[go: up one dir, main page]

EP4036370B1 - Machine d'exploitation minière et procédé pour commander le mouvement d'un élément mobile d'une machine d'exploitation minière - Google Patents

Machine d'exploitation minière et procédé pour commander le mouvement d'un élément mobile d'une machine d'exploitation minière Download PDF

Info

Publication number
EP4036370B1
EP4036370B1 EP21154175.0A EP21154175A EP4036370B1 EP 4036370 B1 EP4036370 B1 EP 4036370B1 EP 21154175 A EP21154175 A EP 21154175A EP 4036370 B1 EP4036370 B1 EP 4036370B1
Authority
EP
European Patent Office
Prior art keywords
relation
movable element
movement
mining machine
hydraulic valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21154175.0A
Other languages
German (de)
English (en)
Other versions
EP4036370A1 (fr
Inventor
Michael OFFENBACHER
Martin Gimpel
Reinhold Pogatschnigg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sandvik Mining and Construction GmbH
Original Assignee
Sandvik Mining and Construction GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to ES21154175T priority Critical patent/ES3000907T3/es
Application filed by Sandvik Mining and Construction GmbH filed Critical Sandvik Mining and Construction GmbH
Priority to PL21154175.0T priority patent/PL4036370T3/pl
Priority to EP21154175.0A priority patent/EP4036370B1/fr
Priority to CA3198171A priority patent/CA3198171A1/fr
Priority to CN202280008258.9A priority patent/CN116635592A/zh
Priority to US18/274,883 priority patent/US20240110477A1/en
Priority to PCT/EP2022/051977 priority patent/WO2022162108A1/fr
Priority to AU2022214272A priority patent/AU2022214272A1/en
Publication of EP4036370A1 publication Critical patent/EP4036370A1/fr
Priority to ZA2023/05516A priority patent/ZA202305516B/en
Application granted granted Critical
Publication of EP4036370B1 publication Critical patent/EP4036370B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B3/00Rotary drilling
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C29/00Propulsion of machines for slitting or completely freeing the mineral from the seam
    • E21C29/22Propulsion of machines for slitting or completely freeing the mineral from the seam by wheels, endless tracks or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/18Dredgers; Soil-shifting machines mechanically-driven with digging wheels turning round an axis, e.g. bucket-type wheels
    • E02F3/22Component parts
    • E02F3/26Safety or control devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/205Remotely operated machines, e.g. unmanned vehicles
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2225Control of flow rate; Load sensing arrangements using pressure-compensating valves
    • E02F9/2228Control of flow rate; Load sensing arrangements using pressure-compensating valves including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • E02F9/265Sensors and their calibration for indicating the position of the work tool with follow-up actions (e.g. control signals sent to actuate the work tool)
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/02Drilling rigs characterised by means for land transport with their own drive, e.g. skid mounting or wheel mounting
    • E21B7/022Control of the drilling operation; Hydraulic or pneumatic means for activation or operation
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C31/00Driving means incorporated in machines for slitting or completely freeing the mineral from the seam
    • E21C31/10Driving means incorporated in machines for slitting or completely freeing the mineral from the seam for slewing parts of the machines
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C35/00Details of, or accessories for, machines for slitting or completely freeing the mineral from the seam, not provided for in groups E21C25/00 - E21C33/00, E21C37/00 or E21C39/00
    • E21C35/282Autonomous machines; Autonomous operations
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C35/00Details of, or accessories for, machines for slitting or completely freeing the mineral from the seam, not provided for in groups E21C25/00 - E21C33/00, E21C37/00 or E21C39/00
    • E21C35/302Measuring, signaling or indicating specially adapted for machines for slitting or completely freeing the mineral

