozessmodell. Dem Kühlmodell 11 werden eine aktuelle Walzgeschwindigkeit v(n) des Walzgerüsts n, eine aktuelle Kühlmitteltemperatur Tf(n) an dem Walzgerüst n und ein aktueller Kühlmittelvolumenstrom Q(n) an dem Walzgerüst n zugeführt. Des Weiteren werden dem Kühlmodell 11 Anlagendaten A(n) zugeführt. Hieraus ermittelt das Kühlmodell 11 eine Bandtemperaturabweichung ΔT(n) von einem Setzwert T(n) an dem Walzgerüst n. Das Kühlmodell 11 kann in dem Prozessmodell aus Figur 2 implementiert sein. Figure 3B shows a schematic representation of a cooling model 11 of an exemplary embodiment of a process model according to the invention. The cooling model 11 a current rolling speed v(n) of roll stand n, a current coolant temperature Tf(n) at roll stand n and a current coolant volume flow Q(n) at roll stand n are supplied. Furthermore, the cooling model 11 system data A (n) are supplied. From this, the cooling model 11 determines a strip temperature deviation ΔT(n) from a set value T(n) at the roll stand n. The cooling model 11 can be included in the process model figure 2 be implemented.

Figur 3C zeigt eine schematische Darstellung eines Trackingmoduls 12 eines Ausführungsbeispiels für ein erfindungsgemäßes Prozessmodell. Dem Trackingmodul 12 werden die von dem Gerüstmodell aus Figur 3A ermittelte Anstellpositionsabweichung Δs(n) des Walzgerüsts n und die aktuelle Walzgeschwindigkeit v(n) des Walzgerüsts n zugeführt. Des Weiteren werden dem Trackingmodul 12 Anlagendaten A(n) zugeführt. Hieraus ermittelt das Trackingmodul 12 eine Walzgeschwindigkeitsänderung Δv(n) über die Zeit t und eine Abnahmeänderung Δh(n) über die Zeit t für das Walzgerüst n. Das Trackingmodul 12 kann in dem Prozessmodell aus Figur 2 implementiert sein. Figure 3C shows a schematic representation of a tracking module 12 of an embodiment of a process model according to the invention. The tracking module 12 receives the data from the skeleton model Figure 3A determined adjustment position deviation Δs(n) of roll stand n and the current rolling speed v(n) of roll stand n. Furthermore, the tracking module 12 system data A (n) are supplied. From this, tracking module 12 determines a change in rolling speed Δv(n) over time t and a change in decrease Δh(n) over time t for roll stand n. Tracking module 12 can be found in the process model figure 2 be implemented.

BezugszeichenlisteReference List

11
Walzanlagerolling mill
22
Walzbandrolled strip
33
Walzstraßerolling mill
44
Steuervorrichtungcontrol device
55
erstes (vorgelagertes) Walzgerüstfirst (upstream) roll stand
66
zweites (vorgelagertes) Walzgerüstsecond (upstream) roll stand
77
drittes (letztes) Walzgerüstthird (last) roll stand
88th
Stichplanrechnerpass schedule calculator
99
Prozessmodellprocess model
1010
Gerüstmodellscaffold model
1111
Kühlmodellcooling model
1212
Trackingmodultracking module

Claims (13)

