EP3994107A1 - Insulating material and method for its production - Google Patents
Insulating material and method for its productionInfo
- Publication number
- EP3994107A1 EP3994107A1 EP20730561.6A EP20730561A EP3994107A1 EP 3994107 A1 EP3994107 A1 EP 3994107A1 EP 20730561 A EP20730561 A EP 20730561A EP 3994107 A1 EP3994107 A1 EP 3994107A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- insulating material
- water glass
- solution
- mixture
- polystyrene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011810 insulating material Substances 0.000 title claims abstract description 43
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 15
- 238000000034 method Methods 0.000 title claims abstract description 9
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims abstract description 64
- 239000000203 mixture Substances 0.000 claims abstract description 48
- 239000000243 solution Substances 0.000 claims abstract description 48
- 235000019353 potassium silicate Nutrition 0.000 claims abstract description 43
- 239000006229 carbon black Substances 0.000 claims abstract description 26
- 239000004793 Polystyrene Substances 0.000 claims abstract description 21
- 239000004115 Sodium Silicate Substances 0.000 claims abstract description 21
- 229920002223 polystyrene Polymers 0.000 claims abstract description 21
- 229910052911 sodium silicate Inorganic materials 0.000 claims abstract description 21
- 239000011230 binding agent Substances 0.000 claims abstract description 18
- 239000003381 stabilizer Substances 0.000 claims abstract description 18
- 239000004794 expanded polystyrene Substances 0.000 claims abstract description 17
- 239000004848 polyfunctional curative Substances 0.000 claims abstract description 16
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 claims abstract description 13
- 229910021502 aluminium hydroxide Inorganic materials 0.000 claims abstract description 13
- 239000007864 aqueous solution Substances 0.000 claims abstract description 13
- 239000011324 bead Substances 0.000 claims abstract description 10
- 238000003756 stirring Methods 0.000 claims abstract description 6
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 claims description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 5
- 238000009413 insulation Methods 0.000 description 8
- 239000007788 liquid Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 239000011490 mineral wool Substances 0.000 description 4
- ILJSQTXMGCGYMG-UHFFFAOYSA-N triacetic acid Chemical compound CC(=O)CC(=O)CC(O)=O ILJSQTXMGCGYMG-UHFFFAOYSA-N 0.000 description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- UXDDRFCJKNROTO-UHFFFAOYSA-N Glycerol 1,2-diacetate Chemical compound CC(=O)OCC(CO)OC(C)=O UXDDRFCJKNROTO-UHFFFAOYSA-N 0.000 description 3
- NSOXQYCFHDMMGV-UHFFFAOYSA-N Tetrakis(2-hydroxypropyl)ethylenediamine Chemical compound CC(O)CN(CC(C)O)CCN(CC(C)O)CC(C)O NSOXQYCFHDMMGV-UHFFFAOYSA-N 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 239000012774 insulation material Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 238000009415 formwork Methods 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 229920005830 Polyurethane Foam Polymers 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 230000000843 anti-fungal effect Effects 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000004079 fireproofing Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229920002959 polymer blend Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000011496 polyurethane foam Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229910001948 sodium oxide Inorganic materials 0.000 description 1
- 239000012265 solid product Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000003019 stabilising effect Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/22—After-treatment of expandable particles; Forming foamed products
- C08J9/224—Surface treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B16/00—Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B16/04—Macromolecular compounds
- C04B16/08—Macromolecular compounds porous, e.g. expanded polystyrene beads or microballoons
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/24—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
- C04B28/26—Silicates of the alkali metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/22—After-treatment of expandable particles; Forming foamed products
- C08J9/228—Forming foamed products
- C08J9/236—Forming foamed products using binding agents
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/35—Composite foams, i.e. continuous macromolecular foams containing discontinuous cellular particles or fragments
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/76—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/92—Protection against other undesired influences or dangers
- E04B1/94—Protection against other undesired influences or dangers against fire
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00034—Physico-chemical characteristics of the mixtures
- C04B2111/00215—Mortar or concrete mixtures defined by their oxide composition
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/20—Resistance against chemical, physical or biological attack
- C04B2111/28—Fire resistance, i.e. materials resistant to accidental fires or high temperatures
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2425/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
- C08J2425/02—Homopolymers or copolymers of hydrocarbons
- C08J2425/04—Homopolymers or copolymers of styrene
- C08J2425/06—Polystyrene
Definitions
- the invention relates to an insulating material, in particular a permeable fireproof insulating material containing water glass and polystyrene, and to a method for its production.
