[go: up one dir, main page]

EP3957798B1 - Procédé de fonctionnement et/ou de surveillance d'une circulation d'eau - Google Patents

Procédé de fonctionnement et/ou de surveillance d'une circulation d'eau Download PDF

Info

Publication number
EP3957798B1
EP3957798B1 EP21186632.2A EP21186632A EP3957798B1 EP 3957798 B1 EP3957798 B1 EP 3957798B1 EP 21186632 A EP21186632 A EP 21186632A EP 3957798 B1 EP3957798 B1 EP 3957798B1
Authority
EP
European Patent Office
Prior art keywords
centrifugal pump
drinking water
pump assembly
circuit
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21186632.2A
Other languages
German (de)
English (en)
Other versions
EP3957798A1 (fr
Inventor
Daniel BÜNING
Dr. Martin Oettmeier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wilo SE
Original Assignee
Wilo SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wilo SE filed Critical Wilo SE
Priority to EP24220029.3A priority Critical patent/EP4502475A2/fr
Priority to EP24219997.4A priority patent/EP4502474A2/fr
Publication of EP3957798A1 publication Critical patent/EP3957798A1/fr
Application granted granted Critical
Publication of EP3957798B1 publication Critical patent/EP3957798B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0088Testing machines
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B5/00Use of pumping plants or installations; Layouts thereof
    • E03B5/02Use of pumping plants or installations; Layouts thereof arranged in buildings
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B7/00Water main or service pipe systems
    • E03B7/07Arrangement of devices, e.g. filters, flow controls, measuring devices, siphons or valves, in the pipe systems
    • E03B7/075Arrangement of devices for control of pressure or flow rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0094Indicators of rotational movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/02Stopping of pumps, or operating valves, on occurrence of unwanted conditions
    • F04D15/0245Stopping of pumps, or operating valves, on occurrence of unwanted conditions responsive to a condition of the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/0073Arrangements for preventing the occurrence or proliferation of microorganisms in the water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/0078Recirculation systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1051Arrangement or mounting of control or safety devices for water heating systems for domestic hot water
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B7/00Water main or service pipe systems
    • E03B7/04Domestic or like local pipe systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/303Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/02Fluid distribution means
    • F24D2220/0207Pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/04Sensors
    • F24D2220/042Temperature sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/04Sensors
    • F24D2220/044Flow sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/04Sensors
    • F24D2220/046Pressure sensors

