EP3986988A1 - Gasoline fuel composition - Google Patents
Gasoline fuel compositionInfo
- Publication number
- EP3986988A1 EP3986988A1 EP20732631.5A EP20732631A EP3986988A1 EP 3986988 A1 EP3986988 A1 EP 3986988A1 EP 20732631 A EP20732631 A EP 20732631A EP 3986988 A1 EP3986988 A1 EP 3986988A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- vol
- gasoline
- fuel composition
- fuel
- use according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 109
- 239000000446 fuel Substances 0.000 title claims abstract description 96
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 29
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 29
- 238000002347 injection Methods 0.000 claims abstract description 29
- 239000007924 injection Substances 0.000 claims abstract description 29
- 238000002156 mixing Methods 0.000 claims abstract description 24
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 20
- -1 diene compound Chemical class 0.000 claims abstract description 19
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 18
- 238000012360 testing method Methods 0.000 claims description 18
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 10
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 claims description 7
- CJSBUWDGPXGFGA-UHFFFAOYSA-N 4-methylpenta-1,3-diene Chemical compound CC(C)=CC=C CJSBUWDGPXGFGA-UHFFFAOYSA-N 0.000 claims description 4
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 claims description 4
- ZSWFCLXCOIISFI-UHFFFAOYSA-N cyclopentadiene Chemical compound C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 claims description 4
- APPOKADJQUIAHP-GGWOSOGESA-N (2e,4e)-hexa-2,4-diene Chemical compound C\C=C\C=C\C APPOKADJQUIAHP-GGWOSOGESA-N 0.000 claims description 2
- GDDAJHJRAKOILH-QFXXITGJSA-N (2e,5e)-octa-2,5-diene Chemical compound CC\C=C\C\C=C\C GDDAJHJRAKOILH-QFXXITGJSA-N 0.000 claims description 2
- AHAREKHAZNPPMI-AATRIKPKSA-N (3e)-hexa-1,3-diene Chemical compound CC\C=C\C=C AHAREKHAZNPPMI-AATRIKPKSA-N 0.000 claims description 2
- PMJHHCWVYXUKFD-SNAWJCMRSA-N (E)-1,3-pentadiene Chemical compound C\C=C\C=C PMJHHCWVYXUKFD-SNAWJCMRSA-N 0.000 claims description 2
- PRBHEGAFLDMLAL-UHFFFAOYSA-N 1,5-Hexadiene Natural products CC=CCC=C PRBHEGAFLDMLAL-UHFFFAOYSA-N 0.000 claims description 2
- PYGSKMBEVAICCR-UHFFFAOYSA-N hexa-1,5-diene Chemical compound C=CCCC=C PYGSKMBEVAICCR-UHFFFAOYSA-N 0.000 claims description 2
- PMJHHCWVYXUKFD-UHFFFAOYSA-N piperylene Natural products CC=CC=C PMJHHCWVYXUKFD-UHFFFAOYSA-N 0.000 claims description 2
- KJQMOGOKAYDMOR-UHFFFAOYSA-N CC(=C)C=C.CC(=C)C=C Chemical compound CC(=C)C=C.CC(=C)C=C KJQMOGOKAYDMOR-UHFFFAOYSA-N 0.000 claims 1
- 239000000654 additive Substances 0.000 description 12
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- 238000002485 combustion reaction Methods 0.000 description 8
- 238000010998 test method Methods 0.000 description 8
- 230000000996 additive effect Effects 0.000 description 6
- QWTDNUCVQCZILF-UHFFFAOYSA-N isopentane Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 6
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 6
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 5
- 150000001298 alcohols Chemical class 0.000 description 5
- 150000002170 ethers Chemical class 0.000 description 5
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 4
- 238000009835 boiling Methods 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 150000001993 dienes Chemical class 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- 239000002816 fuel additive Substances 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 3
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 3
- AFABGHUZZDYHJO-UHFFFAOYSA-N dimethyl butane Natural products CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 239000008096 xylene Substances 0.000 description 3
- 241000282326 Felis catus Species 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 239000005864 Sulphur Substances 0.000 description 2
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- NUMQCACRALPSHD-UHFFFAOYSA-N tert-butyl ethyl ether Chemical compound CCOC(C)(C)C NUMQCACRALPSHD-UHFFFAOYSA-N 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 239000007866 anti-wear additive Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 150000002391 heterocyclic compounds Chemical class 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 150000002611 lead compounds Chemical class 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000006078 metal deactivator Substances 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/02—Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/04—Liquid carbonaceous fuels essentially based on blends of hydrocarbons