Definitions

  • the present disclosure relates generally to the field of work machines. More specifically, it relates to controlling movement of a movable element of a mining machine.
  • Mining vehicles/machines may be manned or unmanned. Unmanned mining vehicles may be remote controlled by an operator from a control station or operated automatically. Operation of a mining machine may be carried out in a surface or underground operating area.
  • US2011030364 discloses a flow management system capable of providing adjustable hydraulic fluid flow or pressure at a common line to supply bidirectional pumps in electro-hydrostatic actuation systems and conditioning re-circulated hydraulic fluid.
  • the system enables flow sharing between multiple actuation systems and minimization of energy consumption by a power-on-demand approach and/or electrical energy regeneration while eliminating the need for an accumulator.
  • the system has particular application to electro-hydrostatic actuation systems that typically include bidirectional electric motor driven pumps and unbalanced hydraulic actuators connected within closed circuits to provide work output against external loads and reversely recover energy from externally applied loads.
  • a method for controlling movement of a movable element of a mining machine comprises providing (or alternatively initializing) a relation between control values for a hydraulic valve arranged to affect movement of the movable element and a parameter representative of the movement of the movable element.
  • the method further comprises receiving an input representative of a desired movement of the movable element and, obtaining a control value for the hydraulic valve based on the relation and using a parameter value corresponding to the desired movement.
  • the method further comprises operating the hydraulic valve with a control signal using the obtained control value and obtaining, from a feedback mechanism, a feedback relative to the movement of the movable element resulting from operating the hydraulic valve with the control signal.
  • the method comprises determining a correction value based on the desired movement and the feedback and updating at least a part of the relation based on the correction value.
  • a movable element may be a (cutting) boom, or a means of propulsion of the mining machine, such as wheels or crawler tracks, or a manipulator used for drilling and bolting.
  • Parameters related to the movement of the movable element may for example be a linear or rotational speed, a position, an angle (e.g. defining a travel direction of the machine or a tilt of the machine, or an angle between the movable element and another portion of the mining machine), a linear or rotational acceleration, the pressure in a valve, a flow etc.
  • the relation may be understood as a one-to-one mapping between the control values and values of the parameter representative of the resulting movement.
  • the relation may comprise stored data or a stored data model. The relation is stored such that it can be updated and accessed at a later time instance.
  • the relation may define how a control value corresponds to, is associated with or results in a value of the parameter.
  • the relation may provide a control value (related to the parameter value) which is predicted to bring the movable element to perform the desired movement.
  • the initially provided relation may be based on prior knowledge of the movable element.
  • Updating at least a part of the known relation based on the correction value may include updating the control value associated with the parameter value using, or based on, the correction value.
  • the correction value may be added to a presently stored control value associated with the parameter value representative of the desired movement.
  • the stored control value may be altered with an increment or decrement of a predetermined size based on the sign of the correction value.
  • the stored relation between control values and parameter values may better and better represent the actual relation between control values and parameter values for the specific hydraulic valve and movable element used. Therefore, the response of the hydraulic valve and the movable element to a control value extracted from the relation may be improved.
  • the method according to the first aspect may thus provide self-learning. Further, the need for an initial calibration may be reduced, as the method may provide self-calibration during operation. The method may also allow for adaptation to changes in the mining machine, for example due to changes in operating conditions or due to wear.
  • Updating the control signal based on the correction value may reduce the number of operations or calculations necessary to reach the desired movement and/or improve the relation, as the relation may be updated less frequently.
  • the relation may be implemented as a look-up table. Updating the relation based on the correction value may comprise updating one or more values within the look-up table.
  • updating the relation may comprise updating the control value related to the parameter corresponding to the desired movement.
  • Control values related to parameter values in a range surrounding, e.g. above and below, the parameter corresponding to the desired movement may also be updated, preferably using a weight function to determine the correction value for each of the affected/updated control values. For example, inverse distance weighting may be used.
  • the method may further comprise, after the relation has been updated a predefined number of times, smoothing the relation.
  • the relation may be smoothed upon detection of irregularities (such as large peaks or values that are out of bounds) in the updated relation.
  • the relation may be implemented as an analytic function. Updating the relation based on the correction value may comprise updating one or more parameters of the analytic function.
  • the relation may use an analytic function describing the physical or empirical relation.
  • An update condition is a condition to be fulfilled for an update of the relation to take place. Updating the relation when certain conditions are met may allow for a more efficient method, as the relation may not be unnecessarily updated. For example, the number of required operations (or calculations) may be lowered.
  • updating the relation may be prevented if it is detected that the mining machine is in a predefined state.
  • the operating conditions may vary significantly. If the mining machine, and thereby the hydraulic valve, is at the limits of its normal operating range, for example if it is subject to a high torque load or it is operating at a speed close to the nominal speed of the device, the response of the movable element to a control signal may not be representative of the normal performance/operation. An update under such conditions may result in a faulty relation which may lead to issues during subsequent normal operation. A predefined state may reflect such conditions in which an update may affect the relation in a negative way.
  • the method may further comprise monitoring the updated relation. If a control value of the updated relation exceeds a first threshold value, the method may comprise providing an operator of the mining machine with a warning message. If a control value of the updated relation exceeds a second threshold value, the method may comprise resetting the relation to the initially provided relation.
  • a control value being lower or higher than expected may be an indication of an abnormal condition or a potential fault in the system.
  • a warning message may indicate which parameter values are related to the out of bounds control values, such that operation of the mining machine may be adapted.