  1. Method for setting an exit temperature of a metal strip (2) exiting an at least two-stand rolling train (3), wherein the exit temperature is set by means of a process model (9) with consideration of a correlation between a strip reshaping and/or a rate of cooling down of the metal strip (2) by at least one cooling medium and by contact of the metal strip (2) with at least one fixed rolling train component and/or a rolling speed in a last roll stand (7) of the rolling train (3) on the one hand and the exit temperature on the other hand,
    characterised in that
    after determination, which is carried out with use of the process model (9), of a deviation, which is caused by engagement, of the strip reshaping and/or the rolling speed in the last roll stand (7) from set values, which are present in the correlation, for the strip reshaping and/or the rolling speed in the last roll stand (7), by means of the process model (9), a deviation, which is connected with the deviation caused by engagement, of the exit temperature from a target temperature, which is present in the correlation, is determined, wherein the strip reshaping in the last roll stand (7) and in one or more upstream roll stands (5, 6) of the rolling train (3) is changed in such a way by means of the process model (9) in dependence on a deviation of the exit temperature that the exit temperature corresponds with the target temperature.
  2. Method according to claim 1, characterised in that a change, which is required for achieving the target temperature, in a decrease of strip thickness of the metal strip (2) in the last roll stand (7) is determined by means of the process model (9) in dependence on the deviation of the exit temperature, and a rolling gap height in one or more upstream roll stands (5, 6) is changed by an amount, which corresponds with the change of the strip thickness of the metal strip (2) in the last roll stand (7), in opposite direction.
  3. Method according to claim 1 or 2, characterised in that for the last roll stand (7) and for one or more upstream roll stands (5, 6) in each instance use is made of an individual stand model (10) which is present in the process model (9) and which is adapted at intervals in time by pressing down the respective roll stand (5, 6, 7) without metal strip (2).
  4. Method according to any one of claims 1 to 3, characterised in that use is made of a cooling model (11) which is present in the process model (9) and by which cooling down of the metal strip (2) by selectable loading with different cooling media and a cooling down of the metal strip (2) due to contact with work rolls are calculated.
  5. Method according to any one of claims 1 to 4, characterised in that an entry temperature level of a coil consisting of the metal strip (2) prior to entry into the rolling train (3) is taken into consideration in the process model (9).
  6. Method according to any one of claims 1 to 5, characterised in that changes in the strip reshapings in the last roll stand (7) and in one or more upstream roll stands (5, 6) are pre-controlled by means of a tracking module (12) in that the respective change in the strip thickness is displaced into the respective roll stand (5, 6, 7) at a respective measured strip speed.
  7. Method according to any one of claims 1 to 6, characterised in that the temperature change due to the rolled strip length is determined by means of the process model (9) as a function of the strip speed.
  8. Method according to any one of claims 1 to 7, characterised in that compensation for changes in rolling gap heights in the last roll stand (7) and in one or more upstream roll stand (5, 6) is made by means of the process model (9) through changes of rotational speeds of work rolls of the last roll stand (7) or of the one or more upstream roll stands (5, 6), wherein the rotational speeds are determined with use of a mass flow, which is determined or is present in the process model (9), through the rolling train (3).
  9. Method according to any one of claims 1 to 8, characterised in that advance changes of the metal strip (2) in the case of correction of the strip speed are taken into consideration by means of the process model (9) when the process model (9) has determined a deviation of the strip reshaping and/or the rolling speed in the last roll stand (7) due to intervention of a setting element of another regulating device of the rolling train (3).
  10. Method according to any one of claims 1 to 9, characterised in that the correlation between the strip reshaping and/or the rate of cooling down of the metal strip (2) by at least one cooling medium and by at least one fixed rolling train component and/or the rolling speed in the last roll stand (7) on the one hand and the exit temperature on the other hand is adapted with the help of the temperature measurements of the metal strip (2) exiting the rolling train (3).
  11. Control device (4) for setting an exit temperature of a metal strip (2) exiting an at least two-stand rolling train (3), characterised in that the control device (4) is so arranged for performing the method according to claim 1 that the exit temperature is set by means of a process model (9) with consideration of a correlation between a strip reshaping and/or a rate of cooling down of the metal strip (2) by at least one cooling medium and by contact of the metal strip (2) with at least one fixed rolling train component and/or a rolling speed in a last roll stand (7) of the rolling train (3) on the one hand and the exit temperature on the other hand, wherein after determination, which is carried out with use of the process model (9), of a deviation, which is caused by engagement, of the strip reshaping and/or the rolling speed in the last roll stand (7) from set values, which are present in the correlation, for the strip reshaping and/or the rolling speed in the last roll stand (7) a deviation, which is connected with the deviation caused by the engagement, of the exit temperature from a target temperature, which is present in the correlation, is determined by means of the process model (9), wherein the strip reshaping in the last roll stand (7) and in one or more upstream roll stands (5, 6) of the rolling train (3) is changed in such a way by means of the process model (9) in dependence on the deviation of the exit temperature that the exit temperature corresponds with the target temperature.
  12. Control device (4) according to claim 11, characterised in that the control device is so arranged that the method according to any one of claims 2 to 10 is performed.
  13. Rolling mill (1) for rolling a metal strip (2), comprising an at least two-stand rolling train (3) and at least one control device (4) for setting an exit temperature of the metal strip (2) exiting the rolling train (3), wherein the rolling train comprises at least one fixed rolling train component for contact with the rolled strip (2) and means for loading the metal strip (2) with the coolant medium, characterised in that the control device (4) is constructed according to claim 11 or 12.
EP20797072.4A 2019-11-21 2020-10-21 Method, control device and rolling mill for the adjustment of an outlet temperature of a metal strip exiting a rolling train Active EP4061552B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019217966.5A DE102019217966A1 (en) 2019-11-21 2019-11-21 Setting a run-out temperature of a metal strip running out of a rolling train
PCT/EP2020/079634 WO2021099052A1 (en) 2019-11-21 2020-10-21 Adjustment of an outlet temperature of a metal strip exiting a rolling train

