EP4036471B1 - Incinérateur de déchets - Google Patents
Incinérateur de déchets Download PDFInfo
- Publication number
- EP4036471B1 EP4036471B1 EP21153944.0A EP21153944A EP4036471B1 EP 4036471 B1 EP4036471 B1 EP 4036471B1 EP 21153944 A EP21153944 A EP 21153944A EP 4036471 B1 EP4036471 B1 EP 4036471B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- flue gas
- rotary kiln
- heat exchanger
- wet scrubber
- waste incinerator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002699 waste material Substances 0.000 title claims description 35
- 239000003546 flue gas Substances 0.000 claims description 67
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 64
- 238000002485 combustion reaction Methods 0.000 claims description 31
- 239000007787 solid Substances 0.000 claims description 16
- 239000007788 liquid Substances 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- 238000005200 wet scrubbing Methods 0.000 claims description 9
- 239000004033 plastic Substances 0.000 claims description 6
- 229920003023 plastic Polymers 0.000 claims description 6
- 238000004064 recycling Methods 0.000 claims description 5
- 238000005201 scrubbing Methods 0.000 claims description 5
- 239000002893 slag Substances 0.000 claims description 5
- 239000000725 suspension Substances 0.000 claims description 3
- 229910000831 Steel Inorganic materials 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 238000000034 method Methods 0.000 claims description 2
- 230000000717 retained effect Effects 0.000 claims description 2
- 239000010959 steel Substances 0.000 claims description 2
- 239000002956 ash Substances 0.000 description 9
- 238000004140 cleaning Methods 0.000 description 5
- 239000000356 contaminant Substances 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 230000014759 maintenance of location Effects 0.000 description 4
- HGUFODBRKLSHSI-UHFFFAOYSA-N 2,3,7,8-tetrachloro-dibenzo-p-dioxin Chemical compound O1C2=CC(Cl)=C(Cl)C=C2OC2=C1C=C(Cl)C(Cl)=C2 HGUFODBRKLSHSI-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 235000002918 Fraxinus excelsior Nutrition 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000005203 dry scrubbing Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 3
- 238000010169 landfilling Methods 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 2
- 235000011941 Tilia x europaea Nutrition 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 239000002920 hazardous waste Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000004571 lime Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000002594 sorbent Substances 0.000 description 2
- 238000004566 IR spectroscopy Methods 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical class O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910001860 alkaline earth metal hydroxide Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000012065 filter cake Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000009970 fire resistant effect Effects 0.000 description 1
- 239000010881 fly ash Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000010813 municipal solid waste Substances 0.000 description 1
- 230000005298 paramagnetic effect Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 1
- 229910052815 sulfur oxide Inorganic materials 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 1
- 238000004056 waste incineration Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G5/00—Incineration of waste; Incinerator constructions; Details, accessories or control therefor
- F23G5/20—Incineration of waste; Incinerator constructions; Details, accessories or control therefor having rotating or oscillating drums
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23J—REMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES
- F23J15/00—Arrangements of devices for treating smoke or fumes
- F23J15/02—Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
- F23J15/04—Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material using washing fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23J—REMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES
- F23J15/00—Arrangements of devices for treating smoke or fumes
- F23J15/06—Arrangements of devices for treating smoke or fumes of coolers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G2202/00—Combustion
- F23G2202/10—Combustion in two or more stages
- F23G2202/103—Combustion in two or more stages in separate chambers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G2203/00—Furnace arrangements
- F23G2203/20—Rotary drum furnace
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G2900/00—Special features of, or arrangements for incinerators
- F23G2900/52002—Rotary drum furnaces with counter-current flows of waste and gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23J—REMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES
- F23J2213/00—Chimneys or flues
- F23J2213/30—Specific materials
- F23J2213/302—Specific materials plastic
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23J—REMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES
- F23J2217/00—Intercepting solids
- F23J2217/50—Intercepting solids by cleaning fluids (washers or scrubbers)
Definitions
- the present invention relates to improvements in waste incinerator plants.
- Waste is currently treated by various technologies, including thermal treatment such as incineration. Competing technologies include recycling or landfilling. Recycling is not suitable for all types of waste, especially not for hazardous waste or for waste for which the cost of recycling is significantly higher than the cost of production. Landfilling is unsuitable for hazardous waste, and the European Union wishes to limit landfilling to minimum in the course of the next decade. Waste incineration is thus becoming a necessary and developing technology. To-day incinerators use a burner or furnace which is connected to a boiler, followed by a heat exchanger and a scrubber. The ashes and other solid residues are usually landfilled, and the gases are let out into the environment, after further cleaning when necessary.