  • warning messages may also be provided when such conditions are detected.
  • the mining machine may comprise wheels.
  • the movable element may be a first wheel, and the parameter may be a speed of the first wheel.
  • the mining machine may comprise a plurality of wheels, such as four or six wheels, which allow the mining machine to move around.
  • the hydraulic valve may activate one or more of the wheels.
  • the mining machine may comprise crawler tracks, or continuous track, where the vehicle runs on a continuous band of treads or track plates driven by two or more wheels.
  • each wheel may be treated as a separate movable element, and a separate relation between control values and resulting parameter values may be implemented.
  • a separate relation between control values and resulting parameter values may be implemented.
  • movement of two or more wheels are affected by the same hydraulic valve, they may be treated as a single movable element for which a relation is implemented.
  • the movable element of the mining machine may be a rotatable cutter boom.
  • the parameter may be a rotational speed of the rotatable cutter boom relative to a chassis of the mining machine.
  • the feedback relative to the movement of the movable element comprises at least a measured angular position of the cutter boom relative to the chassis.
  • the hydraulic valve may activate the cutter boom and thereby affect its movement.
  • a mining machine comprising a movable element and a hydraulic valve arranged to affect a movement of the movable element.
  • the mining machine further comprises a feedback mechanism configured to provide a feedback relative to movement of the movable element.
  • the mining machine further comprises a controller configured to control operation of the hydraulic valve.
  • the controller is configured to receive an input representative of a desired movement of the movable element.
  • the controller is further configured to obtain a control value for the hydraulic valve, based on a stored relation between control values for the hydraulic valve and a parameter representative of the (resulting) movement of the movable element, and using a parameter value corresponding to the desired movement.
  • the controller is further configured to operate the hydraulic valve with a control signal using the obtained control value.
  • the controller is further configured to obtain a feedback relative to the movement of the movable element from the feedback mechanism and determine a correction value based on the desired movement and the feedback. Further, the controller is configured to update at least a part of the relation based on the correction value.
  • the controller may be further configured to adjust the control signal based on the correction value.
  • the mining machine may further comprise a communication system.
  • the communication system may be adapted to allow interaction with an operator of the mining machine.
  • the communication system may be configured to transmit an input representative of a desired movement set by an operator to said controller.
  • the mining machine may further comprise wheels arranged for propulsion of the mining machine.
  • the movable element may be a first wheel, and the parameter may be a speed of the first wheel.
  • the mining machine may comprise a plurality of wheels arranged for propulsion of the mining machine.
  • the wheels may form part of crawler tracks.
  • the mining machine may further comprise a cutter boom rotatably attached to a chassis of the mining machine.
  • the movable element may be the cutter boom.
  • the parameter may be a rotational speed of the rotatable boom relative to the chassis of the mining vehicle.
  • the feedback relative to the movement of the movable element may comprise at least a measured angular position of the cutter boom relative to the chassis.
  • the movable element may be another movable element of a mining machine which activated or actuated by (or which movement is affected by) a hydraulic valve of the mining machine.
  • the movable element may be separate (or distinct) from a hydraulic system of the mining machine.
  • a storage medium comprising instructions for a controller to control operation of a hydraulic valve of a mining machine.
  • the instructions comprise, receiving an input representative of a desired movement of a movable element of the mining machine.
  • the instructions further comprise obtaining a control value for the hydraulic valve based on a stored relation between control values for the hydraulic valve and a parameter representative of the (resulting) movement of the movable and using a parameter value corresponding to the desired movement.
  • the instructions further comprise operating the hydraulic valve with a control signal using the obtained control value.
  • the instructions further comprise obtaining a feedback relative to the movement of the movable element from a feedback mechanism, determining a correction value based on the desired movement and the feedback, and updating the relation based on the correction value.
  • FIG. 1 is a flow-chart showing a method 1000 for controlling movement of a movable element of a mining machine, in accordance with some embodiments.
  • the method 1000 optional steps are illustrated with dashed outlines.
  • a relation between control values for a hydraulic valve arranged to affect movement of the movable element, and a parameter representative of the (resulting) movement of the movable element is provided at step 1010. Examples of such relations will be described below with reference to Figures 2 and 3 .
  • the provided (or initial) relation may be stored, such that it may be accessed at a later stage.
  • the method 1000 comprises receiving 1020 an input representative of a desired movement of the movable element.
  • the input representative of a desired movement may for example represent a desired speed, or a desired position for the movable element.
  • the input may for example be provided by an operator of the mining machine, or by a processor controlling automatic operation of the mining machine.
  • the input may be in the form of a signal or a set point value.
  • the input may be observed or monitored at regular intervals, such that the method may return to step 1020.
  • a change in the input may automatically trigger a return to step 1020.
  • a control value for the hydraulic valve is obtained, at step 1030, based on the relation and using a parameter value corresponding to the desired movement.
  • a control value may be obtained for example by identifying a parameter value corresponding to the desired movement and finding the control value related to this parameter value using the relation between control values and (resulting) movement of the movable element.
  • the relation may relate control values for the hydraulic valve, such as valve actuation, with a resulting rotational or translational speed of the movable element.
  • Obtaining the control value may then comprise deriving a desired speed from the input signal, locating the desired speed in the relation, and finding the corresponding control value related to the desired speed.
  • the method 1000 further comprises operating 1040 the hydraulic valve with a control signal using the obtained control value.
  • control signal may be adapted based on a current (present) value of the control signal and the obtained control value to provide a smooth transition between the current value of the control signal and the (new) obtained control value.
  • a feedback relative to the movement of the movable element is obtained from a feedback mechanism.
