EP3991233A1 - Method for optimizing the service life of a battery - Google Patents
Method for optimizing the service life of a batteryInfo
- Publication number
- EP3991233A1 EP3991233A1 EP20733805.4A EP20733805A EP3991233A1 EP 3991233 A1 EP3991233 A1 EP 3991233A1 EP 20733805 A EP20733805 A EP 20733805A EP 3991233 A1 EP3991233 A1 EP 3991233A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- battery
- charge
- state
- relative increase
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 19
- 230000015556 catabolic process Effects 0.000 claims abstract description 28
- 238000006731 degradation reaction Methods 0.000 claims abstract description 28
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 abstract description 7
- 229910052744 lithium Inorganic materials 0.000 abstract description 7
- 238000002485 combustion reaction Methods 0.000 abstract 1
- 238000005516 engineering process Methods 0.000 description 10
- 230000006870 function Effects 0.000 description 6
- 239000002253 acid Substances 0.000 description 5
- 230000032683 aging Effects 0.000 description 4
- 230000001186 cumulative effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- HEZMWWAKWCSUCB-PHDIDXHHSA-N (3R,4R)-3,4-dihydroxycyclohexa-1,5-diene-1-carboxylic acid Chemical compound O[C@@H]1C=CC(C(O)=O)=C[C@H]1O HEZMWWAKWCSUCB-PHDIDXHHSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 230000004224 protection Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/007—Regulation of charging or discharging current or voltage
- H02J7/007188—Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
- H02J7/007192—Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
- H02J7/007194—Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
- H01M10/443—Methods for charging or discharging in response to temperature
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0047—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
- H02J7/005—Detection of state of health [SOH]
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/007—Regulation of charging or discharging current or voltage
- H02J7/007188—Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
- H02J7/007192—Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/20—Batteries in motive systems, e.g. vehicle, ship, plane
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a method for optimizing the life of a battery, as well as a device and a vehicle comprising means for implementing such a method.
- a lead battery is resistant to the difficult conditions of an engine under-hood where the temperature can reach 800 and where the battery can remain several hours a day at more than 600.
- This "hot" environment has a significant impact on its aging.
- its low cost makes it possible to change it regularly (every 5 years on average in Europe) like all wearing parts of the vehicle.
- the recyclability rate of a lead battery is very high (> 95%) and it can be converted back into new batteries.
- the temperature of the battery cannot be controlled because it depends on two overriding factors, namely the climate of the country and the behavior of the customer. Even if by design, everything is done to thermally protect the battery from the heat of the engine, the simple fact of positioning it in the engine compartment, makes the temperature of the battery dependent on that of the engine. However, the temperature of the engine is directly linked to the behavior of the customer, because with each use, the engine will heat up to 950, then stay there for the duration of travel, then cool down after stopping. During each phase of this cycle, the engine will heat the battery, especially during the hours of cooling. We easily understand that depending on the customer's use, between urban and highway, or depending on the number of runs per day, the battery temperature will be very different.
- Document US8937452 describes, in order to optimize the life of a battery of a vehicle, a method of controlling the state of charge comprising controlling the charge of the battery while remaining within a range of SOC determined according to the predicted battery temperature.
- this process offers limited effectiveness.
- the application makes it possible to remedy the aforementioned drawbacks, in particular they aim to provide a simple and effective solution for adapting the management of the battery to its temperature in order to correct as much as possible the dispersions of climates and of driver behavior.
- the invention is based on the knowledge of the typical behavior of LIB technology vis-à-vis the state of charge - temperature combination and how the alternator can be driven. It can be applied equally to systems with one or two batteries in parallel.
- the method of managing the charge of a battery comprises a step of determining a target state of charge as a function of the temperature of the battery, said target state of charge tending, according to a reference degradation profile, to decrease as the temperature increases so as to control the degradation of the battery, as well as a step of charging the battery until reaching the target state of charge.
- the reference degradation profile describing the relative increase in the internal resistance of the battery as a function of the time spent since the start of the life of the battery at a reference state of charge and at a reference temperature the target state of charge is efficiently determined iteratively such that, at the end of a step of estimating the relative increase in the internal resistance, the estimated relative increase tends to remain lower than the relative increase taken from the reference degradation profile.
- the reference state of charge may be greater than 80%, in particular equal to 100%, and / or in that the reference temperature may be between 100 and 300, in particular equal to 200;
- the target state of charge can be determined so that that, at the following iteration ti + i , the estimated relative increase tends towards the relative increase drawn from the reference profile;
- This same time interval may be between 30 minutes and 2 hours, in particular equal to 1 hour, and / or this same relative increase in internal resistance may be less than 5%, in particular equal to 2%.
- the target state of charge can be determined at the iteration ti + i so as to be lower than the state of reference load and the degradation of the internal resistance due to the time interval between the iterations ti + i and to this lower state of charge may be considered, in the subsequent steps of estimating the relative degradation, as less than the reference degradation.
- FIG.1 schematically illustrates a conventional layout with a single LIB and the corresponding electrical architecture.
- FIG.2 schematically illustrates an implementation with two LIBs in parallel and the corresponding electrical architecture.
- FIG.3 graphically illustrates an example of a degradation profile of an LIB as a function of temperature and SOC.
- FIG.4 illustrates with a table an example of degradation of an LIB as a function of temperature and SOC.
- FIG.5 shows a table an example of expected life with an increase in internal resistance of 30%.
- FIG.6 graphically illustrates an "ideal" degradation profile at 200 and 100% SOC.
- FIG.7 illustrates with a table examples of degradation coefficients.
- FIG.8 graphically illustrates the operating principle of the invention when rolling.
- FIG.9 graphically illustrates the operating principle of the invention when stationary and in parking.
- FIG.10 graphically illustrates the principle of correction of the state of charge according to the invention.
- FIG.1 1 graphically illustrates an example of the evolution of the cumulative SOC% corrected according to the invention.
- FIG.12 graphically illustrates an example of the distribution of used batteries as a function of time.
- Figure 1 shows a conventional layout according to the prior art with a single LIB. This is located close to the engine with the associated thermal protections. It thus provides the starting power and energy required for all phases of use, including micro-currents during parking phases.