- the flue gas is subjected to treatment by scrubbing in order to remove chemical pollution and fine ashes.
- the scrubbing may be dry scrubbing or wet scrubbing or a combination thereof. Dry scrubbing is more commonly used. Wet scrubbing produces a large amount of contaminated water. Semi-wet scrubbing using lime milk is a compromise between wet scrubbing and dry scrubbing.
- the incinerators known in the art are typically adapted to a certain type of waste, require a significant amount of fuel, and produce emissions, which are usually within the set emission limits, but considering the amount of the solids and gases produced, it is desirable to further decrease the amount of emissions, i.e. emitted solids and hazardous gases. Furthermore, it is desirable to provide a stable working regimen without any problematic peak values of emissions or temperatures.
- US 4,768,448 discloses a grate incinerator with a wet scrubber system provided with a filter press.
- US 4,922,841 discloses a counter current drum incinerator with a dry gas cleaning system.
- the present invention provides a waste incinerator which contains a rotary kiln the outlet of which is connected to secondary combustion chamber(s) which are in turn connected to a boiler connected to a heat exchanger which is further attached to a wet scrubber, and flue gas outlet of the wet scrubber is connected to a fan and a chimney, wherein
- Counter current rotary kiln results in a more complete burning of the ash and less than half of the total amount of fly ash, compared to the commonly used co-current rotary kiln.
- Counter current rotary kiln is also more suitable for burning trash comprising very varied materials.
- the waste is incinerated in the counter current rotary kiln at temperature of at least 900 °C. In a stationary chamber of the rotary kiln, the temperatures may even exceed 1100 °C.
- the counter current rotary kiln is provided with a slag and ash outlet in its lower part.
- Prior art waste incinerators are typically provided with the slag and ash outlet at the bottom of secondary combustion chamber.
- This prior art solution results in the content of unburnt carbon being about 4 % or more, due to lack of available oxygen.
- sufficient supply of oxygen may be provided and the waste is burnt more completely, down to the content of the unburnt carbon well below 2 %.
- Secondary combustion chamber(s) ensure complete burning of the remaining particles and matter in the flue gases.
- the flue gas exiting the secondary retention chamber(s) is chemically stabilized.
- the minimum total volume of secondary combustion chamber(s) is 1.8 times the volume of the rotary kiln. More preferably, the volume of secondary combustion chamber(s) is 1.8-3 times the volume of the rotary kiln. Most preferably, the volume of secondary combustion chamber(s) is 2-2.5 times the volume of the rotary kiln. Sufficient volume of secondary combustion chambers results in thorough burning of the waste and reduction of load on the following components of the incinerator plant. This leads to economically and environmentally effective operation of the plant.
- At least two secondary combustion chambers in a more preferred embodiment three secondary combusion chambers are provided.
- the necessary retention time of the flue gas in the secondary combusion chamber of 2 seconds was achieved by causing rotation of the flue gases using a suitably directed burner.
- such solution causes unnecessary use of energy (gas) by the burner, and especially causes a peak increase of undesirable emissions upon the start of the burner, and are not needed in the present invention.
- the use of at least two secondary combusion chambers having a sufficient total volume allows to achieve the retention time of significantly more than 2 seconds for the flue gas in a simple and effective way.
- the flue gas must be maintained at a temperature of at least 850 °C in the secondary combustion chamber(s) for at least 2 seconds, as required by technological norms.
- the herein described volume and optionally number of the secondary combustion chambers allows to increase the retention time to at least 5 seconds, preferably to at least 7 seconds.
- the temperature of burning in the secondary combustion chambers is at least 1100 °C.
- the boiler uses the heat of the flue gas to convert water into steam, the steam may be used as an energy resource, e.g., for heating or for producing electricity.
- the heat exchanger allows to further decrease the temperature of the flue gas before it enters the wet scrubber.
- the heat exchanger is configured to bring into thermal contact the flue gas entering the heat exchanger from the boiler or from the secondary combustion chamber(s) with the flue gas entering the heat exchanger from the wet scrubber.