  • the feedback may for example be a measured value, such as a speed or a position of the movable element.
  • a correction value is determined, at step 1060.
  • a correction value based on the desired movement and the feedback may for example be based on a difference between the desired movement and the actual (measured) movement of the movable element.
  • the parameter representative of the desired movement and the feedback relative to the movement of the movable element may be related such that they can be compared.
  • a speed or a position may be derived from both the desired movement and the feedback.
  • the correction value may be based on a difference between the desired speed and the speed derived from the feedback.
  • a feedback controller such as a PID controller, may be used to generate the correction value.
  • one or more conditions may (optionally) be tested at step 1070 to decide whether the relation should be updated or to continue control of the hydraulic valve without adjusting the relation.
  • the optional step 1070 of testing a condition may comprise one or several update or stop conditions.
  • step 1090 in which the relation is updated based on the correction value. If the condition is not fulfilled, the method instead proceeds either with optional step 1080, in which the control signal is adjusted based on the correction value, or straight back to operating the hydraulic valve at step 1040.
  • the movement of the movable element may be improved at a faster rate, as the control signal may be more adaptable.
  • step 1080 of adjusting the control signal may also be combined with updating 1090 the relation such that the two steps are performed concurrently or one after the other.
  • an update condition may be that the desired movement (derived from the input) has remained substantially constant, or within a predefined interval, for a predetermined period of time.
  • the response of the movable element may not be instantaneous or even fast. If the desired movement has been (almost) constant for a period of time, the hydraulic valve and the movable element may have had sufficient time to respond to the control signal comprising the control value. Therefore, a correction value based on the feedback at such a time may provide a more relevant contribution to the relation.
  • an update condition may be that the feedback relating to the movement of the movable element indicates that the desired movement has been achieved, or that the movement of the movable element is closer to the desired movement.
  • such an update condition may be combined with the optional step 1080 of updating the control signal based on the correction value.
  • the movement of the movable element may be adjusted without updating the relation, to become closer to the desired movement.
  • the feedback relative to the movement of the movable element may thus be updated, and a new correction value may be determined.
  • the control signal may be close to the true control signal for providing the desired movement. Therefore, a correction value based on the feedback at such a time may provide a more relevant contribution to the relation.
  • an update condition may be that the control signal has been updated a predetermined number of times, or for a predetermined period of time.
  • the control signal may have been improved. Updating the stored relation may thus result in an improved relation, closer to the true relation. Updating at regular intervals may result in a regular adjustment of the relation to the current behavior of the mining machine.
  • a condition may also be a stop condition, which prevents updates of the relation. This may be beneficial in case the mining machine is in such a state that an update would be detrimental.
  • At step 1090 at least a part of the relation is updated based on the correction value. Examples of how such an update may affect a relation such as one of the relations that will be described below with reference to Figures 2 and 3 .
  • Updating the relation may be referred to as a learning event, as the relation is adapting to (or learning) the behaviour of the hydraulic valve.
  • the (updated) relation may better describe how control values applied to the hydraulic valve affects the movable element.
  • the control value corresponding to a desired movement in the updated relation may thus result in a movement of the movable element which is closer to the desired movement than a control value corresponding to the desired movement in the old (non-updated) relation.
  • one or more conditions relating to the relation may be checked at optional monitoring step 1100. If the condition is met, the method may proceed with optional reaction step 1110 and, if not, the method proceeds directly with step 1030 of obtaining a new control value based on the updated relation.
  • condition of the monitoring step 1100 may comprise checking whether the relation causes any control values to be out of bounds or exceed a threshold value (a warning threshold). If so, the reaction step 1110 may comprise sending a warning message to an operator of the mining machine. If the control value exceeds a second threshold (an error threshold), the reaction step 1110 may comprise resetting the relation to the initially provided relation.
  • a threshold value a warning threshold
  • the monitoring step 1100 may comprise observing whether there are peaks or irregularities in the control values of the relation. If so, the reaction step 1110 may comprise smoothing the relation. As an alternative, smoothing may be performed at regular intervals, such as after a certain number of updates.
  • step 1030 a (new) control value is obtained based on the desired movement and the updated relation. The method then proceeds as described above using the new control value for operating the hydraulic valve.
  • Figure 2 is a graphic representation of values in a look-up table describing the relation 100 between a target rotational speed in degrees/second, along the horizontal x axis, and the corresponding valve actuation in mA, along the vertical y axis.
  • the parameter indicative of the desired movement is the target speed
  • the control value for the hydraulic valve is the value corresponding to the valve actuation.
  • the desired speed is located, and the corresponding control value read in the look-up table. If the desired speed is between two stored values in the look-up table, the closest value may be selected, or interpolation between the closest speeds and the corresponding control values may be performed.
  • the initially provided relation 102 is a straight line, indicating that a linear relation between the target speed and the valve actuation was assumed when providing the relation.
  • Certain values in the relation are fixed 104 and can therefore not be changed.
  • the maximum control value has been limited, such that target speeds over 5 deg/s do not result in an increased control value.
  • alarm thresholds 106 are illustrated with dashed lines. There is an upper threshold and a lower threshold for each target speed. If a control value would exceed the upper threshold, or be lower than the lower threshold, an alarm (or warning message) would be sent (provided) to an operator.
  • the relation has been updated a number of times, thereby resulting in the relation 100 (which is different than the initially provided relation 102).
  • the current desired speed 108 is marked by a vertical dashed line, at 3.1 deg/s.
  • the correction value is positive, meaning that a higher control value than the one in the present relation 100 is needed to achieve the current desired speed.
  • the updated relation 110 is illustrated with a dotted line.
  • a triangular weighing function is used to update the relation such that control values corresponding to desired speeds within a range centring on the current desired speed are increased.