- Figure 2 shows a variant according to the prior art where two LIBs are
- a small battery LTO technology located close to the engine provides starting power and any other exchange at high current, while another LIB, rather with a graphite anode (GRA) and positioned in a cold environment, at the rear and which ensures all energy needs, including the supply of “off currents” in parking lots.
- LIB graphite anode
- the invention applies equally to the two configurations of Figure 1 and Figure 2, as well as to all Lithium battery technologies because they all share the same behavior with respect to the state. load and temperature.
- the invention uses a characteristic presented in the graph of FIG. 3, the curves of which provide an example of a typical behavior of LIBs, namely the exponential degradation of their performance in capacity and in internal resistance (here we present internal resistance) with respect to temperature and state of charge. For each type, size or chemistry of a lithium battery, it is possible to determine these curves by bench tests. These curves represent an intrinsic characteristic of each of them.
- the temperature of the battery cannot be controlled, which will be the result of the combined effects of its position in the vehicle, the climate and its own self-heating linked to the use of the vehicle by the customer.
- an LIB whose table in figure 4 is the transcription into digital data of the graph in figure 3.
- the maximum degradation tolerable by the vehicle of the internal resistance is an increase of 30% for a required service life of 15 years.
- the table of FIG. 5 shows the consequence in terms of service life if we combine the aging coefficients of FIG. 4 and a maximum tolerable degradation of 30% of the internal resistance. All values above 15 years have been blocked at 15 years.
- the diagram of Figure 8 shows the operation of the system when driving.
- the BMS permanently sends this information to the SGE computer which determines per unit of time, for example the hour, the average state of charge and the average temperature for the unit of time considered.
- it is SOCmoyl and TOmoyl for the first hour of travel, then SOCmoy2 and TOmoy2 for the second, etc.
- the diagram of Figure 9 shows the operation of the parking system. Same thing as when driving, when the SGE computer wakes up periodically, it collects information from the BMS of the LIB and determines the averages, hour by hour, for temperature and state of charge.
- the battery can be assigned a coefficient from the table of the figure 7 and these “corrected hours” are accumulated in the memory of the EMS. It is now easy for the EMS to compare the accumulated corrected hours with calendar time. When this becomes greater than the reference line, this means that the battery may degrade faster than expected. When this deviation reaches a limit threshold such as 5 or 10 hours, the EMS sets up corrective management by acting on the state of charge of the battery.
- the diagram of Figure 10 shows the operation of the system. As soon as the BMS indicates to the SGE that the SOCMax is reached, it automatically reduces the regulation voltage Valt so that the load current tends towards 0 and the SOC level remains constant.
- the graph of Figure 1 1 shows an example of the evolution of the cumulative corrected cumulative time relative to the ideal line. As we can see the first part of the curve tends to deviate from the ideal line. When this difference becomes significant and greater than a predefined threshold, the management system is activated and the state of charge of the battery is reduced, which immediately changes the direction of the curve which returns to the ideal line. When the cumulative value drops below the ideal line up to a hysteresis value, the SOC limitation is deactivated.
- the invention provides a simple system which does not require any physical modification of the vehicle but which makes it possible to guarantee the service life.
- batteries by counting the time and by managing the state of charge of the battery for customers whose climate or type of use prematurely wears out the battery as shown in the diagram in figure 12, which illustrates how the battery life of a population of customers is determined.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Description
Description Description
Titre de l'invention : Procédé pour optimiser la durée de vie d’une batterie Title of the invention: Method for optimizing the life of a battery
[0001 ] La présente invention concerne un procédé pour optimiser la durée de vie d’une batterie, ainsi qu’un dispositif et un véhicule comportant des moyens pour implémenter un tel procédé. The present invention relates to a method for optimizing the life of a battery, as well as a device and a vehicle comprising means for implementing such a method.
[0002] Depuis un siècle, tous les véhicules automobiles sont équipés d’une batterie de servitude au plomb, notamment pour démarrer le moteur thermique. Les avancées technologiques et les contraintes réglementaires imposent de plus en plus le remplacement de ces batteries au plomb par des systèmes alternatifs. Cependant, ce remplacement n’est pas simple à opérer car les batteries plomb ont des caractéristiques techniques spécifiques et un coût limité. Entre autres, les deux qualités fondamentales que sont la puissance à froid et la réserve d’énergie, cette dernière compensant les courants en veille (ou « courant off » selon la terminologie anglo-saxonne) lorsque le véhicule est en parking longue durée. Il va de soi que cette aptitude à démarrer à froid doit être garantie après un parking prolongé c’est-à-dire après une décharge partielle de la batterie. Très classiquement, une batterie au plomb peut parfaitement démarrer un moteur à - 200 ou -300 après une durée de parking de 1 ou 2 mois. Son état de charge (ou SOC selon l’acronyme anglo-saxon pour « State Of Charge ») est encore supérieur à 60% et 20 à 30% de sa capacité a été déchargée par les « courants off ». [0002] For a century, all motor vehicles have been equipped with a lead-acid service battery, in particular for starting the heat engine. Technological advances and regulatory constraints increasingly require the replacement of these lead-acid batteries by alternative systems. However, this replacement is not easy to make because lead batteries have specific technical characteristics and a limited cost. Among others, the two fundamental qualities of cold power and energy reserve, the latter compensating for standby currents (or "off current" in the English terminology) when the vehicle is in long-term parking. It goes without saying that this ability to start cold must be guaranteed after prolonged parking, that is to say after a partial discharge of the battery. Very conventionally, a lead-acid battery can perfectly start an engine at -200 or -300 after a parking period of 1 or 2 months. Its state of charge (or SOC according to the acronym for "State Of Charge") is still greater than 60% and 20 to 30% of its capacity has been discharged by the "off currents".