- C10L1/06—Liquid carbonaceous fuels essentially based on blends of hydrocarbons for spark ignition
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/02—Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
- C10L1/023—Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only for spark ignition
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/04—Liquid carbonaceous fuels essentially based on blends of hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/16—Hydrocarbons
- C10L1/1608—Well defined compounds, e.g. hexane, benzene
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
- C10L1/182—Organic compounds containing oxygen containing hydroxy groups; Salts thereof
- C10L1/1822—Organic compounds containing oxygen containing hydroxy groups; Salts thereof hydroxy group directly attached to (cyclo)aliphatic carbon atoms
- C10L1/1824—Organic compounds containing oxygen containing hydroxy groups; Salts thereof hydroxy group directly attached to (cyclo)aliphatic carbon atoms mono-hydroxy
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L10/00—Use of additives to fuels or fires for particular purposes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L10/00—Use of additives to fuels or fires for particular purposes
- C10L10/04—Use of additives to fuels or fires for particular purposes for minimising corrosion or incrustation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
- C10L1/185—Ethers; Acetals; Ketals; Aldehydes; Ketones
- C10L1/1852—Ethers; Acetals; Ketals; Orthoesters
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2200/00—Components of fuel compositions
- C10L2200/04—Organic compounds
- C10L2200/0407—Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
- C10L2200/0415—Light distillates, e.g. LPG, naphtha
- C10L2200/0423—Gasoline
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2270/00—Specifically adapted fuels
- C10L2270/02—Specifically adapted fuels for internal combustion engines
- C10L2270/023—Specifically adapted fuels for internal combustion engines for gasoline engines
Definitions
- the present invention relates to a gasoline fuel composition and in particular, to a pro-fouling gasoline fuel composition for use as a Low Reference/High Fouling fuel, i.e. a pro-fouling or 'dirty-up' fuel in the CEO TDG-F-113 test method.
- Such normal combustion is generally characterized by the expansion of the flame front across the combustion chamber in an orderly and controlled manner.
- spark ignition engines are the class described as direct injection spark ignition (DISI) engines (also known as gasoline direct injection (GDI) engines) .
- DISI direct injection spark ignition
- GDI gasoline direct injection
- Use of an unleaded base gasoline in such an engine tends to give rise to nozzle fouling in the injectors, and additives have been developed to reduce or minimize these deposits.
- test methods have been developed in order to screen such additives and to measure their performance in reducing or minimizing these injector deposits.
- One such test method is the CEC (Coordinating European Council for the Development of Performance Tests for Fuels,
- TDG-F-113 Lubricants and Other Fluids industry standard test procedure
- the TDG-F-113 DISI test involves a 48 hour dirty-up phase followed by a 24 hour clean-up phase.
- dirty-up phase a pro-fouling reference gasoline fuel needs to be used, designated as "Low Reference/High
- Fouling Fuel' in the TDG-F-113 test method The same pro-fouling reference fuel is treated with the additive being evaluated for use during the clean-up phase.
- gasoline composition described hereinafter provides improved pro- fouling properties in a DISI engine at the end of a 48 hour deposit formation phase, in particular at the end of the 48 hour deposit formation phase of the CEC TDG-F-113 DISI test.
- a gasoline fuel composition comprising (a) a major portion of gasoline blending components (b) from 0 % to 25 vol% of oxygenated hydrocarbon components and (c) from 0.01 vol% to 5 vol% of a diene compound for the purpose of increasing the injection duration at the end of a 48 hour deposit formation phase in a direct
- injection spark ignition engine by at least 10%.
- a gasoline fuel composition comprising (a) a major portion of gasoline blending components (b) from 0 vol% to 25 vol% of oxygenated hydrocarbon components and (c) from 0.01 vol% to 5 vol% of a diene compound, wherein the gasoline fuel composition provides an increase in injection duration at the end of a 48 hour deposit formation phase in a direct injection spark ignition engine of at least 10%.
- the gasoline composition described herein provides improved pro- fouling performance and in particular can be used as an improved pro-fouling reference gasoline fuel (also known as a 'Low Reference/High Fouling Fuel') in the CEC TDG-F- 113 DISI test.
- an improved pro-fouling reference gasoline fuel also known as a 'Low Reference/High Fouling Fuel'
- gasoline composition described herein provides improved pro-fouling performance and in particular can be used as an improved pro-fouling reference gasoline fuel (also known as a 'Low Reference/High Fouling Fuel') in the CEC TDG-F-113 DISI test, while also meeting the requirements of the EN228 specification, especially an EN228 compliant E5 gasoline fuel.
- an improved pro-fouling reference gasoline fuel also known as a 'Low Reference/High Fouling Fuel'
- gasoline composition described herein provides improved repeatability and reproducibility properties when used as a pro-fouling reference gasoline fuel in the CEC TDG-F- 113 test.
- gasoline composition described herein exhibits excellent oxidative stability.
- Figure 1 illustrates the test procedure proposed within the CEC TDG-F-113 test method and shows the impact of deposit formation and removal on injection duration time in a DISI engine.
- gasoline fuel composition for use herein
- gasoline blending components such as a gasoline base fuel or a mixture of individually selected gasoline blending components, suitable for use in an internal combustion engine, oxygenated hydrocarbon components and a diene compound.
- gasoline composition described herein provides improved pro- fouling properties in a DISI engine during a deposit formation phase, in particular at the end of the 48 hour deposit formation phase of the CEC TDG-F-113 DISI test.
- the CEC TDG-F-113 test includes a 48 hour so-called 'dirty-up' phase where a pro-fouling gasoline composition (known as a 'Low Reference/High Fouling Fuel' in the CEC TDG-F-113 test) is used in a DISI engine for 48 hours in order to produce injector and other engine deposits.
- a pro-fouling gasoline composition known as a 'Low Reference/High Fouling Fuel' in the CEC TDG-F-113 test
- the gasoline fuel composition is used herein for the purpose of increasing the injector pulse width, i.e. the injection duration at the end of a 48 hour deposit formation phase in a direct injection spark ignition engine by at least 10%, preferably by at least 15%, more preferably by at least 20%, in particular wherein the 48 hour deposit formation phase is the 48 hour 'Dirty-Up' phase of the CEC TDG-F-113 test.
- the increase in injection duration is as compared to the injection duration measured at the start of the 48 hour deposit formation phase.
- the CEC TDG-F-113 test comprises a 48 hour 'Dirty- Up' phase and aims for a 25% injector pulse width increase, i.e. the injection duration at the end of the 48 hour 'Dirty-Up' phase.
- the CEC TDG-F-113 test also comprises a 24 hour 'Clean-Up' phase.
- the pro-fouling reference fuel used during the dirty-up phase should be EN228 compliant, preferably containing 3-5% ethanol,
- 'injection duration means the period of time during which fuel enters the
- combustion chamber from the injector i.e. the duration from the start of the injection (SOI) until the injector needle closes.
- 'Injection duration' can be measured according to the method described in the CEC TDG-F-113 test.
- An essential component of the gasoline compositions herein is a diene compound.
- the diene compound is present in the gasoline composition at a level of from 0.01 vol% to 5 vol%, preferably from 0.05 vol% to 3 vol%, more
- the diene compound is present in the gasoline composition at a level of 0.15 vol% to 5 vol%, preferably from 0.15 vol% to 3 vol%, more preferably from 0.2 vol% to 3 vol%, even more preferably from 0.5 vol% to 3 vol%, based on the gasoline composition.
- the diene compound is present in the gasoline composition at a level of 0.5 vol% .
- gasoline blending components such as a gasoline base fuel, may already comprise dienes at low levels.