  • the size of the increase is related to the inverse distance between the speed corresponding to the control value and the current desired speed.
  • the size of the increase i.e. the change between the present relation 100 and the updated relation 110, is exaggerated for illustrative purposes. In practice, the change may be much smaller.
  • Figure 3 is a graphic representation of a look-up table describing the relation 200 between a target speed in degrees/second, along the horizontal x axis, and the corresponding valve actuation mA, along the vertical y axis.
  • the parameter indicative of the desired movement is the target speed
  • the control value for the hydraulic valve is the value corresponding to the valve actuation.
  • updating the relation when a learning event takes place at low speeds, updating the relation may comprise adjusting the offset a.
  • updating the relation may comprise adjusting the root term b.
  • low speeds may correspond to the lower third of the range of input values.
  • High speeds may, for example, correspond to the higher two thirds of the range of input values.
  • Figure 3 illustrates an example of an analytic function describing the relation between target (desired) speeds and valve actuation, which can be manipulated by observing pressures on a hydraulic axis.
  • the feedback may comprise information (measurements) of the pressure of a hydraulic axis.
  • thresholds 206 are also implemented for the analytic relation 200. In case a control value goes outside the range delimited by the lower and upper thresholds 206, an alarm or warning message may be sent to an operator.
  • controller 320 and a control loop, in accordance with some embodiments, will be described.
  • Figure 4 is a block diagram illustrating the internal operation of a controller 320, as well as control signals and feedback signals.
  • the controller 320 receives an input r, which is representative of a desired movement of a movable element 332 in the work machine of which the controller 320 forms part or to which the controller 320 is connected.
  • the input r is put into the relation 300 which outputs a control value u.
  • the control value u is related, via the relation 300, to a parameter corresponding to the desired movement represented by the input r.
  • the control value u is input into a treatment block 322, which outputs a control signal û.
  • the treatment block 322 may provide a signal û, which may optionally be a continuous signal, it may also limit the control signal to a predetermined range or smooth the control signal.
  • the control signal û is the output of the controller 320. It is used to operate a hydraulic valve 330 of the work machine.
  • the hydraulic valve affects a movement of a movable element 332 of the work machine.
  • Measurements y of movement of the movable element 332 are performed.
  • the measurements y are treated by a feedback mechanism 334.
  • the feedback mechanism provides a feedback y to the controller 320.
  • the feedback y relates to the movement of the movable element 332 which results from operating the hydraulic valve 330 with said control signal û.
  • the feedback y is provided into a correction value calculator 324.
  • the correction value calculator 324 uses the feedback y and the input (or reference value) r to determine a correction value c.
  • the correction value c is used to update the relation 300.
  • the correction value calculator 324 may optionally provide a further correction value ⁇ , based on the correction value c, to the treatment block 322.
  • the further correction value ⁇ may optionally be used to update the control signal û.
  • FIG. 5 is an illustration of a mining machine 450.
  • the mining machine 450 is a continuous miner. Continuous miners are used for example to cut coal in coal mines.
  • the mining machine 450 comprises a chassis 452.
  • a boom 454 is rotatably attached to the chassis such that the boom can perform a pivoting motion in a direction/plane which is substantially vertical direction when the mining machine 450 is standing on horizontal ground/floor.
  • a cutting head 458, or cutter drum, is connected to the boom 454.
  • the cutting head 458 is rotatably attached to the boom, such that it can perform a rotational cutting movement (revolve) around a central axis of the cutting head 458.
  • the mining machine 450 further comprises crawler tracks 460, which comprise wheels 462.
  • the crawler tracks 460 are arranged for propulsion of the mining machine 450 and are driven by the wheels 462.
  • the crawler tracks 460 may move the miner (mining machine, mining vehicle) 450 forward and backward, and allow the mining machine 450 to turn.
  • the boom 454 may perform a pivoting motion, and optionally a translating motion in the direction of travel of the mining machine, such that the cutting head 458 may sump into a wall of material in front of the mining machine 450, while rotating/revolving, to cut material from the wall.
  • Movement of a wheel 462, which drives a crawler track 460, is affected or activated by a hydraulic valve 430. Operation of the hydraulic valve 430 is controlled by a controller 420.
  • the controller 420 is configured to control movement of the movable element (i.e. the wheel 462 or the crawler track 460) in accordance with the method 1000 described above with reference to Figure 1 .
  • the controller 420 may be equivalent to the controller 320 described above with reference to Figure 4 .
  • the mining machine 450 may comprise, a communication system 456 connected to the controller 420.
  • the controller 420 comprises, or is connected to, a storage unit (not shown) in which a relation between control values for the hydraulic valve 430 and a parameter representative of the movement of the movable element (i.e. wheel 462 or crawler track 460) is stored, such that the controller 420 can obtain a control value for the hydraulic valve 430 based on the stored relation and a parameter value corresponding to the desired movement.
  • the controller 420 is also configured to update the stored relation.
  • Operation of the hydraulic valve 430 affects movement of the wheel 462, which in turn affects the movement of the crawler track 460.
  • a feedback mechanism 434 comprising at least one sensor measuring the movement of the wheel 460 or the crawler track 462, is configured to send a feedback relative to the movement of the wheel 460 or the crawler track 462 to the controller 420.
  • FIG. 6 is an illustration of a mining machine 550.
  • the mining machine 550 is a road header.
  • Road headers are used for example for cutting and excavating rock, such as when forming a tunnel.
  • the chassis 552, wheels 562 and crawler tracks 560 of the mining machine 550 in Figure 6 may be equivalent to those described above with reference to Figure 5 .
  • a boom 554 is rotatably attached to the chassis 552, such that the boom can perform pivoting motion in both horizontal and vertical directions/planes.
  • a cutting head 558, or cutter drum, is connected to the boom.
  • the cutting head 558 is rotatably attached to the boom 554, such that it can perform a rotational cutting movement (revolve) around a central axis of the cutting head 558.
  • Movement of the boom 554 is affected or activated by a hydraulic valve 530. Operation of the hydraulic valve 530 is controlled by a controller 520.
  • the controller 520 is configured to control movement of the boom 554 (i.e. the movable element) in accordance with the method 1000 described above with reference to Figure 1 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Feedback Control In General (AREA)
  • Control Of Position Or Direction (AREA)