Definitions

  • the invention relates to a method for operating and/or monitoring a water circulation in a drinking water supply network, which has at least one circuit for circulating drinking water, a centrifugal pump unit for receiving drinking water from and pumping it into the circuit and at least one consumer fed with drinking water from the circuit, wherein the centrifugal pump unit has a pump unit, an electric motor driving it and pump electronics for controlling and regulating the electric motor.
  • the patent application US 2010/096018 A1 discloses a control of the water circulation, more precisely the water temperature of a hot water supply system, in which a higher-level control switches off a recirculation pump when a desired temperature, measured by a sensor in the pump, is reached within a recirculation loop.
  • German patent application DE3744102 A1 A method for preventing ice formation in water pipes is known in which a circulation pump cyclically circulates the water content of the domestic water installation. The duration of the flow is selected so that the entire water content of a distribution pipe passes through the pump at least once, while the much longer pause interval should be shorter than the time in which ice formation fills the entire cross-section of the pipe.
  • a switching device is provided that allows the pump to continue running during the pause interval until ice formation has been reduced or eliminated. This switching is carried out via a thermostat that measures either the air temperature or the water temperature during the single circulation.
  • EP 2365141 A2 A drinking or service water system with a transfer point from a public supply network and at least one supply line for the water supply and at least one ring line leading to at least one consumer, in which a ring line pump is provided.
  • This ring line pump can generate a volume flow in the ring line leading to the supply line, which leads to a safe and inevitable exchange of the volume in the ring line. Accordingly, stagnation can be avoided.
  • Drinking water supply networks in buildings serve to supply consumers with cold or hot drinking water at taps, toilets, or showers. To ensure the hygienic provision of drinking water, the proliferation of germs in the drinking water must be prevented. Depending on the consumer, how frequently the premises are used, and the part of the building in which they are located, water withdrawal occurs more or less regularly, or even infrequently. The result of irregular water withdrawal is stagnant water in the supply pipes to consumers, which in turn promotes contamination with bacteria and viruses. This is particularly problematic in large drinking water networks such as those in hospitals, hotels, and public buildings. To improve drinking water quality, drinking water supply networks are implemented with circuits in which the drinking water is circulated to the withdrawal points.
  • the drinking water temperature for cold drinking water must be as cold as possible and not more than 25°C in order to prevent the unacceptable proliferation of germs.
  • a unit of this type usually has a higher-level, possibly Control electronics arranged externally to the unit, to which the sensor and actuator components of the unit are connected.
  • the object of the present invention to provide a method for monitoring water circulation in a drinking water supply network, which ensures and/or monitors compliance with hygiene standards in the water circulation, can be set up with little assembly and cabling effort, and in particular exploits synergies of the individual components of the drinking water circulation.
  • the core of the invention is therefore to utilize an existing system component, namely the centrifugal pump unit or its pump electronics, in particular their intelligence and functionality, in maintaining and monitoring compliance with hygiene standards in the drinking water supply.
  • This eliminates the need for higher-level central control electronics. Consequently, the effort required for installing and wiring the required sensors and, if necessary, actuators is also reduced, since the centrifugal pump unit itself functions as a sensor and, if necessary, also as an actuator, and the pump electronics act as a control unit for water circulation.
  • the method according to the invention can be used for both hot water and cold water circulation systems.
  • the centrifugal pump unit is primarily operated in circulation mode, particularly continuously, where it pumps the drinking water through the circuit.
  • the centrifugal pump unit is therefore located within the circuit. This provides protection against excess temperature and steady-state temperature conditions in the drinking water supply network, which can be easily evaluated.
  • the centrifugal pump unit can be operated at a constant speed, with flow control, or with pressure control. Controlling the centrifugal pump unit to a constant flow rate is suitable, for example, if manual branch balancing valves or flow dividers are installed in the drinking water supply network. In contrast, proportional pressure control is suitable if control valves are installed in the drinking water supply network.
  • the centrifugal pump unit monitors the water circulation.
  • the centrifugal pump unit can determine its flow rate, discharge head, differential pressure, or the temperature of the pumped water, and monitor for any changes or when a limit value is reached. This eliminates the need for separate sensors or sensor components such as a volume flow sensor, a pressure sensor, or a temperature sensor, which must be installed and wired into the drinking water supply network. Furthermore, the centrifugal pump unit can assess the current operating status, including the hygiene status of the water circulation or the drinking water network, and, if necessary, take appropriate measures to maintain drinking water hygiene. Finally, short-term and long-term changes in the operating status can also be detected.
  • the flow rate, the delivery head/differential pressure or the temperature can each be determined using a sensor integrated into the centrifugal pump unit (volume flow sensor, differential pressure sensor, temperature sensor) or mathematically from pump variables, as is known in the state of the art.
  • the flow rate determined by the centrifugal pump unit determines the amount of water circulating in the circuit per unit of time. Furthermore, the head measurement indicates whether and to what extent a pressure drop exists along the circuit, i.e., whether one or more consumer taps are open. Finally, by measuring the temperature of the water flowing through them, the centrifugal pump unit can assess the temperature-related hygiene status of the drinking water supply network.
  • the centrifugal pump unit closes a valve within the circuit, which impairs or even prevents circulation.