- a typical temperature of the hot flue gas (from the boiler or even directly from the secondary combustion chamber(s)) is about 400 to 800 °C, while a typical temperature of the cold flue gas (from the wet scrubber) is about 70 to 100 °C.
- the heat exchanger is preferably configured to maintain the volume flow ratio of the hot flue gas to the cold flue gas from 2:1 to 1:2, more preferably about 1:1.
- the heat exchanger contains substantially concentric tubes wherein the hot flue gas passess through the inner tube and the cold flue gas passes through the outer tube.
- the closed liquid circulation includes at least two decanting tanks in which the solids are decanted, the decanted solid portion is moved to a filter press which, by pressing the decanted portion, produces a filter cake and returns the liquid back to the decanting tank or to the wet scrubber.
- the liquid from the last decanting tank is returned to the wet scrubber to be used repeatedly for scrubbing the flue gas.
- the wet scrubber may be configured to use water or aqueous hydroxide or lime solution to remove in particular acidic compounds (HCl, HF etc.) and/or sulfur oxides from the flue gas. Furthermore, the wet scrubber may be configured to utilize carriers (e.g., ring-shaped carriers) for deposition and removal of salts produced by wet scrubbing.
- carriers e.g., ring-shaped carriers
- the liquid in the wet scrubber preferably contains an alkali metal or an alkaline earth metal hydroxide, such as NaOH. This allows to remove acidic contaminants such as hydrochloric, hydrofluoric, sulfuric, nitric acids and acidic oxides.
- the closed liquid circuit preferably contains a stock tank for storing hydroxide solution and for adding it to the wet scrubber liquid in a controlled manner.
- the volume of wet scrubber is about 0.8 to 1.5 times the volume of the rotary kiln, more preferably the volume of wet scrubber is about the same as the volume of the rotary kiln.
- the first decanting tank may or may not be connected to the filter press, while the second (and further) decanting tank is provided with a bottom outlet for solids or suspensions, said bottom outlet being connected to the filter press. This ensures that majority of the solids remains in the first decanting tank, and the second (or further) decanting tank(s) thus achieve(s) an additional fine cleaning, resulting in an increased purity of water which is returned to the wet scrubber.
- the filter press functions more effectively especially in the arrangements in which the first decanting tank is not connected to the filter press - such an arrangement results in a lower load and thus an increased effectiveness of the filter press.
- the overall effects of this arrangement include less frequent need for outages and less need for cleaning of the components of the wet scrubbing assembly.
- the total volume of the decanting tanks is about 2-4 times the volume of the rotary kiln, more preferably about 3 times the volume of the rotary kiln.
- the scrubbed flue gas existing from the wet scrubber then passes through the heat exchanger where it is employed to cool down the flue gas exiting the boiler or the secondary combustion chamber before the flue gas enters the wet scrubber.
- the wet scrubber may be followed by a filter to remove the remaining solid and ash particles from the flue gas, and/or by sorbent columns for adsorbing remaining gaseous contaminants.
- filters and sorbent columns are known to a person skilled in the art and are commonly used in waste incinerators.
- the filters located between the heat exchanger and the fan may include a dioxin filter or a mechanical filter for filtering off solids.
- the fan ensures the movement of flue gas through the device.
- the low pressure (vacuum) generated by the fan draws the flue gas from the rotary kiln and through the device.
- the pipes connecting the individual components are typically made of metals such as steel.
- metallic tubes are mechanically rigid and tend to collect deposits of solid particles and ashes in any bends or elbows, thus requiring regular cleaning which requires outages.
- metallic straight parts of the piping and plastic elbows or bends are flexible and tend to slightly vibrate, thus not collecting the solid deposits to a significant extent. This further increases time between maintenance outages.
- the plastic material must be selected so that it withstands the relevant temperatures - this information is available from producers of various plastics.
- the present invention further encompasses a method of incineration of waste, comprising the steps of:
- the present invention thus provides improvements in waste incinerators which lead to surprisingly significant decrease in emissions, and which result in significantly less frequent need for maintenance outages.
- FIG. 1 An example embodiment of the present invention is schematically shown in Figure 1 .
- the arrows in the figure show the direction of the flow of the waste and of the flue gas.
- the waste incinerator has a waste inlet 1 through which the waste to be incinerated enters the system and is led to a counter current rotary kiln 2.