[0003] En outre, une batterie plomb résiste bien aux conditions difficiles d’un sous- capot moteur où la température peut atteindre 800 et où la batterie peut rester plusieurs heures par jour à plus de 600. Cet envir onnement « chaud » a un impact non négligeable sur son vieillissement. Cependant son faible coût permet de la changer régulièrement (tous les 5 ans en moyenne en Europe) comme toutes pièces d’usure du véhicule. Par ailleurs, le taux de recyclabilité d’une batterie plomb est très élevé (>95%) et elle peut être reconvertie en batteries neuves. [0004] Il est important de comprendre que cette aptitude à résister à la température permet de la placer proche du moteur et donc de l’alternateur et du démarreur.[0003] In addition, a lead battery is resistant to the difficult conditions of an engine under-hood where the temperature can reach 800 and where the battery can remain several hours a day at more than 600. This "hot" environment has a significant impact on its aging. However, its low cost makes it possible to change it regularly (every 5 years on average in Europe) like all wearing parts of the vehicle. In addition, the recyclability rate of a lead battery is very high (> 95%) and it can be converted back into new batteries. [0004] It is important to understand that this ability to withstand temperature makes it possible to place it close to the engine and therefore to the alternator and to the starter.
De fait, les câbles sont courts et les pertes résistives faibles. In fact, the cables are short and the resistive losses low.
[0005] Remplacer la batterie au plomb par une batterie Lithium suppose également de la placer proche du moteur et donc dans une zone chaude. Cependant il y a là trois inconvénients majeurs. [0005] Replacing the lead-acid battery with a lithium battery also supposes placing it close to the engine and therefore in a hot zone. However, there are three major drawbacks here.
[0006] Tout d’abord, le coût d’une batterie au lithium (ou technologie LIB dans la présente demande) n’a rien à voir avec celui d’une batterie au plomb (ou technologie LAB dans la présente demande), il existe au moins un facteur de coût égal à 5 entre ces deux technologies. Il n’est donc plus question de la changer aussi souvent, ce ne serait pas supportable par les clients, il faut que sa durée de vie soit au moins de 10 ans et idéalement de 15 ans, soit la durée de vie d’une automobile aujourd’hui. Il faut également prendre en compte la difficulté et le coût élevé du recyclage des LIB, à l’inverse du plomb. De plus, du point de vue de la protection de l’environnement, il est intéressant que ces batteries durent longtemps. First of all, the cost of a lithium battery (or LIB technology in the present application) has nothing to do with that of a lead-acid battery (or LAB technology in the present application), it there is at least a cost factor equal to 5 between these two technologies. It is therefore no longer a question of changing it as often, it would not be bearable by customers, its lifespan must be at least 10 years and ideally 15 years, which is the lifespan of an automobile. today. The difficulty and high cost of recycling LIBs, unlike lead, must also be taken into account. In addition, from an environmental protection point of view, it is interesting that these batteries last a long time.
[0007] De plus, la dégradation d’une LIB, que ce soit en capacité ou en puissance (résistance interne), est accélérée de façon exponentielle par l’augmentation de sa température. Cette usure est évidemment très dépendante de la technologie d’anode utilisée : les oxydes de titanate de lithium (ou technologie LTO dans la présente demande) résisteront beaucoup mieux que le graphite (ou technologie GRA dans la présente demande) par exemple. Cependant, quelle que soit la technologie utilisée, sa durée de vie sera directement liée à sa température. [0007] In addition, the degradation of an LIB, whether in capacity or in power (internal resistance), is accelerated exponentially by the increase in its temperature. This wear is obviously very dependent on the anode technology used: the lithium titanate oxides (or LTO technology in the present application) will withstand much better than graphite (or GRA technology in the present application) for example. However, whatever technology is used, its lifespan will be directly related to its temperature.
[0008] La température de la batterie n’est pas contrôlable car elle dépend de deux facteurs prépondérants que sont le climat du pays et le comportement du client. Même si par conception, tout est mis en oeuvre pour protéger thermiquement la batterie de la chaleur du moteur, le simple fait de la positionner dans le compartiment moteur, rend la température de la batterie dépendante de celle du moteur. Or la température du moteur est directement liée au comportement du client, car à chaque usage, le moteur va chauffer jusqu’à 950, puis s’y maintenir le temps du roulage, puis refroidir après l’arrêt. Durant chaque phase de ce cycle, le moteur va chauffer la batterie, surtout d’ailleurs durant les heures de refroidissement. Nous comprenons facilement que selon l’usage du client, entre urbain et autoroute, ou selon le nombre de roulages par jour, la température de la batterie va être très différente. [0008] The temperature of the battery cannot be controlled because it depends on two overriding factors, namely the climate of the country and the behavior of the customer. Even if by design, everything is done to thermally protect the battery from the heat of the engine, the simple fact of positioning it in the engine compartment, makes the temperature of the battery dependent on that of the engine. However, the temperature of the engine is directly linked to the behavior of the customer, because with each use, the engine will heat up to 950, then stay there for the duration of travel, then cool down after stopping. During each phase of this cycle, the engine will heat the battery, especially during the hours of cooling. We easily understand that depending on the customer's use, between urban and highway, or depending on the number of runs per day, the battery temperature will be very different.
[0009] Il est donc d’un grand intérêt de trouver des solutions permettant d’augmenter le plus possible la durée de vie des LIB vis-à-vis de la température et c’est l’objet de l’invention proposée [0009] It is therefore of great interest to find solutions allowing the lifetime of LIBs to be increased as much as possible with respect to temperature and this is the object of the proposed invention
[0010] Le document US8937452 décrit, afin d’optimiser la durée de vie d’une batterie d’un véhicule, un procédé de commande de l’état de charge comprenant de contrôler la charge de la batterie en restant dans une plage de SOC déterminée en fonction de la température prédite de la batterie. Toutefois, ce procédé offre une efficacité limitée. [0010] Document US8937452 describes, in order to optimize the life of a battery of a vehicle, a method of controlling the state of charge comprising controlling the charge of the battery while remaining within a range of SOC determined according to the predicted battery temperature. However, this process offers limited effectiveness.