- Mineral wool has a higher fire resistance, but it is absorbent, so it loses its insulating properties and mould forms in it.
- an acoustic and thermal insulator for use in construction which consists of a slurry in an air-hardening mixture containing 5 to 76 wt% of bulk thermal insulation material with a specific volumetric mass of less than 300 kg/m 3 , 9 to 36 wt% of brick dust fractions 0.001 to 1 mm, 6 to 30 wt% of water glass, 7 to 30 wt% of water and up to 5 wt% detergent.
- the disadvantage of this material is that it has lower thermal insulation properties, higher flammability and less cohesion.
- a mixture for a permeable fire-proof lightweight polystyrene thermal insulation system which contains 10 wt% of expanded polystyrene beads with a diameter of 3 to 6 mm, 88 wt% of sodium silicate water glass, 1 wt% carbon black, and 1 wt% water glass stabiliser - hydrophilic alkoxy alkyl-ammonium salts.
- the disadvantage of this mixture is that the carbon black is not a protection on the surface of the balls, but is freely dispersed in the insulating material, which causes higher thermal conductivity of the insulating material and low thermal stability and thus limited fire-proofing properties, lower resistance to UV radiation and therefore it degrades very quickly.
- the object of the invention is the construction of a light insulating material which will have high fire resistance, while at the same time being flexible and pliable and, be resistant to degradation.
- an insulating material in particular a permeable fire-proof insulating material containing water glass and polystyrene
- a permeable fire-proof insulating material containing water glass and polystyrene which according to the invention is characterised by that it consists of a hardening mixture containing 1 to 32.4 wt% of expanded polystyrene, 57.5 to 96.0 wt% of aqueous sodium silicate solution, 2 to 6 wt% aluminium hydroxide, 0.8 to 2.6 wt% water glass hardener and 0.1 to 0.5 wt% water glass stabiliser, while the surface of the expanded polystyrene is provided with carbon black, which constitute 0.1 to 1 % wt% of the total weight.
- the advantage of this insulating material is significantly higher thermal stability as well as significantly improved fire-proof properties, the resistance to UV radiation is higher and the degree of degradation is significantly lower.
- An advantage is also very good permeability.
- the mixture contains aluminium hydroxide.
- the advantage of providing the surface of the expanded polystyrene with carbon black is that the carbon black thus provided reduces thermal conductivity, with the carbon black to advantage being absorbed to a certain extent into the polystyrene beads, thereby stabilising their bond with the polystyrene beads in the resulting mixture.
- the carbon black acts as a flame co-retardant.
- the insulating material to further advantage comprises a hardener, which may be glycerol mono to triacetate or a mixture of these.
- the expanded polystyrene beads are with a diameter of 3 to 6 mm.
- the advantage is the possibility of optimising the structure of the material with regard to optimal arrangement.
- the water glass stabilisers are hydrophilic alkoxy alkyl-ammonium salts.
- the aqueous sodium silicate solution has a density in the range of 1370 to 1400 kg/m 3 and the molar ratio of Si0 and Na 2 0 is in the range of 3.2 to 3.4.
- the molar mass ratio of silica to sodium oxide and the associated solution density and solution concentration have a significant effect on the rheological properties of water glass as a polymer mixture, on the electrical properties, compressibility and adhesive strength as in an electrolyte, further to hardness, strength, etc.
- the advantage of the above stated parameters is that the resulting insulating material is partially flexible and pliable after solidification.
- a method for producing insulating material specifically a method for producing permeable fire-proof insulating material containing water glass and polystyrene, which according to the invention is characterised by that firstly polystyrene beads are mixed with an aqueous carbon black solution in such a way that their entire surface is coated, then aluminium hydroxide is added and the whole is mixed to form an insulating mixture, and then a water glass stabiliser is added to the aqueous sodium silicate solution, and then a water glass hardener is mixed into the solution this solution is stirred for 1 to 10 minutes to form a binder solution, and then the insulating mixture is poured into the binder solution while constantly stirring, and the whole is mixed, and then the resulting mixture is poured onto the application site.