- the rotary kiln 2 is provided with a slag and ash outlet 3 at its lower part.
- the waste is burnt in the rotary kiln 2 and converted into flue gas.
- the flue gas exits the rotary kiln via outlet 4 and enters secondary combustion chambers 51 and 52, one after another.
- the flue gas exiting from the secondary combustion chamber 52 may enter the boiler 6, or may by-pass the boiler. In the boiler 6, the flue gas transfers energy to water, thus producing steam which can be used in downstream technologies or heating.
- the water from the boiler 6 or from the by-pass enters a heat exchanger 7 in which it is brought into thermal contact with cold flue gas from wet scrubbing.
- the cooled flue gas from the heat exchanger 7 enters a wet scrubber 8.
- the wet scrubber 8 is provided with two decanting tanks 91 and 92.
- the decanting tanks 91 and 92 are connected by a tube in approximately the upper third of their height.
- Water from the wet scubber 8 enters the the decanting tank 92 where larger solid particles precipitate. Water then passes into the decanting tank 91 via the connecting tube which is in a height which ensures that only fine suspension enters the decanting tank 91. From the tank 91 water is led back to the wet scrubber 8.
- the scrubbed flue gas exiting the wet scrubber 8 is led back to the heat exchanger 7 to cool down the flue gas to be scrubbed.
- the exit of the cold flue gas from the heat exchanger 7 leads the flue gas to a filter 11 and dioxin filter 12, and then via a fan into a chimney 13.
- Secondary combustion chambers 51 and 52 have a total volume of about 2 times the volume of the rotary kiln 2.
- the decanting tanks 91 and 92 have a total volume of about 3 times the volume of the rotary kiln 2, and the ratio of volumes of the tanks 91 and 92 is about 1:1.
- the wet scrubber 8 has about the same volume as the rotary kiln.
- Example 1 The embodiment described in Example 1 was compared with a comparative embodiment shown in Figure 2 which contained a waste inlet 101, a counter current rotary kiln 102 equipped with a slag and ash outlet 103 in its lower part.
- Outlet 104 is connected to secondary combustion chambers 151, 152, which are in turn connected to a boiler 106 (which can be by-passed) from which the flue gas is led to a heat exchanger 107 followed by a wet scrubber 108.
- the wet scrubber is provided with one decanting tank 109 provided with a filter press 110.
- the flue gas from the wet scrubber 108 is led directly into a filter 111 and dioxin filter 112, followed by a fan and a chimney 113.
- the amounts of contaminants and emissions were measured in samples drawn from a sampling spot located in the chimney, downstream from the fan.
- the content of solid contaminants (TZL) was measured gravimetrically, SO 2 was measured using UV spectrometry, CO was measured using infrared spectrometry, NO x was measure unsing chemiluminescence, O 2 was measured using paramagnetic measurements, total organic carbon (TOC) was measured using by gas chromatography with flame ionization detection. Content of solid particles of size fractions PM 10 and PM 2.5 were calculated as 85% and 60% proportion of TZL. The measurements and calculations were carried out by a certified laboratory service.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Incineration Of Waste (AREA)
Claims (12)
- Incinérateur de déchets qui contient un four rotatif (2) dont la sortie (4) est reliée à une ou des chambre(s) de combustion secondaire(s) (51, 52) qui sont à leur tour reliées à une chaudière (6) reliée à un échangeur de chaleur (7) qui est relié à un épurateur (8) par voie humide, et la sortie des gaz de combustion de l'épurateur (8) par voie humide est reliée à un ventilateur et à une cheminée (13),
caractérisé en ce que- le four rotatif (2) est un four rotatif à contre-courant,- le épurateur (8) par voie humide comporte circuit de liquide fermé muni d'au moins deux bacs de décantation (91, 92) et d'un filtre-presse (10), et- la sortie des gaz de combustion de l'épurateur (8) par voie humide est reliée au ventilateur et à la cheminée (13) par l'échangeur de chaleur (7). - Incinérateur de déchets selon la revendication 1, où le four rotatif (2) à contre-courant est pourvu dans sa partie inférieure d'une sortie (3) de scories et de cendres.
- Incinérateur de déchets selon la revendication 1 ou 2, où le volume minimum de la ou des chambre(s) de combustion secondaire(s) (51, 52) est de 1,8 fois le volume du four rotatif (2).