[001 1 ] Le procédé, la batterie et le véhicule selon l’invention décrite dans cette [001 1] The method, the battery and the vehicle according to the invention described in this
demande permettent de remédier aux inconvénients précités, notamment ils visent à apporter une solution simple et efficace pour adapter la gestion de la batterie à sa température afin de corriger autant que possible les dispersions de climats et de comportement du conducteur. L’invention est basée sur la connaissance du comportement typique de la technologie LIB vis-à-vis de la combinaison état de charge - température et de la façon dont l’alternateur peut être piloté. Elle peut s’appliquer indifféremment à des systèmes à une ou deux batteries en parallèle. The application makes it possible to remedy the aforementioned drawbacks, in particular they aim to provide a simple and effective solution for adapting the management of the battery to its temperature in order to correct as much as possible the dispersions of climates and of driver behavior. The invention is based on the knowledge of the typical behavior of LIB technology vis-à-vis the state of charge - temperature combination and how the alternator can be driven. It can be applied equally to systems with one or two batteries in parallel.
[0012] A cette fin, le procédé de gestion de la charge d’une batterie selon l’invention comporte une étape de détermination d’un état de charge cible en fonction de la température de la batterie, ledit état de charge cible tendant, conformément à un profil de dégradation de référence, à diminuer lorsque la température augmente de manière à contrôler la dégradation de la batterie, ainsi qu’une étape de charge de la batterie jusqu’à atteindre l’état de charge cible. Avantageusement, le profil de dégradation de référence décrivant l’augmentation relative de la résistance interne de la batterie en fonction du temps passé depuis le début de la vie de la batterie à un état de charge de référence et à une température de référence, l’état de charge cible est efficacement déterminé de manière itérative de telle sorte que, à l’issue d’une étape d’estimation de l’augmentation relative de la résistance interne, l’augmentation relative estimée tende à rester inférieure à l’augmentation relative tirée du profil de dégradation de référence. To this end, the method of managing the charge of a battery according to the invention comprises a step of determining a target state of charge as a function of the temperature of the battery, said target state of charge tending, according to a reference degradation profile, to decrease as the temperature increases so as to control the degradation of the battery, as well as a step of charging the battery until reaching the target state of charge. Advantageously, the reference degradation profile describing the relative increase in the internal resistance of the battery as a function of the time spent since the start of the life of the battery at a reference state of charge and at a reference temperature, the target state of charge is efficiently determined iteratively such that, at the end of a step of estimating the relative increase in the internal resistance, the estimated relative increase tends to remain lower than the relative increase taken from the reference degradation profile.
[0013] Selon des modes particuliers de réalisation décrits ci-après en regard des figures introduites ci-après : [0013] According to particular embodiments described below with reference to the figures introduced below:
- l’état de charge de référence peut être supérieur à 80%, notamment égal à 100%, et/ou en ce que la température de référence peut être comprise entre 100 et 300, notamment égale à 200 ; - the reference state of charge may be greater than 80%, in particular equal to 100%, and / or in that the reference temperature may be between 100 and 300, in particular equal to 200;
- si, à une itération ti donnée, où i entier positif, l’augmentation relative estimée de la résistance interne est supérieure à l’augmentation relative tirée du profil de référence, alors l’état de charge cible peut être déterminé de manière à ce que, à l’itération suivante ti+i , l’augmentation relative estimée tende vers l’augmentation relative tirée du profil de référence ; - if, at a given iteration ti, where i positive integer, the estimated relative increase in internal resistance is greater than the relative increase taken from the reference profile, then the target state of charge can be determined so that that, at the following iteration ti + i , the estimated relative increase tends towards the relative increase drawn from the reference profile;
- deux itérations peuvent être toujours séparées d’un même intervalle de temps prédéfini et ledit intervalle de temps peut toujours correspondre dans le profil de référence à une même augmentation relative de la résistance interne. - two iterations can always be separated by the same predefined time interval and said time interval can always correspond in the reference profile to the same relative increase in internal resistance.
- ce même intervalle de temps peut être compris entre 30 minutes et 2 heures, notamment égale à 1 heure, et/ou cette même augmentation relative de la résistance interne peut être inférieure à 5%, notamment égale à 2%. - This same time interval may be between 30 minutes and 2 hours, in particular equal to 1 hour, and / or this same relative increase in internal resistance may be less than 5%, in particular equal to 2%.
- si la température de batterie mesurée entre deux itérations ti et ti+i est supérieure à la température de référence, alors l’état de charge cible peut être déterminé à l’itération ti+i de manière à être inférieur à l’état de charge de référence et la dégradation de la résistance interne due à l’intervalle de temps passé entre les itérations ti+i et à cet état de charge inférieur pourra être considérée, dans les étapes ultérieures d’estimations de la dégradation relative, comme inférieure à la dégradation de référence. - if the battery temperature measured between two iterations ti and ti + i is greater than the reference temperature, then the target state of charge can be determined at the iteration ti + i so as to be lower than the state of reference load and the degradation of the internal resistance due to the time interval between the iterations ti + i and to this lower state of charge may be considered, in the subsequent steps of estimating the relative degradation, as less than the reference degradation.
[0014] Les dessins annexés illustrent l’invention : [0014] The accompanying drawings illustrate the invention:
[0015] [Fig.1 ] illustre schématiquement une implantation classique avec une seule LIB et l’architecture électrique correspondant. [0015] [Fig.1] schematically illustrates a conventional layout with a single LIB and the corresponding electrical architecture.
[0016] [Fig.2] illustre schématiquement une implantation avec deux LIB en parallèle et l’architecture électrique correspondant. [0016] [Fig.2] schematically illustrates an implementation with two LIBs in parallel and the corresponding electrical architecture.
[0017] [Fig.3] illustre graphiquement un exemple de profil de dégradation d’une LIB en fonction de la température et du SOC. [0018] [Fig.4] illustre par un tableau un exemple de dégradation d’une LIB en fonction de la température et du SOC. [0017] [Fig.3] graphically illustrates an example of a degradation profile of an LIB as a function of temperature and SOC. [0018] [Fig.4] illustrates with a table an example of degradation of an LIB as a function of temperature and SOC.
[0019] [Fig.5] illustre par un tableau un exemple de durée de vie attendue avec une augmentation de la résistance interne de 30%. [0019] [Fig.5] shows a table an example of expected life with an increase in internal resistance of 30%.
[0020] [Fig.6] illustre graphiquement un profil de dégradation « idéale » à 200 et 100%SOC. [0020] [Fig.6] graphically illustrates an "ideal" degradation profile at 200 and 100% SOC.