Claims (15)

  1. Procédé (1000) de commande du mouvement d'un élément mobile d'une machine d'exploitation minière, le procédé comprenant :
    la fourniture (1010) d'une relation entre des valeurs de commande pour une vanne hydraulique agencée pour affecter un mouvement dudit élément mobile et un paramètre représentatif du mouvement de l'élément mobile ;
    la réception (1020) d'une entrée représentative d'un mouvement souhaité dudit élément mobile ;
    l'obtention (1030) d'une valeur de commande pour la vanne hydraulique sur la base de ladite relation et en utilisant une valeur de paramètre correspondant au mouvement souhaité ;
    l'actionnement (1040) de ladite vanne hydraulique avec un signal de commande en utilisant la valeur de commande obtenue ;
    l'obtention (1050), à partir d'un mécanisme de rétroaction, d'une rétroaction relative au mouvement de l'élément mobile résultant de l'actionnement de ladite vanne hydraulique avec ledit signal de commande ;
    la détermination (1060) d'une valeur de correction sur la base dudit mouvement souhaité et de ladite rétroaction ; et
    la mie à jour (1090) d'au moins une partie de ladite relation sur la base de ladite valeur de correction.
  2. Procédé selon la revendication 1, comprenant en outre l'ajustement (1060) dudit signal de commande sur la base de ladite valeur de correction.
  3. Procédé selon l'une quelconque des revendications précédentes, dans lequel ladite relation est mise en oeuvre sous la forme d'une table de consultation (100) et dans lequel la mise à jour de ladite relation sur la base de ladite valeur de correction comprend la mise à jour d'une ou de plusieurs valeurs dans ladite table de consultation.
  4. Procédé selon l'une quelconque des revendications 1-2, dans lequel ladite relation est mise en oeuvre en tant que fonction analytique (200) et dans lequel la mise à jour de ladite relation sur la base de ladite valeur de correction comprend la mise à jour d'un ou de plusieurs paramètres de ladite fonction analytique.
  5. Procédé selon l'une quelconque des revendications précédentes, comprenant en outre, avant de mettre à jour ladite relation sur la base de ladite valeur de correction, la vérification (1070) pour établir si au moins une condition de mise à jour est remplie.
  6. Procédé selon l'une quelconque des revendications précédentes, dans lequel ladite mise à jour est empêchée s'il est détecté que la machine d'exploitation minière est dans un état prédéfini.
  7. Procédé selon l'une quelconque des revendications précédentes, comprenant en outre la surveillance (1100) de la relation mise à jour ; et
    si une valeur de commande de la relation mise à jour dépasse une première valeur seuil, la fourniture à un opérateur de la machine d'exploitation minière d'un message d'avertissement ; et/ou
    si une valeur de commande dépasse une seconde valeur seuil, la réinitialisation de ladite relation à la relation initialement fournie.
  8. Procédé selon l'une quelconque des revendications précédentes, dans lequel ladite machine d'exploitation minière comprend des roues, ledit élément mobile est une première roue, et dans lequel ledit paramètre est une vitesse de ladite première roue.
  9. Procédé selon l'une quelconque des revendications 1-7, dans lequel ledit élément mobile de ladite machine d'exploitation minière est une flèche d'abattage rotative, et dans lequel ledit paramètre est une vitesse de rotation de ladite flèche rotative par rapport à un châssis de la machine d'exploitation minière.
  10. Machine d'exploitation minière (450, 550) comprenant :
    un élément mobile (332) ;
    une vanne hydraulique (330) agencée pour affecter un mouvement dudit élément mobile ;
    un mécanisme de rétroaction (334) configuré pour fournir une rétroaction relative au mouvement de l'élément mobile ; et
    un dispositif de commande (320) configuré pour commander le fonctionnement de la vanne hydraulique, ledit dispositif de commande étant configuré pour :
    recevoir une entrée représentative d'un mouvement souhaité dudit élément mobile ;
    obtenir une valeur de commande pour la vanne hydraulique sur la base d'une relation stockée entre des valeurs de commande pour la vanne hydraulique et un paramètre représentatif du mouvement de l'élément mobile, en utilisant une valeur de paramètre correspondant au mouvement souhaité ;
    actionner la vanne hydraulique avec un signal de commande en utilisant la valeur de commande obtenue ;
    obtenir, à partir du mécanisme de rétroaction, une rétroaction relative au mouvement de l'élément mobile résultant de l'actionnement de ladite vanne hydraulique avec ledit signal de commande ;