- the advantage is that it is possible to produce both solid products, such as insulation panels and fittings, and the insulation material can even be applied in its liquid state.
- the resulting mixture is poured into the application site, which is a mould, and further the amount of binder solution is extruded from the resulting mixture by means of a press so as to produce the desired ratio of insulating mixture and binder solution.
- the advantage is that it is possible to easily produce a product with precise parameters.
- the resulting insulation can be created exactly with respect to the shape parameters of the insulated space, with the fact that due to the fact that the curing length can be regulated, the insulation material can be precisely shaped into the desired shape.
- the main advantage of the insulating material and the method of its production according to the invention is that it has comparable insulating properties as the polystyrene products used so far, while unlike existing materials it is nonflammable, vapour permeable, resistant to rainwater and moisture, anti-fungal, strong, flexible, resistant to external influences such as UV radiation. Another advantage is the simple methods of application.
- the insulating material is thus suitable for floors and ceilings, horizontal and slightly sloping roofs, where it replaces mineral wool, polystyrene concrete or polyurethane foam. Unlike insulation with mineral wool or polystyrene boards, it is well applied to hard-to-reach places and to rugged edges of the surface. It has good adhesion to various substrates, including trapezoidal and folded sheets, Eternit or asphalt, which are usually on roofs. At the same time, the insulating material is strong enough, it can also be walkable.
- a great advantage of the insulating material according to the invention over the existing materials is also the possibility of combining boards and a liquid mixture.
- One of the problems associated with the anchoring of conventional polystyrene boards is the filling of joints between the boards and the holes around the dowels. Thanks to the possibility of filling these gaps and openings with a liquid form of insulating material, a uniform surface without thermal bridges is created very easily and quickly.
- a great advantage is also that the semi-finished insulating material in the form of a liquid mixture can be applied as an insulating lining in industry, e.g., appliances, electrical technology, automotive, etc.
- the permeable fire-proof insulating material is composed an air-hardening mixture which contains 10 wt% of expanded polystyrene, which are spheres with a diameter of 3 to 6 mm, 83.0 wt% of aqueous sodium silicate solution, 4 wt% of aluminium hydroxide, 0.3 wt% water glass stabiliser and 2.3 wt% hardeners.
- the surface of the expanded polystyrene is provided with carbon black, the carbon black making up 0.4 wt% of total weight.
- the water glass stabilisers are hydrophilic alkoxy alkyl-ammonium salts, in the form of a 98% aqueous solution of N,N,N',N'-Tetrakis (2-hydroxypropyl) ethylenediamine.
- the aqueous sodium silicate solution has a density in the range of 1390 kg/m 3 and a molar ratio of SiC>2 to Na 2 0 of 3.3.
- the water glass hardener is a mixture of pure glycerol diacetate / triacetate in a ratio of 7: 3 by volume parts, with a concentration of 2.8 wt% to pure water glass.
- the polystyrene beads are mixed with an aqueous solution with a concentration of 25 wt% of carbon black so that their entire surface is coated with carbon black, then aluminium hydroxide is added and the whole is mixed to form an insulating mixture, then added to an aqueous solution of sodium silicate is a water glass stabiliser, followed by a water glass hardener being added to the solution, this solution being mixed for 5 minutes to form a binder solution, and then the insulating mixture is added to the binder solution with constant stirring, and the whole is mixed, and the resulting mixture is poured into an application site which is a silicone mould, and further, from the resulting mixture such an amount of binder solution is extruded by means of a press so that the desired ratio of insulating mixture and binder solution is obtained.
- the resulting product is an insulating board, or an insulating layer arranged on an OSB board, more precisely between two OSB boards
- the permeable fire-proof insulating material is composed of an air-hardening mixture which contains 1 wt% of expanded polystyrene, which are spheres with a diameter of 3 to 6 mm, 96.0 wt% of aqueous sodium silicate solution, 2 wt% of aluminium hydroxide, 0.1 wt% water glass stabiliser and 0.8 wt% hardeners.