[0021 ] [Fig.7] illustre par un tableau des exemples de coefficients de dégradation. [0021] [Fig.7] illustrates with a table examples of degradation coefficients.
[0022] [Fig.8] illustre graphiquement le principe de fonctionnement de l’invention en roulage. [0022] [Fig.8] graphically illustrates the operating principle of the invention when rolling.
[0023] [Fig.9] illustre graphiquement le principe de fonctionnement de l’invention à l’arrêt et en parking. [0023] [Fig.9] graphically illustrates the operating principle of the invention when stationary and in parking.
[0024] [Fig.10] illustre graphiquement le principe de correction de l’état de charge selon l’invention. [0024] [Fig.10] graphically illustrates the principle of correction of the state of charge according to the invention.
[0025] [Fig.1 1 ] illustre graphiquement un exemple d’évolution du cumul de SOC% corrigé selon l’invention. [0025] [Fig.1 1] graphically illustrates an example of the evolution of the cumulative SOC% corrected according to the invention.
[0026] [Fig.12] illustre graphiquement un exemple de distribution de batteries usées en fonction du temps. [0026] [Fig.12] graphically illustrates an example of the distribution of used batteries as a function of time.
[0027] Deux grandes familles de systèmes batteries au lithium existent : avec une ou avec deux batteries. Dans les deux cas, il s’agit de placer la source de puissance au plus près du moteur de façon à limiter le plus possible les pertes résistives dans les câbles, car celles-ci se traduisent soit par des diamètres de câble importants et donc du cuivre, de la masse et du coût, soit par un There are two main families of lithium battery systems: with one or with two batteries. In both cases, it is a matter of placing the power source as close as possible to the motor so as to limit as much as possible the resistive losses in the cables, because these result in either large cable diameters and therefore copper, mass and cost, or by a
surdimensionnement en puissance de la LIB et donc du coût. oversizing in power of the LIB and therefore of the cost.
[0028] La figure 1 présente une implantation classique selon l’art antérieur avec une seule LIB. Celle-ci est située proche du moteur avec les protections thermiques associées. Elle assure ainsi la puissance de démarrage et l’énergie nécessaire à toutes les phases d’usage y compris les micro-courants lors des phases de parking. [0028] Figure 1 shows a conventional layout according to the prior art with a single LIB. This is located close to the engine with the associated thermal protections. It thus provides the starting power and energy required for all phases of use, including micro-currents during parking phases.
[0029] La figure 2 présente une variante selon l’art antérieur où deux LIB sont [0029] Figure 2 shows a variant according to the prior art where two LIBs are
montées en parallèle chacune assurant sa part des fonctions : une petite batterie de technologie LTO, implantée proche du moteur fournie la puissance de démarrage et tout autre échange à fort courant, alors qu’une autre LIB, plutôt avec une anode graphite (GRA) et positionnée en environnement froid, à l’arrière et qui assure tous les besoins en énergie, y compris l’alimentation des « courants off » en parking. connected in parallel, each providing its share of functions: a small battery LTO technology, located close to the engine provides starting power and any other exchange at high current, while another LIB, rather with a graphite anode (GRA) and positioned in a cold environment, at the rear and which ensures all energy needs, including the supply of “off currents” in parking lots.
[0030] Dans les deux configurations de la figure 1 et de la figure 2, un calculateur que nous appellerons « Système Gestion Energie » (ou « SGE »), reçoit les informations d’état de charge (SOC en pourcentage), de tension en volts (V), de température T en degrés celsius (Ό) et de courant I du ou des BMS (« Battery Management System » selon la terminologie anglo-saxonne classique) qui gèrent la ou les LIB. Ce calculateur appartenant au véhicule est à même de piloter la tension (Valt) de l’alternateur ou du convertisseur DCDC pour certains véhicules hybrides ou électriques. In the two configurations of Figure 1 and Figure 2, a computer that we will call "Energy Management System" (or "SGE"), receives the state of charge information (SOC in percentage), voltage in volts (V), temperature T in degrees celsius (Ό) and current I of the BMS ("Battery Management System" according to the classic English terminology) which manage the LIB (s). This computer belonging to the vehicle is able to control the voltage (Valt) of the alternator or the DCDC converter for certain hybrid or electric vehicles.
[0031 ] L’invention s’applique indifféremment aux deux configurations de la figure 1 et de la figure 2, ainsi qu’à toutes les technologies de batteries au Lithium car elles partagent toutes le même comportement vis-à-vis de l’état de charge et de la température. The invention applies equally to the two configurations of Figure 1 and Figure 2, as well as to all Lithium battery technologies because they all share the same behavior with respect to the state. load and temperature.
[0032] L’invention utilise une caractéristique présentée dans le graphe de la figure 3, dont les courbes fournissent un exemple d’un comportement typique des LIB, à savoir la dégradation exponentielle de leurs performances en capacité et en résistance interne (ici nous présentons la résistance interne) vis-à-vis de la température et de l’état de charge. Pour chaque type, taille ou chimie d’une batterie au Lithium, il est possible de déterminer ces courbes par des essais au banc. Ces courbes représentent bien une caractéristique intrinsèque de chacune d’entre elles. The invention uses a characteristic presented in the graph of FIG. 3, the curves of which provide an example of a typical behavior of LIBs, namely the exponential degradation of their performance in capacity and in internal resistance (here we present internal resistance) with respect to temperature and state of charge. For each type, size or chemistry of a lithium battery, it is possible to determine these curves by bench tests. These curves represent an intrinsic characteristic of each of them.
[0033] A part protéger au mieux la batterie vis-à-vis de l’influence thermique du [0033] Apart from protecting the battery as much as possible from the thermal influence of
moteur, on ne peut contrôler la température de la batterie qui sera la résultante des effets conjugués de son positionnement dans le véhicule, du climat et de son propre auto échauffement lié à l’usage du véhicule par le client. Par contre, on peut agir sur son état de charge. Pour mieux expliquer le concept proposé, nous allons prendre comme exemple une LIB dont le tableau de la figure 4 est la retranscription en données numériques du graphe de la figure 3. Dans cet exemple la dégradation maximum supportable par le véhicule de la résistance interne est une augmentation de 30% pour une durée de vie demandée de 15 ans. engine, the temperature of the battery cannot be controlled, which will be the result of the combined effects of its position in the vehicle, the climate and its own self-heating linked to the use of the vehicle by the customer. On the other hand, we can act on its state of charge. To better explain the proposed concept, we will take as an example an LIB whose table in figure 4 is the transcription into digital data of the graph in figure 3. In this For example, the maximum degradation tolerable by the vehicle of the internal resistance is an increase of 30% for a required service life of 15 years.