  • the closed valve can, for example, be a lockable service valve located upstream or downstream of the centrifugal pump unit to isolate a section of the drinking water network from the water supply.
  • the centrifugal pump unit can appropriately issue a corresponding message, in particular an error message, indicating the limit value violation or the closed valve.
  • the centrifugal pump unit carries out a long-term assessment of the condition of the drinking water supply network.
  • the centrifugal pump unit can thus regularly determine its operating point at intervals of, for example, several hours to a few days, preferably every 24 hours, and monitor any changes to the operating point over the long term. This means that the operating point determined in each case is saved and compared with the last determined operating point or with several previous operating points.
  • the operating point indicates the hydraulic resistance of the drinking water supply network. The determination is preferably always carried out at night at a fixed time, for example between midnight and 4 a.m., to ensure that no consumer is drawing water from the circuit line during the determination.
  • the evaluation of a change in the operating point can be carried out in different ways. For example, it can be provided that the centrifugal pump unit, or rather the pump electronics, assumes a structural change in the drinking water supply network (system change) if the operating point changes abruptly, i.e. a newly determined operating point deviates significantly from the previous operating point(s), for example if at least one of the variables defining the operating point has changed by more than 30% or even more than 50% compared to its previous value. This is because the determined operating point should always remain the same when there is no water withdrawal from a consumer.
  • system change if the operating point changes abruptly, i.e. a newly determined operating point deviates significantly from the previous operating point(s), for example if at least one of the variables defining the operating point has changed by more than 30% or even more than 50% compared to its previous value. This is because the determined operating point should always remain the same when there is no water withdrawal from a consumer.
  • the operating point of a centrifugal pump unit is considered to be the combination of at least two independent physical parameters of the centrifugal pump unit, preferably the flow rate (volume flow) and the head (differential pressure).
  • the operating point can be defined by flow rate and speed, speed and head, power and flow, current consumption and flow, speed and torque, or any two other parameters of the centrifugal pump unit.
  • the centrifugal pump unit can assume that the filter in the circuit is clogged if the differential pressure of the centrifugal pump, which helps define the operating point, gradually increases, i.e., from one determined operating point to another or exceeds a limit.
  • a filter in the circuit can become increasingly clogged due to particles carried along in the water, so that the pressure drop across the filter gradually increases. This also becomes noticeable in the operating point of the centrifugal pump unit, since a higher pressure is required to deliver the same flow rate.
  • the centrifugal pump unit or rather the pump electronics, assumes a defective open control valve in the circuit if the differential pressure, which also defines the operating point, gradually decreases or falls below a limit.
  • the control valve can be a valve that defines a partial flow of the circulating drinking water in a branch of the circuit line to which one or more consumers are connected. Detecting such a defect in the drinking water supply network is particularly important, since in this case, the hydraulic balance of the network is no longer ensured and other lines could be undersupplied.
  • the centrifugal pump unit can suitably issue a corresponding message, in particular an error message, which indicates, for example, the change in the drinking water supply network, or the differential pressure increase or the limit value being exceeded or the need for filter cleaning or replacement, or the differential pressure drop or the limit value being undershot or the need for repair of the control valve.
  • a corresponding message in particular an error message, which indicates, for example, the change in the drinking water supply network, or the differential pressure increase or the limit value being exceeded or the need for filter cleaning or replacement, or the differential pressure drop or the limit value being undershot or the need for repair of the control valve.
  • the centrifugal pump unit can be positioned upstream of a flush valve connected to the circuit for draining water from the circuit. This has the advantage that the drinking water flowing from the circuit, which is to be separated via the flush valve, flows through the centrifugal pump and can thus be monitored or measured by the centrifugal pump in various ways, for example, with regard to temperature, flush volume, flow velocity, etc.
  • the centrifugal pump unit determines whether its speed is greater than zero in order to detect flushing activity or to check the flushing valve.
  • the centrifugal pump unit in particular the pump electronics, can thus assume that the flushing valve is open if the speed is greater than zero. This is because when the flushing valve is open, the water flows through the centrifugal pump unit to the flushing valve and out of the circuit, thereby driving the impeller of the pump unit like a turbine, even though the electric motor is not driven.
  • the centrifugal pump unit in particular the pump electronics, can assume that the flushing valve is defective if the speed is zero during a triggered flushing operation.
  • the pump electronics can be installed in the compact unit spatially independent of the electric motor, particularly when removed from the electric motor. This has the advantage that it can be arranged at a different location than the pump unit, allowing greater design flexibility in the design of the compact unit and the spatial arrangement of its components.
  • Another backflow preventer 11 is also arranged in the main line 29.
  • the line between the backflow preventer 11 of the compact unit 1 and the main line 29 is hereinafter referred to as the intermediate line 16.
  • the target value, the quantity and/or the period of time are parameters that can be specified in the pump electronics. This takes into account the fact that the pump electronics cannot know at the factory how large the drinking water supply network is in which the compact unit is installed. However, the pump electronics are designed to be set up to independently determine the quantity of drinking water to be drained or the period of time for draining. This is achieved by measuring the time or the amount of water flowing through the centrifugal pump during an initial flush until the temperature has dropped to the minimum value. The then available water quantity or the time elapsed up to that point can then be saved as a parameter for a quantity-based or time-based shutdown criterion in the pump electronics 2c.