- the surface of the expanded polystyrene is provided with carbon black, the carbon black making up 0.1 wt% of total weight.
- the water glass stabilisers are hydrophilic alkoxy alkyl-ammonium salts, in the form of a 98% aqueous solution of N,N,N',N'-Tetrakis (2-hydroxypropyl) ethylenediamine.
- An aqueous solution of sodium silicate having a density in the range of 1370 kg/m 3 and a molar ratio of Si0 2 to Na 2 0 in the range of 3.2.
- the water glass hardener is a mixture of pure glycerol diacetate / triacetate in a ratio of 7:3 by volume parts, with a concentration of 0.8 wt% to pure water glass.
- the polystyrene beads are mixed with an aqueous solution with a concentration of 25 wt% of carbon black so that their entire surface is coated with carbon black, then aluminium hydroxide is added and the whole is mixed to form an insulating mixture, then added to an aqueous solution of sodium silicate is a water glass stabiliser, followed by a water glass hardener being added to the solution, this solution being mixed for 1 minute to form a binder solution, and then the insulating mixture is added to the binder solution with constant stirring, and the whole is mixed, and the resulting mixture is poured into a flat, divided attic space, spread, surface-treated and left undisturbed to harden.
- the permeable fire-proof insulating material is composed of an air-hardening mixture which contains 32.4 wt% of expanded polystyrene, which are spheres with a diameter of 3 to 6 mm, 57.5 wt% of aqueous sodium silicate solution, 6 wt% of aluminium hydroxide, 0.5 wt% water glass stabiliser and 2.6 wt% hardener.
- the surface of the expanded polystyrene is provided with carbon black, the carbon black making up 1 wt% of total weight.
- the water glass stabilisers are hydrophilic alkoxy alkyl-ammonium salts, in the form of a 98% aqueous solution of N,N,N',N'-Tetrakis (2-hydroxypropyl) ethylenediamine.
- An aqueous solution of sodium silicate having a density in the range of 1400 kg/m 3 and a molar ratio of Si0 2 to Na 2 0 in the range of 3.4.
- the water glass hardener is a mixture of pure glycerol diacetate / triacetate in a ratio of 7:3 by volume parts, with a concentration of 4.5 wt% to pure water glass.
- the polystyrene beads are mixed with an aqueous solution with a concentration of 25 wt% of carbon black so that their entire surface is coated with carbon black, then aluminium hydroxide is added and the whole is mixed to form an insulating mixture, then added to an aqueous solution of sodium silicate is a water glass stabiliser, followed by a water glass hardener being added to the solution, this solution being mixed for 10 minutes to form a binder solution, and then the insulating mixture is added to the binder solution with constant stirring, and the whole is mixed, and the resulting mixture is then poured onto the outer wall of a building provided with formwork with a silicone surface and finally, the resulting mixture is left undisturbed to harden, after which the formwork is removed.
- the insulating material according to the invention can in particular be used to create a permeable fire-proof insulating system in the building industry.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Architecture (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Electromagnetism (AREA)
- Civil Engineering (AREA)
- Inorganic Chemistry (AREA)
- Acoustics & Sound (AREA)
- Composite Materials (AREA)
- Fireproofing Substances (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
An insulating material, in particular a permeable fire-proof insulating material comprising water glass and polystyrene, consisting of a hardening mixture which contains 1 to 32.4 wt% of expanded polystyrene, 57.5 to 96.0 wt% of aqueous sodium silicate solution, 2 to 6 wt% of aluminium hydroxide, 0.8 to 2.6 wt% water glass hardener and 0.1 to 0.5 wt% of water glass stabiliser, while the surface of the expanded polystyrene is provided with carbon black, the carbon black making up 0.1 to 1 wt% of total weight. A method for the production of insulating material, in particular a method for the production of permeable fire-proof insulating material comprising water glass and polystyrene, according to which firstly the polystyrene beads are mixed with an aqueous solution of carbon black so as to coat their entire surface, then is added to the aqueous sodium silicate solution aluminium hydroxide and the whole is mixed so as to form an insulating mixture, and then a water glass stabiliser is added to the aqueous sodium silicate solution, and then to this solution is mixed water glass hardener, with this solution being further stirred for 1 to 10 minutes to form a binder solution, and the insulating mixture is added to the binder solution with constant stirring, and the whole is mixed, and the resulting mixture is then poured into the application site.