- Incinérateur de déchets selon l'une quelconque des revendications 1 à 3, où au moins deux chambres de combustion secondaires (51, 52) sont prévues.
- Incinérateur de déchets selon l'une quelconque des revendications 1 à 4, où l'échangeur de chaleur (7) est configuré pour mettre en contact thermique des fumées chaudes entrant dans l'échangeur de chaleur (7) en provenance de la chaudière (6) ou de la ou des chambre(s) de combustion secondaire(s) (51, 52) avec des gaz de combustion froids entrant dans l'échangeur de chaleur (7) à partir de l'épurateur (8) par voie humide, et pour maintenir le rapport de débit volumique des gaz de combustion chauds sur les gaz de combustion froids de 2:1 à 1:2, plus préférablement environ 1:1.
- Incinérateur de déchets selon l'une quelconque des revendications 1 à 5, où l'échangeur de chaleur (7) contient des tubes sensiblement concentriques dans lesquels les fumées chaudes traversent le tube interne et les fumées froides traversent le tube externe.
- Incinérateur de déchets selon l'une quelconque des revendications 1 à 6, où le volume de l'épurateur (8) par voie humide est de 0,8 à 1,5 fois le volume du four rotatif (2).
- Incinérateur de déchets selon l'une quelconque des revendications 1 à 7, où le volume des bacs de décantation (91, 92) est d'environ 2 à 4 fois le volume du four rotatif (2).
- Incinérateur de déchets selon l'une quelconque des revendications 1 à 8, où les au moins deux bacs de décantation (91, 92) sont orientés verticalement et reliés par un tube dans leur moitié supérieure, de préférence dans leur tiers supérieur.
- Incinérateur de déchets selon l'une quelconque des revendications 1 à 9, où le premier bac de décantation (92) n'est pas relié au filtre-presse (10), tandis que le deuxième bac de décantation (91) est pourvu d'une sortie inférieure pour les solides ou des suspensions, ladite sortie inférieure étant reliée au filtre-presse (10).
- Incinérateur de déchets selon l'une quelconque des revendications 1 à 10, où les parties rectilignes des tuyaux reliant les composants individuels sont en métal tel que l'acier, et au moins certains coudes des tuyaux sont en plastique.
- Procédé d'incinération de déchets, comprenant les étapes de:- incinérer les déchets dans un four rotatif (2) à contre-courant pour produire des gaz de combustion,- acheminer les gaz de combustion du four rotatif (2) via la ou les chambre(s) de combustion secondaire(s) (51, 52) vers une chaudière (6) ou un échangeur de chaleur (7), où les gaz de combustion sont retenus dans la ou les chambre(s) de combustion secondaire(s) (51, 52) pendant au moins 5 secondes à une température d'au moins 850 °C;- dans l'échangeur de chaleur (7), transférer l'énergie des gaz de combustion provenant de la chaudière (6) ou de la ou des chambre(s) de combustion secondaire(s) (51, 52) aux gaz de combustion provenant de l'épurateur (8) par voie humide,- lavage humide des gaz de combustion provenant de l'échangeur de chaleur (7) dans l'épurateur (8) par voie humide, et recyclage de l'eau de lavage à travers au moins deux bacs de décantation (91, 92) en circuit liquide fermé,- acheminer les gaz de combustion, éventuellement via des filtres (11, 12), vers un ventilateur et une cheminée (13), le ventilateur provoquant le mouvement des gaz de combustion à travers les composants de l'incinérateur.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21153944.0A EP4036471B1 (fr) | 2021-01-28 | 2021-01-28 | Incinérateur de déchets |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21153944.0A EP4036471B1 (fr) | 2021-01-28 | 2021-01-28 | Incinérateur de déchets |
Publications (2)
Publication Number | Publication Date |
---|---|
EP4036471A1 EP4036471A1 (fr) | 2022-08-03 |
EP4036471B1 true EP4036471B1 (fr) | 2023-09-13 |
Family
ID=74346926
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21153944.0A Active EP4036471B1 (fr) | 2021-01-28 | 2021-01-28 | Incinérateur de déchets |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP4036471B1 (fr) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2590805B1 (fr) * | 1985-12-02 | 1990-02-09 | Propiorga | Procede et installation de neutralisation de fumees acides provenant notamment de la combustion de residus |
US4922841A (en) * | 1988-09-14 | 1990-05-08 | Kent John M | Method and apparatus for using hazardous waste to form non-hazardous aggregate |
US5090498A (en) * | 1989-11-10 | 1992-02-25 | M-I Drilling Fluids Company | Water wash/oil wash cyclonic column tank separation system |
DE102017108705A1 (de) * | 2017-04-24 | 2018-10-25 | Rea Plastik Tech Gmbh | Verfahren sowie Vorrichtung zur Reinigung und Wiederaufheizung von Rauchgas |
-
2021
- 2021-01-28 EP EP21153944.0A patent/EP4036471B1/fr active Active