[0034] Le tableau de la figure 5 montre la conséquence en durée de vie si nous combinons les coefficients de vieillissement de la figure 4 et une dégradation maximum supportable de 30% de la résistance interne. Toutes les valeurs au- dessus de 15 ans ont été bloquées à 15 ans. The table of FIG. 5 shows the consequence in terms of service life if we combine the aging coefficients of FIG. 4 and a maximum tolerable degradation of 30% of the internal resistance. All values above 15 years have been blocked at 15 years.
[0035] Des tableaux des figures 4 et 5 nous choisissons comme conditions de From the tables of Figures 4 and 5 we choose as conditions of
référence le point 200 et 100% de SOC qui présente une dégradation de 2% par an et donc qui nous permet de prévoir une durée de vie de 15 ans avec une augmentation de la résistance interne de 30% (15 x 2%). reference point 200 and 100% of SOC which presents a degradation of 2% per year and therefore which allows us to predict a lifespan of 15 years with an increase in internal resistance of 30% (15 x 2%).
[0036] La courbe de la figure 6 présente donc l’évolution dite « idéale » de la The curve of Figure 6 therefore shows the so-called "ideal" evolution of the
résistance interne par rapport au temps avec comme paramètres 200 et 100% de SOC. internal resistance with respect to time with 200 and 100% SOC as parameters.
[0037] Dans le principe de l’invention nous allons affecter un coefficient pour chaque combinaison de température et d’état de charge en prenant comme base le point 200 et 100% de SOC pour lequel nous affectons le c oefficient 1 . Cela donne le tableau de la figure 7, qui est directement dérivé de celui de la figure 4. Ce tableau donne directement un « poids » pour chaque configuration de In principle, we will assign a coefficient for each combination of temperature and state of charge, taking as a basis the point 200 and 100% of SOC for which we assign the coefficient 1. This gives the table in figure 7, which is directly derived from that in figure 4. This table directly gives a "weight" for each configuration of
fonctionnement. Il va nous permettre d’affecter chaque heure de temps de vie calendaire d’un coefficient de dégradation par rapport à la même heure passée à 200 et 100% de SOC. Selon le tableau de la figure 7, une heure passée à 100% de SOC et 300 est équivalente à 2 heures à 100% de SOC et 200. Et par contre, à 50% de SOC et 300 le vieillissement est le même qu’avec les valeurs de référence. operation. It will allow us to assign each hour of calendar lifespan a degradation coefficient compared to the same hour spent at 200 and 100% SOC. According to the table in figure 7, one hour spent at 100% SOC and 300 is equivalent to 2 hours at 100% SOC and 200. On the other hand, at 50% SOC and 300 the aging is the same as with the reference values.
[0038] Le schéma de la figure 8 montre le fonctionnement du système en roulage. The diagram of Figure 8 shows the operation of the system when driving.
Lorsque le véhicule fonctionne, l’état de charge et la température de la batterie changent constamment. Le BMS envoie en permanence ces informations au calculateur SGE qui détermine par unité de temps, par exemple l’heure, l’état de charge moyen et la température moyenne pour l’unité de temps considérée. Ici, par exemple, c’est SOCmoyl et TOmoyl pour la premi ère heure de roulage, puis SOCmoy2 et TOmoy2 pour la deuxième, etc. [0039] Le schéma de la figure 9 montre le fonctionnement du système en parking. Même chose qu’en roulage, lors des réveils périodiques du calculateur SGE, celui-ci collecte les informations du BMS de la LIB et détermine les moyennes, heure par heure, pour la température et l’état de charge. Ainsi à chaque heure de vie (correspondant chacune à une itération ti, ti+i , . . . , ti+n où n entier dans le présent mode de réalisation), la batterie peut être affectée d’un coefficient provenant du tableau de la figure 7 et ces « heures corrigées » sont cumulées dans la mémoire du SGE. Il est maintenant aisé pour le SGE de comparer le cumul des heures corrigées avec le temps calendaire. Lorsque celui-ci devient supérieur à la droite de référence, cela veut dire que la batterie risque de se dégrader plus vite que prévu. Lorsque cet écart atteint un seuil limite comme par exemple 5 ou 10 heures, le SGE met en place une gestion corrective en agissant sur l’état de charge de la batterie. When the vehicle is running, the state of charge and the temperature of the battery are constantly changing. The BMS permanently sends this information to the SGE computer which determines per unit of time, for example the hour, the average state of charge and the average temperature for the unit of time considered. Here, for example, it is SOCmoyl and TOmoyl for the first hour of travel, then SOCmoy2 and TOmoy2 for the second, etc. The diagram of Figure 9 shows the operation of the parking system. Same thing as when driving, when the SGE computer wakes up periodically, it collects information from the BMS of the LIB and determines the averages, hour by hour, for temperature and state of charge. Thus at each hour of life (each corresponding to an iteration ti, ti + i,.., Ti + n where n integer in the present embodiment), the battery can be assigned a coefficient from the table of the figure 7 and these “corrected hours” are accumulated in the memory of the EMS. It is now easy for the EMS to compare the accumulated corrected hours with calendar time. When this becomes greater than the reference line, this means that the battery may degrade faster than expected. When this deviation reaches a limit threshold such as 5 or 10 hours, the EMS sets up corrective management by acting on the state of charge of the battery.
[0040] Pour cela, lors des roulages, le SGE va abaisser la tension Valt de For this, when driving, the SGE will lower the voltage Valt by
l’alternateur ou du DCDC en fonction de l’état de charge de la LIB transmise par le BMS jusqu’à atteindre une valeur cible SOCMax entre 95% et typiquement 50% de SOC. De ce fait, les heures de vieillissement corrigées calculées vont baisser malgré la même fenêtre de température pour la batterie. alternator or DCDC depending on the state of charge of the LIB transmitted by the BMS until reaching a SOCMax target value between 95% and typically 50% of SOC. As a result, the calculated corrected aging hours will drop despite the same temperature window for the battery.