Description
RECORD COPY
WO 2021/004555 PCT/CZ2020/000018
1
Insulating material and method for its production
Technical Field
The invention relates to an insulating material, in particular a permeable fireproof insulating material containing water glass and polystyrene, and to a method for its production.
State of the Art
From current technology the use of expanded polystyrene as an insulating material for various types of buildings is known. Its disadvantage is lower fire resistance.
For the insulation of horizontal surfaces, polystyrene panels as well as modern sprayed insulation made of PUR foam are used. The disadvantage of this foam is its lower fire resistance and rapid ageing.
Another known method of insulating horizontal and vertical surfaces is mineral wool insulation. Mineral wool has a higher fire resistance, but it is absorbent, so it loses its insulating properties and mould forms in it.
From the patent application CZ PV2017-127 an acoustic and thermal insulator for use in construction is known, which consists of a slurry in an air-hardening mixture containing 5 to 76 wt% of bulk thermal insulation material with a specific volumetric mass of less than 300 kg/m3, 9 to 36 wt% of brick dust fractions 0.001 to 1 mm, 6 to 30 wt% of water glass, 7 to 30 wt% of water and up to 5 wt% detergent. The disadvantage of this material is that it has lower thermal insulation properties, higher flammability and less cohesion.
From the utility model CZ 31095 a mixture for a permeable fire-proof lightweight polystyrene thermal insulation system is known, which contains 10 wt% of expanded polystyrene beads with a diameter of 3 to 6 mm, 88 wt% of sodium silicate water glass, 1 wt% carbon black, and 1 wt% water glass stabiliser - hydrophilic alkoxy alkyl-ammonium salts. The disadvantage of this mixture is that the carbon black is not a protection on the surface of the balls, but is freely dispersed in the insulating material, which causes higher thermal conductivity of the insulating
material and low thermal stability and thus limited fire-proofing properties, lower resistance to UV radiation and therefore it degrades very quickly.
From the aforementioned current technology it is clear that main disadvantages of current technology are the lower insulating properties of the known materials and the higher rate of their degradation.
The object of the invention is the construction of a light insulating material which will have high fire resistance, while at the same time being flexible and pliable and, be resistant to degradation.
Principle of the Invention
The above-mentioned drawbacks are largely eliminated and the objects of the invention are fulfilled by an insulating material, in particular a permeable fire-proof insulating material containing water glass and polystyrene, which according to the invention is characterised by that it consists of a hardening mixture containing 1 to 32.4 wt% of expanded polystyrene, 57.5 to 96.0 wt% of aqueous sodium silicate solution, 2 to 6 wt% aluminium hydroxide, 0.8 to 2.6 wt% water glass hardener and 0.1 to 0.5 wt% water glass stabiliser, while the surface of the expanded polystyrene is provided with carbon black, which constitute 0.1 to 1 % wt% of the total weight. The advantage of this insulating material is significantly higher thermal stability as well as significantly improved fire-proof properties, the resistance to UV radiation is higher and the degree of degradation is significantly lower. An advantage is also very good permeability. To improve flame retardancy, the mixture contains aluminium hydroxide. The advantage of providing the surface of the expanded polystyrene with carbon black is that the carbon black thus provided reduces thermal conductivity, with the carbon black to advantage being absorbed to a certain extent into the polystyrene beads, thereby stabilising their bond with the polystyrene beads in the resulting mixture. A further advantage is that the carbon black acts as a flame co-retardant. The insulating material to further advantage comprises a hardener, which may be glycerol mono to triacetate or a mixture of these.
To advantage, the expanded polystyrene beads are with a diameter of 3 to 6 mm. The advantage is the possibility of optimising the structure of the material with regard to optimal arrangement.
