EP3976928B1 - Assembly for turbomachine and turbomachine - Google Patents
Assembly for turbomachine and turbomachine Download PDFInfo
- Publication number
- EP3976928B1 EP3976928B1 EP20728038.9A EP20728038A EP3976928B1 EP 3976928 B1 EP3976928 B1 EP 3976928B1 EP 20728038 A EP20728038 A EP 20728038A EP 3976928 B1 EP3976928 B1 EP 3976928B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- rotor
- longitudinal axis
- damper
- blades
- radial thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/26—Antivibration means not restricted to blade form or construction or to blade-to-blade connections or to the use of particular materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/16—Form or construction for counteracting blade vibration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/22—Blade-to-blade connections, e.g. for damping vibrations
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/22—Blade-to-blade connections, e.g. for damping vibrations
- F01D5/225—Blade-to-blade connections, e.g. for damping vibrations by shrouding
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/32—Rotors specially for elastic fluids for axial flow pumps
- F04D29/321—Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
- F04D29/324—Blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/66—Combating cavitation, whirls, noise, vibration or the like; Balancing
- F04D29/661—Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
- F04D29/668—Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps damping or preventing mechanical vibrations
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2220/00—Application
- F05D2220/30—Application in turbines
- F05D2220/36—Application in turbines specially adapted for the fan of turbofan engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/60—Assembly methods
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/80—Platforms for stationary or moving blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/96—Preventing, counteracting or reducing vibration or noise
Definitions
- the present invention relates to an assembly for a turbomachine and a turbomachine.
- the invention relates more specifically to an assembly for a turbomachine comprising a damper.
- a turbomachine known from the state of the art comprises a casing and a fan capable of being rotated relative to the casing, around a longitudinal axis, thanks to a fan shaft.
- the fan comprises a disc centered on the longitudinal axis, and a plurality of vanes distributed circumferentially at the level of the external part of the disc.
- the operating range of the blower is limited. More precisely, the evolution of a compression ratio of the fan as a function of a flow of air that it sucks in when it is put into rotation, is restricted to a predetermined range.
- the fan is in fact subject to aeroelastic phenomena which destabilize it. More specifically, the air circulating through the fan in operation brings energy to the blades, and the blades respond in their own modes to levels that may exceed the endurance limit of the material from which they are made. This fluid-structure coupling therefore generates vibratory instabilities which accelerate the wear of the fan, and reduce its service life.
- shock absorbers were described in the documents FR 2 949 142 , EP 1 985 810 And FR 2 923 557 , on behalf of the Claimant. These dampers are all configured to be housed between the platform and the root of each blade, within the housing delimited by the respective stilts of two successive blades. Furthermore, such dampers operate during relative movement between two successive blade platforms, by dissipation of vibration energy, for example by friction. Therefore, these dampers only aim to damp a first vibratory mode of the blades which characterizes a synchronous response of the blades to aerodynamic stresses. In this first vibratory mode, the inter-blade phase shift is non-zero. Other shock absorbers have been described in the document WO 2016/059348 .
- An object of the invention is to damp a mode of vibration of a rotor in which the phase difference between the blades of said rotor is zero.
- Another object of the invention is to influence the damping of vibration modes of a rotor in which the phase difference between the blades of said rotor is non-zero.
- Another object of the invention is to provide a damping solution that is simple and easy to implement.
- the second vibratory mode is characterized by a zero inter-blade phase shift. Consequently, placing a damper between two successive blades of a rotor, as has already been proposed in the prior art, produces no effect on the second vibratory mode.
- the damper of the previously described assembly has, for its part, the advantage of influencing the second vibratory mode because it plays on an effect of the second vibratory mode: the displacement of the first rotor relative to the second rotor, in the plane orthogonal to the longitudinal axis.
- the damper disrupts the cause, ie dampens the second vibrational mode.
- the first vibratory mode also contributes to the displacement of the first rotor relative to the second rotor, in the plane orthogonal to the longitudinal axis. Therefore, by opposing this effect, the damper also participates in disturbing another cause, i.e. damping the first mode vibratory.
- the damper being annular, it makes it possible to distribute the support stresses applied by the damper on the first rotor and on the second rotor, over a larger surface. From there, the damper wears less the first rotor and the second rotor on which it bears.
- the third part being thicker than the first part and the second part, it is more massive.
- the third part therefore makes it possible to limit the tangential propagation of the vibrational modes to which the first rotor and the second rotor are subjected.
- the shock absorber is capable, thanks to this third part, of dissipating the vibrations by its work in bending and inertia.
- turbomachine as indicated in claim 11, comprising an assembly as previously described, and in which the first rotor is a fan, and the second rotor is a low-pressure compressor.
- a turbomachine 1 comprises a casing 10, a fan 12, a low pressure compressor 140, a high pressure compressor 142, a combustion chamber 16, a high pressure turbine 180 and a low pressure turbine 182.
- Each of the fan 12, the low pressure compressor 140, the high pressure compressor 142, the high pressure turbine 180, and the low pressure turbine 182, is rotatable relative to the casing 10 around a longitudinal axis X-X.
- the fan 12 and the low pressure compressor 140 are integral in rotation, and are capable of being rotated by a low pressure shaft 13 which is itself capable of being rotated by the low pressure turbine 182.
- the high pressure compressor 142 is, for its part, capable of being rotated by a high pressure shaft 15, which is itself capable of being rotated by the high pressure turbine 180.
- the fan 12 draws in a flow of air 110 which separates between a secondary flow 112, circulating around the casing 10, and a primary flow 111, successively compressed within the low pressure compressor 140 and the high pressure compressor 142, ignited within the combustion chamber 16, then successively expanded within the high pressure turbine 180 and the low pressure turbine 182.
- an axial direction corresponds to the direction of the longitudinal axis X-X
- an radial direction is a direction which is perpendicular to this longitudinal axis X-X and which passes through said longitudinal axis X-X
- a circumferential, or tangential, direction corresponds to the direction of a flat and closed curved line, all the points of which lie at equal distance from the longitudinal axis X-X.
- the terms "internal (or interior)” and “external (or exterior)”, respectively, are used in reference to a radial direction so that the internal (i.e. radially internal) part or face d an element is closer to the longitudinal axis X-X than the external (i.e. radially external) part or face of the same element.
- the blade root 1220 can be integral with the disc 120 when the fan 12 is a one-piece bladed disc. Alternatively, as shown in picture 3 , the blade root 1220 can be configured to be housed in a cell 1200 of the disc 120 provided for this purpose.
- the low-pressure compressor 140 also comprises a plurality of vanes 1400 fixedly mounted at an outer part of a shroud 1402, said shroud 1402 comprising a circumferential extension 1404 at the outer end of which radial sealing wipers 1406 extend.
- the radial sealing wipers 1406 come opposite the platforms 1226 of the blades 122 of the fan 12, so as to guarantee the internal sealing of the flow stream within which the primary flow 111 circulates.
- the shroud 1402 of the low pressure compressor 140 is fixed to the disc 120 of the fan 12, for example by bolting.
- Each of the blades 122 of the plurality of blades 122 of the fan 12 is capable of beating, by vibrating with respect to the disc 120 during a rotation of the fan 12 with respect to the casing 10. More precisely, during the coupling between the air 110 circulating within the fan 12 and the profiled blades 1222, the blades 122 are the seat of aeroelastic phenomena of flutter on different vibratory modes, and whose amplitude can be such that it exceeds the endurance limits of the materials constituting the fan 12. These vibratory modes are furthermore coupled to the opposing forces of compression upstream of the turbine engine 1, and of expansion downstream of the latter.
- a first vibratory mode characterizes a synchronous response of the blades 122 to aerodynamic stresses, in which the inter-blade phase shift is non-zero.
- a second vibratory mode characterizes an asynchronous response of the blades 122 to aerodynamic stresses, in which the inter-blade phase shift is zero.
- the amplitude of the beats of the second vibratory mode is also greater than the blades 122 of fan 12 are large.
- this second vibratory mode is coupled between the blades 122, the disk 120, and the fan shaft 13.
- the frequency of the second vibratory mode is, moreover, one and a half times greater than that of the first vibratory mode.
- the second vibratory mode has a nodal deformation at mid-height of the blades 122 of the fan 12.
- the beating of the blades 122 implies a non-zero moment on the low pressure shaft 13.
- these vibratory modes lead to intense torsional forces within the low pressure shaft 13.
- the length of the blades 122 of the fan 12 is greater than the length of the blades 1400 of the low pressure compressor 140.
- the tangential bending moment caused by the beats of a blade 122 of the fan 12 is greater than the tangential bending moment driven by beats of a blade 1400 of the low pressure compressor 140.
- the blades of the blades 122 of the fan 12 and of the blades 1400 of the low pressure compressor 140 then have very different behaviors.
- the mounting stiffness within the fan 12 is different from the mounting stiffness within the low pressure compressor 140.
- the amplitude of this displacement for the second vibratory mode is for example between 0.01 and 0.09 millimeters, typically 1 'order of 0.06 millimeters, or, in another example, is of the order of a few tenths of a millimeter, for example 0.1 or 0.2 or 0.3 millimeters.
- a damper 2 is used in order to dampen these vibrations of the fan 12 and/or of the low pressure compressor 140.
- the damper 2 is in particular configured to damp a displacement of the fan 12 relative to the low pressure compressor 140, in a plane orthogonal to the longitudinal axis X-X, the displacement being caused by a beat of at least one blade 122 among the plurality of blades 122 of the fan 12.
- the damper 2 is annular, and therefore extends all around the longitudinal axis XX. More precisely, the first part 21 has a first radially internal surface 211 extending all around the longitudinal axis XX, and a first radially outer surface 212 extending all around the first radially inner surface 211.
- the second part 22 has a second radially inner surface 221 extending all around the longitudinal axis XX, and a second radially external surface 222 extending all around the second radially internal surface 221.
- the third part 23 has a third radially internal surface 2310 extending all around the longitudinal axis XX, and a third radially external surface 2320 extending all around the third radially inner surface 2310.
- the first part 21 has a first radial thickness E1 measured perpendicular to the longitudinal axis XX between the first radially inner surface 211 and the first radially outer surface 212.
- the second part 22 has a second radial thickness E2 measured perpendicular to the longitudinal axis XX between the second radially internal surface 221 and the second radially external surface 222.
- the third part 23 has a third radial thickness E3 measured perpendicularly to the longitudinal axis XX between the third radially internal surface 2310 and the third radially outer surface 2320.
- the third radial thickness E3 is greater than at least one of the first radial thickness E1 and the second radial thickness E2. In one embodiment, for example illustrated in figure 4 , the third radial thickness E3 is greater than each of the first radial thickness E1 and the second radial thickness E2. In this way, the third part 23 is more massive than the first part 21 and than the second part 22. In an equally advantageous variant, the second radial thickness E2 is greater than the first radial thickness E1, so as to promote the support of the second part 22 on the low pressure compressor 140.
- the first part 21 bears against each of the platforms 1226 of the blades 122 of the fan 12, preferably at the level of an internal surface of each of the platforms 1226.
- An annular damper 2 is moreover particularly adapted for a fan 12 comprising a disk 120 which is bladed in one piece. Indeed, in a fan 12 where the blades 122 are attached to the disk 120, if the damper 2 is annular, then the support of the first part 21 on the different platforms 1226 of the blades 122 is not uniform. This induces inhomogeneous damping around the longitudinal axis XX and, from there, risks of wear of the platforms 1226 and of the damper 2.
- the internal surfaces of the platforms 1226 can comprise reliefs so as to be axisymmetric. This circumferential non-symmetry of the interior side of the platforms 1226 can thus optimize the mutual bearings of the shock absorber 2, in particular their distributions, while privileging, where appropriate, bearing wear on these reliefs.
- the second part 22 bears against the circumferential extension 1404 of the ferrule 1402 of the low pressure compressor 140, at the level of an internal surface of the radial sealing wipers 1406. Indeed, it is at this position that the displacement of the fan 12 relative to the low pressure compressor 140, in the plane orthogonal to the longitudinal axis X-X, is of greater amplitude, typically a few millimeters. Consequently, the damper 2 is particularly effective there.
- the damper 2 comprises a material from the range having the trade name “SMACTANE ® ST” and/or “SMACTANE ® SP”, for example a material of the “SMACTANE ® ST 70” type and/or “ SMACTANE® SP 50”. It has in fact been observed that such materials have appropriate damping properties.
- the first part 21 is configured to apply a first centrifugal force C1 to the fan 12, while the second part 22 is configured to apply a second centrifugal force C2 to the low pressure compressor 140.
- the first bearing part 21 has a radially outer surface coming into contact with a radially inner surface of the fan 12, typically a radially inner surface of the platform 1226.
- the second bearing part 22 has a radially outer surface coming into contact with a radially inner surface of the low pressure compressor 140, typically a radially inner surface of the circumferential extension 1404, for example a radially inner surface of the sealing wipers 1406.
- these parts 21, 22 are each dynamically coupled respectively to the fan 12 and to the low pressure compressor 140 on which each bears, so as to undergo the same vibrations as each of the fan 12 and of the low pressure compressor 140.
- the third part 23 is steeper, in particular in a tangential direction.
- a displacement of the fan 12 relative to the low pressure compressor 140 in a plane orthogonal to the longitudinal axis XX, causes tangential shearing of the damper 2 which causes circumferential displacements of said damper 2.
- the supports respectively on the fan 12 and the low pressure compressor 140 are therefore broken, then quickly resumed to apply the centrifugal forces C1, C2 again. These ruptures and resumptions of the supports allow damping.
- the tangential displacements of the high-frequency fan 12 are damped when the parts 21, 22 bear against the fan 12 and the low-pressure compressor 140. The rupture of the supports, then the circumferential sliding, makes it possible to dampen frequencies weaker.
- the third part 23 comprises a bulge 231, 232, preferably annular.
- the bulge 231, 232 comprises a first lip 231, also annular, and projecting radially towards the inside of the damper 2.
- the first lip 231 is intended to make the third part 23 heavier, which advantageously increases its tangential inertia.
- the bulge 231, 232 comprises a second lip 232, also annular, and projecting radially outwards from the damper 2.
- the second lip also ensures the axial setting of the damper 2 between the fan 12 and the low pressure compressor 140.
- the third part 23 provides axially positioned support for the damper 2, via the first support surface 2321, since it is a downstream axial surface of the damper 2 coming into contact with an upstream axial surface of the low-pressure compressor 140.
- the second part 22 provides radially positioned support for the damper 2, via the second support surface 2200, since it is a radially outer surface of the damper 2 coming into contact with a radially inner surface of the low pressure compressor 140.
- the second bearing surface 2200 contributes to the application of the second centrifugal force C2 on the low pressure compressor 140.
- it is the second lip 232 of the third part 23 which presents the first bearing surface 2321, as visible on the figure 4 .
- the third part 23 comprises a depression 233, preferably annular.
- the depression 233 can be made at the level of an external surface 2320 or of an internal surface 2310 of the third part 23, upstream or downstream of the bulge 231, 232. In the embodiment illustrated in the figure 5 , the depression 233 extends upstream of the bulge.
- the depression 233 extends downstream of the bulge 231, 232, as illustrated in the figure 4 , at an outer surface 2320 of the third part 23, it provides clearance which allows the damper 2 to avoid rubbing on a corner of the radial sealing wipers 1406.
- the depression 233 promotes the axial setting of the damper 2 between the fan 12 and the low pressure compressor 140, but also the sealing of the flow path of the flow of primary air 111. Indeed, under the effect of the first effort centrifugal C1, the first part 21 can thus be compressed downstream.
- At least one of the first part 21, the second part 22 and the third part 23 comprises an additional coating, configured to reduce the friction and/or the wear of the fan and/or the compressor. low pressure 140.
- This additional coating is mounted fixed on an outer surface of the damper 2, for example by gluing.
- the additional coating is of the dissipative and/or viscoelastic and/or damping type. It may in fact comprise a material from the range having the trade name “SMACTANE ® ST” and/or “SMACTANE ® SP”, for example a material of the “SMACTANE ® ST 70” and/or “SMACTANE ® SP 50” type. .
- the additional coating material advantageously has a friction coefficient of between 0.3 and 0.07.
- the coating makes it possible in particular to increase the tangential stiffness of the damper 2 when, in operation, it applies the centrifugal forces C1, C2 so that the movement of the fan 12 relative to the low pressure compressor 140, in the plane orthogonal to the longitudinal axis XX, or damped by energy dissipation by means of viscoelastic shearing of its coating.
- At least one of the first part 21, the second part 22 and the third part 23 is treated by dry lubrication, with a view to perpetuating the value of the coefficient of friction between the damper 2 and the one and/or the other of the fan 12 and of the low-pressure compressor 140.
- This material with lubricating properties is for example of the MoS2 type.
- the damper 2 is configured to damp a displacement of the fan 12 relative to the low pressure compressor 140, in the plane orthogonal to the longitudinal axis X-X.
- the damper 2 is also configured to damp a displacement of any first rotor 12 relative to any second rotor 140, in a plane orthogonal to the longitudinal axis XX, as long as the first rotor 12 is rotatable relative to the casing 10 around the longitudinal axis XX and comprises a disc 120 as well as a plurality of blades 122 capable of beating while vibrating relative to disc 120 during rotation of first rotor 12 relative to housing 10, and that second rotor 140 is also rotatable relative to housing 10 around longitudinal axis XX.
- the first rotor 12 can be a first stage of the high pressure compressor 142 or low pressure compressor 140, and the second rotor 140 be a second stage of said compressor 140, 142, successive to the first compressor stage 140, 142, upstream or downstream from it.
- the first rotor 12 can be a first stage of a high pressure turbine 180 or a low pressure turbine 182
- the second rotor 140 can be a second stage of said turbine 180, 182, successive to the first turbine stage 180, 182, in upstream or downstream of it.
- the damper 2 has a restricted size. Therefore, it can easily be integrated into existing turbomachinery.
- the damper 2 remains flexible enough to maximize the contact surfaces between said damper 2 and the rotors 12, 140 on which it bears. To do this, the damper 2 has a greater tangential stiffness than an axial stiffness and a radial stiffness.
- the contact forces between the damper 2 and the rotors 12, 140 can in particular be adjusted by means of additional coatings. At low frequencies, it is indeed necessary to ensure that the centrifugal forces C1, C2 exerted by the damper 2 on the rotors 12, 140 are not too great, in order to guarantee that the damper 2 can oscillate between a bonded state and a slippery state on the rotors 12, 140, and thus dampen by friction. At high frequencies, on the other hand, it is necessary to ensure that the centrifugal forces C1, C2 exerted by the damper 2 on the rotors 12, 140 are sufficiently great for the preload of the damper 2 on the rotors 12, 140 is sufficient to ensure that the damper 2 can be the viscoelastic shear seat.
- the wear of the rotors 12, 140 is in particular limited by treatment of the surfaces of the damper 2 resting on the rotors 12, 140, for example to provide them with a coating with a low coefficient of friction.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Description
La présente invention concerne un ensemble pour une turbomachine et une turbomachine.The present invention relates to an assembly for a turbomachine and a turbomachine.
L'invention vise plus spécifiquement un ensemble pour turbomachine comprenant un amortisseur.The invention relates more specifically to an assembly for a turbomachine comprising a damper.
Une turbomachine connue de l'état de la technique comprend un carter et une soufflante susceptible d'être mise en rotation par rapport au carter, autour d'un axe longitudinal, grâce à un arbre de soufflante.A turbomachine known from the state of the art comprises a casing and a fan capable of being rotated relative to the casing, around a longitudinal axis, thanks to a fan shaft.
La soufflante comprend un disque centré sur l'axe longitudinal, et une pluralité d'aubes réparties circonférentiellement au niveau de la partie externe du disque.The fan comprises a disc centered on the longitudinal axis, and a plurality of vanes distributed circumferentially at the level of the external part of the disc.
Le domaine de fonctionnement de la soufflante est limité. Plus précisément, l'évolution d'un taux de compression de la soufflante en fonction d'un débit d'air qu'elle aspire lors de sa mise en rotation, est restreinte à un domaine prédéterminé.The operating range of the blower is limited. More precisely, the evolution of a compression ratio of the fan as a function of a flow of air that it sucks in when it is put into rotation, is restricted to a predetermined range.
Au-delà de ce domaine, la soufflante est en effet soumise à des phénomènes aéroélastiques qui la déstabilisent. Plus précisément, l'air circulant à travers la soufflante en fonctionnement apporte de l'énergie aux aubes, et les aubes répondent sur leurs modes propres à des niveaux pouvant dépasser la limite d'endurance du matériau qui les constitue. Ce couplage fluide-structure génère donc des instabilités vibratoires qui accélèrent l'usure de la soufflante, et diminuent sa durée de vie.Beyond this range, the fan is in fact subject to aeroelastic phenomena which destabilize it. More specifically, the air circulating through the fan in operation brings energy to the blades, and the blades respond in their own modes to levels that may exceed the endurance limit of the material from which they are made. This fluid-structure coupling therefore generates vibratory instabilities which accelerate the wear of the fan, and reduce its service life.
Une soufflante qui comprend un nombre d'aubes réduit, et qui est soumise à des charges aérodynamiques élevées, est très sensible à ce genre de phénomènes.A fan which comprises a reduced number of blades, and which is subjected to high aerodynamic loads, is very sensitive to this type of phenomenon.
C'est la raison pour laquelle il est nécessaire de garantir une marge suffisante entre le domaine de fonctionnement stable et les zones d'instabilité, de sorte à ménager les limites d'endurance de la soufflante.This is the reason why it is necessary to guarantee a sufficient margin between the stable operating range and the areas of instability, so as to accommodate the endurance limits of the fan.
Pour ce faire, il est connu de doter la soufflante d'amortisseurs. Des exemples d'amortisseurs ont été décrits dans les documents
Toutefois, de tels amortisseurs sont totalement inefficaces pour amortir un deuxième mode vibratoire dans lequel chaque aube bat par rapport au disque avec un déphasage inter-aube nul. En effet, dans ce deuxième mode vibratoire, il n'existe pas de déplacement relatif entre deux plateformes d'aubes successives. Cette réponse particulière des aubes aux sollicitations aérodynamiques, quoique asynchrone, implique tout de même un moment non nul sur l'arbre de soufflante. En outre, ce deuxième mode vibratoire est couplé entre les aubes, le disque, et l'arbre de soufflante. L'amplitude de ce deuxième mode vibratoire est d'autant importante que les aubes sont grandes.However, such dampers are totally ineffective for damping a second vibratory mode in which each blade beats relative to the disc with zero inter-blade phase shift. Indeed, in this second vibratory mode, there is no relative displacement between two successive blade platforms. This particular response of the blades to aerodynamic stresses, although asynchronous, nevertheless implies a non-zero moment on the fan shaft. Furthermore, this second vibratory mode is coupled between the blades, the disc, and the fan shaft. The amplitude of this second vibratory mode is all the greater as the blades are large.
Il existe donc un besoin de palier au moins un des inconvénients de l'état de la technique précédemment décrits.There is therefore a need to overcome at least one of the disadvantages of the prior art described above.
Un but de l'invention est d'amortir un mode de vibration d'un rotor dans lequel le déphasage entre les aubes dudit rotor est nul.An object of the invention is to damp a mode of vibration of a rotor in which the phase difference between the blades of said rotor is zero.
Un autre but de l'invention est d'influencer l'amortissement de modes de vibration d'un rotor dans lequel le déphasage entre les aubes dudit rotor est non nul.Another object of the invention is to influence the damping of vibration modes of a rotor in which the phase difference between the blades of said rotor is non-zero.
Un autre but de l'invention est de proposer une solution d'amortissement simple et facile à mettre en œuvre.Another object of the invention is to provide a damping solution that is simple and easy to implement.
Il est à cet effet proposé, selon un premier aspect de l'invention, un ensemble pour turbomachine comme indiqué dans la revendication 1.To this end, according to a first aspect of the invention, there is proposed an assembly for a turbomachine as indicated in claim 1.
C'est en amortissant un déplacement du premier rotor par rapport au deuxième rotor, dans un plan orthogonal à l'axe longitudinal, qu'il est possible d'influencer le deuxième mode vibratoire. De fait, contrairement au premier mode vibratoire, le deuxième mode vibratoire se caractérise par un déphasage inter-aube nul. Par conséquent, disposer un amortisseur entre deux aubes successives d'un rotor, comme cela a déjà été proposé dans l'art antérieur, ne produit aucun effet sur le deuxième mode vibratoire. L'amortisseur de l'ensemble précédemment décrit présente, quant à lui, l'avantage d'influencer le deuxième mode vibratoire car il joue sur un effet du deuxième mode vibratoire : le déplacement du premier rotor par rapport au deuxième rotor, dans le plan orthogonal à l'axe longitudinal. En s'opposant à cet effet, l'amortisseur en perturbe la cause, c'est-à-dire amortit le deuxième mode vibratoire. Il convient néanmoins de noter que le premier mode vibratoire participe également au déplacement du premier rotor par rapport au deuxième rotor, dans le plan orthogonal à l'axe longitudinal. Par conséquent, en s'opposant à cet effet, l'amortisseur participe également à en perturber une autre cause, c'est-à-dire amortir le premier mode vibratoire. En outre, l'amortisseur étant annulaire, il permet de répartir les contraintes d'appui appliquées par l'amortisseur sur le premier rotor et sur le deuxième rotor, sur une surface plus importante. De là, l'amortisseur use moins le premier rotor et le deuxième rotor sur lesquels il vient en appui. Enfin, la troisième partie étant plus épaisse que la première partie et la deuxième partie, elle est plus massive. La troisième partie permet donc de limiter la propagation tangentielle des modes vibratoires auxquels le premier rotor et le deuxième rotor sont soumis. Ainsi, l'amortisseur est susceptible, grâce à cette troisième partie, de dissiper les vibrations par son travail en flexion et en inertie.It is by damping a displacement of the first rotor relative to the second rotor, in a plane orthogonal to the longitudinal axis, that it is possible to influence the second vibratory mode. In fact, unlike the first vibratory mode, the second vibratory mode is characterized by a zero inter-blade phase shift. Consequently, placing a damper between two successive blades of a rotor, as has already been proposed in the prior art, produces no effect on the second vibratory mode. The damper of the previously described assembly has, for its part, the advantage of influencing the second vibratory mode because it plays on an effect of the second vibratory mode: the displacement of the first rotor relative to the second rotor, in the plane orthogonal to the longitudinal axis. By opposing this effect, the damper disrupts the cause, ie dampens the second vibrational mode. It should nevertheless be noted that the first vibratory mode also contributes to the displacement of the first rotor relative to the second rotor, in the plane orthogonal to the longitudinal axis. Therefore, by opposing this effect, the damper also participates in disturbing another cause, i.e. damping the first mode vibratory. In addition, the damper being annular, it makes it possible to distribute the support stresses applied by the damper on the first rotor and on the second rotor, over a larger surface. From there, the damper wears less the first rotor and the second rotor on which it bears. Finally, the third part being thicker than the first part and the second part, it is more massive. The third part therefore makes it possible to limit the tangential propagation of the vibrational modes to which the first rotor and the second rotor are subjected. Thus, the shock absorber is capable, thanks to this third part, of dissipating the vibrations by its work in bending and inertia.
Avantageusement, mais facultativement, l'ensemble selon l'invention peut en outre comprendre l'une des caractéristiques suivantes, prise seule ou en combinaison avec une ou plusieurs des autres des caractéristiques suivantes :
- dans un tel ensemble :
- ∘ la première partie est configurée pour appliquer un premier effort centrifuge sur le premier rotor, et
- ∘ la deuxième partie est configurée pour appliquer un deuxième effort centrifuge sur le deuxième rotor,
- la troisième épaisseur radiale est supérieure à chacune parmi la première épaisseur radiale et à la deuxième épaisseur radiale,
- la deuxième épaisseur radiale est supérieure à la première épaisseur radiale,
- le renflement comprend une première lèvre faisant radialement saillie vers l'intérieur de l'amortisseur,
- le renflement comprend une deuxième lèvre faisant radialement saillie vers l'extérieur de l'amortisseur,
- la troisième partie comprend une dépression,
- chacune des aubes parmi la pluralité d'aubes comprend :
- ∘ un pied d'aube reliant l'aube au disque,
- ∘ un aubage profilé,
- ∘ une échasse reliant l'aubage au pied d'aube, et
- ∘ une plateforme reliant l'aubage à l'échasse et s'étendant transversalement à l'échasse, la première partie d'appui venant en appui sur chacune des plateformes des aubes parmi la pluralité d'aubes,
- le deuxième rotor comprend une virole, la virole comprenant une extension circonférentielle, la deuxième partie d'appui venant en appui sur l'extension circonférentielle, et
- l'amortisseur est annulaire, et s'étend tout autour de l'axe longitudinal.
- in such a set:
- ∘ the first part is configured to apply a first centrifugal force on the first rotor, and
- ∘ the second part is configured to apply a second centrifugal force on the second rotor,
- the third radial thickness is greater than each of the first radial thickness and the second radial thickness,
- the second radial thickness is greater than the first radial thickness,
- the bulge comprises a first lip projecting radially towards the inside of the damper,
- the bulge comprises a second lip projecting radially outward from the damper,
- the third part includes a depression,
- each of the vanes among the plurality of vanes comprises:
- ∘ a blade foot connecting the blade to the disc,
- ∘ profiled blading,
- ∘ a stilt connecting the blading to the blade foot, and
- ∘ a platform connecting the blading to the stilt and extending transversely to the stilt, the first support part coming to bear on each of the platforms of the blades among the plurality of blades,
- the second rotor comprises a shroud, the shroud comprising a circumferential extension, the second support part coming to bear on the circumferential extension, and
- the damper is annular, and extends all around the longitudinal axis.
Selon un deuxième aspect de l'invention, il est proposé une turbomachine comme indiqué dans la revendication 11, comprenant un ensemble tel que précédemment décrit, et dans laquelle le premier rotor est une soufflante, et le deuxième rotor est un compresseur basse pression.According to a second aspect of the invention, there is proposed a turbomachine as indicated in claim 11, comprising an assembly as previously described, and in which the first rotor is a fan, and the second rotor is a low-pressure compressor.
D'autres caractéristiques, buts et avantages de l'invention ressortiront de la description qui suit, qui est purement illustrative et non limitative, et qui doit être lue en regard des dessins annexés sur lesquels :
- La
figure 1 illustre de façon schématique une turbomachine, - La
figure 2 comprend une vue en coupe d'une partie d'une turbomachine, et une courbe indiquant un déplacement tangentiel de différents éléments de cette partie de turbomachine en fonction de la position desdits éléments le long d'un axe longitudinal de la turbomachine, - La
figure 3 est une vue en coupe d'une partie d'un exemple de réalisation d'un ensemble selon l'invention, - La
figure 4 est une vue en perspective d'une partie d'un exemple de réalisation d'un ensemble selon l'invention, et - La
figure 5 est une vue en perspective d'une partie d'un amortisseur d'un exemple de réalisation d'un ensemble selon l'invention.
- There
figure 1 schematically illustrates a turbomachine, - There
figure 2 comprises a sectional view of a part of a turbomachine, and a curve indicating a tangential displacement of various elements of this part of the turbomachine as a function of the position of said elements along a longitudinal axis of the turbomachine, - There
picture 3 is a sectional view of part of an embodiment of an assembly according to the invention, - There
figure 4 is a perspective view of part of an exemplary embodiment of an assembly according to the invention, and - There
figure 5 is a perspective view of part of a damper of an embodiment of an assembly according to the invention.
Sur l'ensemble des figures, les éléments similaires portent des références identiques.In all the figures, similar elements bear identical references.
En référence à la
Chacun de la soufflante 12, du compresseur basse pression 140, du compresseur haute pression 142, de la turbine haute pression 180, et de la turbine basse pression 182, est mobile en rotation par rapport au carter 10 autour d'un axe longitudinal X-X.Each of the
Dans le mode de réalisation illustré en
En fonctionnement, la soufflante 12 aspire un flux d'air 110 qui se sépare entre un flux secondaire 112, circulant autour du carter 10, et un flux primaire 111, successivement comprimé au sein du compresseur basse pression 140 et du compresseur haute pression 142, enflammé au sein de la chambre de combustion 16, puis successivement détendu au sein de la turbine haute pression 180 et de la turbine basse pression 182.In operation, the
L'amont et l'aval sont ici définis par rapport au sens d'écoulement normal d'air 110, 111, 112 à travers la turbomachine 1. De même, une direction axiale correspond à la direction de l'axe longitudinal X-X, une direction radiale est une direction qui est perpendiculaire à cet axe longitudinal X-X et qui passe par ledit axe longitudinal X-X, et une direction circonférentielle, ou tangentielle, correspond à la direction d'une ligne courbe plane et fermée, dont tous les points se trouvent à égale distance de l'axe longitudinal X-X. Enfin, et sauf précision contraire, les termes « interne (ou intérieur) » et « externe (ou extérieur) », respectivement, sont utilisés en référence à une direction radiale de sorte que la partie ou la face interne (i.e. radialement interne) d'un élément est plus proche de l'axe longitudinal X-X que la partie ou la face externe (i.e. radialement externe) du même élément.Upstream and downstream are defined here with respect to the direction of
En référence aux
- un pied d'aube 1220
reliant l'aube 122au disque 120, un aubage profilé 1222,- une échasse 1224 reliant l'aubage 1222 au pied d'aube 1220, et
- une plateforme 1226 reliant l'aubage 1222 à l'échasse 1224, et s'étendant transversalement à l'échasse 1224.
- a
blade root 1220 connecting theblade 122 to thedisc 120, - a profiled
blading 1222, - a
stilt 1224 connecting theblade 1222 to theblade root 1220, and - a
platform 1226 connecting theblading 1222 to thestilt 1224, and extending transversely to thestilt 1224.
Le pied d'aube 1220 peut être venu de matière avec le disque 120 lorsque la soufflante 12 est un disque aubagé monobloc. Alternativement, comme visible sur la
Comme visible sur les
Chacune des aubes 122 de la pluralité d'aubes 122 de soufflante 12 est susceptible de battre, en vibrant par rapport au disque 120 lors d'une rotation de la soufflante 12 par rapport au carter 10. Plus précisément, lors du couplage entre l'air 110 circulant au sein de la soufflante 12 et les aubages profilés 1222, les aubes 122 sont le siège de phénomènes aéroélastiques de flottement sur différents modes vibratoires, et dont l'amplitude peut être telle qu'elle dépasse les limites d'endurance des matériaux constituant la soufflante 12. Ces modes vibratoires sont en outre couplés aux efforts opposés de compression en amont de la turbomachine 1, et de détente en aval de celle-ci.Each of the
Un premier mode vibratoire caractérise une réponse synchrone des aubes 122 aux sollicitations aérodynamiques, dans laquelle le déphasage inter-aube est non nul.A first vibratory mode characterizes a synchronous response of the
Un deuxième mode vibratoire caractérise une réponse asynchrone des aubes 122 aux sollicitations aérodynamiques, dans laquelle le déphasage inter-aube est nul. L'amplitude des battements du deuxième mode vibratoire est d'ailleurs d'autant grande que les aubes 122 de soufflante 12 sont grandes. En outre, ce deuxième mode vibratoire est couplé entre les aubes 122, le disque 120, et l'arbre de soufflante 13. La fréquence du deuxième mode vibratoire est, de plus, une fois et demie supérieure à celle du premier mode vibratoire. Enfin, le deuxième mode vibratoire présente une déformée nodale à mi-hauteur des aubes 122 de soufflante 12.A second vibratory mode characterizes an asynchronous response of the
Dans des modes vibratoires, dont le deuxième mode vibratoire, le battement des aubes 122 implique un moment non nul sur l'arbre basse pression 13. Notamment, ces modes vibratoires entraînent des efforts de torsion intenses au sein de l'arbre basse pression 13. Les vibrations induites par le battement des aubes 122 de la soufflante 12, mais aussi par le battement des aubes 1400 du compresseur basse pression 140, conduisent à des déplacements tangentiels relatifs importants entre la soufflante 12 et le compresseur basse pression 140. En effet, la longueur des aubes 122 de la soufflante 12 est supérieure à la longueur des aubes 1400 du compresseur basse pression 140. Par conséquent, le moment de flexion tangentielle entraîné par les battements d'une aube 122 de la soufflante 12 est supérieur au moment de flexion tangentielle entraîné par des battements d'une aube 1400 du compresseur basse pression 140. Les aubages des aubes 122 de la soufflante 12 et des aubes 1400 du compresseur basse pression 140 ont alors des comportements bien différents. Par ailleurs, la raideur de montage au sein de la soufflante 12 est différente de la raideur de montage au sein du compresseur basse pression 140.In vibratory modes, including the second vibratory mode, the beating of the
Comme visible plus précisément sur la
Un amortisseur 2 est utilisé en vue d'amortir ces vibrations de la soufflante 12 et/ou du compresseur basse pression 140.A
L'amortisseur 2 est notamment configuré pour amortir un déplacement de la soufflante 12 par rapport au compresseur basse pression 140, dans un plan orthogonal à l'axe longitudinal X-X, le déplacement étant causé par un battement d'au moins une aube 122 parmi la pluralité d'aubes 122 de la soufflante 12.The
En référence aux
- une première partie 21 venant en appui sur la soufflante 12,
- une deuxième partie 22 venant en appui sur le compresseur basse pression 140, et
- une troisième partie 23 reliant la première partie 21 à la deuxième partie 22.
- a
first part 21 bearing on thefan 12, - a
second part 22 bearing on thelow pressure compressor 140, and - a
third part 23 connecting thefirst part 21 to thesecond part 22.
Comme notamment visible sur la
En outre, comme visible sur la
La troisième épaisseur radiale E3 est supérieure à au moins une parmi la première épaisseur radiale E1 et la deuxième épaisseur radiale E2. Dans un mode de réalisation, par exemple illustré en
Dans un mode de réalisation avantageux, la première partie 21 vient en appui sur chacune des plateformes 1226 des aubes 122 de la soufflante 12, préférentiellement au niveau d'une surface interne de chacun des plateformes 1226. Un amortisseur 2 annulaire est d'ailleurs particulièrement adapté pour une soufflante 12 comprenant un disque 120 qui est aubagé monobloc. En effet, dans une soufflante 12 où les aubes 122 sont rapportées sur le disque 120, si l'amortisseur 2 est annulaire, alors l'appui de la première partie 21 sur les différentes plateformes 1226 des aubes 122 n'est pas uniforme. Ceci induit un amortissement inhomogène autour de l'axe longitudinal X-X et, de là, des risques d'usure des plateformes 1226 et de l'amortisseur 2. Les surfaces internes des plateformes 1226 peuvent comporter des reliefs de manière à être axisymétriques. Cette non symétrie circonférentielle du côté intérieur des plateformes 1226 peut ainsi optimiser les appuis mutuels de l'amortisseur 2, en particulier leurs répartitions, tout en privilégiant le cas échéant des usures d'appui à ces reliefs.In an advantageous embodiment, the
En outre, la deuxième partie 22 vient en appui sur l'extension circonférentielle 1404 de la virole 1402 du compresseur basse pression 140, au niveau d'une surface interne des léchettes radiales d'étanchéité 1406. En effet, c'est à cette position que le déplacement de la soufflante 12 par rapport au compresseur basse pression 140, dans le plan orthogonal à l'axe longitudinal X-X, est de plus grande amplitude, typiquement de quelques millimètres. Par conséquent, l'amortisseur 2 s'y trouve particulièrement efficace.In addition, the
Dans un mode de réalisation, l'amortisseur 2 comprend un matériau de la gamme ayant l'appellation commerciale « SMACTANE® ST » et/ou « SMACTANE® SP », par exemple un matériau de type « SMACTANE® ST 70 » et/ou « SMACTANE® SP 50 ». Il a en effet été observé que de tels matériaux présentent des propriétés d'amortissement appropriées.In one embodiment, the
En référence à la
La troisième partie 23 est plus raide, notamment dans une direction tangentielle. Ainsi, en fonctionnement, un déplacement de la soufflante 12 par rapport au compresseur basse pression 140, dans un plan orthogonal à l'axe longitudinal X-X, entraîne un cisaillement tangentiel de l'amortisseur 2 qui amène des déplacements circonférentiels dudit amortisseur 2. Les appuis respectifs sur la soufflante 12 et le compresseur basse pression 140 sont donc rompus, puis rapidement repris pour appliquer à nouveau les efforts centrifuges C1, C2. Ces ruptures et reprises des appuis permettent l'amortissement. Avantageusement, les déplacements tangentiels de la soufflante 12 à haute fréquence sont amortis lorsque les parties 21, 22 sont en appui contre la soufflante 12 et le compresseur basse pression 140. La rupture des appuis, puis le glissement circonférentiel, permet d'amortir des fréquences plus faibles. De ce manière, l'amortisseur 2 est efficace sur une large gamme de fréquences. En référence à la
En référence à la
- la troisième partie 23 présente une première
surface d'appui 2321 agencée pour appliquer un premier effort F1 sur le compresseur basse pression 140, le premier effort F1 ayant une première composante longitudinale F1L dans une première direction parallèle à l'axe longitudinal X-X, et une première composante radiale F1R dans une deuxième direction orthogonale à l'axe longitudinal X-X, la première composante longitudinale F1L étant supérieure à la première composante radiale F1R, - la deuxième partie 22 présente une deuxième surface d'appui 2200 agencée pour appliquer un deuxième effort F2 sur le compresseur
base pression 140, le deuxième effort F2 ayant une deuxième composante longitudinale F2L dans la première direction, et une deuxième composante radiale F2R dans la deuxième direction, la deuxième composante radiale F2R étant supérieure à la deuxième composante longitudinale F2L.
- the
third part 23 has afirst support surface 2321 arranged to apply a first force F1 to thelow pressure compressor 140, the first force F1 having a first longitudinal component F1L in a first direction parallel to the longitudinal axis XX, and a first radial component F1R in a second direction orthogonal to the longitudinal axis XX, the first longitudinal component F1L being greater than the first radial component F1R, - the
second part 22 has asecond bearing surface 2200 arranged to apply a second force F2 on the low-pressure compressor 140, the second force F2 having a second longitudinal component F2L in the first direction, and a second radial component F2R in the second direction, the second radial component F2R being greater than the second longitudinal component F2L.
En d'autres termes, la troisième partie 23 assure l'appui à positionnement axial de l'amortisseur 2, par l'intermédiaire de la première surface d'appui 2321, puisqu'il s'agit d'une surface axial aval de l'amortisseur 2 venant en contact avec une surface axial amont du compresseur basse pression 140. Par ailleurs, la deuxième partie 22 assure l'appui à positionnement radial de l'amortisseur 2, par l'intermédiaire de la deuxième surface d'appui 2200, puisqu'il s'agit d'une surface radialement externe de l'amortisseur 2 venant en contact avec une surface radialement interne du compresseur basse pression 140. En outre, en fonctionnement, la deuxième surface d'appui 2200 participe à l'application du deuxième effort centrifuge C2 sur le compresseur basse pression 140. Avantageusement, c'est la deuxième lèvre 232 de la troisième partie 23 qui présente la première surface d'appui 2321, comme visible sur la
En référence aux
Dans un mode de réalisation, l'une au moins parmi la première partie 21, la deuxième partie 22 et la troisième partie 23 comprend un revêtement additionnel, configuré pour diminuer le frottement et/ou l'usure de la soufflante et/ou du compresseur basse pression 140. Ce revêtement additionnel est monté fixe sur une surface externe de l'amortisseur 2, par exemple par collage. Le revêtement additionnel est de type dissipatif et/ou viscoélastique et/ou amortissant. Il peut en effet comprendre un matériau de la gamme ayant l'appellation commerciale « SMACTANE® ST » et/ou « SMACTANE® SP », par exemple un matériau de type « SMACTANE® ST 70 » et/ou « SMACTANE® SP 50 ». Il peut également comprendre un matériau choisi parmi ceux présentant des propriétés mécaniques similaires à celles du vespel, du téflon ou de toute autre matière à propriétés lubrifiantes. De manière plus générale le matériau de revêtement additionnel possède avantageusement un coefficient de frottement compris entre 0,3 et 0,07. Le revêtement permet notamment d'augmenter la raideur tangentielle de l'amortisseur 2 lorsque, en fonctionnement, il applique les efforts centrifuges C1, C2 pour que le déplacement de la soufflante 12 par rapport au compresseur basse pression 140, dans le plan orthogonal à l'axe longitudinal X-X, soit amorti par dissipation énergétique au moyen d'un cisaillement viscoélastique de son revêtement. Dans un mode de réalisation, l'une au moins parmi la première partie 21, la deuxième partie 22 et la troisième partie 23 est traitée par lubrification sèche, en vue de pérenniser la valeur du coefficient de frottement entre l'amortisseur 2 et l'un et/ou l'autre de la soufflante 12 et du compresseur basse pression 140. Ce matériau à propriétés de lubrification est par exemple de type MoS2.In one embodiment, at least one of the
Dans tout ce qui a été décrit précédemment, l'amortisseur 2 est configuré pour amortir un déplacement de la soufflante 12 par rapport au compresseur basse pression 140, dans le plan orthogonal à l'axe longitudinal X-X.In all that has been described above, the
Ceci n'est cependant pas limitatif, puisque l'amortisseur 2 est également configuré pour amortir un déplacement de n'importe quel premier rotor 12 par rapport à n'importe quel deuxième rotor 140, dans un plan orthogonal à l'axe longitudinal X-X, tant que le premier rotor 12 est mobile en rotation par rapport au carter 10 autour de l'axe longitudinal X-X et comprend un disque 120 ainsi qu'une pluralité d'aubes 122 susceptibles de battre en vibrant par rapport au disque 120 lors d'une rotation du premier rotor 12 par rapport au carter 10, et que le deuxième rotor 140 est également mobile en rotation par rapport au carter 10 autour de l'axe longitudinal X-X.This is however not limiting, since the
Ainsi, le premier rotor 12 peut être un premier étage du compresseur haute pression 142 ou de compresseur basse pression 140, et le deuxième rotor 140 être un deuxième étage dudit compresseur 140, 142, successif au premier étage de compresseur 140, 142, en amont ou en aval de ce-dernier. Alternativement, le premier rotor 12 peut être un premier étage de turbine haute pression 180 ou de turbine basse pression 182, et le deuxième rotor 140 être un deuxième étage de ladite turbine 180, 182, successif au premier étage de turbine 180, 182, en amont ou en aval de ce-dernier.Thus, the
En tout état de cause l'amortisseur 2 présente un encombrement restreint. Par conséquent, il peut facilement être intégré aux turbomachines existantes.In any event, the
De plus, en étant configuré pour exercer des efforts centrifuges C1, C2 sur le premier rotor 12 et sur le deuxième rotor 140, l'amortisseur 2 assure une raideur tangentielle importante entre le premier rotor 12 et le deuxième rotor 140. Il se démarque ainsi d'un amortisseur trop souple qui viendrait uniquement à se déformer lors d'un déplacement du premier rotor 12 par rapport au deuxième rotor 140, dans le plan orthogonal à l'axe longitudinal X-X. Au contraire, l'amortisseur 2 dissipe un tel déplacement :
- soit par frottement et/ou oscillations entre un état où l'amortisseur 2 est collé sur les rotors 12, 140 et un état où l'amortisseur 2 glisse sur les rotors 12, 140, ce qui permet d'amortir notamment les basses fréquences,
- soit par cisaillement viscoélastique au sein de l'amortisseur 2, ce qui permet d'amortir notamment les hautes fréquences.
- either by friction and/or oscillations between a state where the
damper 2 is stuck on the 12, 140 and a state where therotors damper 2 slides on the 12, 140, which makes it possible to dampen in particular the low frequencies,rotors - or by viscoelastic shear within the
damper 2, which in particular makes it possible to damp the high frequencies.
Toutefois, l'amortisseur 2 demeure suffisamment souple pour maximiser les surfaces de contact entre ledit amortisseur 2 et les rotors 12, 140 sur lequel il vient en appui. Pour ce faire, l'amortisseur 2 présente une rigidité tangentielle plus importante qu'une rigidité axiale et qu'une rigidité radiale.However, the
Les efforts de contact entre l'amortisseur 2 et les rotors 12, 140 peuvent notamment être ajustés au moyen de revêtements supplémentaires. A basses fréquences, il est en effet nécessaire de s'assurer que les efforts centrifuges C1, C2 exercées par l'amortisseur 2 sur les rotors 12, 140 ne sont pas trop importants, afin de garantir que l'amortisseur 2 puisse osciller entre un état collé et un état glissant sur les rotors 12, 140, et ainsi amortir par frottements. A hautes fréquences, en revanche, il est nécessaire de s'assurer que les efforts centrifuges C1, C2 exercées par l'amortisseur 2 sur les rotors 12, 140 sont suffisamment importants pour que la précontrainte de l'amortisseur 2 sur les rotors 12, 140 soit suffisante, afin de garantir que l'amortisseur 2 puisse être le siège de cisaillement viscoélastique.The contact forces between the
L'usure des rotors 12, 140 est notamment limitée par traitement des surfaces de l'amortisseur 2 en appui sur les rotors 12, 140, par exemple pour les doter d'un revêtement à faible coefficient de frottement.The wear of the
Claims (11)
- An assembly for a turbomachine (1) comprising:- a casing (10),- a first rotor (12) :∘ movable in rotation relative to the casing (10) around a longitudinal axis (X-X), and∘ comprising:* a disk (120), and* a plurality of blades (122) capable of flapping relative to the disk (120) during a rotation of the first rotor (12) relative to the casing (10),- a second rotor (140) movable in rotation relative to the casing (10) around the longitudinal axis (X-X), and- a damper (2) configured to damp a movement of the first rotor (12) relative to the second rotor (140), in a plane orthogonal to the longitudinal axis (X-X), the movement being caused by a flapping of at least one blade (122) among the plurality of blades (122), the damper (2) comprising:characterized in that the third radial thickness (E3) is greater than at least one among the first radial thickness (E1) and the second radial thickness (E2) and the third part (23) comprises a bulge (231, 232).∘ a first part (21) bearing on the first rotor (12), and having:* a first radially inner surface (211) extending all around the longitudinal axis (X-X),* a first radially outer surface (212) extending all around the first radially inner surface (211),* a first radial thickness (E1) measured perpendicular to the longitudinal axis (X-X) between the first radially inner surface (211) and the first radially outer surface (212), and* the radially outer surface coming into contact with a radially inner surface of the first rotor (12),∘ a second part (22) bearing on the second rotor (140), and having:* a second radially inner surface (221) extending all around the longitudinal axis (X-X),* a second radially outer surface (222) extending all around the second radially inner surface (221), and* a second radial thickness (E2) measured perpendicular to the longitudinal axis (X-X) between the second radially inner surface (221) and the second radially outer surface (222), and* the radially outer surface coming into contact with a radially inner surface of the second rotor (140), and∘ a third part (23) connecting the first part (21) to the second part (22), and having:* a third radially inner surface (231) extending all around the longitudinal axis (X-X),* a third radially outer surface (232) extending all around the third radially inner surface (231), and* a third radial thickness (E3) measured perpendicular to the longitudinal axis (X-X) between the third radially inner surface (231) and the third radially outer surface (232),
- The assembly according to claim 1, wherein:- the first part (21) is configured to apply a first centrifugal force (C1) on the first rotor (12), and- the second part (22) is configured to apply a second centrifugal force (C2) on the second rotor (140).
- The assembly according to any of claims 1 and 2, wherein the third radial thickness (E3) is greater than each among the first radial thickness (E1) and of the second radial thickness (E2).
- The assembly according to any of claims 1 to 3, wherein the second radial thickness (E2) is greater than the first radial thickness (E1).
- The assembly according to any of claims 1 to 4, wherein the bulge (231, 232) comprises a first lip (231) protruding radially inwardly from the damper (2).
- The assembly according to any of claims 1 to 5, wherein the bulge (231, 232) comprises a second lip (232) protruding radially outwardly from the damper (2).
- The assembly according to any of claims 1 to 6, wherein the third part (23) comprises a depression (233).
- The assembly according to any of claims 1 to 7, wherein each of the blades (122) among the plurality of blades (122) comprises:- a blade root (1220) connecting the blade (122) to the disk (120),- a profiled blading (1222),- a stilt (1224) connecting the blading (1222) to the blade root (1220), and- a platform (1226) connecting the blading (1222) to the stilt (1224) and extending transversely to the stilt (1224), the first bearing part (21) bearing on each of the platforms (1226) of the blades (122) among the plurality of blades (122).
- The assembly according to any of claims 1 to 8, wherein the second rotor (140) comprises a shroud (1402), the shroud (1402) comprising a circumferential extension (1404), the second bearing part (22) bearing on the circumferential extension (1404).
- The assembly according to any of claims 1 to 9, wherein the damper (2) is annular, and extends all around the longitudinal axis (X-X).
- A turbomachine (1) comprising an assembly according to any of claims 1 to 10, and wherein the first rotor (12) is a fan and the second rotor (140) is a low-pressure compressor.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1905734A FR3096731B1 (en) | 2019-05-29 | 2019-05-29 | Turbomachine assembly |
PCT/EP2020/064650 WO2020239808A1 (en) | 2019-05-29 | 2020-05-27 | Assembly for a turbomachine |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3976928A1 EP3976928A1 (en) | 2022-04-06 |
EP3976928B1 true EP3976928B1 (en) | 2023-08-23 |
Family
ID=68072683
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20728038.9A Active EP3976928B1 (en) | 2019-05-29 | 2020-05-27 | Assembly for turbomachine and turbomachine |
Country Status (5)
Country | Link |
---|---|
US (1) | US11808169B2 (en) |
EP (1) | EP3976928B1 (en) |
CN (1) | CN114026312B (en) |
FR (1) | FR3096731B1 (en) |
WO (1) | WO2020239808A1 (en) |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2517779B1 (en) * | 1981-12-03 | 1986-06-13 | Snecma | DEVICE FOR DAMPING THE BLADES OF A TURBOMACHINE BLOWER |
FR2585069B1 (en) * | 1985-07-16 | 1989-06-09 | Snecma | DEVICE FOR LIMITING THE ANGULAR DEFLECTION OF BLADES MOUNTED ON A TURBOMACHINE ROTOR DISC |
US5205713A (en) * | 1991-04-29 | 1993-04-27 | General Electric Company | Fan blade damper |
US5820346A (en) * | 1996-12-17 | 1998-10-13 | General Electric Company | Blade damper for a turbine engine |
US7121801B2 (en) * | 2004-02-13 | 2006-10-17 | United Technologies Corporation | Cooled rotor blade with vibration damping device |
FR2915510B1 (en) | 2007-04-27 | 2009-11-06 | Snecma Sa | SHOCK ABSORBER FOR TURBOMACHINE BLADES |
FR2923557B1 (en) | 2007-11-12 | 2010-01-22 | Snecma | BLOWER DRAWER ASSEMBLY AND ITS SHOCK ABSORBER, BLOWER DAMPER AND METHOD FOR CALIBRATING THE SHOCK ABSORBER |
FR2949142B1 (en) * | 2009-08-11 | 2011-10-14 | Snecma | VIBRATION SHOCK ABSORBER BLOCK FOR BLOWER DAWN |
FR2961553B1 (en) * | 2010-06-18 | 2012-08-31 | Snecma | ANGULAR RECTIFIER SECTOR FOR TURBOMACHINE COMPRESSOR, TURBOMACHINE RECTIFIER AND TURBOMACHINE COMPRISING SUCH A SECTOR |
FR2961554B1 (en) * | 2010-06-18 | 2012-07-20 | Snecma | ANGULAR RECTIFIER SECTOR FOR TURBOMACHINE COMPRESSOR, TURBOMACHINE RECTIFIER AND TURBOMACHINE COMPRISING SUCH A SECTOR |
US9151170B2 (en) * | 2011-06-28 | 2015-10-06 | United Technologies Corporation | Damper for an integrally bladed rotor |
FR3003301B1 (en) * | 2013-03-14 | 2018-01-05 | Safran Helicopter Engines | TURBINE RING FOR TURBOMACHINE |
CA2966126C (en) * | 2014-10-15 | 2023-02-28 | Safran Aircraft Engines | Rotary assembly for a turbine engine comprising a self-supported rotor collar |
GB201506196D0 (en) * | 2015-04-13 | 2015-05-27 | Rolls Royce Plc | Rotor damper |
CN204941612U (en) * | 2015-09-16 | 2016-01-06 | 中国航空工业集团公司沈阳发动机设计研究所 | A kind of compressible damping block |
-
2019
- 2019-05-29 FR FR1905734A patent/FR3096731B1/en active Active
-
2020
- 2020-05-27 EP EP20728038.9A patent/EP3976928B1/en active Active
- 2020-05-27 CN CN202080045179.6A patent/CN114026312B/en active Active
- 2020-05-27 WO PCT/EP2020/064650 patent/WO2020239808A1/en unknown
- 2020-05-27 US US17/614,667 patent/US11808169B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
US11808169B2 (en) | 2023-11-07 |
FR3096731A1 (en) | 2020-12-04 |
US20220228494A1 (en) | 2022-07-21 |
CN114026312B (en) | 2024-03-29 |
EP3976928A1 (en) | 2022-04-06 |
CN114026312A (en) | 2022-02-08 |
WO2020239808A1 (en) | 2020-12-03 |
FR3096731B1 (en) | 2021-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3724455B1 (en) | Damping device | |
FR2961553A1 (en) | ANGULAR RECTIFIER SECTOR FOR TURBOMACHINE COMPRESSOR, TURBOMACHINE RECTIFIER AND TURBOMACHINE COMPRISING SUCH A SECTOR | |
EP2739828B1 (en) | Turbine engine bladed rotor | |
FR2907861A1 (en) | BEARING ARRANGEMENT OF A ROTATING SHAFT AND TURBOREACTOR EQUIPPED WITH SUCH AN ARRANGEMENT | |
CA2726018C (en) | Turbomachine fan rotor | |
FR3075284A1 (en) | SHOCK ABSORBER DEVICE | |
WO2013107967A1 (en) | Angular downstream guide vane sector with vibration damping by means of a wedge for a turbine engine compressor | |
FR3026774A1 (en) | TURBOMACHINE COMPRISING A BRAKING DEVICE FOR THE BLOWER ROTOR. | |
FR2971022A1 (en) | COMPRESSOR RECTIFIER STAGE FOR A TURBOMACHINE | |
FR2927357A1 (en) | Vibration damping device for blades of high pressure rotor in high pressure turbine of e.g. aeronautical jet engine, has rib partially inserted in groove formed by edges, where rib has variable transversal section in direction of its length | |
EP3728794B1 (en) | Damper device | |
EP3976926B1 (en) | Turbomachine assembly with damper | |
EP3976928B1 (en) | Assembly for turbomachine and turbomachine | |
FR3102205A1 (en) | Flyweight turbomachine rotor | |
FR3096729A1 (en) | Turbomachine assembly | |
EP3976929B1 (en) | Assembly for turbomachine | |
FR3075253B1 (en) | SHOCK ABSORBER DEVICE | |
FR3096732A1 (en) | Turbomachine assembly | |
FR3096733A1 (en) | Turbomachine assembly | |
FR3096730A1 (en) | Turbomachine assembly | |
FR3075283B1 (en) | SHOCK ABSORBER DEVICE | |
FR3075254B1 (en) | SHOCK ABSORBER DEVICE | |
FR2712631A1 (en) | Blade root for axial flow compressors and turbines | |
FR2962481A1 (en) | Vibration dampener for blade of rotor of gas turbine engine, has connection zone providing support against external support surface under effect of centrifugal rotation force of rotor in way to ensure axial sealing against gases | |
FR3093533A1 (en) | damping device for turbomachine rotor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20211224 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20230523 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602020016280 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20230823 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1602801 Country of ref document: AT Kind code of ref document: T Effective date: 20230823 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231223 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231226 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231123 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231223 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231124 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602020016280 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240419 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240418 Year of fee payment: 5 |
|
26N | No opposition filed |
Effective date: 20240524 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240418 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240527 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240527 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240531 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20240531 |