[0041 ] Le schéma de la figure 10 montre le fonctionnement du système. Dès que le BMS indique au SGE que le SOCMax est atteint, celui-ci réduit automatiquement la tension de régulation Valt de façon à ce que le courant de charge tende vers 0 et que le niveau de SOC reste constant. The diagram of Figure 10 shows the operation of the system. As soon as the BMS indicates to the SGE that the SOCMax is reached, it automatically reduces the regulation voltage Valt so that the load current tends towards 0 and the SOC level remains constant.
[0042] Le graphe de la figure 1 1 montre un exemple d’évolution du cumul de temps corrigé cumulé par rapport à la droite idéale. Comme nous le voyons la première partie de la courbe tend à s’écarter de la droite idéale. Lorsque cet écart devient conséquent et supérieur à un seuil prédéfini, le système de gestion est activé et l’état de charge de la batterie est diminué, ce qui modifie tout de suite la direction de la courbe qui revient sur la droite idéale. Lorsque la valeur de cumul passe au- dessous de la droite idéale à une valeur d’hystérésis près, la limitation de SOC est désactivée. The graph of Figure 1 1 shows an example of the evolution of the cumulative corrected cumulative time relative to the ideal line. As we can see the first part of the curve tends to deviate from the ideal line. When this difference becomes significant and greater than a predefined threshold, the management system is activated and the state of charge of the battery is reduced, which immediately changes the direction of the curve which returns to the ideal line. When the cumulative value drops below the ideal line up to a hysteresis value, the SOC limitation is deactivated.
[0043] En conclusion, l’invention propose un système simple qui ne nécessite pas de modification physique du véhicule mais qui permet de garantir la durée de vie des batteries par comptage du temps et par la gestion de l’état de charge de la batterie pour les clients dont le climat ou le type d’usage use prématurément la batterie comme le montre le schéma de la figure 12, qui illustre la façon dont on détermine la durée de vie des batteries d’une population de clients. Le In conclusion, the invention provides a simple system which does not require any physical modification of the vehicle but which makes it possible to guarantee the service life. batteries by counting the time and by managing the state of charge of the battery for customers whose climate or type of use prematurely wears out the battery as shown in the diagram in figure 12, which illustrates how the battery life of a population of customers is determined. The
concepteur va tout mettre en oeuvre pour que la plus grande majorité des clients obtiennent la durée de vie cible. Par exemple, la moyenne est au-delà de la valeur cible. Cependant, il reste toujours une population, hachurée sur la figure 12, qui de par l’usage qu’il fait du véhicule et du climat sous lequel il roule, va voir sa batterie atteindre sa fin de vie avant la valeur cible. L’invention décrite dans cette demande pourra être activée uniquement par cette population et rester inactif pour la grande majorité des usagers. designer will make every effort to ensure that the vast majority of customers get the target lifespan. For example, the average is beyond the target value. However, there is still a population, hatched in Figure 12, which, due to its use of the vehicle and the climate in which it is driven, will see its battery reach its end of life before the target value. The invention described in this application can be activated only by this population and remain inactive for the vast majority of users.
[0044] En réduisant le SOC de la batterie, certains pourraient objecter que nous nous exposons à moins bien démarrer à froid. Il faut relativiser cela, car si on choisit toujours la valeur SOCMax supérieure à l’état de charge nécessaire pour démarrer à la température ambiante considérée et, si le dispositif est activé, c’est que la température ambiante est certainement élevée et le moteur a toutes les chances de pouvoir être facile à démarrer. [0044] By reducing the SOC of the battery, some might object that we are less likely to start cold. This must be put into perspective, because if we always choose the SOCMax value greater than the state of charge necessary to start at the ambient temperature considered and, if the device is activated, it means that the ambient temperature is certainly high and the motor has most likely to be able to be easy to start.
[0045] En réduisant le SOC de la batterie, d’autres pourraient objecter que la batterie aura moins de capacité pour alimenter les courant off. Ceci n’est vrai que pour le système à simple batterie. Pour le système à deux batteries, seule la batterie avant est concernée par la régulation de son SOC, et c’est la batterie arrière qui fournit les courant off. Quant au cas d’une seule batterie, une batterie chaude dénote un usage fréquent, il est alors très peu probable que ce véhicule soit abandonné pour de longues périodes de parking qui mettrait sa démarrabilité en péril. [0045] By reducing the SOC of the battery, others might object that the battery will have less capacity to supply the off current. This is only true for the single battery system. For the two-battery system, only the front battery is concerned with regulating its SOC, and the rear battery provides the off current. As for the case of a single battery, a hot battery denotes frequent use, so it is very unlikely that this vehicle will be abandoned for long periods of parking which would jeopardize its startability.