It is also to advantage that the water glass stabilisers are hydrophilic alkoxy alkyl-ammonium salts.
A great advantage is then that the aqueous sodium silicate solution has a density in the range of 1370 to 1400 kg/m3 and the molar ratio of Si0 and Na20 is in the range of 3.2 to 3.4. The molar mass ratio of silica to sodium oxide and the associated solution density and solution concentration have a significant effect on the rheological properties of water glass as a polymer mixture, on the electrical properties, compressibility and adhesive strength as in an electrolyte, further to hardness, strength, etc. The advantage of the above stated parameters is that the resulting insulating material is partially flexible and pliable after solidification.
The mentioned disadvantages are largely removed and the objectives of the invention are fulfilled by a method for producing insulating material, specifically a method for producing permeable fire-proof insulating material containing water glass and polystyrene, which according to the invention is characterised by that firstly polystyrene beads are mixed with an aqueous carbon black solution in such a way that their entire surface is coated, then aluminium hydroxide is added and the whole is mixed to form an insulating mixture, and then a water glass stabiliser is added to the aqueous sodium silicate solution, and then a water glass hardener is mixed into the solution this solution is stirred for 1 to 10 minutes to form a binder solution, and then the insulating mixture is poured into the binder solution while constantly stirring, and the whole is mixed, and then the resulting mixture is poured onto the application site. The advantage is that it is possible to produce both solid products, such as insulation panels and fittings, and the insulation material can even be applied in its liquid state.
It is advantageous if the resulting mixture is poured into the application site, which is a mould, and further the amount of binder solution is extruded from the resulting mixture by means of a press so as to produce the desired ratio of insulating mixture and binder solution. The advantage is that it is possible to easily produce a product with precise parameters.
It is also advantageous if the resulting mixture is finally left to stand until cured. The advantage is that the resulting insulation can be created exactly with respect to the shape parameters of the insulated space, with the fact that due to the fact that the curing length can be regulated, the insulation material can be precisely shaped into the desired shape.
The main advantage of the insulating material and the method of its production according to the invention is that it has comparable insulating properties as the polystyrene products used so far, while unlike existing materials it is nonflammable, vapour permeable, resistant to rainwater and moisture, anti-fungal, strong, flexible, resistant to external influences such as UV radiation. Another advantage is the simple methods of application. It is possible to create both cladding boards and fittings from the insulating material, and it can be easily applied as a liquid mixture by stretching, casting and spraying. The insulating material is thus suitable for floors and ceilings, horizontal and slightly sloping roofs, where it replaces mineral wool, polystyrene concrete or polyurethane foam. Unlike insulation with mineral wool or polystyrene boards, it is well applied to hard-to-reach places and to rugged edges of the surface. It has good adhesion to various substrates, including trapezoidal and folded sheets, Eternit or asphalt, which are usually on roofs. At the same time, the insulating material is strong enough, it can also be walkable. A great advantage of the insulating material according to the invention over the existing materials is also the possibility of combining boards and a liquid mixture. One of the problems associated with the anchoring of conventional polystyrene boards is the filling of joints between the boards and the holes around the dowels. Thanks to the possibility of filling these gaps and openings with a liquid form of insulating material, a uniform surface without thermal bridges is created very easily and quickly. A great advantage is also that the semi-finished insulating material in the form of a liquid mixture can be applied as an insulating lining in industry, e.g., appliances, electrical technology, automotive, etc.
Examples of the Performance of the Invention
Example 1
The permeable fire-proof insulating material is composed an air-hardening mixture which contains 10 wt% of expanded polystyrene, which are spheres with a diameter of 3 to 6 mm, 83.0 wt% of aqueous sodium silicate solution, 4 wt% of aluminium hydroxide, 0.3 wt% water glass stabiliser and 2.3 wt% hardeners.
The surface of the expanded polystyrene is provided with carbon black, the carbon black making up 0.4 wt% of total weight.
The water glass stabilisers are hydrophilic alkoxy alkyl-ammonium salts, in the form of a 98% aqueous solution of N,N,N',N'-Tetrakis (2-hydroxypropyl) ethylenediamine.