- vol% ranges of dienes provided herein are the levels of dienes which are included in the gasoline fuel composition in addition to those which may already be present in the gasoline blending components, such as a gasoline base fuel.
- the diene compound can be any diene compound
- the diene compound is preferably selected from 1,3-butadiene, 2-methyl-l , 3-butadiene (isoprene) , 1 , 3-pentadiene, 1,3- hexadiene, 1 , 5-hexadiene, 2 , 4-hexadiene, 2-methyl-l , 3- pentadiene, 2-methyl-2 , 4-pentadiene, dicyclopentadiene, cyclopentadiene, 7-Methyl-3-methylen-l , 6-octadiene and mixtures thereof.
- the gasoline fuel composition of the present invention preferably comprises oxygenated hydrocarbon at a level of 0 to 25 vol%, more preferably at a level of 0.1 to 20 vol%, even more preferably at a level of from 1 to 10 vol%, and
- gasoline blending components such as a gasoline base fuel
- hydrocarbons provided herein are the levels of oxygenated hydrocarbons which are included in the gasoline fuel composition in addition to those which may already be present in the gasoline blending components, such as a gasoline base fuel.
- the gasoline fuel in one embodiment herein, the gasoline fuel
- composition is free of oxygenated hydrocarbons (i.e.
- the oxygenated hydrocarbon is present in the gasoline fuel composition at a level of 5 vol%.
- oxygenated hydrocarbons examples include alcohols, ethers, esters, ketones, aldehydes, carboxylic acids and their derivatives, and oxygen containing heterocyclic compounds, and mixtures thereof.
- the oxygenated hydrocarbon is selected from alcohols, ethers and esters, and mixtures thereof.
- Suitable alcohols for use herein include methanol, ethanol, propanol, 2-propanol, butanol, tert-butanol , iso-butanol, 2-butanol and mixtures thereof.
- Suitable ethers for use herein include ethers containing 5 or more carbon atoms per molecule, e.g., methyl tert-butyl ether and ethyl tert-butyl ether, and mixtures thereof.
- Suitable esters for use herein include esters containing 5 or more carbon atoms per molecule.
- the oxygenated hydrocarbon is selected from alcohols, ethers and mixtures thereof. In an especially preferred embodiment of the present invention, the oxygenated hydrocarbon is selected from alcohols.
- a particularly preferred oxygenated hydrocarbon for use herein is ethanol .
- the gasoline fuel composition herein is EN228 compliant and also comprises ethanol, preferably at a level of 5 vol% (E5) .
- the fuel compositions for use herein comprise a major portion of gasoline blending components, such as a gasoline base fuel or as a mixture of individual gasoline blending components, suitable for use in an internal combustion engine.
- the gasoline blending components may be any gasoline blending components suitable for use in an internal combustion engine of the spark-ignition (gasoline) type known in the art, including automotive engines as well as in other types of engine such as, for example, off road and aviation engines.
- a preferred engine in the context of the present invention is a direct injection spark ignition engine.
- the gasoline blending components may be provided as a gasoline base fuel.
- the gasoline used as the base fuel in the liquid fuel composition of the present invention may conveniently also be referred to as 'base gasoline' .
- the gasoline base fuel may itself comprise a mixture of two or more different gasoline fuel components, and/or be additivated as described below.
- Gasoline base fuels typically comprise mixtures of hydrocarbons boiling in the range from 25 to 230° C (EN- ISO 3405), the optimal ranges and distillation curves typically varying according to climate and season of the year.
- the hydrocarbons in a gasoline may be derived by any means known in the art, conveniently the hydrocarbons may be derived in any known manner from straight-run gasoline, synthetically-produced aromatic hydrocarbon mixtures, thermally or catalytically cracked
- composition research octane number (RON) and motor octane number (MON) of the gasoline are not critical.
- the research octane number (RON) of the gasoline base fuel may be at least 80, for instance in the range of from 80 to 110.
- the RON of the gasoline base fuel will be at least 90, for instance in the range of from 90 to 110.
- the RON of the gasoline base fuel will be at least 91, for instance in the range of from 91 to 105 (EN 25164) .
- the motor octane number (MON) of the gasoline may conveniently be at least 70, for instance in the range of from 70 to 110.