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1906993A FR3098021B1 (en) | 2019-06-27 | 2019-06-27 | Process for optimizing the life of a battery |
PCT/EP2020/067268 WO2020260173A1 (en) | 2019-06-27 | 2020-06-22 | Method for optimizing the service life of a battery |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3991233A1 true EP3991233A1 (en) | 2022-05-04 |
Family
ID=68281634
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20733805.4A Pending EP3991233A1 (en) | 2019-06-27 | 2020-06-22 | Method for optimizing the service life of a battery |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP3991233A1 (en) |
JP (1) | JP2022538220A (en) |
KR (1) | KR20220024939A (en) |
CN (1) | CN114041253A (en) |
FR (1) | FR3098021B1 (en) |
WO (1) | WO2020260173A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024071534A1 (en) * | 2022-09-28 | 2024-04-04 | 엘지전자 주식회사 | Electric vehicle charge control server and charge control method |
WO2024185080A1 (en) * | 2023-03-08 | 2024-09-12 | 株式会社 東芝 | Method for calculating storage battery degradation amount, device for calculating storage battery degradation amount, and computer program |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020071232A1 (en) * | 1999-03-12 | 2002-06-13 | Lynntech, Inc. | Electronic load for the testing of electrochemical energy conversion devices |
US20140121869A1 (en) * | 2012-10-26 | 2014-05-01 | Kia Motors Corporation | Battery cooling control system and method for vehicle |
WO2015086754A1 (en) * | 2013-12-12 | 2015-06-18 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Method of estimating the state of health of a battery |
US20160221465A1 (en) * | 2015-01-29 | 2016-08-04 | Man Truck & Bus Ag | Method and device for the open-loop and/or closed-loop control at least of one operating parameter of an electrical storage device, wherein said operating parameter influences a state of aging of an electrical energy storage device |
US20180241239A1 (en) * | 2015-08-12 | 2018-08-23 | Oxford University Innovation Ltd | Smart cells and control methods and systems |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4715881B2 (en) * | 2008-07-25 | 2011-07-06 | トヨタ自動車株式会社 | Power supply system and vehicle equipped with the same |
US8937452B2 (en) | 2011-02-04 | 2015-01-20 | GM Global Technology Operations LLC | Method of controlling a state-of-charge (SOC) of a vehicle battery |
US10355509B2 (en) * | 2015-08-21 | 2019-07-16 | Panasonic Intellectual Property Management Co., Ltd. | Management apparatus, charge and discharge control apparatus, power storage system, and charge and discharge control method |
-
2019
- 2019-06-27 FR FR1906993A patent/FR3098021B1/en active Active
-
2020
- 2020-06-22 WO PCT/EP2020/067268 patent/WO2020260173A1/en active Application Filing
- 2020-06-22 JP JP2021574250A patent/JP2022538220A/en not_active Ceased
- 2020-06-22 EP EP20733805.4A patent/EP3991233A1/en active Pending
- 2020-06-22 CN CN202080045442.1A patent/CN114041253A/en active Pending
- 2020-06-22 KR KR1020227002514A patent/KR20220024939A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020071232A1 (en) * | 1999-03-12 | 2002-06-13 | Lynntech, Inc. | Electronic load for the testing of electrochemical energy conversion devices |
US20140121869A1 (en) * | 2012-10-26 | 2014-05-01 | Kia Motors Corporation | Battery cooling control system and method for vehicle |
WO2015086754A1 (en) * | 2013-12-12 | 2015-06-18 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Method of estimating the state of health of a battery |
US20160221465A1 (en) * | 2015-01-29 | 2016-08-04 | Man Truck & Bus Ag | Method and device for the open-loop and/or closed-loop control at least of one operating parameter of an electrical storage device, wherein said operating parameter influences a state of aging of an electrical energy storage device |
US20180241239A1 (en) * | 2015-08-12 | 2018-08-23 | Oxford University Innovation Ltd | Smart cells and control methods and systems |
Non-Patent Citations (1)
Title |
---|
See also references of WO2020260173A1 * |
Also Published As
Publication number | Publication date |
---|---|
FR3098021A1 (en) | 2021-01-01 |
CN114041253A (en) | 2022-02-11 |
KR20220024939A (en) | 2022-03-03 |
FR3098021B1 (en) | 2021-10-15 |
WO2020260173A1 (en) | 2020-12-30 |
JP2022538220A (en) | 2022-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2382108B1 (en) | Method of controlling an energy storage unit in a vehicle micro-hybrid system | |
WO2008139103A2 (en) | Energy storage device, particularly for an automobile | |
WO2010094875A1 (en) | System and method for controlling the recharging of a battery | |
WO2010079296A2 (en) | Method for controlling an energy storage unit in a vehicle micro-hybrid system | |
WO2015091235A1 (en) | Battery charging | |
WO2020260173A1 (en) | Method for optimizing the service life of a battery | |
FR2893770A1 (en) | Switching unit for use in device for managing supply to network of e.g. heatable seat, has diode and resistor pre-charging secondary energy storage element which supplies controllers of motor vehicle and security code of car starter | |
FR3106535A1 (en) | Method and device for controlling an energy storage system, for example a vehicle battery | |
FR3065292B1 (en) | METHOD OF MANAGING A BATTERY BASED ON ITS HEALTH CONDITION | |
EP2112739B1 (en) | Method for limiting the internal heating of an ultracapacitor. | |
EP3120012B1 (en) | Method of controlling operation of a starter of a combustion engine in order to prevent a possible overheat during the start | |
EP2880708A1 (en) | Method for managing and diagnosing a battery | |
FR3041914A1 (en) | METHOD FOR DETERMINING TRACTION BATTERY UTILIZATION RANGES | |
EP2476001A1 (en) | Method for determining an operating state of electrical power storage means consisting of at least one ultracapacitor | |
WO2011121235A1 (en) | Method of monitoring the level of charge of an additional energy storage facility of a micro-hybrid propulsion vehicle, and system using the method | |
EP1309064A2 (en) | Method of managing of the operation of an electric energy storage source, in particular of a supercapacitor | |
RU2802708C2 (en) | Method for battery life optimization | |
WO2012049387A1 (en) | Method of recharging a supercapacitor module for a motor vehicle, and corresponding motor vehicle | |
FR2972029A1 (en) | Device for inhibiting stop control and automatic restart of heat engine of car, has control module controlling inhibition of stop control and automatic restart of engine when retained estimator value is lower than threshold value | |
WO2012089950A2 (en) | Method for managing the automatic stopping and starting of a heat engine of a motor vehicle, and corresponding motor vehicle | |
WO2023094264A1 (en) | Method for optimised cooling of an electric or hybrid vehicle battery | |
FR2937147A1 (en) | METHOD FOR DETERMINING THE CHARGE STATE OF A BATTERY OF A MOTOR VEHICLE | |
WO2021204806A1 (en) | System for supplying electrical energy to a motor vehicle | |
FR3126560A1 (en) | METHOD FOR MANAGING A CHARGING SESSION OF AN ELECTRIFIED VEHICLE TO DETERMINE A TARGET STATE OF CHARGE AT THE END OF CHARGE | |
FR2964747A1 (en) | Method for supervision of e.g. engine start or stop function, of e.g. hybrid vehicle, involves selecting estimation member of state of charge of battery among estimation members based on resetting state of one of members |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20211206 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: RENAULT S.A.S |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230608 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: AMPERE SAS |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20250129 |