The aqueous sodium silicate solution has a density in the range of 1390 kg/m3 and a molar ratio of SiC>2 to Na20 of 3.3.
The water glass hardener is a mixture of pure glycerol diacetate / triacetate in a ratio of 7: 3 by volume parts, with a concentration of 2.8 wt% to pure water glass.
According to the method for producing the insulating material, firstly the polystyrene beads are mixed with an aqueous solution with a concentration of 25 wt% of carbon black so that their entire surface is coated with carbon black, then aluminium hydroxide is added and the whole is mixed to form an insulating mixture, then added to an aqueous solution of sodium silicate is a water glass stabiliser, followed by a water glass hardener being added to the solution, this solution being mixed for 5 minutes to form a binder solution, and then the insulating mixture is added to the binder solution with constant stirring, and the whole is mixed, and the resulting mixture is poured into an application site which is a silicone mould, and further, from the resulting mixture such an amount of binder solution is extruded by means of a press so that the desired ratio of insulating mixture and binder solution is obtained.
Finally, the resulting mixture is left undisturbed until hardened. The resulting product is an insulating board, or an insulating layer arranged on an OSB board, more precisely between two OSB boards
Example 2
The permeable fire-proof insulating material is composed of an air-hardening mixture which contains 1 wt% of expanded polystyrene, which are spheres with a diameter of 3 to 6 mm, 96.0 wt% of aqueous sodium silicate solution, 2 wt% of aluminium hydroxide, 0.1 wt% water glass stabiliser and 0.8 wt% hardeners.
The surface of the expanded polystyrene is provided with carbon black, the carbon black making up 0.1 wt% of total weight.
The water glass stabilisers are hydrophilic alkoxy alkyl-ammonium salts, in the form of a 98% aqueous solution of N,N,N',N'-Tetrakis (2-hydroxypropyl) ethylenediamine.
An aqueous solution of sodium silicate having a density in the range of 1370 kg/m3 and a molar ratio of Si02 to Na20 in the range of 3.2.
The water glass hardener is a mixture of pure glycerol diacetate / triacetate in a ratio of 7:3 by volume parts, with a concentration of 0.8 wt% to pure water glass.
According to the method for producing the insulating material, firstly the polystyrene beads are mixed with an aqueous solution with a concentration of 25 wt% of carbon black so that their entire surface is coated with carbon black, then aluminium hydroxide is added and the whole is mixed to form an insulating mixture, then added to an aqueous solution of sodium silicate is a water glass stabiliser, followed by a water glass hardener being added to the solution, this solution being mixed for 1 minute to form a binder solution, and then the insulating mixture is added to the binder solution with constant stirring, and the whole is mixed, and the resulting mixture is poured into a flat, divided attic space, spread, surface-treated and left undisturbed to harden.
Example 3
The permeable fire-proof insulating material is composed of an air-hardening mixture which contains 32.4 wt% of expanded polystyrene, which are spheres with a diameter of 3 to 6 mm, 57.5 wt% of aqueous sodium silicate solution, 6 wt% of aluminium hydroxide, 0.5 wt% water glass stabiliser and 2.6 wt% hardener.
The surface of the expanded polystyrene is provided with carbon black, the carbon black making up 1 wt% of total weight.
The water glass stabilisers are hydrophilic alkoxy alkyl-ammonium salts, in the form of a 98% aqueous solution of N,N,N',N'-Tetrakis (2-hydroxypropyl) ethylenediamine.
An aqueous solution of sodium silicate having a density in the range of 1400 kg/m3 and a molar ratio of Si02 to Na20 in the range of 3.4.
The water glass hardener is a mixture of pure glycerol diacetate / triacetate in a ratio of 7:3 by volume parts, with a concentration of 4.5 wt% to pure water glass.
According to the method for producing the insulating material, firstly the polystyrene beads are mixed with an aqueous solution with a concentration of 25 wt% of carbon black so that their entire surface is coated with carbon black, then aluminium hydroxide is added and the whole is mixed to form an insulating mixture, then added to an aqueous solution of sodium silicate is a water glass stabiliser,
followed by a water glass hardener being added to the solution, this solution being mixed for 10 minutes to form a binder solution, and then the insulating mixture is added to the binder solution with constant stirring, and the whole is mixed, and the resulting mixture is then poured onto the outer wall of a building provided with formwork with a silicone surface and finally, the resulting mixture is left undisturbed to harden, after which the formwork is removed.
Industrial Application
The insulating material according to the invention can in particular be used to create a permeable fire-proof insulating system in the building industry.
Claims
1. An insulating material, in particular a permeable fire-proof insulating material comprising water glass and polystyrene, characterized in that it consists of a hardening mixture which contains 1 to 32.4 wt% of expanded polystyrene, 57.5 to 96.0 wt% of aqueous sodium silicate solution, 2 to 6 wt% of aluminium hydroxide, 0.8 to 2.6 wt% water glass hardener and 0.1 to 0.5 wt% of water glass stabiliser, and the surface of the expanded polystyrene is provided with carbon black, the carbon black making up 0.1 to 1 wt% of total weight.
2. The insulating material according to Claim 1 , characterized in that the expanded polystyrene is spheres with a diameter of 3 to 6 mm.
3. The insulating material according to any one of the preceding claims, characterized in that the water glass stabilisers are hydrophilic alkoxy alkyl-ammonium salts.
4. The insulating material according to any one of the preceding claims, characterized in that the aqueous sodium silicate solution has a density in the range from 1370 to 1400 kg/m3.
5. The insulating material according to one of the preceding claims, characterized in that the aqueous sodium silicate solution has a molar ratio of Si02 to Na20 in the range of 3.2 to 3.4.
6. A method for producing insulating material, in particular a method for the production of a permeable fire-proof insulating material comprising water glass and polystyrene, according to any one of claims 1 to 5, characterized in that firstly the polystyrene beads are mixed with an aqueous solution of carbon black so as to coat their entire surface, then is added to the aqueous sodium silicate solution aluminium hydroxide and the whole is mixed so as to form an insulating mixture, and then a water glass stabiliser is added to the aqueous sodium silicate solution, and then to this solution is mixed water glass hardener, with this solution being further stirred for 1 to 10 minutes to form a binder solution, and the insulating mixture is added to the binder solution with constant stirring, and the whole is mixed, and the resulting mixture is then poured into the application site.
7. The method for producing insulating material according to claim 6, characterized in that the resulting mixture is poured into the application site, which is a mould, and further, from the resulting mixture such an amount of binder solution is extruded by means of a press so that the desired ratio of insulating mixture and binder solution is obtained.
8. The method for producing insulating material, according to any one of Claims 6 and 7, characterized in that finally, the resulting mixture is left undisturbed to harden.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CZ201900445 | 2019-07-05 | ||
PCT/CZ2020/000018 WO2021004555A1 (en) | 2019-07-05 | 2020-05-26 | Insulating material and method for its production |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3994107A1 true EP3994107A1 (en) | 2022-05-11 |
Family
ID=81000601
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20730561.6A Pending EP3994107A1 (en) | 2019-07-05 | 2020-05-26 | Insulating material and method for its production |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP3994107A1 (en) |
-
2020
- 2020-05-26 EP EP20730561.6A patent/EP3994107A1/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3994109B1 (en) | Insulation material and a method for its production | |
WO2021004555A1 (en) | Insulating material and method for its production | |
EP3994107A1 (en) | Insulating material and method for its production | |
JP7576859B2 (en) | Thermal insulation material and its manufacturing method | |
EA043997B1 (en) | INSULATING MATERIAL AND METHOD FOR ITS PRODUCTION | |
US12168628B2 (en) | Fire-proof insulation material and a method for its production | |
EA046374B1 (en) | INSULATING MATERIAL AND METHOD FOR ITS PRODUCTION | |
EA041914B1 (en) | INSULATING MATERIAL AND METHOD FOR ITS PRODUCTION | |
CN119504216A (en) | Filler compound and use of a filler compound | |
JPH0137419B2 (en) | ||
JPH11324168A (en) | Fireproofing structure and its manufacture | |
DK201800307A1 (en) | Composite thermal wall element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20211019 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) |