Also Published As
Publication number | Publication date |
---|---|
EP4036471A1 (fr) | 2022-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5335609A (en) | Thermal and chemical remediation of mixed waste | |
US5309850A (en) | Incineration of hazardous wastes using closed cycle combustion ash vitrification | |
CN108775585B (zh) | 一种废弃物高温空气/水蒸气气化燃烧熔融系统 | |
US4078503A (en) | Method and apparatus for treating off-gas from a furnace for burning organic material in an oxygen deficient atmosphere | |
CN204593400U (zh) | 一种多物态的工业危废焚烧系统 | |
JP4377292B2 (ja) | 廃棄物処理装置、及び排ガス処理方法 | |
EP4036471B1 (fr) | Incinérateur de déchets | |
KR101037260B1 (ko) | 공해 방지형 화장로 | |
JP2001248827A (ja) | クリーンな焼却飛灰を得る焼却排ガス処理装置 | |
CN212377979U (zh) | 欠氧气化等离子固废处理系统 | |
JP4718858B2 (ja) | 乾留システム | |
CN115031236A (zh) | 一种有机危险废物一体式等离子体多级气化熔融炉装置、系统及方法 | |
JP5027486B2 (ja) | クロムを含有する有機物を燃料とする燃焼装置及びこれを用いたクロムを含有する有機物燃料の燃焼方法 | |
Carabin et al. | Two-stage plasma gasification of waste | |
KR100898723B1 (ko) | 폐기물 처리를 위한 초고온 환원분해로 | |
JP2005195228A (ja) | 廃棄物溶融処理システム | |
CN106964325B (zh) | 一种吸附VOCs固体废弃物蓄热沸腾燃烧炉专用熔盐贴片的制备方法 | |
JP2005095749A (ja) | 溶融スラグ水砕水の処理方法及び装置 | |
JP3077756B2 (ja) | 廃棄物処理装置 | |
KR20130040001A (ko) | 분해 조립식 연소실 구조 | |
KR101423319B1 (ko) | 공기 순환식 집진장치 | |
KR100489224B1 (ko) | 플라즈마를 이용한 병원폐기물 및 중금속함유유해폐기물의 열적 처리장치 및 그 방법 | |
RU2696906C2 (ru) | Термокаталитическая установка переработки и утилизации нерадиоактивных отходов | |
KR100383799B1 (ko) | 소각로 분진 및 다이옥신 저감장치 | |
CN209944341U (zh) | 一种废弃物高温空气/水蒸气气化燃烧熔融系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20221107 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F23J 15/04 20060101ALI20230228BHEP Ipc: F23J 15/06 20060101ALI20230228BHEP Ipc: F23G 5/20 20060101AFI20230228BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20230406 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602021005019 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: T3 Ref document number: E 42438 Country of ref document: SK |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20230913 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231214 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230913 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230913 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231213 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230913 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230913 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230913 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231214 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230913 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1611635 Country of ref document: AT Kind code of ref document: T Effective date: 20230913 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230913 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240113 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IE Payment date: 20240116 Year of fee payment: 4 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230913 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230913 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230913 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230913 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240113 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230913 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230913 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230913 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240115 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240123 Year of fee payment: 4 Ref country code: CH Payment date: 20240202 Year of fee payment: 4 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230913 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230913 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240117 Year of fee payment: 4 Ref country code: BE Payment date: 20240116 Year of fee payment: 4 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602021005019 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230913 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230913 |
|
26N | No opposition filed |
Effective date: 20240614 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230913 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230913 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230913 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230913 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230913 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230913 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20241223 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SK Payment date: 20241223 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20250116 Year of fee payment: 5 |