Publications (2)

Publication Number Publication Date
EP4061552A1 EP4061552A1 (en) 2022-09-28
EP4061552B1 true EP4061552B1 (en) 2023-06-28

Family

ID=73014499

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20797072.4A Active EP4061552B1 (en) 2019-11-21 2020-10-21 Method, control device and rolling mill for the adjustment of an outlet temperature of a metal strip exiting a rolling train

Country Status (3)

Country Link
EP (1) EP4061552B1 (en)
DE (1) DE102019217966A1 (en)
WO (1) WO2021099052A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI763578B (en) * 2021-08-04 2022-05-01 中國鋼鐵股份有限公司 Prediction method of rough-rolling outlet temperature of billet steel

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2446009A1 (en) 1973-09-28 1975-04-03 Tokyo Shibaura Electric Co METHOD AND DEVICE FOR CONTROLLING THE ROLLING GAP IN COLD ROLLING MILLS
US4274273A (en) 1979-10-03 1981-06-23 General Electric Company Temperature control in hot strip mill
JPH04313407A (en) 1991-01-30 1992-11-05 Hitachi Ltd Protection device for thickness gauge between rolling mill stands
DE19823986A1 (en) 1998-05-29 1999-12-02 Alcatel Sa Procedure for determining the rolling force
WO2004076086A2 (en) 2003-02-25 2004-09-10 Siemens Aktiengesellschaft Method for regulating the temperature of a metal strip, especially for rolling a metal hot strip in a finishing train
US20040205951A1 (en) 2001-11-15 2004-10-21 Matthias Kurz Control method for a finishing train, arranged upstream of a cooling section, for rolling hot metal strip
JP2006281232A (en) 2005-03-31 2006-10-19 Jfe Steel Kk Method for controlling height of checkered mark of checkered plate in continuous hot finishing mill
WO2010049280A2 (en) 2008-10-30 2010-05-06 Siemens Aktiengesellschaft Method for adjusting a discharge thickness of rolling stock that passes through a multi-stand mill train, control and/or regulation device and rolling mill
DE102009030792A1 (en) 2008-12-18 2010-06-24 Sms Siemag Ag Method for calibrating two cooperating work rolls in a rolling stand
WO2011138067A2 (en) 2010-05-06 2011-11-10 Siemens Aktiengesellschaft Operating method for a production line with prediction of the command speed
EP2428288A1 (en) 2010-09-08 2012-03-14 Siemens VAI Metals Technologies GmbH Method for producing steel bands using continuous casting or semi-continuous casting
EP2431104A1 (en) 2010-09-16 2012-03-21 Siemens Aktiengesellschaft Method for determining the temperature and geometry of a hot rolled metal strip in a finishing train in real time
WO2013000677A1 (en) 2011-06-27 2013-01-03 Siemens Aktiengesellschaft Method for controlling a hot strip rolling line
JP2013220471A (en) 2012-04-19 2013-10-28 Jfe Steel Corp Rolling method in cold tandem rolling mill and controller for the cold tandem rolling mill
EP2662158A1 (en) 2012-05-07 2013-11-13 Siemens Aktiengesellschaft Method for processing milled goods and milling system
US10040107B2 (en) 2014-02-04 2018-08-07 Toshiba Mitsubishi-Electric Industrial Systems Corporation Temperature control apparatus of hot-rolling mill
DE202014011231U1 (en) 2013-12-20 2018-09-13 Novelis do Brasil Ltda. Dynamic Reduction Displacement (DSR) system for controlling a temperature in tandem mills

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63168211A (en) * 1986-12-27 1988-07-12 Sumitomo Metal Ind Ltd Temperature control method for hot rolling process
GB9317928D0 (en) * 1993-08-26 1993-10-13 Davy Mckee Poole Rolling of metal strip
JP2000210708A (en) * 1999-01-21 2000-08-02 Toshiba Corp Rolling material temperature control method and rolling material temperature controller in roll mill outlet side
EP2527054A1 (en) 2011-05-24 2012-11-28 Siemens Aktiengesellschaft Operating method for a mill train

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2446009A1 (en) 1973-09-28 1975-04-03 Tokyo Shibaura Electric Co METHOD AND DEVICE FOR CONTROLLING THE ROLLING GAP IN COLD ROLLING MILLS
US3940598A (en) 1973-09-28 1976-02-24 Tokyo Shibaura Denki Kabushiki Kaisha Method and apparatus for controlling roll gaps of cold rolling mills
US4274273A (en) 1979-10-03 1981-06-23 General Electric Company Temperature control in hot strip mill
JPH04313407A (en) 1991-01-30 1992-11-05 Hitachi Ltd Protection device for thickness gauge between rolling mill stands
DE19823986A1 (en) 1998-05-29 1999-12-02 Alcatel Sa Procedure for determining the rolling force
US20040205951A1 (en) 2001-11-15 2004-10-21 Matthias Kurz Control method for a finishing train, arranged upstream of a cooling section, for rolling hot metal strip
WO2004076086A2 (en) 2003-02-25 2004-09-10 Siemens Aktiengesellschaft Method for regulating the temperature of a metal strip, especially for rolling a metal hot strip in a finishing train
JP2006281232A (en) 2005-03-31 2006-10-19 Jfe Steel Kk Method for controlling height of checkered mark of checkered plate in continuous hot finishing mill
WO2010049280A2 (en) 2008-10-30 2010-05-06 Siemens Aktiengesellschaft Method for adjusting a discharge thickness of rolling stock that passes through a multi-stand mill train, control and/or regulation device and rolling mill
DE102009030792A1 (en) 2008-12-18 2010-06-24 Sms Siemag Ag Method for calibrating two cooperating work rolls in a rolling stand
WO2011138067A2 (en) 2010-05-06 2011-11-10 Siemens Aktiengesellschaft Operating method for a production line with prediction of the command speed
EP2428288A1 (en) 2010-09-08 2012-03-14 Siemens VAI Metals Technologies GmbH Method for producing steel bands using continuous casting or semi-continuous casting
EP2431104A1 (en) 2010-09-16 2012-03-21 Siemens Aktiengesellschaft Method for determining the temperature and geometry of a hot rolled metal strip in a finishing train in real time
WO2012034884A1 (en) 2010-09-16 2012-03-22 Siemens Aktiengesellschaft Real-time determination method for temperature and geometry of a hot metal hot in a finishing train
WO2013000677A1 (en) 2011-06-27 2013-01-03 Siemens Aktiengesellschaft Method for controlling a hot strip rolling line
JP2013220471A (en) 2012-04-19 2013-10-28 Jfe Steel Corp Rolling method in cold tandem rolling mill and controller for the cold tandem rolling mill
EP2662158A1 (en) 2012-05-07 2013-11-13 Siemens Aktiengesellschaft Method for processing milled goods and milling system
DE202014011231U1 (en) 2013-12-20 2018-09-13 Novelis do Brasil Ltda. Dynamic Reduction Displacement (DSR) system for controlling a temperature in tandem mills
EP3089833B1 (en) 2013-12-20 2018-09-19 Novelis Do Brasil LTDA. Dynamic shifting of reduction (dsr) to control temperature in tandem rolling mills
US10040107B2 (en) 2014-02-04 2018-08-07 Toshiba Mitsubishi-Electric Industrial Systems Corporation Temperature control apparatus of hot-rolling mill

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
M. J. GRIMBLE, G. HEARNS : "Advanced Control for Hot Rolling Mills", ADVANCES IN CONTROL - HIGHLIGHTS OF ECC'99; EUROPEAN CONTROL CONFERENCE ; 5 (KARLSRUHE) : 1999.08.31-09.03, SPRINGER, LONDON, 1 January 1999 (1999-01-01) - 3 September 1999 (1999-09-03), London, pages 135 - 169, XP009558681, ISBN: 1-85233-122-4, DOI: 10.1007/978-1-4471-0853-5_5
MAHDI BAGHERIPOOR ET AL.: "Effects of rolling parameters on temperature distribution in the hot rolling of aluminum strips", APPLIED THERMAL ENGINEERING, vol. 31, no. 10, 2011, pages 1556 - 1565, XP028189646, ISSN: 1359-4311, DOI: 10.1016/j.applthermaleng.2011.01.005
MATTHIAS KURZ, METZGER MICHAEL: "Metal working Online Calculation and Prediction of the Strip Temperature in a Hot Strip Finishing Mill", STEEL RESEARCH, vol. 74, no. 4, 1 January 2003 (2003-01-01), pages 211 - 219, XP055602298, DOI: 10.1002/srin.200300183

Also Published As

Publication number Publication date
DE102019217966A1 (en) 2021-05-27
WO2021099052A1 (en) 2021-05-27
EP4061552A1 (en) 2022-09-28

Similar Documents

Publication Publication Date Title
DE19963186B4 (en) Method for controlling and / or regulating the cooling section of a hot strip mill for rolling metal strip and associated device
EP2539089B2 (en) Method for cooling sheet metal by means of a cooling section, cooling section and control device for a cooling section
DE3036997C2 (en)
EP1799368B1 (en) Method and device for continuously producing a thin metal strip
EP2170535B1 (en) Method for adjusting a state of a rolling stock, particularly a near-net strip
EP0121148B1 (en) Method of making hot rolled strip with a high quality section and flatness
EP2691188B1 (en) Operating method for a rolling train
DE102006047718A1 (en) Method for tracking the physical condition of a hot plate or hot strip as part of the control of a plate rolling mill for processing a hot plate or hot strip
EP2548665A1 (en) Method for determining the wear on a roller dependent on relative movement
WO2012019917A1 (en) Method for producing rolling stock by means of a combined continuous casting and rolling system, control device for a combined continuous casting and rolling system, and combined continuous casting and rolling system
WO2012034875A2 (en) Method for determining control variables of a rolling train comprising a plurality of roll stands for rolling a metal strip
DE69907354T2 (en) Process for rolling a metal product
WO2013167366A1 (en) Method for processing rolling stock and rolling mill
DE4136013C2 (en) Method and device for controlling a rolling mill
EP0375095B1 (en) Method and device for controlling the strip width during the hot-rolling of strip
EP4061552B1 (en) Method, control device and rolling mill for the adjustment of an outlet temperature of a metal strip exiting a rolling train
DE69913538T2 (en) Method and device for flatness control
EP3194087B1 (en) Width adjustment in a finishing train
WO2014056681A1 (en) Width-altering system for strip-shaped rolled material
DE102004005011B4 (en) Control method and controller for a rolling stand
DE102018200166B4 (en) Control device, control method and control program of a rolling mill
DE102005029461B3 (en) Applying coolant to rolled stock and/or to working rolls in a roll stand comprises applying the coolant in an amount depending on the work done in the gap between the rolls
DE60113132T2 (en) BLECH WIDTH CONTROL FOR HOT ROLLING
DE10206758B4 (en) Strip edge flatness control
WO2000000307A1 (en) Method and device for rolling hot strips

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220621

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
INTG Intention to grant announced

Effective date: 20230119

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1582242

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020003988

Country of ref document: DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230707

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230928

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231030

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231028

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502020003988

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

26 Opposition filed

Opponent name: NOVELIS INC.

Effective date: 20240328

Opponent name: PRIMETALS TECHNOLOGIES GERMANY GMBH

Effective date: 20240327

R26 Opposition filed (corrected)

Opponent name: NOVELIS INC.

Effective date: 20240328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20231031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231031

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231031

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SMS GROUP GMBH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20241021

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20241025

Year of fee payment: 5