    déterminer une valeur de correction en fonction dudit mouvement souhaité et de ladite rétroaction ; et
    mettre à jour au moins une partie de ladite relation sur la base de ladite valeur de correction.
  11. Machine d'exploitation minière selon la revendication 10, dans laquelle ledit dispositif de commande est en outre configuré pour ajuster ledit signal de commande en fonction de ladite valeur de correction.
  12. Machine d'exploitation minière selon l'une quelconque des revendications 10-11, comprenant en outre un système de communication (456) pour une interaction avec un opérateur de la machine d'exploitation minière, ledit système de communication étant configuré pour transmettre une entrée représentative d'un mouvement souhaité défini par un opérateur audit dispositif de commande.
  13. Machine d'exploitation minière selon l'une quelconque des revendications 10-12, comprenant en outre des roues (462) agencées pour la propulsion de ladite machine d'exploitation minière, dans laquelle ledit élément mobile est une première roue, et dans laquelle ledit paramètre est une vitesse de ladite première roue.
  14. Machine d'exploitation minière selon l'une quelconque des revendications 10-12, comprenant en outre une flèche d'abattage (554) fixée de manière rotative à un châssis (550) de ladite machine d'exploitation minière, et dans laquelle ledit élément mobile est ladite flèche d'abattage, ledit paramètre est une vitesse de rotation de ladite flèche rotative par rapport au châssis du véhicule minier.
  15. Support de stockage comprenant des instructions permettant à un dispositif de commande de commander le fonctionnement d'une vanne hydraulique d'une machine d'exploitation minière, dans lequel lesdites instructions comprennent :
    la réception d'une entrée représentative d'un mouvement souhaité d'un élément mobile de ladite machine d'exploitation minière ;
    l'obtention d'une valeur de commande pour la vanne hydraulique sur la base d'une relation stockée entre des valeurs de commande pour la vanne hydraulique et un paramètre représentatif du mouvement de l'élément mobile, en utilisant une valeur de paramètre correspondant au mouvement souhaité ;
    l'actionnement de la vanne hydraulique avec un signal de commande en utilisant la valeur de commande obtenue ;
    l'obtention, à partir d'un mécanisme de rétroaction, d'une rétroaction relative au mouvement de l'élément mobile résultant de l'actionnement de ladite vanne hydraulique avec ledit signal de commande ;
    la détermination d'une valeur de correction en fonction dudit mouvement souhaité et de ladite rétroaction ; et
    la mise à jour de ladite relation sur la base de ladite valeur de correction.
EP21154175.0A 2021-01-29 2021-01-29 Machine d'exploitation minière et procédé pour commander le mouvement d'un élément mobile d'une machine d'exploitation minière Active EP4036370B1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
PL21154175.0T PL4036370T3 (pl) 2021-01-29 2021-01-29 Maszyna górnicza oraz sposób sterowania ruchem elementu ruchomego maszyny górniczej
EP21154175.0A EP4036370B1 (fr) 2021-01-29 2021-01-29 Machine d'exploitation minière et procédé pour commander le mouvement d'un élément mobile d'une machine d'exploitation minière
ES21154175T ES3000907T3 (es) 2021-01-29 2021-01-29 Máquina minera y método para controlar el movimiento de un elemento móvil de una máquina minera
CN202280008258.9A CN116635592A (zh) 2021-01-29 2022-01-28 采矿机器和用于控制采矿机器的可移动元件的移动的方法
CA3198171A CA3198171A1 (fr) 2021-01-29 2022-01-28 Machine d'exploitation miniere et procede de commande de mouvement d'un element mobile d'une machine d'exploitation miniere
US18/274,883 US20240110477A1 (en) 2021-01-29 2022-01-28 Mining machine and method for controlling movement of a movable element of a mining machine
PCT/EP2022/051977 WO2022162108A1 (fr) 2021-01-29 2022-01-28 Machine d'exploitation minière et procédé de commande de mouvement d'un élément mobile d'une machine d'exploitation minière
AU2022214272A AU2022214272A1 (en) 2021-01-29 2022-01-28 Mining machine and method for controlling movement of a movable element of a mining machine
ZA2023/05516A ZA202305516B (en) 2021-01-29 2023-05-22 Mining machine and method for controlling movement of a movable element of a mining machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP21154175.0A EP4036370B1 (fr) 2021-01-29 2021-01-29 Machine d'exploitation minière et procédé pour commander le mouvement d'un élément mobile d'une machine d'exploitation minière

Publications (2)

Publication Number Publication Date
EP4036370A1 EP4036370A1 (fr) 2022-08-03
EP4036370B1 true EP4036370B1 (fr) 2024-12-04

Family

ID=74418182

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21154175.0A Active EP4036370B1 (fr) 2021-01-29 2021-01-29 Machine d'exploitation minière et procédé pour commander le mouvement d'un élément mobile d'une machine d'exploitation minière

Country Status (9)

Country Link
US (1) US20240110477A1 (fr)
EP (1) EP4036370B1 (fr)
CN (1) CN116635592A (fr)
AU (1) AU2022214272A1 (fr)
CA (1) CA3198171A1 (fr)
ES (1) ES3000907T3 (fr)
PL (1) PL4036370T3 (fr)
WO (1) WO2022162108A1 (fr)
ZA (1) ZA202305516B (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113217068B (zh) * 2021-04-28 2024-08-16 太原理工大学 一种工作面的检测装置、方法、终端及存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2004222734B1 (en) * 2004-10-20 2006-01-19 Leica Geosystems Ag Method and apparatus for monitoring a load condition of a dragline
KR101617609B1 (ko) * 2008-02-12 2016-05-18 파커-한니핀 코포레이션 유압 작업 기계용 흐름 관리 시스템
EP3159473B1 (fr) * 2015-10-22 2018-12-05 Sandvik Mining and Construction Oy Appareil de forage de roche
EP3345858B1 (fr) * 2017-01-10 2023-09-27 Tadano Mantis Corporation Système de positionnement de chenille de piste asymétrique
CN111173510A (zh) * 2020-03-14 2020-05-19 天地科技股份有限公司 一种用于复杂条件工作面的综采装备智能控制方法及系统

Also Published As

Publication number Publication date
AU2022214272A1 (en) 2023-06-29
AU2022214272A9 (en) 2025-01-16
CA3198171A1 (fr) 2022-08-04
ZA202305516B (en) 2024-11-27
US20240110477A1 (en) 2024-04-04
ES3000907T3 (es) 2025-03-04
EP4036370A1 (fr) 2022-08-03
WO2022162108A1 (fr) 2022-08-04
PL4036370T3 (pl) 2025-03-24
CN116635592A (zh) 2023-08-22

Similar Documents

Publication Publication Date Title
CN109115213B (zh) 用于利用传感器融合来确定机器状态的系统和方法
US8706363B2 (en) System and method for adjusting a boundary for a machine
AU2013206698B2 (en) System and method for operating a machine
AU2013206697B2 (en) System and method for detecting a crest
CN106436791B (zh) 具有改进的器具位置控制和自找平功能的作业车辆
EP3159519B1 (fr) Pronostics d'un turbocompresseur à géométrie variable
US20130060458A1 (en) Method and apparatus for mining vehicle safety arrangments
CN113923980A (zh) 用于对中心枢转灌溉系统综合使用预测性和机器学习分析的系统和方法
CA3152526C (fr) Systeme et procede d'analyse de niveaux de courant et de tension a l'interieur d'un systeme d'irrigation a pivot central
GB2315137A (en) Method and device for preparing running course data for an unmanned dump truck
US9360334B2 (en) System and method for setting an end location of a path
EP4036370B1 (fr) Machine d'exploitation minière et procédé pour commander le mouvement d'un élément mobile d'une machine d'exploitation minière
AU2009245863B2 (en) Slippage condition response system
JP5491360B2 (ja) 地下空間における換気システム
CN112817234B (zh) 机载钻臂钻锚的自适应控制方法以及控制系统
US12065809B2 (en) Damage estimation device and machine learning device
CN113446002A (zh) 掘锚一体机的截割臂的控制方法、控制装置和控制系统
KR20200108767A (ko) 농작업차량 자동제어 시스템
CN119221544A (zh) 一种自适应倾斜挖掘机铲斗系统及其控制方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230203

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240626

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602021022676

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20241205

Year of fee payment: 5

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 3000907

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20250304