  • the hydraulic short circuit resulting from the opening of the flushing valve 7a can be detected by the centrifugal pump unit 2 through a change in its operating point. From this, the centrifugal pump unit can determine the proper functioning of the flushing valve 7a. If the electric motor is de-energized during this time, the proper functioning of the flushing valve can be determined by this. It can be detected that the pump speed is greater than zero because water is flowing through the pump unit 2a and driving its impeller. Conversely, this means that the centrifugal pump unit 2 can conclude that the flushing valve 7a is defective or does conclude that the flushing valve 7a is defective if, after the flushing valve 7a has been triggered, the expected operating point change or the positive pump speed is not present despite the motor being switched off. The centrifugal pump unit 2 then outputs an error message, for example, via the display 8 or the communication interface.
  • the additional temperature sensor 21a located downstream of the backflow preventer 11, enables the pump electronics 2c to detect the status of the flush valve 7a at any time. This is particularly useful if the pump electronics 2c does not trigger the flush valve 7a itself. To do so, the pump electronics 2c evaluates the temperature measured by the additional temperature sensor 21a by comparing it with the temperature it measured itself. If the temperature measured by the additional temperature sensor 21a remains constant while the temperature measured by the pump-internal temperature sensor 20 drops, the flush valve 7a is obviously open and flushing is taking place (flushing mode). If, however, the two temperatures are equal, circulation is taking place (circulation mode).
  • the pump electronics 2c can even detect a fault in the flush valve 7a. If the temperatures remain the same after the flush valve 7a has been triggered, it is incorrectly closed. If the temperatures differ during circulation operation, water is obviously flowing through the flush valve 7a, i.e., it is incorrectly opened. In all cases, the status, in particular a fault condition of the flush valve 7a, can be displayed by the pump electronics 2c on the display 8, reported via the communication interface, and/or stored in the pump electronics 2c for remote retrieval.
  • An external sensor 21b is arranged in the expansion module 15, which is also connected to the pump electronics 2c via a sensor line 14.
  • the pump electronics 2 is able to monitor the expansion module 15 with regard to the measured variable.
  • the expansion module 15 is a cooling unit
  • the external sensor 21b can be a temperature sensor that detects the temperature at the outlet of the cooling unit.
  • the centrifugal pump unit 2 can be configured to perform temperature control based on this temperature. Alternatively or additionally, if a limit value is exceeded, an error or warning message can be generated by the centrifugal pump unit 2 and shown on the display 8 or sent via the communication line 17 to indicate a fault in the cooling unit.
  • an additional temperature sensor 21a must be installed between the inlet and the flush valve 7a.
  • the centrifugal pump unit 2 cannot function as a water meter here.
  • the advantage is that the proper functioning of the backflow preventer 11 can be checked. If the centrifugal pump unit 2 detects a flow during the flushing activity, e.g., a speed other than zero despite the electric motor 2b being de-energized, it is concluded that the backflow preventer 11 is defective. The centrifugal pump unit 2 then outputs an error message, for example, via the display 8 or the communication interface.
  • step S3 the flushing valve is opened in step S3 and the fresh drinking water flows through the main line 29 into the circuit line 31 or into the central flow line 33, the local flow lines 34, the local return lines 35 and the central return line 36 until it reaches the centrifugal pump unit 2 and the flushing valve 7a, where it is discharged.
  • step S5 If the condition is met, the flush valve is closed in step S5, and the centrifugal pump unit 2 returns to circulation mode, step S6. However, this only remains for a comparatively short period of time, for example, 60 seconds for approximately 50 m of pipeline, so that the fresh drinking water can push the water volume from the intermediate line 16 into the main line 29 and, if necessary, into the circulation line 31.
  • the flushing valve 7a is then opened again (step S7), so that the displaced water volume in the intermediate line 16, driven by the inflowing fresh water, flows to the flushing valve 7a and is separated there. Thus, a water exchange takes place in the entire circuit line.
  • a check is again carried out to determine whether a condition for ending the flushing has been met (step S8). Since the water already has its minimum temperature at the start of the flushing operation, the predefined flushing duration or the predefined flushing volume can be used as a stop condition. Alternatively, a modified temperature change condition can be used, in which the centrifugal pump unit first evaluates the water temperature to determine whether it rises and then falls again until the temperature no longer changes or the temperature change falls below the limit value. This is because the temperature rise is caused by the water volume that was previously in the intermediate line.
  • step S9 If the condition is met, the flushing valve is closed again in step S9 and the centrifugal pump unit 2 returns to circulation mode, step S1.
  • FIG. 5 shows a flowchart for implementing hot spot detection. This method is used to estimate the location of a heat source that is causing an unusual heat input into the drinking water supply network 30. The location is determined in the form of a distance from the centrifugal pump unit 2. Knowing the pipe lengths of the drinking water supply network 30, the distance can then be used to determine exactly where the heat source must be located in the building in which the drinking water supply network 30 extends, what the heat source is, and whether the heat input into the drinking water supply network 30 caused by the heat source can be prevented.
  • the distance between the heat source and the centrifugal pump unit can be determined as follows: A flow rate of 1.5 m 3 /h, for example, in a pipe of 22x1 mm (20 mm inner diameter) and a flow velocity of 1.3 m/s results in a distance of 26 m at 20. This distance can also be specified as "hot spot after x% of the pipe volume before the circulation system".

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Public Health (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Structural Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Devices For Dispensing Beverages (AREA)

Claims (16)

  1. Procédé d'exploitation et/ou de surveillance d'une circulation d'eau dans un réseau d'alimentation en eau potable (30), composé d'au moins un circuit (31) pour la circulation d'eau potable, d'un groupe motopompe centrifuge (2) pour recevoir de l'eau potable du circuit (31) et la refouler dans celui-ci, et d'au moins un consommateur (32) alimenté en eau potable par le circuit (31), sachant que le groupe motopompe centrifuge comprend (2) un module de pompe (2a) entraîné par un moteur électrique (2b) et une électronique de pompe (2c) pour la commande et la régulation du moteur électrique (2b), caractérisé en ce que le groupe motopompe centrifuge (2) détermine des informations de fonctionnement sur la circulation d'eau ou le réseau d'alimentation en eau potable (30) et utilise, pour surveiller la circulation de l'eau ainsi que pour surveiller
    - une vanne à l'intérieur du circuit (31), et/ou
    - un filtre dans le circuit (31), et/ou
    - une vanne de régulation (37) dans le circuit (31), et/ou
    - une valve de rinçage (7a) reliée au circuit (31) pour évacuer l'eau potable du circuit (31), et/ou
    - un dispositif antiretour (11) placé en série avec le groupe motopompe centrifuge (2), et/ou
    - un dispositif antiretour (11) situé en aval d'une valve de rinçage (7a) reliée au circuit (31) dans le sens de l'écoulement, et/ou
    - une activité de soutirage sur le consommateur (32), et/ou
    - du réseau d'alimentation en eau potable (30) afin de déterminer si
    - Il y a une modification structurelle du réseau de distribution d'eau potable (30), et/ou
    - il y a un équilibrage hydraulique défectueux et/ou
    - une source de chaleur irradie de la chaleur dans le réseau d'alimentation en eau potable.
  2. Procédé selon la revendication 1, caractérisé en ce que le groupe motopompe centrifuge (2) détermine et surveille pour détecter une modification ou l'atteinte d'un seuil son débit, sa hauteur de refoulement ou la température de l'eau potable refoulée.
  3. Procédé selon la revendication 2, caractérisé en ce que lorsque le débit passe en dessous d'un seuil inférieur, le groupe motopompe centrifuge (2) suppose qu'une vanne est fermée à l'intérieur du circuit (31) et émet en particulier un message correspondant.
  4. Procédé selon l'une des revendications précédentes, caractérisé en ce que le groupe motopompe centrifuge (2) détermine régulièrement, en particulier à des intervalles de plusieurs heures à quelques jours, de préférence la nuit, son point de travail et surveille pour détecter une modification du point de travail, sachant que le groupe motopompe centrifuge (2)
    - suppose la présence d'une modification structurelle du réseau d'alimentation en eau potable (30) lorsque le point de travail change brusquement et/ou
    - suppose la présence d'un filtre colmaté dans le circuit (31) lorsqu'une pression différentielle codéfinissant le point de travail augmente progressivement ou dépasse un seuil, et/ou
    - suppose la présence d'une vanne de régulation (37) défectueuse dans le circuit (31) lorsqu'une pression différentielle codéfinissant le point de travail augmente progressivement ou dépasse un seuil, et/ou
    et que le groupe motopompe centrifuge (2) émet en particulier un message correspondant.
  5. Procédé selon l'une des revendications précédentes, caractérisé en ce que le groupe motopompe centrifuge (2) est disposé, dans le sens d'écoulement de l'eau potable, en amont d'une valve de rinçage (7a) reliée au circuit (31) pour évacuer l'eau potable du circuit (31), et détermine à l'état non entraîné, si sa vitesse de rotation est supérieure à zéro, sachant que le groupe motopompe centrifuge (2) suppose que la valve de rinçage (7a) est ouverte lorsque la vitesse de rotation est supérieure à zéro, ou suppose, lorsqu'une opération de rinçage est déclenchée, que la valve de rinçage (7a) est défectueuse lorsque la vitesse de rotation est nulle, et émet en particulier un message correspondant.
  6. Procédé selon l'une des revendications précédentes, caractérisé en ce que le groupe motopompe centrifuge (2) est disposé, dans le sens d'écoulement de l'eau potable, en aval d'une valve de rinçage (7a) reliée au circuit (31) pour évacuer l'eau potable du circuit (31), et détermine à l'état non entraîné, si sa vitesse de rotation est supérieure à zéro, sachant que le groupe motopompe centrifuge (2) suppose, pendant un rinçage, qu'un dispositif antiretour (11) situé en série avec le groupe motopompe centrifuge (2) est défectueux lorsque la vitesse de rotation est supérieure à zéro et émet en particulier un message correspondant.
  7. Procédé selon l'une des revendications précédentes, caractérisé en ce que le groupe motopompe centrifuge (2) détermine son point de travail de manière continue ou quasi-continue, et que le groupe motopompe centrifuge (2) adopte une activité de soutirage sur le consommateur (32) lorsque le point de travail varie, sachant que chaque activité de soutirage est en particulier documentée.
  8. Procédé selon l'une des revendications précédentes, caractérisé en ce que le groupe motopompe centrifuge (2) commande une valve de rinçage (7a) reliée au circuit (31) pour évacuer l'eau potable du circuit (31).
  9. Procédé selon la revendication 8, caractérisé en ce que le groupe motopompe centrifuge (2) déclenche la valve de rinçage (7a) lorsque
    - aucune activité de soutirage ou une activité de soutirage insuffisante a été constatée sur le consommateur (32) pendant une période déterminée, ou
    - la température de l'eau potable pompée atteint et/ou dépasse un seuil supérieur, ou
    - la température de l'eau potable pompée est supérieure à un certain seuil pendant une période donnée, ou
    - une certaine période s'est écoulée, ou
    - une certaine date et/ou une certaine heure est atteinte, ou
    - elle reçoit un ordre de déclenchement manuel du rinçage via une unité d'affichage et de commande (2d) du groupe motopompe centrifuge (2), ou
    - elle reçoit un ordre de déclenchement à distance du rinçage via une interface de communication, notamment une interface web.
  10. Procédé selon la revendication 8 ou 9, caractérisé en ce que le groupe motopompe centrifuge (2) ferme la valve de rinçage (7a) lorsque
    - la température de l'eau potable pompée reste atteint et/ou passe en-dessous d'un seuil inférieur,ou
    - la température ne change plus ou la variation de la température de l'eau potable pompée passe en-dessous d'un seuil, ou
    - une durée de rinçage prédéfinie est écoulée, ou
    - un volume de rinçage prédéfini a été évacué.
  11. Procédé selon l'une des revendications 8 à 10, caractérisé en ce que le groupe motopompe centrifuge (2) inhibe un déclenchement de la valve de rinçage (7a) lorsque
    - une activité de soutirage suffisante a été constatée sur le consommateur (32) pendant une période déterminée, ou
    - elle reçoit un ordre d'inhibition manuel via une unité d'affichage et de commande (2d) du groupe motopompe centrifuge (2), ou
    - elle reçoit un ordre d'inhibition à distance via une interface de communication, notamment une interface web.
  12. Procédé selon l'une des revendications précédentes, caractérisé en ce que le groupe motopompe centrifuge (2) est relié à au moins un capteur (21a, 21b, 21c), en particulier un autre capteur de température, et exploite un signal électrique de ce capteur (21a, 21b, 21c).
  13. Procédé selon l'une des revendications précédentes, caractérisé en ce que le groupe motopompe centrifuge (2) détecte et compare entre elles les valeurs de la température de l'eau potable dans le sens d'écoulement en amont d'une valve de rinçage (7a) reliée au circuit (31) et de la température en aval d'un dispositif antiretour (11) situé en aval de la vanne de rinçage (7a), sachant que le groupe motopompe centrifuge (2)
    - suppose que, si les valeurs de température sont inégales lorsque la valve de rinçage (7a) est fermée, la valve de rinçage (7a) est défectueuse, et/ou
    - suppose que, si les valeurs de température sont égales lorsque la valve de rinçage (7a) est ouverte, le dispositif antiretour (11) est défectueux
    et que le groupe motopompe centrifuge (2) émet en particulier un message correspondant.
  14. Procédé selon l'une des revendications précédentes, caractérisé en ce que le groupe motopompe centrifuge (2) compare au moins une température d'eau potable décentralisée à une température d'eau potable centralisée, sachant que la température d'eau potable décentralisée est déterminée dans une conduite de circuit locale (34, 35) alimentée par la conduite de circuit (31) dans laquelle le groupe motopompe centrifuge (2) refoule l'eau potable, et la température centralisée de l'eau potable est déterminée par le groupe motopompe centrifuge (2) ou par un capteur de température (21a) qui y est raccordé, et en ce que le groupe motopompe centrifuge (2) suppose que l'équilibrage hydraulique est défectueux, et en particulier émet un message correspondant, lorsqu'un écart entre les températures décentralisée et centralisée de l'eau potable dépasse un seuil.
  15. Procédé au moins selon la revendication 8, caractérisé en ce que le groupe motopompe centrifuge (2) ouvre la valve de rinçage (7a) pour le rinçage, la ferme, refoule ensuite l'eau potable dans le circuit (31) pendant une période, en particulier pendant quelques secondes à quelques minutes, puis ouvre à nouveau la valve de rinçage (7a).
  16. Procédé au moins selon la revendication 1, caractérisé en ce que le groupe motopompe centrifuge (2) détecte une source de chaleur irradiant de la chaleur dans le réseau d'alimentation en eau potable (30) en effectuant les étapes suivantes :
    a. Arrêt du module de pompe (2a) pour permettre, en l'absence de circulation dans la conduite de circuit (31), qu'un volume localisé dans une section de conduite du réseau d'alimentation en eau potable (30) adjacente à la source de chaleur soit chauffé par la source de chaleur,
    b. Redémarrage du module de pompe (2a) après une certaine période,
    c. Surveillance de la température de l'eau potable pompée,
    d. Évaluation de la température relative à l'apparition d'un maximum local et
    e. Estimation de la distance entre la source de chaleur et le groupe motopompe centrifuge (2) à partir de la période entre la remise en marche du module de pompe (2a) et l'apparition du maximum et du débit présent pendant cette période.
EP21186632.2A 2020-08-21 2021-07-20 Procédé de fonctionnement et/ou de surveillance d'une circulation d'eau Active EP3957798B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP24220029.3A EP4502475A2 (fr) 2020-08-21 2021-07-20 Procédé de fonctionnement et/ou de surveillance d'une circulation d'eau
EP24219997.4A EP4502474A2 (fr) 2020-08-21 2021-07-20 Procédé de fonctionnement et/ou de surveillance d'une circulation d'eau