- the MON of the gasoline will be at least 75, for instance in the range of from 75 to 105 (EN 25163) .
- the liquid fuel composition according to the present invention has a Research Octane Number (RON) in the range of from 85 to 105, for example meeting the European specifications of 95 or premium product grade of 98.
- the liquid fuel composition used in the present invention has a Motor Octane Number in the range of from 75 to 90.
- the gasoline blending components comprise a mixture of specially selected individual gasoline blending
- components such as, for example, a blend of one or more of saturated hydrocarbons, aromatic hydrocarbons, heavy reformate, alkylate or alkylate blend and LCC (light cat cracked) .
- the gasoline blending components are present in the gasoline fuel composition in a major portion, for example in an amount of greater than 50% m/m of the gasoline fuel composition, and may be present in an amount of up to 90% m/m, or 95% m/m.
- composition preferably in the range of from 10 to 50% v/v based on the gasoline, more preferably in the range from 20 to 40% v/v based on the gasoline fuel
- Suitable aromatic hydrocarbons for use in the composition herein include toluene and xylene, and mixtures thereof.
- a preferred gasoline composition herein comprises a mixture of toluene and xylene.
- toluene is present at a level from about 10 vol%, preferably from about 15 vol%, to at most 40 vol%, preferably to at most 30 vol%.
- xylene is present at a level from about 5 vol%, preferably from about 8 vol%, to at most 20 vol%, preferanly to at most 15 vol% .
- the benzene content of the gasoline fuel composition is at most 10% v/v, more preferably at most 5% v/v, especially at most 1% v/v based on the gasoline fuel composition .
- the gasoline fuel composition of the present invention comprises C5 paraffins at a level of from 5 vol% to 30 vol%, preferably from 5 vol% to 20 vol%, more preferably from 10 vol% to 20 vol%.
- the alkylate or alkylate blend described below also contains C5 isoparaffins and the amount of C5 paraffins specified here is the amount of C5 paraffins not including the C5 isoparaffins which is part of the alkylate or alkylate blend.
- Preferred C5 paraffins for use herein include n- pentane and iso-pentane, and mixtures thereof.
- the total isopentane content in the gasoline fuel composition is preferably in the range of 2 vol% to 10 vol%, more preferably 3 vol% to 8 vol%.
- the total n-pentane content in the gasoline fuel composition is preferably in the range of from 5 vol% to 15 vol%, more preferably in the range from 8 vol% to 12 vol%.
- the gasoline fuel composition comprises an alkylate or alkylate blend.
- alkylate typically refers to branched-chain
- the branched-chain paraffin typically is derived from the reaction of isoparaffin with olefin.
- the grade is identified by the range of the number of carbon atoms per molecule, the average molecular weight of the molecules, and the boiling point range of the alkylate. It has been found that a certain cut of alkylate stream and its blend with paraffins and isoparaffins such as n-pentane and
- isopentane is desirable to obtain or provide the
- alkylate or alkylate blend can be obtained by distilling or taking a cut of standard alkylates available in the industry.
- the alkylate or alkyate blend used herein preferably has an initial boiling range of from about 32°C to about 60°C and a final boiling range of from about 105°C to about 140°C , preferably to about 135°C, more preferably to about 130°C, most preferably to about 125°C, having T40 of less than 99°C, preferably at most 98°C, T50 of less than 100°C, T90 of less than 110°C, preferably at most 108°C, the alkylate or alkylate blend comprising
- isoparaffins from 4 to 9 carbon atoms about 3-20 vol% of C5 isoparaffins, based on the alkylate or alkylate blend, about 3-15 vol% of C7 isoparaffins, based on the alkylate or alkylate blend, and about 60-90 vol% of C8
- Alkylate or alkylate blend is preferably present in the blend in an amount from about above 30 vol%, preferably at least about 32 vol%, most preferably at least about 35 vol% to at most about 55 vol%, preferably to at most about 50 vol%, more preferably to at most about 45 vol%, based on the gasoline fuel composition.
- the gasoline fuel composition preferably comprises a heavy reformate at a level of from 2 vol% to 10 vol%, preferably at a level of from 4 vol% to 7 vol%, based on the total gasoline fuel composition.
- the gasoline fuel composition preferably comprises an LCC (light cat cracked) gasoline stream at a level of from 5 vol% to 15 vol%, more preferably from 8 vol% to 12 vol%, based on the total gasoline fuel composition.
- LCC light cat cracked
- the gasoline fuel composition preferably has a low or ultra low sulphur content, for instance at most 1000 mg/kg (otherwise known as ppm or ppmw or parts per million by weight), preferably no more than 500 mg/kg, more preferably no more than 100, even more preferably no more than 50 and most preferably no more than even 10 mg/kg.
- the EN228 specification requires a sulphur content of lower than lOppm.
- the gasoline also preferably has a low total lead content, such as at most 0.005 g/1, most preferably being lead free - having no lead compounds added thereto (i.e., unleaded) .
- gasoline blending components which can be derived from a biological source.
- gasoline blending components can be found in W02009/077606, W02010 / 028206 , W02010/000761, European patent application nos. 09160983.4, 09176879.6, 09180904.6, and US patent application serial no.
- amounts (concentrations, % v/v, mg/kg (ppm), % m/m) of components are of active matter, i.e., exclusive of volatile solvents/diluent materials.
- the base gasoline or the gasoline composition of the present invention may conveniently include one or more optional fuel additives.
- concentration and nature of the optional fuel additive (s) that may be included in the base gasoline or the gasoline composition used in the present invention is not critical.
- suitable types of fuel additives that can be included in the base gasoline or the gasoline composition used in the present invention include anti-oxidants, corrosion inhibitors, antiwear additives or surface modifiers, flame speed additives, detergents, dehazers, antiknock additives, metal deactivators, valve-seat recession protectant compounds, dyes, solvents, carrier fluids, diluents and markers. Examples of suitable such
- the fuel additives can be blended with one or more solvents to form an additive concentrate, the additive concentrate can then be admixed with the base gasoline or the gasoline composition of the present invention .
- the (active matter) concentration of any optional additives present in the base gasoline or the gasoline composition of the present invention is preferably up to 1 percent by weight, more preferably in the range from 5 to 2000 ppmw, advantageously in the range of from 300 to 1500 ppmw, such as from 300 to 1000 ppmw.
- the fuel compositions may be conveniently prepared using conventional formulation techniques by admixing the diene compound and the oxygenated hydrocarbon with the gasoline blending components and optionally one or more additive components.
- Three pro-fouling 'dirty-up' fuel formulations were produced by blending the components set out in Table 1 below.
- the RON for all fuels was 99 and the MON for all fuels was 88.
- Fuel A (not containing any dicyclopentadiene) provided a 9% increase in injection duration, while Fuel B (containing 0.5 vol% dicyclopentadiene) and Fuel C (containing 3 vol% dicyclopentadiene) provided a 23% and >25% increase in injection duration, respectively.
- Fuel B exhibited excellent oxidation stability
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Liquid Carbonaceous Fuels (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19181473 | 2019-06-20 | ||
PCT/EP2020/067009 WO2020254518A1 (en) | 2019-06-20 | 2020-06-18 | Gasoline fuel composition |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3986988A1 true EP3986988A1 (en) | 2022-04-27 |
Family
ID=66999729
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20732631.5A Pending EP3986988A1 (en) | 2019-06-20 | 2020-06-18 | Gasoline fuel composition |
Country Status (4)
Country | Link |
---|---|
US (1) | US12104131B2 (en) |
EP (1) | EP3986988A1 (en) |
CN (1) | CN113924353A (en) |
WO (1) | WO2020254518A1 (en) |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4109998A1 (en) * | 1991-03-27 | 1992-10-01 | Basf Ag | FUEL FOR INTERNAL COMBUSTION ENGINES |
TW477784B (en) | 1996-04-26 | 2002-03-01 | Shell Int Research | Alkoxy acetic acid derivatives |
US8232437B2 (en) * | 1996-11-18 | 2012-07-31 | Bp Oil International Limited | Fuel composition |
US7462207B2 (en) * | 1996-11-18 | 2008-12-09 | Bp Oil International Limited | Fuel composition |
US8372164B2 (en) | 2007-12-19 | 2013-02-12 | Shell Oil Company | Gasoline composition and process for the preparation of alkylfurfuryl ether |
CA2729355A1 (en) | 2008-07-02 | 2010-01-07 | Shell Internationale Research Maatschappij B.V. | Liquid fuel compositions |
US8697924B2 (en) | 2008-09-05 | 2014-04-15 | Shell Oil Company | Liquid fuel compositions |
WO2010118083A1 (en) * | 2009-04-09 | 2010-10-14 | Shell Oil Company | Fuel composition and its use |
CA2762420A1 (en) | 2009-05-25 | 2010-12-02 | Shell Internationale Research Maatschappij B.V. | Gasoline compositions |
US8557001B2 (en) | 2009-11-24 | 2013-10-15 | Shell Oil Company | Fuel formulations |
US8709111B2 (en) | 2009-12-29 | 2014-04-29 | Shell Oil Company | Fuel formulations |
US8518130B2 (en) | 2010-03-10 | 2013-08-27 | Shell Oil Company | Relating to fuels |
CN101886003B (en) * | 2010-07-07 | 2013-07-17 | 王政银 | Vehicle fuel oil environmentally-friendly and energy-saving agent |
FR2987369A1 (en) * | 2012-02-27 | 2013-08-30 | Total Raffinage Marketing | HIGH POWER LIQUID FUEL COMPOSITION FOR IGNITION ENGINES |
US8764854B1 (en) * | 2012-03-20 | 2014-07-01 | GM Global Technology Operations LLC | Reference fuel composition |
CN104745249A (en) * | 2013-12-25 | 2015-07-01 | 吴旭 | Energy-saving agent for automobile fuels |
EP3218450B1 (en) * | 2014-11-12 | 2020-10-21 | Shell International Research Maatschappij B.V. | Use of a fuel composition |
-
2020
- 2020-06-18 US US17/614,087 patent/US12104131B2/en active Active
- 2020-06-18 WO PCT/EP2020/067009 patent/WO2020254518A1/en active Application Filing
- 2020-06-18 CN CN202080042390.2A patent/CN113924353A/en active Pending
- 2020-06-18 EP EP20732631.5A patent/EP3986988A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
US12104131B2 (en) | 2024-10-01 |
CN113924353A (en) | 2022-01-11 |
US20220220399A1 (en) | 2022-07-14 |
WO2020254518A1 (en) | 2020-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2004244532A (en) | Gasoline | |
EP2683798B1 (en) | Use of camphene in a gasoline fuel formulations | |
BR112018073099B1 (en) | Use of 2-ethylhexyl nitrate and one or more detergents in a diesel fuel composition | |
JP2002309274A (en) | Gasoline composition | |
JP4815251B2 (en) | Light oil composition | |
JP3478825B2 (en) | Lead-free MMT fuel composition | |
US12104131B2 (en) | Gasoline fuel composition | |
WO2007113976A1 (en) | Light oil composition | |
JP5038647B2 (en) | Light oil composition | |
JP2005060572A (en) | Gasoline | |
CN105209581B (en) | fuel oil | |
GB2475785A (en) | Fuel formulations | |
CN107849469B (en) | Gasoline composition with improved octane number | |
JP4729424B2 (en) | Light oil composition | |
JP4896652B2 (en) | Fuel oil composition for compression self-ignition engine | |
JP5285222B2 (en) | Unleaded gasoline composition | |
JP4914629B2 (en) | Light oil composition | |
JP5383618B2 (en) | Fuel composition for supercharged engines | |
JP5328585B2 (en) | Gasoline composition | |
JP5154813B2 (en) | Fuel oil composition | |
JP4778270B2 (en) | Production method of gasoline | |
EP2304000A1 (en) | Gasoline compositions | |
JP5383619B2 (en) | Fuel composition for supercharged engines | |
JP2003533585A (en) | Ultra low sulfur diesel fuel containing antistatic lubricating additives | |
JP2006083231A (en) | Gasoline composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20211216 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |