[go: up one dir, main page]

EP3953954B1 - Inductive component and method for producing an inductive component - Google Patents

Inductive component and method for producing an inductive component Download PDF

Info

Publication number
EP3953954B1
EP3953954B1 EP20711123.8A EP20711123A EP3953954B1 EP 3953954 B1 EP3953954 B1 EP 3953954B1 EP 20711123 A EP20711123 A EP 20711123A EP 3953954 B1 EP3953954 B1 EP 3953954B1
Authority
EP
European Patent Office
Prior art keywords
filler
mass
inductive component
total mass
copper wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20711123.8A
Other languages
German (de)
French (fr)
Other versions
EP3953954A1 (en
Inventor
Thomas Plum
Stefan Henneck
Witold Pieper
Stefan Kaessner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3953954A1 publication Critical patent/EP3953954A1/en
Application granted granted Critical
Publication of EP3953954B1 publication Critical patent/EP3953954B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/02Casings
    • H01F27/022Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type
    • H01F17/04Fixed inductances of the signal type with magnetic core
    • H01F17/06Fixed inductances of the signal type with magnetic core with core substantially closed in itself, e.g. toroid
    • H01F17/062Toroidal core with turns of coil around it
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type
    • H01F17/04Fixed inductances of the signal type with magnetic core
    • H01F2017/048Fixed inductances of the signal type with magnetic core with encapsulating core, e.g. made of resin and magnetic powder

Definitions

  • the present invention relates to an inductive component with high power density and a method for producing an inductive component with good inductance and very good thermal conductivity.
  • a magnetic core is surrounded in a known manner with two electrical conductors with an unequal number of windings, such as copper wire windings.
  • the electrical conductors are then surrounded with an encapsulating compound, which creates a connection between the magnetic core surrounded by the windings and a housing. Power losses that arise in the magnetic core or windings during operation of the transformer are dissipated to the housing via the encapsulating compound. The power density of a conventional transformer is thus reduced.
  • US 2013/286703 A1 describes a reactor with a winding and a magnetic core.
  • the core comprises a resin, a magnetic powder and a non-magnetic powder to prevent settling.
  • the non-magnetic powder can be selected from SiO 2 , Al 2 O 3 , Fe 2 O 3 , BN, AIN, ZnO and TiO 2 as well as inorganic silicon and organic silicone resins.
  • US 2018/308610 A1 describes a winding component having a magnetic portion comprising metallic particles and a resin.
  • the magnetic portion may further comprise SiO 2 .
  • CN 105 845 423 A describes a process for producing an induction element.
  • An iron core is provided in the form of a ring and crushed into particles, which are then oxidized.
  • a Copper winding is placed in a mold and a mixture containing the crushed particles is added and baked.
  • DE102006038370 A1 discloses an inductive component with an induction coil on a coil carrier which is formed from a temperature-resistant mass comprising an inorganic, hydraulically acting binder consisting of cement, alkali silicate, fly ash, slag, gypsum and/or lime, and/or polymer concrete, ferrite powder, a filler made of vermiculite, quartz sand and/or aluminum oxide, and a fluid, in particular water.
  • a temperature-resistant mass comprising an inorganic, hydraulically acting binder consisting of cement, alkali silicate, fly ash, slag, gypsum and/or lime, and/or polymer concrete, ferrite powder, a filler made of vermiculite, quartz sand and/or aluminum oxide, and a fluid, in particular water.
  • the inductive component comprises a copper wire winding and an enveloping compound surrounding the copper wire winding.
  • Two or more copper wire windings or a copper wire winding and at least one further winding of an electrically conductive material can also be used.
  • the number of windings depends on the use of the inductive component.
  • the copper wire winding can be, for example, a free-form copper wire winding and is essentially not restricted in form and shape. A particularly suitable form is the toroidal winding.
  • the encapsulation mass comprises a matrix and at least one first filler.
  • the first filler and further fillers are distributed in the matrix, whereby the resulting composite provides a certain mechanical stability and the matrix provides a connection between the copper wire winding and, for example, a surrounding component.
  • the matrix comprises at least one selected from: alumina cement, phosphate cement, SiO 2 , MgO and reactive alumina. These are chemical compounds or mixtures of these compounds that are bound with water and not a sintered ceramic mass. It is assumed that this can prevent an increase in the dielectric constant at high magnetic permeability.
  • the inductance can be increased by the inductance in the matrix.
  • the first filler can be provided which contains at least one soft magnetic powder.
  • the first filler can be a soft magnetic powder alone or a mixture of two or more soft magnetic powders.
  • the inductive component In addition to very good magnetic properties, the inductive component also has high thermal conductivity properties and the loss factor of permittivity is low.
  • the thermal conductivity of the encapsulation mass used according to the invention is 5 to 8 W/m ⁇ K, which is particularly due to the use of alumina cement, phosphate cement, SiO 2 , MgO or reactive alumina.
  • the inductive component can also be designed without a conventional magnetic core, which saves material costs and costs for the production of the component.
  • the soft magnetic powder is advantageously selected from carbonyl iron powder and ferrite powder. This means that carbonyl iron powder and ferrite powder can be used alone or in the form of a mixture.
  • the enveloping compound comprises at least one polymer.
  • the thermal behavior of the enveloping compound such as shrinkage or thermal conductivity and the like, can be advantageously influenced.
  • the use of polymers can also improve the adhesion of the enveloping compound to surrounding components, such as a housing.
  • Particularly suitable polymers are thermoplastic polymers.
  • Preferred polymers are copolymers of acrylic acid esters, ethylene and vinyl esters, copolymers of acrylic acid esters, methacrylic acid esters and styrene, copolymers of ethylene and vinyl acetate and methyl silicone resins.
  • the enveloping compound according to the present invention contains at least one second filler.
  • This second filler can introduce further functionalities into the enveloping compound.
  • a second filler can be used alone or a mixture of two or more second fillers. Due to the very good heat-conducting properties, the second filler contains Al 2 O 3 .
  • the total mass of the matrix is in particular 5 to 25 mass%.
  • Alumina cement, phosphate cement, SiO 2 , MgO or reactive alumina form a very fine microstructural structure with particle sizes of a maximum of 200 ⁇ m, which contributes to the high stability of the matrix and very good thermal conductivity.
  • the total mass of first and second filler is in particular 75 to 95 mass%.
  • the inductive component comprises a magnetic core.
  • the copper wire winding thus surrounds the magnetic core at least partially or at least in sections.
  • the magnetic core can be, for example, a ferrite core or a magnetic powder core with a polymer matrix or also a sintered magnetic powder core and is designed in particular as a ferrite core.
  • the total mass of soft magnetic powder based on the total mass of the first and second filler, is 1 to 50 mass%.
  • a high magnetic permeability can still be provided in the inductive component.
  • Leakage inductances can be increased while maintaining a low dielectric constant and resonance inductances can be integrated.
  • the total mass of second filler containing Al 2 O 3 is 50 to 99 mass%.
  • the inductive component and in particular the encapsulation compound is advantageously free of Portland cement.
  • the total mass of Portland cement is thus essentially 0 mass%, based on the total mass of the encapsulation compound and thus also of the inductive component.
  • Portland cement has the disadvantage compared to the matrix according to the invention that it contains many impurities which, although tolerable for load-bearing components, result in significant losses in properties for electronic applications and in particular for inductive components.
  • Portland cement is significantly less thermally conductive than alumina cement, phosphate cement, SiO 2 , MgO or reactive alumina, which is probably due to the chemical structure of the individual matrix phases.
  • Another advantage is that the first filler and the second filler are unsintered. This not only brings advantages in terms of energy-saving production, but also in terms of high magnetic permeability and high thermal conductivity properties.
  • the inductive component can be designed as a coil, for example, and for this purpose comprises a copper wire winding. Due to the very good inductive and heat-conducting properties, the inductive component according to the invention is designed in particular as a transformer and for this purpose comprises a copper wire winding and at least one further electrically conductive winding, which can also be designed as a copper wire winding.
  • the method comprises a step of mixing a matrix material with at least one first filler, at least one second filler, water and optionally at least one flow agent to produce a slip.
  • a slip is understood to be an unhardened and unbound more or less flowable or at least moldable mass.
  • a flow agent within the meaning of the invention can be, for example, modified polycarboxylate ethers, and can be used, for example, with 0.1 to 2 mass%, based on the total mass of slip.
  • the resulting slip is then arranged around a copper wire winding so that the slip surrounds the copper wire winding on as many sides as possible, but at least on the outer circumference of the copper wire winding.
  • the slip is then solidified by at least partially setting the matrix material with the water at a temperature in the range of 50 to 150 °C. This setting step can be carried out in an oven, for example. Sintering at temperatures above 200 °C is not carried out. The setting process largely removes the previously used flow agents and they can then essentially no longer be detected.
  • a coating compound is created in accordance with the present invention, as already described above.
  • the degree of setting of the matrix material can be adjusted by the amount of water added. Suitable amounts of water can be found through simple experiments.
  • the component produced according to the invention is also characterized by high thermal conductivity, so that the inductive component is highly efficient and has an excellent power density.
  • the method may further comprise a tempering step following the setting of the matrix material.
  • the tempering is preferably carried out at a temperature in a range of 100 to 150 °C.
  • the method can also advantageously provide a step of surrounding a magnetic core, which is in particular designed as a ferrite core, with the copper wire winding.
  • the Copper wire winding is therefore not a free-form copper wire winding, but surrounds a magnetic core.
  • the enveloping compound is therefore arranged around the copper wire winding surrounding the magnetic core and in particular not inside the copper wire winding.
  • Figure 1 shows an inductive component 1 according to a first embodiment in section.
  • the inductive component 1 comprises a housing 2 in which a magnetic core 4 is arranged, which is surrounded on all sides by a copper wire winding 3.
  • the copper wire winding 3 is wound directly around the magnetic core 4.
  • the magnetic core 4 is designed, for example, as a ferrite core or as a magnetic powder core with a polymer matrix or as a sintered magnetic powder core, whereby the design as a ferrite core is preferred.
  • the magnetic core 4 and the copper wire winding 3 surrounding the magnetic core 4 are arranged in the housing 2. Between the housing 2 and the copper wire winding 3 there is an enveloping compound 8 which provides a connection between the copper wire winding 3 and the housing 2.
  • the encapsulation mass 8 comprises a matrix 5 and a first filler 6 as well as a second filler 7, wherein the first filler 6 is a soft magnetic powder, such as carbonyl iron or ferrite powder, and wherein the second filler 7 is Al 2 O 3 .
  • the first filler 6 and the second filler 7 are distributed in the matrix 5 and are in non-sintered form.
  • the matrix 5 comprises at least one selected from: alumina cement, phosphate cement, SiO 2 , MgO and reactive alumina. These compounds or mixtures of these compounds are present in a form that is at least partially set with water at 50 to 150 °C and are not sintered.
  • the matrix 5 thus forms a microcrystalline network of particles with a maximum particle size of 200 ⁇ m, in which the fillers 6, 7 are evenly distributed.
  • the encapsulation compound 8 and thus also the inductive component 1 are free of Portland cement.
  • the total mass of the matrix 5 is 5 to 25 mass% based on the total mass of the enveloping mass 8.
  • the total mass of the first and second filler 6, 7 is, based on the total mass of the enveloping mass 8, 75 to 95 mass%, whereby the proportion of the first filler 6, i.e. of soft magnetic powder, is 1 to 50 mass%, based on the total mass of the first filler 6 and the second filler 7. Due to the high proportion of the second filler 7, a particularly high thermal conductivity is achieved with good magnetic properties.
  • the encapsulation compound 8 has a high thermal conductivity, which further increases the power density of the inductive component 1.
  • FIG 2 shows an inductive component 10 according to a second embodiment not according to the invention in section.
  • the inductive component 10 differs from the inductive component 1 from Figure 1 by having no magnetic core.
  • the copper wire winding 3 is thus in the form of a Freeform copper wire winding, which was, for example, previously created on a carrier.
  • the total mass of matrix 5 relative to the total mass of the enveloping mass 8 is also 5 to 25 mass%.
  • the total mass of first filler 6 and second filler 7 is, based on the total mass of the enveloping mass 8, 75 to 95 mass%, whereby the proportion of first filler 6, i.e. of soft magnetic powder, is higher than in the matrix of the inductive component 1 from Figure 1 and in particular 75 to 95 mass%, based on the total mass of first filler 6 and second filler 7.
  • the proportion of second filler 7, i.e. in particular Al 2 O 3 is therefore lower.
  • the higher proportion of soft magnetic powder is advantageous in light of the magnetic properties of the inductive component 10.
  • the inductive component 10 is also characterized by a high power density and high efficiency due to the use of the encapsulating compound 8.
  • the encapsulating compound 8 has good thermal conductivity, which further increases the power density of the inductive component 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Soft Magnetic Materials (AREA)

Description

Stand der TechnikState of the art

Die vorliegende Erfindung betrifft ein induktives Bauelement mit hoher Leistungsdichte sowie ein Verfahren zur Herstellung eines induktiven Bauelements mit guter Induktivität bei sehr guter Wärmeleitfähigkeit.The present invention relates to an inductive component with high power density and a method for producing an inductive component with good inductance and very good thermal conductivity.

Bei der Herstellung herkömmlicher Transformatoren wird ein Magnetkern in bekannter Weise mit zwei elektrischen Leitern mit ungleicher Anzahl an Wicklungen, wie z.B. Kupferdrahtwicklungen, umgeben. Im Anschluss daran werden die elektrischen Leiter mit einer Umhüllmasse umgeben, die eine Verbindung zwischen dem mit den Wicklungen umgebenen Magnetkern und einem Gehäuse herstellt. Über die Umhüllmasse werden während des Betriebs des Transformators im Magnetkern bzw. in den Wicklungen entstehende Verlustleistungen an das Gehäuse abgeführt. Die Leistungsdichte eines herkömmlichen Transformators ist damit reduziert.When manufacturing conventional transformers, a magnetic core is surrounded in a known manner with two electrical conductors with an unequal number of windings, such as copper wire windings. The electrical conductors are then surrounded with an encapsulating compound, which creates a connection between the magnetic core surrounded by the windings and a housing. Power losses that arise in the magnetic core or windings during operation of the transformer are dissipated to the housing via the encapsulating compound. The power density of a conventional transformer is thus reduced.

US 2013/286703 A1 beschreibt einen Reaktor mit einer Wickelung und einem magnetischen Kern. Gemäß dem zweiten Ausführungsbeispiel umfasst der Kern ein Harz, ein magnetisches Pulver sowie ein nicht magnetisches Pulver, um ein Absetzen zu verhindern. Das nicht magnetische Pulver kann dabei ausgewählt sein aus SiO2, Al2O3, Fe2O3, BN, AIN, ZnO und TiO2 sowie anorganischem Silizium und organischen Silikonharzen. US 2013/286703 A1 describes a reactor with a winding and a magnetic core. According to the second embodiment, the core comprises a resin, a magnetic powder and a non-magnetic powder to prevent settling. The non-magnetic powder can be selected from SiO 2 , Al 2 O 3 , Fe 2 O 3 , BN, AIN, ZnO and TiO 2 as well as inorganic silicon and organic silicone resins.

US 2018/308610 A1 beschreibt eine Wicklungskomponente mit einem magnetischen Teilbereich, der metallene Partikel und ein Harz umfasst. Der magnetische Teilbereich kann ferner SiO2 umfassen. US 2018/308610 A1 describes a winding component having a magnetic portion comprising metallic particles and a resin. The magnetic portion may further comprise SiO 2 .

CN 105 845 423 A beschreibt ein Verfahren zur Herstellung eines Induktionselements. Hierbei wird ein Eisenkern in Form eines Rings bereitgestellt und zu Partikeln zerkleinert, die anschließend oxidiert werden. Eine Kupferwicklung wird in eine Form gegeben und dazu eine Mischung, die die zerkleinerten Partikel umfasst, zugefügt und gebacken. CN 105 845 423 A describes a process for producing an induction element. An iron core is provided in the form of a ring and crushed into particles, which are then oxidized. A Copper winding is placed in a mold and a mixture containing the crushed particles is added and baked.

DE102006038370 A1 offenbart ein induktives Bauelement mit einer Induktionsspule auf einem Spulenträger, der aus einer temperaturbeständigen Masse, umfassend ein anorganisches, hydraulisch wirkendes Bindemittel, bestehend aus Zement, Alkalisilikat, Flugasche, Schlacke, Gips und/oder Kalk, und/oder Polymerbeton, Ferritpulver, einem Füllstoff aus Vermikulit, Quarzsand und/ oder Aluminiumoxid, und ein Fluid, insbesondere Wasser, ausgeformt ist. DE102006038370 A1 discloses an inductive component with an induction coil on a coil carrier which is formed from a temperature-resistant mass comprising an inorganic, hydraulically acting binder consisting of cement, alkali silicate, fly ash, slag, gypsum and/or lime, and/or polymer concrete, ferrite powder, a filler made of vermiculite, quartz sand and/or aluminum oxide, and a fluid, in particular water.

Offenbarung der Erfindungdisclosure of the invention

Das erfindungsgemäße induktive Bauelement gemäß Anspruch 1 zeichnet sich hingegen durch eine hohe Leistungsdichte aus. Dies wird dadurch erreicht, dass aufgrund des strukturellen Aufbaus des induktiven Bauelements hohe magnetische Permeabilitäten (µR = 2 bis 4 oder 10 bis 500) erzielt und in Folge dessen auch Streuinduktivitäten erhöht werden können, wodurch zudem auch eine Integration einer Resonanzinduktivität möglich ist, ohne die Effizienz des induktiven Bauelements und damit die Leistungsdichte wesentlich zu beeinträchtigen. Zudem kann bei hoher Wärmeleitfähigkeit und sehr guter Leistungsdichte der Bauraum des induktiven Bauelements reduziert werden.The inductive component according to the invention according to claim 1, however, is characterized by a high power density. This is achieved by the fact that, due to the structural design of the inductive component, high magnetic permeabilities (µ R = 2 to 4 or 10 to 500) can be achieved and, as a result, stray inductances can also be increased, which also makes it possible to integrate a resonance inductance without significantly impairing the efficiency of the inductive component and thus the power density. In addition, the installation space of the inductive component can be reduced with high thermal conductivity and very good power density.

Erfindungsgemäß umfasst das induktive Bauelement eine Kupferdrahtwicklung und eine die Kupferdrahtwicklung umgebende Umhüllmasse. Es können auch zwei oder mehrere Kupferdrahtwicklungen oder aber eine Kupferdrahtwicklung und mindestens eine weitere Wicklung eines elektrisch leitfähigen Materials verwendet werden. Die Anzahl an Wicklungen richtet sich dabei nach der Verwendung des induktiven Bauelements. Die Kupferdrahtwicklung kann dabei z.B. als Freiform-Kupferdrahtwicklung vorliegen und ist in Form und Gestalt im Wesentlichen nicht beschränkt. Eine besonders geeignete Form ist die Wicklung in Toroidform.According to the invention, the inductive component comprises a copper wire winding and an enveloping compound surrounding the copper wire winding. Two or more copper wire windings or a copper wire winding and at least one further winding of an electrically conductive material can also be used. The number of windings depends on the use of the inductive component. The copper wire winding can be, for example, a free-form copper wire winding and is essentially not restricted in form and shape. A particularly suitable form is the toroidal winding.

Die Umhüllmasse umfasst eine Matrix und mindestens einen ersten Füllstoff. Der erste Füllstoff und weitere Füllstoffe sind dabei in der Matrix verteilt, wobei durch das entstehende Komposit eine gewisse mechanische Stabilität erhalten wird und die Matrix eine Verbindung zwischen der Kupferdrahtwicklung und z.B. einem umgebenden Bauteil bereitstellt. Die Matrix umfasst dabei mindestens eines, ausgewählt aus: Tonerdezement, Phosphatzement, SiO2, MgO und reaktiver Tonerde. Hierbei handelt es sich um mit Wasser abgebundene chemische Verbindungen oder Mischungen dieser Verbindungen und nicht um eine gesinterte keramische Masse. Es wird angenommen, dass hierdurch bei hoher magnetischer Permeabilität ein Anheben der Dielektrizitätskonstante verhindert werden kann. Die Induktivität kann dabei durch den in der Matrix enthaltenen ersten Füllstoff bereitgestellt werden, der mindestens ein weichmagnetisches Pulver umfasst. Der erste Füllstoff kann dabei ein weichmagnetisches Pulver allein oder eine Mischung von zwei oder mehreren weichmagnetischen Pulvern umfassen.The encapsulation mass comprises a matrix and at least one first filler. The first filler and further fillers are distributed in the matrix, whereby the resulting composite provides a certain mechanical stability and the matrix provides a connection between the copper wire winding and, for example, a surrounding component. The matrix comprises at least one selected from: alumina cement, phosphate cement, SiO 2 , MgO and reactive alumina. These are chemical compounds or mixtures of these compounds that are bound with water and not a sintered ceramic mass. It is assumed that this can prevent an increase in the dielectric constant at high magnetic permeability. The inductance can be increased by the inductance in the matrix. The first filler can be provided which contains at least one soft magnetic powder. The first filler can be a soft magnetic powder alone or a mixture of two or more soft magnetic powders.

Das induktive Bauelement weist neben sehr guten magnetischen Eigenschaften auch hohe wärmeleitende Eigenschaften auf und der Verlustfaktor an Permittivität ist gering. Beispielsweise beträgt die Wärmeleitfähigkeit der erfindungsgemäß verwendeten Umhüllmasse 5 bis 8 W/m·K, was insbesondere auf die Verwendung von Tonerdezement, Phosphatzement, SiO2, MgO bzw. reaktiver Tonerde zurückzuführen ist. Das induktive Bauelement kann ferner ohne einen herkömmlichen Magnetkern ausgebildet sein, was Materialkosten und Kosten für die Herstellung des Bauteils einspart.In addition to very good magnetic properties, the inductive component also has high thermal conductivity properties and the loss factor of permittivity is low. For example, the thermal conductivity of the encapsulation mass used according to the invention is 5 to 8 W/m·K, which is particularly due to the use of alumina cement, phosphate cement, SiO 2 , MgO or reactive alumina. The inductive component can also be designed without a conventional magnetic core, which saves material costs and costs for the production of the component.

Die Unteransprüche zeigen bevorzugte Weiterbildungen der Erfindung.The subclaims show preferred developments of the invention.

Aufgrund der sehr guten induktiven Eigenschaften ist das weichmagnetische Pulver vorteilhafterweise ausgewählt aus Carbonyleisenpulver und Ferritpulver. Dies bedeutet, dass Carbonyleisenpulver und Ferritpulver jeweils alleine oder aber in Form eines Gemischs verwendet werden können.Due to the very good inductive properties, the soft magnetic powder is advantageously selected from carbonyl iron powder and ferrite powder. This means that carbonyl iron powder and ferrite powder can be used alone or in the form of a mixture.

Gemäß einer weiteren vorteilhaften Weiterbildung umfasst die Umhüllmasse mindestens ein Polymer. Durch die Verwendung eines oder mehrere Polymere kann z.B. das thermische Verhalten der Umhüllmasse, wie z.B. eine Schwindung oder die Wärmeleitfähigkeit und dergleichen, vorteilhaft beeinflusst werden. Auch kann durch den Einsatz von Polymeren die Haftung der Umhüllmasse an umliegenden Bauteilen, wie beispielsweise einem Gehäuse, verbessert werden. Besonders geeignete Polymere sind dabei thermoplastische Polymere. Bevorzugte Polymere sind Copolymere aus Acrylsäureestern, Ethylen und Vinylestern, Copolymere aus Acrylsäureestern, Methacrylsäureestern und Styrol, Copolymere aus Ethylen und Vinylacetat und Methylsilikonharze.According to a further advantageous development, the enveloping compound comprises at least one polymer. By using one or more polymers, for example, the thermal behavior of the enveloping compound, such as shrinkage or thermal conductivity and the like, can be advantageously influenced. The use of polymers can also improve the adhesion of the enveloping compound to surrounding components, such as a housing. Particularly suitable polymers are thermoplastic polymers. Preferred polymers are copolymers of acrylic acid esters, ethylene and vinyl esters, copolymers of acrylic acid esters, methacrylic acid esters and styrene, copolymers of ethylene and vinyl acetate and methyl silicone resins.

Zur Verbesserung der Eigenschaften der Umhüllmasse enthält die Umhüllmasse gemäß der vorliegenden Erfindung mindestens einen zweiten Füllstoff. Dieser zweite Füllstoff kann dabei weitere Funktionalitäten in die Umhüllmasse eintragen. Dabei kann ein zweiter Füllstoff allein oder aber eine Mischung von zwei oder mehreren zweiten Füllstoffen eingesetzt werden. Aufgrund der sehr guten wärmeleitenden Eigenschaften enthält der zweite Füllstoff Al2O3.To improve the properties of the enveloping compound, the enveloping compound according to the present invention contains at least one second filler. This second filler can introduce further functionalities into the enveloping compound. A second filler can be used alone or a mixture of two or more second fillers. Due to the very good heat-conducting properties, the second filler contains Al 2 O 3 .

Zur Bereitstellung einer guten mechanischen Stabilität bei gleichzeitig hoher Wärmeleitfähigkeit und guter magnetischer Permeabilität beträgt die Gesamtmasse der Matrix, bezogen auf die Gesamtmasse der Umhüllmasse insbesondere 5 bis 25 Masse%. Hierbei bilden Tonerdezement, Phosphatzement, SiO2, MgO bzw. reaktiver Tonerde ein sehr feines mikrostrukturelles Gefüge mit Partikelgrößen von maximal 200 µm, was zur hohen Stabilität der Matrix und sehr guten Wärmeleitfähigkeit beiträgt.In order to provide good mechanical stability with high thermal conductivity and good magnetic permeability, the total mass of the matrix, based on the total mass of the coating mass, is in particular 5 to 25 mass%. Alumina cement, phosphate cement, SiO 2 , MgO or reactive alumina form a very fine microstructural structure with particle sizes of a maximum of 200 µm, which contributes to the high stability of the matrix and very good thermal conductivity.

Zur Optimierung der Funktionalität der Umhüllmasse, und insbesondere zur Verbesserung der induktiven und wärmeleitenden Eigenschaften, beträgt die Gesamtmasse an erstem und zweitem Füllstoff, bezogen auf die Gesamtmasse der Umhüllmasse insbesondere 75 bis 95 Masse%.In order to optimize the functionality of the enveloping mass, and in particular to improve the inductive and heat-conducting properties, the total mass of first and second filler, based on the total mass of the enveloping mass, is in particular 75 to 95 mass%.

Gemäß einer weiteren vorteilhaften Weiterbildung umfasst das induktive Bauelement einen Magnetkern. Die Kupferdrahtwicklung umgibt damit den Magnetkern mindestens teilweise bzw. mindestens abschnittsweise. Der Magnetkern kann z.B. ein Ferritkern oder ein magnetischer Pulverkern mit Polymermatrix oder auch ein gesinterter magnetischer Pulverkern sein und ist insbesondere als Ferritkern ausgebildet.According to a further advantageous development, the inductive component comprises a magnetic core. The copper wire winding thus surrounds the magnetic core at least partially or at least in sections. The magnetic core can be, for example, a ferrite core or a magnetic powder core with a polymer matrix or also a sintered magnetic powder core and is designed in particular as a ferrite core.

Gemäß der vorliegenden Erfindung beträgt die Gesamtmasse an weichmagnetischem Pulver, bezogen auf die Gesamtmasse an erstem und zweitem Füllstoff 1 bis 50 Masse%. Somit kann bei reduzierter Gesamtmasse an weichmagnetischem Pulver trotzdem eine hohe magnetische Permeabilität im induktiven Bauelement bereitgestellt werden. Streuinduktivitäten können bei gleichbleibend niedriger Dielektrizitätskonstante erhöht und Resonanzinduktivitäten integriert werden.According to the present invention, the total mass of soft magnetic powder, based on the total mass of the first and second filler, is 1 to 50 mass%. Thus, with a reduced total mass of soft magnetic powder, a high magnetic permeability can still be provided in the inductive component. Leakage inductances can be increased while maintaining a low dielectric constant and resonance inductances can be integrated.

Ferner beträgt im Lichte der wärmeleitenden Eigenschaften der Umhüllmasse und damit auch des induktiven Bauelements, wenn die Gesamtmasse an zweitem Füllstoff enthaltend Al2O3, bezogen auf die Gesamtmasse an erstem und zweitem Füllstoff 50 bis 99 Masse%.Furthermore, in light of the thermally conductive properties of the encapsulation material and thus also of the inductive component, the total mass of second filler containing Al 2 O 3 , based on the total mass of first and second filler, is 50 to 99 mass%.

Das induktive Bauelement und insbesondere die Umhüllmasse ist vorteilhafterweise frei von Portlandzement. Dies bedeutet, dass bei der Herstellung des induktiven Bauelements kein Portlandzement zugesetzt bzw. verwendet wird. Die Gesamtmasse an Portlandzement ist damit im Wesentlichen 0 Masse%, bezogen auf die Gesamtmasse der Umhüllmasse und damit auch des induktiven Bauelements. Portlandzement hat gegenüber der erfindungsgemäßen Matrix den Nachteil, dass er viele Verunreinigungen enthält, die zwar für tragende Bauteile tolerierbar sind, für elektronische Anwendungen, und insbesondere für induktive Bauteile, aber deutliche Eigenschaftseinbußen mit sich bringen. Zudem ist Portlandzement gegenüber Tonerdezement, Phosphatzement, SiO2, MgO bzw. reaktiver Tonerde deutlich weniger wärmeleitfähig, was vermutlich auf die chemische Struktur der einzelnen Matrixphasen zurückzuführen ist.The inductive component and in particular the encapsulation compound is advantageously free of Portland cement. This means that no Portland cement is added or used in the manufacture of the inductive component. The total mass of Portland cement is thus essentially 0 mass%, based on the total mass of the encapsulation compound and thus also of the inductive component. Portland cement has the disadvantage compared to the matrix according to the invention that it contains many impurities which, although tolerable for load-bearing components, result in significant losses in properties for electronic applications and in particular for inductive components. In addition, Portland cement is significantly less thermally conductive than alumina cement, phosphate cement, SiO 2 , MgO or reactive alumina, which is probably due to the chemical structure of the individual matrix phases.

Weiter vorteilhaft sind der erste Füllstoff und der zweite Füllstoff ungesintert. Dies bringt nicht nur Vorteile hinsichtlich einer energiesparenden Herstellung, sondern auch im Hinblick auf hohe magnetische Permeabilitäten und hohe wärmeleitende Eigenschaften.Another advantage is that the first filler and the second filler are unsintered. This not only brings advantages in terms of energy-saving production, but also in terms of high magnetic permeability and high thermal conductivity properties.

Das induktive Bauelement kann beispielsweise als Spule ausgebildet sein und umfasst hierzu eine Kupferdrahtwicklung. Aufgrund der sehr guten induktiven und wärmeleitenden Eigenschaften ist das erfindungsgemäße induktive Bauelement insbesondere als Transformator ausgebildet und umfasst zu diesem Zweck eine Kupferdrahtwicklung und mindestens eine weitere elektrisch leitfähige Wicklung, die ebenfalls als Kupferdrahtwicklung ausgebildet sein kann.The inductive component can be designed as a coil, for example, and for this purpose comprises a copper wire winding. Due to the very good inductive and heat-conducting properties, the inductive component according to the invention is designed in particular as a transformer and for this purpose comprises a copper wire winding and at least one further electrically conductive winding, which can also be designed as a copper wire winding.

Ebenfalls erfindungsgemäß wird auch ein Verfahren zur Herstellung eines induktiven Bauelements gemäss Anspruch 10 beschrieben. Das Verfahren umfasst einen Schritt des Vermengens eines Matrixmaterials mit mindestens einem ersten Füllstoff, mindestens einem zweiten Füllstoff, Wasser und optional mindestens einem Fließmittel unter Herstellung eines Schlickers. Unter einem Schlicker wird dabei eine ungehärtete und unabgebundene mehr oder weniger fließfähige bzw. zumindest formfähige Masse verstanden.Also described according to the invention is a method for producing an inductive component according to claim 10. The method comprises a step of mixing a matrix material with at least one first filler, at least one second filler, water and optionally at least one flow agent to produce a slip. A slip is understood to be an unhardened and unbound more or less flowable or at least moldable mass.

Ein Fließmittel im Sinne der Erfindung kann beispielsweise modifizierte Polycarboxylatether sein, und kann z.B. mit 0,1 bis 2 Masse%, bezogen auf die Gesamtmasse an Schlicker, eingesetzt werden.A flow agent within the meaning of the invention can be, for example, modified polycarboxylate ethers, and can be used, for example, with 0.1 to 2 mass%, based on the total mass of slip.

Das Matrixmaterial enthält dabei mindestens eines, ausgewählt aus:

  • unabgebundenem Tonerdezement, unabgebundenem Phosphatzement,
  • unabgebundenem SiO2, unabgebundenem MgO und unabgebundener reaktiver Tonerde. Ferner umfasst der erste Füllstoff mindestens ein weichmagnetisches Pulver. Der zweite Füllstoff umfasst Al2O3, wie oben beschrieben.
The matrix material contains at least one selected from:
  • unbound alumina cement, unbound phosphate cement,
  • unbound SiO 2 , unbound MgO and unbound reactive alumina. Furthermore, the first filler comprises at least one soft magnetic powder. The second filler comprises Al 2 O 3 , as described above.

Das Vermengen kann beispielsweise durch Rühren mit einem geeigneten Rührwerk erfolgen. Der erhaltene Schlicker wird dann um eine Kupferdrahtwicklung angeordnet, so dass der Schlicker die Kupferdrahtwicklung möglichst allseitig aber zumindest am Außenumfang der Kupferdrahtwicklung umgibt. Der Schlicker wird anschließend durch mindestens teilweises Abbinden des Matrixmaterials durch das Wasser bei einer Temperatur in einem Bereich von 50 bis 150 °C verfestigt. Dieser Schritt des Abbindens kann beispielsweise in einem Ofen ausgeführt werden. Ein Sintern bei Temperaturen von mehr als 200 °C wird nicht ausgeführt. Durch das Abbinden werden die vormals eingesetzten Fließmittel weitestgehend entfernt und lassen sich danach im Wesentlichen nicht mehr nachweisen.Mixing can be done, for example, by stirring with a suitable stirrer. The resulting slip is then arranged around a copper wire winding so that the slip surrounds the copper wire winding on as many sides as possible, but at least on the outer circumference of the copper wire winding. The slip is then solidified by at least partially setting the matrix material with the water at a temperature in the range of 50 to 150 °C. This setting step can be carried out in an oven, for example. Sintering at temperatures above 200 °C is not carried out. The setting process largely removes the previously used flow agents and they can then essentially no longer be detected.

Es entsteht eine Umhüllmasse im Sinne der vorliegenden Erfindung, wie sie bereits vorstehend erfindungsgemäß beschrieben ist. Durch die Menge an zugesetztem Wasser kann der Abbindegrad des Matrixmaterials eingestellt werden. Geeignete Mengen an Wasser können durch einfache Versuche herausgefunden werden.A coating compound is created in accordance with the present invention, as already described above. The degree of setting of the matrix material can be adjusted by the amount of water added. Suitable amounts of water can be found through simple experiments.

Das erfindungsgemäße Verfahren ist einfach und kostengünstig umsetzbar und ermöglicht die Herstellung eines induktiven Bauelements mit hoher magnetischer Permeabilität (µR = 2 bis 4 oder 10 bis 500), hoher Streuinduktivität und integrierter Resonanzinduktivität bei wenig oder gar nicht erhöhter Dielektrizitätskonstante. Zudem zeichnet sich das erfindungsgemäß hergestellte Bauelement auch durch eine hohe Wärmeleitfähigkeit aus, so dass das induktive Bauelement hoch effizient ist und eine ausgezeichnete Leistungsdichte aufweist. Die für das erfindungsgemäße induktive Bauelement dargelegten Vorteile, vorteilhaften Effekte und optionalen Weiterbildungen finden auch Anwendung auf das erfindungsgemäße Verfahren zur Herstellung eines induktiven Bauelements.The method according to the invention is simple and cost-effective to implement and enables the production of an inductive component with high magnetic permeability (µ R = 2 to 4 or 10 to 500), high leakage inductance and integrated resonance inductance with little or no increase in the dielectric constant. In addition, the component produced according to the invention is also characterized by high thermal conductivity, so that the inductive component is highly efficient and has an excellent power density. The advantages, advantageous effects and optional developments set out for the inductive component according to the invention also apply to the method according to the invention for producing an inductive component.

Zur Verbesserung der mechanischen Eigenschaften kann das Verfahren ferner einen Schritt des Temperns im Anschluss an das Abbinden des Matrixmaterials umfassen. Das Tempern wird hierbei vorzugsweise bei einer Temperatur in einem Bereich von 100 bis 150 °C durchgeführt.To improve the mechanical properties, the method may further comprise a tempering step following the setting of the matrix material. The tempering is preferably carried out at a temperature in a range of 100 to 150 °C.

Ebenfalls vorteilhaft kann das Verfahren auch einen Schritt des Umgebens eines Magnetkerns, der insbesondere als Ferritkern ausgebildet ist, mit der Kupferdrahtwicklung, vorsehen. In dieser Ausführungsform liegt die Kupferdrahtwicklung folglich nicht als Freiform-Kupferdrahtwicklung vor, sondern umgibt einen Magnetkern. Damit ist die Umhüllmasse um die, den Magnetkern umgebende Kupferdrahtwicklung angeordnet und insbesondere nicht im Innern der Kupferdrahtwicklung.The method can also advantageously provide a step of surrounding a magnetic core, which is in particular designed as a ferrite core, with the copper wire winding. In this embodiment, the Copper wire winding is therefore not a free-form copper wire winding, but surrounds a magnetic core. The enveloping compound is therefore arranged around the copper wire winding surrounding the magnetic core and in particular not inside the copper wire winding.

Kurze Beschreibung der ZeichnungShort description of the drawing

Nachfolgend werden Ausführungsbeispiele der Erfindung unter Bezugnahme auf die begleitende Zeichnung im Detail beschrieben. In der Zeichnung ist:

Figur 1
eine Schnittansicht eines induktiven Bauelements gemäß einer ersten erfindungsgemässen Ausführungsform und
Figur 2
eine Schnittansicht eines induktiven Bauelements gemäß einer zweiten nicht erfindungsgemässen Ausführungsform.
In the following, embodiments of the invention are described in detail with reference to the accompanying drawing. In the drawing:
Figure 1
a sectional view of an inductive component according to a first embodiment of the invention and
Figure 2
a sectional view of an inductive component according to a second embodiment not according to the invention.

Ausführungsformen der Erfindungembodiments of the invention

In den Figuren sind nur die wesentlichen Merkmale der vorliegenden Erfindung dargestellt. Alle übrigen Merkmale sind der Übersichtlichkeit halber weggelassen. Ferner beziffern gleiche Bezugszeichen gleiche Bauteile.Only the essential features of the present invention are shown in the figures. All other features have been omitted for the sake of clarity. Furthermore, the same reference numerals refer to the same components.

Figur 1 zeigt ein induktives Bauelement 1 gemäß einer ersten Ausführungsform im Schnitt. Das induktive Bauelement 1 umfasst ein Gehäuse 2, in dem ein Magnetkern 4 angeordnet ist, der von einer Kupferdrahtwicklung 3 allseitig umgeben ist. Die Kupferdrahtwicklung 3 ist dabei direkt um den Magnetkern 4 gewickelt. Figure 1 shows an inductive component 1 according to a first embodiment in section. The inductive component 1 comprises a housing 2 in which a magnetic core 4 is arranged, which is surrounded on all sides by a copper wire winding 3. The copper wire winding 3 is wound directly around the magnetic core 4.

Der Magnetkern 4 ist beispielsweise als Ferritkern ausgebildet oder als magnetischer Pulverkern mit Polymermatrix oder auch als gesinterter magnetischer Pulverkern, wobei die Ausbildung als Ferritkern bevorzugt ist.The magnetic core 4 is designed, for example, as a ferrite core or as a magnetic powder core with a polymer matrix or as a sintered magnetic powder core, whereby the design as a ferrite core is preferred.

Der Magnetkern 4 und die den Magnetkern 4 umgebende Kupferdrahtwicklung 3 sind in dem Gehäuse 2 angeordnet. Zwischen dem Gehäuse 2 und der Kupferdrahtwicklung 3 ist eine Umhüllmasse 8 angeordnet, die eine Verbindung zwischen der Kupferdrahtwicklung 3 und dem Gehäuse 2 bereitstellt.The magnetic core 4 and the copper wire winding 3 surrounding the magnetic core 4 are arranged in the housing 2. Between the housing 2 and the copper wire winding 3 there is an enveloping compound 8 which provides a connection between the copper wire winding 3 and the housing 2.

Die Umhüllmasse 8 umfasst eine Matrix 5 und einen ersten Füllstoff 6 sowie einen zweiten Füllstoff 7, wobei der erste Füllstoff 6 ein weichmagnetisches Pulver, wie z.B. Carbonyleisen oder Ferritpulver ist, und wobei der zweite Füllstoff 7 Al2O3 ist. Der erste Füllstoff 6 und der zweite Füllstoff 7 sind in der Matrix 5 verteilt und liegen in nicht gesinterter Form vor.The encapsulation mass 8 comprises a matrix 5 and a first filler 6 as well as a second filler 7, wherein the first filler 6 is a soft magnetic powder, such as carbonyl iron or ferrite powder, and wherein the second filler 7 is Al 2 O 3 . The first filler 6 and the second filler 7 are distributed in the matrix 5 and are in non-sintered form.

Die Matrix 5 umfasst mindestens eines, ausgewählt aus: Tonerdezement, Phosphatzement, SiO2, MgO und reaktiver Tonerde. Diese Verbindungen oder Gemische dieser Verbindungen liegen in mit Wasser bei 50 bis 150 °C mindestens teilweise abgebundener Form vor und sind nicht gesintert. Damit bildet die Matrix 5 ein mikrokristallines Netzwerk von Partikeln mit einer Partikelgröße von maximal 200 µm, in dem die Füllstoffe 6, 7 gleichmäßig verteilt sind. Die Umhüllmasse 8 und damit auch das induktive Bauelement 1 sind frei von Portlandzement.The matrix 5 comprises at least one selected from: alumina cement, phosphate cement, SiO 2 , MgO and reactive alumina. These compounds or mixtures of these compounds are present in a form that is at least partially set with water at 50 to 150 °C and are not sintered. The matrix 5 thus forms a microcrystalline network of particles with a maximum particle size of 200 µm, in which the fillers 6, 7 are evenly distributed. The encapsulation compound 8 and thus also the inductive component 1 are free of Portland cement.

Die Gesamtmasse der Matrix 5 beträgt, bezogen auf die Gesamtmasse der Umhüllmasse 8 5 bis 25 Masse%.The total mass of the matrix 5 is 5 to 25 mass% based on the total mass of the enveloping mass 8.

Die Gesamtmasse an erstem und zweitem Füllstoff 6, 7 beträgt, bezogen auf die Gesamtmasse der Umhüllmasse 8, 75 bis 95 Masse%, wobei der Anteil an erstem Füllstoff 6, also an weichmagnetischem Pulver, 1 bis 50 Masse%, bezogen auf die Gesamtmasse an erstem Füllstoff 6 und zweitem Füllstoff 7 beträgt. Hierdurch wird aufgrund des hohen Anteils an zweitem Füllstoff 7 bei guten magnetischen Eigenschaften eine besonders hohe Wärmeleitfähigkeit erhalten.The total mass of the first and second filler 6, 7 is, based on the total mass of the enveloping mass 8, 75 to 95 mass%, whereby the proportion of the first filler 6, i.e. of soft magnetic powder, is 1 to 50 mass%, based on the total mass of the first filler 6 and the second filler 7. Due to the high proportion of the second filler 7, a particularly high thermal conductivity is achieved with good magnetic properties.

Das induktive Bauelement 1 zeichnet sich aufgrund der Verwendung der Umhüllmasse 8 durch eine hohe Leistungsdichte und hohe Effizienz aus. Dies bedeutet, dass das induktiven Bauelement 1 bei hoher magnetischer Permeabilität (µR = 2 bis 4 oder 10 bis 500) eine hohe Streuinduktivität und Resonanzinduktivität aufweist, ohne dass die Dielektrizitätskonstante wesentlich erhöht ist. Zudem hat die Umhüllmasse 8 eine hohe Wärmeleitfähigkeit, was die Leistungsdichte des induktiven Bauelements 1 weiter erhöht.The inductive component 1 is characterized by a high power density and high efficiency due to the use of the encapsulation compound 8. This means that the inductive component 1 has a high leakage inductance and resonance inductance at high magnetic permeability (µ R = 2 to 4 or 10 to 500) without the dielectric constant being significantly increased. In addition, the encapsulation compound 8 has a high thermal conductivity, which further increases the power density of the inductive component 1.

Figur 2 zeigt ein induktives Bauelement 10 gemäß einer zweiten nicht erfindungsgemässen Ausführungsform im Schnitt. Das induktive Bauelement 10 unterscheidet sich von dem induktiven Bauelement 1 aus Figur 1 dadurch, dass es keinen Magnetkern aufweist. Die Kupferdrahtwicklung 3 liegt somit in Form einer Freiform-Kupferdrahtwicklung vor, die beispielsweise vorab auf einem Träger erzeugt wurde. Figure 2 shows an inductive component 10 according to a second embodiment not according to the invention in section. The inductive component 10 differs from the inductive component 1 from Figure 1 by having no magnetic core. The copper wire winding 3 is thus in the form of a Freeform copper wire winding, which was, for example, previously created on a carrier.

Die Gesamtmasse an Matrix 5 bezogen auf die Gesamtmasse der Umhüllmasse 8 beträgt auch hier 5 bis 25 Masse%.The total mass of matrix 5 relative to the total mass of the enveloping mass 8 is also 5 to 25 mass%.

Die Gesamtmasse an erstem Füllstoff 6 und zweitem Füllstoff 7 beträgt, bezogen auf die Gesamtmasse der Umhüllmasse 8, 75 bis 95 Masse%, wobei der Anteil an erstem Füllstoff 6, also an weichmagnetischem Pulver, höher ist als in der Matrix aus dem induktiven Bauelement 1 aus Figur 1 und insbesondere 75 bis 95 Masse%, bezogen auf die Gesamtmasse an erstem Füllstoff 6 und zweitem Füllstoff 7 beträgt. Der Anteil an zweitem Füllstoff 7, also insbesondere an Al2O3, ist damit geringer. Der höhere Anteil an weichmagnetischem Pulver ist vorteilhaft im Lichte der magnetischen Eigenschaften des induktiven Bauelements 10.The total mass of first filler 6 and second filler 7 is, based on the total mass of the enveloping mass 8, 75 to 95 mass%, whereby the proportion of first filler 6, i.e. of soft magnetic powder, is higher than in the matrix of the inductive component 1 from Figure 1 and in particular 75 to 95 mass%, based on the total mass of first filler 6 and second filler 7. The proportion of second filler 7, i.e. in particular Al 2 O 3 , is therefore lower. The higher proportion of soft magnetic powder is advantageous in light of the magnetic properties of the inductive component 10.

Auch das induktive Bauelement 10 zeichnet sich aufgrund der Verwendung der Umhüllmasse 8 durch eine hohe Leistungsdichte und hohe Effizienz aus. Es wird eine hohe magnetische Permeabilität (µR = 2 bis 4 oder 10 bis 500) und auch eine hohe Streuinduktivität und Resonanzinduktivität erhalten. Zudem hat die Umhüllmasse 8 eine gute Wärmeleitfähigkeit, was die Leistungsdichte des induktiven Bauelements 10 weiter erhöht.The inductive component 10 is also characterized by a high power density and high efficiency due to the use of the encapsulating compound 8. A high magnetic permeability (µ R = 2 to 4 or 10 to 500) and also a high leakage inductance and resonance inductance are obtained. In addition, the encapsulating compound 8 has good thermal conductivity, which further increases the power density of the inductive component 10.

Claims (12)

  1. Inductive component comprising a copper wire winding (3) and a coating mass (8) surrounding the copper wire winding (3), wherein the coating mass (8) comprises a matrix (5) and at least a first filler (6),
    - wherein the matrix (5) comprises at least one selected from alumina cement, phosphate cement, SiO2, MgO and reactive alumina and
    - wherein the first filler (6) comprises at least one soft magnetic powder, further comprising in the coating mass (8) at least a second filler (7), the second filler (7) comprising Al2O3,
    wherein the total mass of first filler (6), based on the total mass of the first and second fillers (6, 7), is 1 to 50 mass% and wherein the total mass of second filler (7), based on the total mass of the first and second fillers (6, 7), is 50 to 99 mass%.
  2. Inductive component according to Claim 1, wherein the soft magnetic powder is selected from carbonyl iron powder and ferrite powder.
  3. Inductive component according to Claim 1 or 2, wherein the coating mass (8) comprises at least one polymer, in particular a thermoplastic polymer.
  4. Inductive component according to any of the preceding claims, wherein the total mass of the matrix (5), based on the total mass of the coating mass (8), is 5 to 25 mass%.
  5. Inductive component according to any of the preceding claims, wherein the total mass of first and second fillers (6, 7), based on the total mass of the coating mass (8), is 75 to 95 mass%.
  6. Inductive component according to any of Claims 1 to 5, further comprising a magnetic core (4), in particular a ferrite core, wherein the copper wire winding (3) at least partially surrounds the magnetic core (4).
  7. Inductive component according to any of the preceding claims, wherein the component (1, 10) is free from Portland cement.
  8. Inductive component according to any of the preceding claims, wherein the first filler (6) and the second filler (7) are unsintered.
  9. Inductive component according to any of the preceding claims, embodied as a transformer.
  10. Method for producing an inductive component (1, 10), comprising the steps of:
    - combining a matrix material with at least a first filler (6), at least a second filler (7), water and optionally at least one flux to produce a slip, wherein the matrix material comprises at least one selected from unhydrated alumina cement, unhydrated phosphate cement, unhydrated SiO2, unhydrated MgO and unhydrated reactive alumina, the first filler (6) comprises at least one soft magnetic powder, and the second filler (7) comprises Al2O3, wherein the total mass of first filler, based on the total mass of the first and second fillers, is 1 to 50 mass% and wherein the total mass of second filler, based on the total mass of the first and second fillers, is 50 to 99 mass%,
    - surrounding a copper wire winding (3) with the slip and
    - at least partially hydrating the matrix material by the water at a temperature in a range of 50 to 150°C.
  11. Method according to Claim 10, further comprising a step of tempering following the hydrating of the matrix material, wherein the tempering takes place at a temperature in a range of 100 to 150°C.
  12. Method according to either of Claims 10 and 11, comprising a step of surrounding a magnetic core (4), in particular a ferrite core, with the copper wire winding (3).
EP20711123.8A 2019-04-08 2020-03-11 Inductive component and method for producing an inductive component Active EP3953954B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019204950.8A DE102019204950A1 (en) 2019-04-08 2019-04-08 Inductive component and method for manufacturing an inductive component
PCT/EP2020/056424 WO2020207687A1 (en) 2019-04-08 2020-03-11 Inductive component and method for producing an inductive component

Publications (2)

Publication Number Publication Date
EP3953954A1 EP3953954A1 (en) 2022-02-16
EP3953954B1 true EP3953954B1 (en) 2024-10-23

Family

ID=69810839

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20711123.8A Active EP3953954B1 (en) 2019-04-08 2020-03-11 Inductive component and method for producing an inductive component

Country Status (5)

Country Link
EP (1) EP3953954B1 (en)
JP (1) JP7478166B2 (en)
CN (1) CN113614862B (en)
DE (1) DE102019204950A1 (en)
WO (1) WO2020207687A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022125977A1 (en) 2021-10-07 2023-04-13 Axing Ag Winding material for electronic circuits or assemblies

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006038370A1 (en) * 2006-08-11 2008-02-14 E.G.O. Elektro-Gerätebau GmbH Coil carrier for inductors

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2065278B (en) * 1979-12-14 1983-10-12 Flogates Ltd Composite moulded refractory articles amd their manufacture
EP0157927B1 (en) * 1984-03-23 1989-03-22 Siemens Aktiengesellschaft Electronic component, in particular a chip inductance
JPS61145707A (en) * 1984-12-20 1986-07-03 Tdk Corp Magnetic head, production of magnetic head and its casting mold
EP0343533B1 (en) * 1988-05-24 1995-08-09 Gte Laboratories Incorporated Gas sensing element
US5151203A (en) * 1991-06-21 1992-09-29 Halliburton Company Composition and method for cementing a well
JP3167900B2 (en) * 1995-09-27 2001-05-21 萩原工業株式会社 Polypropylene fiber for cement reinforcement
JP4216917B2 (en) * 1997-11-21 2009-01-28 Tdk株式会社 Chip bead element and manufacturing method thereof
WO2000003404A1 (en) * 1998-07-10 2000-01-20 Epcos Ag Magnetizable product, the use thereof and a method for producing the same
DE29823969U1 (en) * 1998-07-10 2000-03-16 EPCOS AG, 81541 München Magnetizable product
JP2005064422A (en) * 2003-08-20 2005-03-10 Sumitomo Osaka Cement Co Ltd Magnetic core and its manufacturing method
DE102007007117A1 (en) * 2007-02-13 2008-08-21 Vogt Electronic Components Gmbh Inductive component for large power spectrum and different installation space measurements, has two inductors arranged mechanically fixed to each other in pre-determined condition and are surrounded by magnetic filling
JP2018182203A (en) * 2017-04-19 2018-11-15 株式会社村田製作所 Coil component
JP2012069598A (en) * 2010-09-21 2012-04-05 Sumitomo Electric Ind Ltd Reactor and manufacturing method therefor
JP5991460B2 (en) * 2011-03-24 2016-09-14 住友電気工業株式会社 Composite material, reactor core, and reactor
CN105845423B (en) * 2016-06-17 2018-01-19 深圳市固电电子有限公司 Integrated inductor obtained by the preparation method and use the method for integrated inductor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006038370A1 (en) * 2006-08-11 2008-02-14 E.G.O. Elektro-Gerätebau GmbH Coil carrier for inductors

Also Published As

Publication number Publication date
WO2020207687A1 (en) 2020-10-15
EP3953954A1 (en) 2022-02-16
JP7478166B2 (en) 2024-05-02
CN113614862B (en) 2024-11-08
JP2022526620A (en) 2022-05-25
CN113614862A (en) 2021-11-05
DE102019204950A1 (en) 2020-10-08

Similar Documents

Publication Publication Date Title
DE69821278T2 (en) Magnetic core and manufacturing process
DE19725849C2 (en) Soft ferrite material for use in manufacturing inductors and methods of manufacturing inductors using this material
EP2463869B2 (en) Inductive component with improved core properties
DE69202097T2 (en) Process for producing a multilayer ferrite structure.
DE69028360T2 (en) Composite material and process for its manufacture
DE69808363T2 (en) Powder core, ferromagnetic powder assembly therefor, and manufacturing process
DE69706216T2 (en) Low loss ferrite between 1MHz and 100MHz and manufacturing process
DE68921971T2 (en) Composite ferrite material.
DE10128004A1 (en) Wound inductive device has soft magnetic core of ferromagnetic powder composite of amorphous or nanocrystalline ferromagnetic alloy powder, ferromagnetic dielectric powder and polymer
EP3953954B1 (en) Inductive component and method for producing an inductive component
EP1097463B1 (en) Magnetizable product, the use thereof and a method for producing the same
EP1168381A2 (en) Soft magnetic material with heterogenous structure and its production process
DE69022751T2 (en) Magnetic cores made of iron-silicon alloy powder and manufacturing process.
DE19725869A1 (en) Low sintering temperature radiofrequency soft ferrite for inductor
DE69104378T2 (en) MAGNETIC CEMENT-BED BODIES.
WO2008017373A1 (en) Coil former for inductors
EP3020053B1 (en) Process of manufacturing a permanent magnet
DE10059155A1 (en) Process for improving the compactibility of a powder and articles molded therewith
JP2812152B2 (en) Magnetic body and method of manufacturing the same
DE1639209A1 (en) Process for the production and assembly of magnetic cores
DE10155594A1 (en) Process for producing a multi-layer microelectronic substrate
DE102015206326A1 (en) Soft magnetic composite material and corresponding method for producing a soft magnetic composite material
DE3907090A1 (en) Process for the powder metallurgical production of a soft magnetic body
JP2762531B2 (en) Ferrite magnetic body and method of manufacturing the same
JP2830241B2 (en) Ferrite magnetic material

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211108

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20240517

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020009558

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20241023