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
LU102009A LU102009B1 (de) 2020-08-21 2020-08-21 Verfahren zum Betreiben und/ oder Überwachen einer Wasserzirkulation

Related Child Applications (4)

Application Number Title Priority Date Filing Date
EP24219997.4A Division-Into EP4502474A2 (fr) 2020-08-21 2021-07-20 Procédé de fonctionnement et/ou de surveillance d'une circulation d'eau
EP24219997.4A Division EP4502474A2 (fr) 2020-08-21 2021-07-20 Procédé de fonctionnement et/ou de surveillance d'une circulation d'eau
EP24220029.3A Division EP4502475A2 (fr) 2020-08-21 2021-07-20 Procédé de fonctionnement et/ou de surveillance d'une circulation d'eau
EP24220029.3A Division-Into EP4502475A2 (fr) 2020-08-21 2021-07-20 Procédé de fonctionnement et/ou de surveillance d'une circulation d'eau

Publications (2)

Publication Number Publication Date
EP3957798A1 EP3957798A1 (fr) 2022-02-23
EP3957798B1 true EP3957798B1 (fr) 2025-03-26

Family

ID=72517308

Family Applications (3)

Application Number Title Priority Date Filing Date
EP24220029.3A Pending EP4502475A2 (fr) 2020-08-21 2021-07-20 Procédé de fonctionnement et/ou de surveillance d'une circulation d'eau
EP21186632.2A Active EP3957798B1 (fr) 2020-08-21 2021-07-20 Procédé de fonctionnement et/ou de surveillance d'une circulation d'eau
EP24219997.4A Pending EP4502474A2 (fr) 2020-08-21 2021-07-20 Procédé de fonctionnement et/ou de surveillance d'une circulation d'eau

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP24220029.3A Pending EP4502475A2 (fr) 2020-08-21 2021-07-20 Procédé de fonctionnement et/ou de surveillance d'une circulation d'eau

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP24219997.4A Pending EP4502474A2 (fr) 2020-08-21 2021-07-20 Procédé de fonctionnement et/ou de surveillance d'une circulation d'eau

Country Status (2)

Country Link
EP (3) EP4502475A2 (fr)
LU (1) LU102009B1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022121469A1 (de) * 2022-08-25 2024-03-07 Grohe Ag Verfahren zur Erkennung einer Verschmutzung einer mit einer Sanitärarmatur verbundenen Abgabeeinrichtung für eine Flüssigkeit und Sanitärarmatur

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3744102A1 (de) * 1987-12-24 1989-07-06 Ludin Ludwig Frostschutz fuer hauswassernetze
US6463956B2 (en) * 1998-09-29 2002-10-15 International Water-Guard Industries Inc. Method of water distribution and apparatus therefor
US20100096018A1 (en) * 2008-02-27 2010-04-22 Wylie Jacob E Instant hot water delivery system
FI120375B (fi) * 2008-05-29 2009-09-30 Abb Oy Menetelmä ja laitteisto vuodon todentamiseksi virtauksen estolaitteen yhteydessä
DE202010003376U1 (de) * 2010-03-09 2011-08-01 Gebrüder Kemper GmbH + Co Metallwerke Trink- und Brauchwassersystem
EP3165510A1 (fr) * 2015-11-03 2017-05-10 Grundfos Holding A/S Groupe pompe centrifuge
DE102019201263A1 (de) * 2019-01-31 2020-08-06 Gebrüder Kemper Gmbh + Co. Kg Metallwerke Trink- und Brauchwassersystem und Verfahren zum Spülen desselben

Also Published As

Publication number Publication date
EP4502475A2 (fr) 2025-02-05
EP4502474A2 (fr) 2025-02-05
EP3957798A1 (fr) 2022-02-23
LU102009B1 (de) 2022-02-21

Similar Documents

Publication Publication Date Title
EP3695060B1 (fr) Système d'alimentation en eau potable doté d'un dispositif de régulation de pression, procédé de commande de ce système et programme informatique
EP2096214B1 (fr) Dispositif d'alimentation en eau potable d'un bâtiment et dispositif de commande pour celui-ci
EP3337931B1 (fr) Dispositif et procede destine au lavage automatique de conduites d'eau avec vanne multiple
EP3690151B1 (fr) Système d'eau potable et d'eau sanitaire et son procédé de rinçage
EP2476963B1 (fr) Procédé de remplissage et de recharge d'eau dans un circuit d'eau
WO2014029699A1 (fr) Dispositif de protection contre les fuites
DE102014208261B4 (de) Trink- und Brauchwassersystem eines Gebäudes und Verfahren zur Steuerung des Trink- und Brauchwassersystems
EP3957798B1 (fr) Procédé de fonctionnement et/ou de surveillance d'une circulation d'eau
EP2871539B1 (fr) Procédé de diagnostic pour le diagnostic du fonctionnement correct d'un système de chauffage et/ou de refroidissement
DE2606535A1 (de) Temperatursystem
EP1342957B1 (fr) Méthode et appareil pour contrôler une pompe de circulation
WO2022122581A1 (fr) Procédé de fonctionnement d'une pompe à chaleur
EP1074795A2 (fr) Procédé pour calibrer hydrauliquement une installation de chauffage
EP1447627A1 (fr) Dispositif et procédé de commande et/ou contrôle d'un chauffage ou d'un refroidissement d'un immeuble
EP3957860B1 (fr) Module compact pour une circulation d'eau
DE102012025058A1 (de) Vorrichtung und Verfahren zur Verbesserung der häuslichen Wasserqualität
DE202012012276U1 (de) Vorrichtung zum Reinigen einer häuslichen Wasserleitung und/oder zur Aufrechterhaltung der Wasserqualität
EP4056768B1 (fr) Installation d'eau potable
DE102013012248A1 (de) Vorrichtung und Verfahren zur Verbesserung der häuslichen Wasserqualität
EP3062026B1 (fr) Systeme de regulation de la temperature
DE102010049341A1 (de) Zirkulationspumpensteuersystem zur Verwendung in einer Warmwasserverteilungsanlage
DE69105742T2 (de) Zentralheizungsanlage.
EP3266944B1 (fr) Système de protection contre les fuites
EP3670765B1 (fr) Alimentation de chauffe-eau
DE202012104879U1 (de) Trink- und Brauchwasserabgabestelle mit Wasserfilter und automatischer Leitungsspülung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220823

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230615

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20240307

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502021007004

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: E03B0007040000

Ipc: F04D0015000000

Ref legal event code: R079

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

INTG Intention to grant announced

Effective date: 20240916

RIC1 Information provided on ipc code assigned before grant

Ipc: F24D 17/00 20220101ALI20240906BHEP

Ipc: E03B 5/02 20060101ALI20240906BHEP

Ipc: E03C 1/10 20060101ALI20240906BHEP

Ipc: F24D 19/10 20060101ALI20240906BHEP

Ipc: F04D 15/02 20060101ALI20240906BHEP

Ipc: F04D 15/00 20060101AFI20240906BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20241022

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR