[go: up one dir, main page]

EP3899065B1 - Component for drill rod with high corrosion resistance and manufacturing method thereof - Google Patents

Component for drill rod with high corrosion resistance and manufacturing method thereof Download PDF

Info

Publication number
EP3899065B1
EP3899065B1 EP19835388.0A EP19835388A EP3899065B1 EP 3899065 B1 EP3899065 B1 EP 3899065B1 EP 19835388 A EP19835388 A EP 19835388A EP 3899065 B1 EP3899065 B1 EP 3899065B1
Authority
EP
European Patent Office
Prior art keywords
drill string
string component
detection limit
alloy
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19835388.0A
Other languages
German (de)
French (fr)
Other versions
EP3899065C0 (en
EP3899065A1 (en
Inventor
Rainer FLUCH
Andreas KEPLINGER
Martin WÖLS
Bernd HOLPER
Walter SPRUZINA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schoeller Bleckmann Oilfield Technology GmbH and Co KG
Voestalpine Boehler Edelstahl GmbH and Co KG
Original Assignee
Schoeller Bleckmann Oilfield Technology GmbH and Co KG
Voestalpine Boehler Edelstahl GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schoeller Bleckmann Oilfield Technology GmbH and Co KG, Voestalpine Boehler Edelstahl GmbH and Co KG filed Critical Schoeller Bleckmann Oilfield Technology GmbH and Co KG
Publication of EP3899065A1 publication Critical patent/EP3899065A1/en
Application granted granted Critical
Publication of EP3899065C0 publication Critical patent/EP3899065C0/en
Publication of EP3899065B1 publication Critical patent/EP3899065B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/44Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for equipment for lining mine shafts, e.g. segments, rings or props
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/10Modifying the physical properties of iron or steel by deformation by cold working of the whole cross-section, e.g. of concrete reinforcing bars
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron

Definitions

  • the invention relates to a drill string component, in particular for use in media with high corrosive attack, and a method for its production.
  • Such parts are in particular the so-called drill collars or MWD (Measurement While Drilling) and LWD (Logging While Drilling) parts, which are arranged above the actual drill head and serve, among other things, to accommodate the corresponding measuring electronics.
  • MWD Measurement While Drilling
  • LWD Logging While Drilling
  • non-ferritic steel alloys are essentially fully or super-austenitic alloys.
  • drill string components withstand corrosive attack, especially attack in media with high chloride concentrations.
  • drill string components are subject to particularly high torsional load cycling and torsional stresses.
  • a corrosive attack would cause weakening through fatigue corrosion cracking, which would reduce the theoretical service life of such a drill string component.
  • drill string components are not only made of the appropriate alloys, but that appropriate post-treatments ensure that a homogeneous, high-strength and, in particular, highly impact-resistant structure is present, in which no cracks are caused, for example, by intermetallic phases, coarse carbides or similar.
  • drill string components are selected so that the minimum values of the mechanical properties, in particular the 0.2% yield strength and tensile strength, can withstand the dynamically changing loads that occur.
  • Such a drill string component is, for example, from the AT 412 727 B known.
  • DE 3837457 C1 discloses a drill rod component.
  • the corrosion-resistant austenitic steel alloy chosen here is an alloy that contains particularly high contents of manganese, chromium and molybdenum as well as nickel.
  • nitrogen is present in amounts of 0.35 wt.% to 1.05 wt.%, whereby nitrogen is also said to contribute to corrosion resistance and is a strong austenite former.
  • nitrogen content increases, the tendency to form nitrogen-containing precipitates, especially chromium nitride, increases.
  • manganese in particular is used in amounts of more than 19 - 30 wt.%. This is to ensure that pore-free materials can be produced even when solidifying under atmospheric pressure.
  • the manganese At high degrees of deformation, the austenite structure is stabilized against the formation of martensite.
  • EP 1 069 202 A1 is a paramagnetic, corrosion-resistant, austenitic steel with high yield strength, strength and toughness, which is said to be corrosion-resistant in particular in media with high chloride concentration, whereby this steel is said to contain 0.6 mass-% to 1.4 mass-% nitrogen, with 17 to 24 mass-% chromium and manganese.
  • WO 02/02837 A1 is a corrosion-resistant material for use in media with high chloride concentrations in oil field technology. This is a chromium-nickel-molybdenum superaustenite that is formed with comparatively low nitrogen contents, but very high chromium and very high nickel contents.
  • chromium-nickel-molybdenum steels usually have improved corrosion behavior compared to the previously mentioned chromium-manganese-nitrogen steels.
  • chromium-manganese-nitrogen steels are a relatively inexpensive alloy composition that nevertheless offers an excellent combination of strength, toughness and corrosion resistance.
  • the chromium-nickel-molybdenum steels mentioned achieve significantly higher corrosion resistance than chromium-manganese-nitrogen steels, but are associated with significantly higher costs due to the very high nickel content.
  • the materials still have a magnetic permeability of ⁇ r ⁇ 1.01 even after cold forming.
  • MARC Cr + 3.3 Mo + 20 N + 20 C - 0.25 Ni - 0.5 Mn.
  • Classic drill collar steels are the chromium manganese nitrogen steels, which have already been mentioned because they have excellent properties and are still relatively inexpensive. They are used without niobium, whereby manganese sulphides form due to the higher manganese content, which has a negative effect on the corrosion properties.
  • Similar steel grades are also known for use as shipbuilding steels for submarines. These are chromium-nickel-manganese-nitrogen steels that are also alloyed with niobium to stabilize the carbon, but this reduces the impact toughness. These steels generally have little manganese and therefore have relatively good corrosion resistance, but do not achieve the strength of drill collar grades and, above all, not their toughness.
  • the object of the invention is to provide a drill string component, in particular for use in oil field technology, in particular a drill collar, which exhibits high corrosion resistance, high strength and good paramagnetic behavior.
  • the drill string component should have a completely austenitic structure, in particular without deformation martensite even after cold forming, with the magnetic permeability ⁇ r ⁇ 1.01, preferably ⁇ r ⁇ 1.005. Since ferrite or deformation martensite exhibit magnetic behavior, they increase the permeability and are therefore to be avoided according to the invention.
  • the yield strength at R p0.2 is >450 MPa and can easily reach values >500 MPa, whereby the impact energy at 20°C is greater than 350 J and values up to 440 J can also be reached.
  • the yield strength is certainly R p0.2 >1000 MPa, with values of up to 1100 MPa being achieved in practice, while the work hardened impact energy at 20°C is certainly greater than 80 J, with values of 200 J being achieved in practice.
  • the impact energy was determined according to DIN EN ISO 148-1.
  • values for the product of tensile strength Rm with notched impact strength KV of more than 100,000 MPa J, preferably > 200,000 MPa J, particularly preferably > 300,000 MPa J can be achieved.
  • the alloy according to the invention comprises the following elements (all values in wt.%): elements preferred further preferred silicon (Si) ⁇ 0.5 ⁇ 0.5 ⁇ 0.5 ⁇ 0.5 manganese (Mn) 5.0 - 6.0 phosphorus (P) ⁇ 0.05 ⁇ 0.05 ⁇ 0.05 sulfur (S) ⁇ 0.005 ⁇ 0.005 ⁇ 0.005 iron (Fe) rest rest rest Chromium (Cr) 24.0 - 28.0 26.0 - 28.0 molybdenum (Mo) 2.5 - 3.5 2.5 - 3.5 Nickel (Ni) -10.0 12.0 - 15.5 13.0 - 15.0 Vanadium (V) ⁇ 0.5 ⁇ 0.3 Below detection limit tungsten (W) ⁇ 0.5 ⁇ 0.1 Below detection limit copper (Cu) ⁇ 0.5 ⁇ 0.15 ⁇ 0.1 cobalt (Co) ⁇ 5.0 ⁇ 0.5 Below detection limit titanium (Ti) ⁇ 0.1 ⁇ 0.05 Below detection limit aluminum (Al) ⁇ 0.2
  • the rest consists of 100% iron (as noted in the table) and unavoidable impurities.
  • the first column (far left) shows the composition with which a drill collar according to the invention with the respective positive properties can be realized.
  • Preferred variants are shown in the following columns, although not all alloying elements necessarily have to be present in a restricted manner; combinations of, for example, 5.2% Mn with 23.1% chromium are also conceivable.
  • Such an alloy combines the positive properties of the different steel grades.
  • Carbon is present in amounts of 0.01 to 0.1%. Carbon is an austenite former and has a positive effect on high mechanical properties. In order to avoid carbide precipitation, the carbon content is set between 0.01 and 0.1% by weight. Silicon is provided in amounts of up to 0.5% by weight and is mainly used to deoxidize the steel. The specified upper limit safely prevents the formation of intermetallic phases. Since silicon is also a ferrite former, the upper limit has also been chosen with a safety margin in this regard. In particular, silicon can be provided in amounts of 0.1 - 0.3% by weight.
  • Manganese is present in contents of 4.0 - 7.0 3 0 wt.%. This is an extremely low value compared to state-of-the-art materials. Until now it was assumed that manganese contents of more than 19 wt.%, preferably more than 20 wt.%, are necessary for high nitrogen solubility. Surprisingly, it has been found with the present alloy that even with the low manganese contents according to the invention, a nitrogen solubility is achieved which is above what is possible according to prevailing expert opinion. However, it has been found with the present alloy that this is apparently not necessary due to unexplained synergistic effects.
  • the lower limit for manganese can be selected at 4.5 or 5.0%.
  • the upper limit for manganese can be selected at 7.5 or 8.0%.
  • the upper limit for copper is ⁇ 0.5 wt.% or ⁇ 0.15 wt.% or ⁇ 0.10 wt.% or below the detection limit (ie without any deliberate addition of alloys).
  • the addition of copper is beneficial for resistance in sulphuric acid, it has been shown that copper at values > 0.5% increases the tendency to precipitate chromium nitrides, which has a negative effect on the corrosion properties.
  • the upper limit is therefore set at 0.5%. Chromium in contents of 17 wt.% or more proves to be necessary for higher corrosion resistance. According to the invention, at least 23% and at most 28% chromium is required.
  • Molybdenum is an element that makes a significant contribution to corrosion resistance in general and pitting corrosion resistance in particular, with the effect of molybdenum being enhanced by nickel. According to the invention, 2.5 to 4.0 wt.% molybdenum is added. Higher molybdenum contents make ESR treatment absolutely necessary to prevent segregation. Remelting processes are very complex and expensive. Therefore, according to the invention, DESU or ESR routes should be avoided.
  • tungsten is present in amounts below 0.5% and contributes to increasing corrosion resistance.
  • the upper limit for tungsten can be selected at 0.5 or 0.4 or 0.3 or 0.2 or 0.1% or below the detection limit (i.e. without any deliberate addition of alloys).
  • nickel is present in contents of 11 to 15.5%, which achieves a high stress corrosion cracking resistance in chloride-containing media.
  • the lower limit for nickel can be selected at 12 or 13%.
  • the upper limit for nickel can be selected at 16%.
  • Cobalt is intended in contents of up to 5 wt.%, particularly for the substitution of nickel.
  • the upper limit for cobalt can be selected at 5 or 3 or 1 or 0.5 or 0.4 or 0.3 or 0.2 or 0.1% or below the detection limit (ie without any deliberate addition of alloying).
  • Nitrogen is contained in amounts of 0.52 to 0.85 wt.% to ensure high strength. Nitrogen also contributes to corrosion resistance and is a strong austenite former, which is why contents higher than 0.52 wt.%, and especially higher than 0.54 wt.%, are advantageous. In order to avoid nitrogen-containing precipitations, particularly chromium nitride, the upper limit of nitrogen is limited to 0.85 wt.%. It has been proven that, despite the very low manganese content in contrast to known alloys, these high nitrogen contents in the alloy can be achieved without any pressure nitrogen addition (DESU).
  • DESU pressure nitrogen addition
  • any pressure nitrogen addition in the context of a DESU route is actually prohibited. Due to the low molybdenum content according to the invention, which is compensated by chromium and nitrogen, this is also not necessary. It is particularly advantageous if the nitrogen to carbon ratio is greater than 15.
  • the lower limit for nitrogen can be selected at 0.54 or 0.60 or 0.65%.
  • the upper limit for nitrogen can be selected at 0.90%.
  • Boron, aluminium and sulphur may also be included as additional alloy components, but only optionally.
  • the alloying components vanadium and titanium are not necessarily included in the present steel alloy. Although these elements contribute positively to the solubility of nitrogen, the high nitrogen solubility according to the invention can be achieved even in their absence.
  • Niobium should not be included in the alloy according to the invention, as it can lead to precipitations which reduce the toughness. Historically, niobium was only used to bind carbon, which is not necessary in the alloy according to the invention. The Niobium contents are tolerable up to 0.1%, but should not exceed the content of unavoidable impurities.
  • the components are melted under atmospheric conditions and then subjected to secondary metallurgical treatment. Blocks are then cast and then hot forged. Direct in the sense of the invention means that no additional remelting process such as electroslag remelting (ESR) or pressure electroslag remelting (DESR) takes place.
  • ESR electroslag remelting
  • DESR pressure electroslag remelting
  • the advantage of the alloy according to the invention is that homogenization annealing or remelting is not necessary.
  • Figure 2 shows examples of the possible process routes for the production of the alloy composition according to the invention.
  • VID vacuum induction melting unit
  • the melt is simultaneously melted and treated using secondary metallurgy.
  • the melt is then poured into molds (ingots) and solidifies there to form blocks.
  • molds ingots
  • These are then hot-formed in several steps. For example, pre-forged on the P52 forging press and brought to final dimensions on the rotary forging machine.
  • a solution annealing step and/or water cooling can also be carried out.
  • cold forming is carried out on a long forging machine and the parts manufactured in this way are then machined.
  • the material is cooled down quickly to room temperature.
  • This special process step allows critical temperature ranges to be passed through more quickly and prevents the formation of grain boundary precipitation.
  • the product according to the invention shows that, for example, chromium nitride precipitation occurs to a much lesser extent, which has an optimal effect on the corrosion properties.
  • the necessary cold forming steps then follow, during which work hardening takes place.
  • the degree of deformation here is between 10 and 50%.
  • MARC opt 40 ⁇ wt % Cr + 3.3 ⁇ wt % Mo + 20 ⁇ wt % C + 20 ⁇ wt % N ⁇ 0.5 ⁇ wt % Mn
  • the MARC formula has been optimized in such a way that it was found that the otherwise usual deduction for nickel does not apply to the system according to the invention and that the limit value of 40 is necessary.
  • a superaustenitic material according to the invention can not only be used in the ways described (and in particular in Figure 2 shown) production routes, the advantageous properties of the alloy according to the invention can also be achieved by a powder metallurgical production route.
  • R p0.2 was around 1000 MPa for all three materials and the tensile strength Rm was between 1100 MPa and 1250 MPa.
  • the notched bar impact energy was an excellent 270 J to even over 300 J (alloy C - 329.5 J).
  • the invention therefore has the advantage that a drill collar alloy with increased corrosion resistance and low nickel content has been created, which at the same time shows high strength and paramagnetic behavior. Even after cold forming, a completely austenitic structure with a magnetic permeability ⁇ r ⁇ 1.005 is present, so that it has been possible to combine the positive properties of a cost-effective chromium manganese nickel steel with the outstanding technical properties of a chromium nickel molybdenum steel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Heat Treatment Of Steel (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Description

Die Erfindung betrifft eine Bohrstrangkomponente, insbesondere zur Verwendung in Medien mit hohem korrosiven Angriff und ein Verfahren zu ihrer Herstellung.The invention relates to a drill string component, in particular for use in media with high corrosive attack, and a method for its production.

In der Tiefbohrtechnik, insbesondere in der Ölfeld- oder Gasfeldtechnik ist es notwendig, einen Bohrlochverlauf möglichst exakt festzustellen. Dies betrifft insbesondere auch Bohrungen, bei denen nicht ausschließlich senkrecht oder lotrecht gebohrt wird, sondern auch Bohrungen, bei denen Richtungsänderungen im Verlauf der Bohrung vorgesehen sind. Hierzu ist es notwendig, den Bohrlochverlauf möglichst exakt festzustellen, um den Bohrlochverlauf entsprechend steuern zu können. Dies erfolgt üblicherweise durch Bestimmung der Lage des Bohrkopfes mit Hilfe von Magnetfeldsonden, bei welchen das magnetische Feld der Erde zur Messung genutzt wird. Hierfür sind bestimmte Komponenten des Bohrstranges aus nichtmagnetischen Legierungen gefertigt. Dies bedeutet, dass üblicherweise in unmittelbarer Nähe von Magnetfeldsonden befindliche Teile von Bohrsträngen eine relative magnetische Permeabilität µR<0,1 besitzen müssen.In deep drilling technology, particularly in oil field or gas field technology, it is necessary to determine the course of a borehole as precisely as possible. This particularly applies to boreholes where drilling is not exclusively vertical or perpendicular, but also to boreholes where changes in direction are planned during the borehole. To do this, it is necessary to determine the course of the borehole as precisely as possible in order to be able to control the course of the borehole accordingly. This is usually done by determining the position of the drill head with the help of magnetic field probes, which use the earth's magnetic field for measurement. For this purpose, certain components of the drill string are made of non-magnetic alloys. This means that parts of drill strings that are usually located in the immediate vicinity of magnetic field probes must have a relative magnetic permeability µ R <0.1.

Solche Teile sind insbesondere die sogenannten Schwerstangen oder MWD- (Measurement While Drilling) und LWD- (Logging While Drilling) Teile, die oberhalb des eigentlichen Bohrkopfes angeordnet sind und unter anderem dazu dienen, die entsprechende Messelektronik aufzunehmen.Such parts are in particular the so-called drill collars or MWD (Measurement While Drilling) and LWD (Logging While Drilling) parts, which are arranged above the actual drill head and serve, among other things, to accommodate the corresponding measuring electronics.

Um sicherzustellen, dass die Legierungen, aus der diese Schwerstangen gefertigt sind, nicht magnetisch sind, ist man darauf angewiesen, nicht-ferritische Stahllegierungen zu verwenden. Dies sind im Wesentlichen voll- bzw. superaustenitische Legierungen.To ensure that the alloys from which these drill collars are made are non-magnetic, it is necessary to use non-ferritic steel alloys. These are essentially fully or super-austenitic alloys.

Eine weitere Anforderung an Bohrstrangkomponenten ist aber auch, dass diese einem korrosiven Angriff, insbesondere einem Angriff in Medien mit hohen Chloridkonzentrationen widerstehen.A further requirement for drill string components is that they withstand corrosive attack, especially attack in media with high chloride concentrations.

Hiermit hängt auch zusammen, dass Bohrstrangkomponenten insbesondere hohen Torsionslastwechselbeanspruchungen und Torsionsbeanspruchungen unterliegen. Ein korrosiver Angriff würde hier durch Schwingungsrisskorrosion eine Schwächung herbeiführen, die die theoretische Standzeit einer solchen Bohrstrangkomponente herabsetzt.This is also related to the fact that drill string components are subject to particularly high torsional load cycling and torsional stresses. A corrosive attack would cause weakening through fatigue corrosion cracking, which would reduce the theoretical service life of such a drill string component.

Darüber hinaus ist es wichtig, dass derartige Bohrstrangkomponenten nicht nur aus den entsprechenden Legierungen gefertigt sind, sondern über entsprechende Nachbehandlungen sichergestellt ist, dass ein homogenes, hochfestes und insbesondere hochschlagzähes Gefüge vorliegt, bei dem beispielsweise durch intermetallische Phasen, grobe Karbide oder ähnliches, kein Rissausgang herbeigeführt wird.In addition, it is important that such drill string components are not only made of the appropriate alloys, but that appropriate post-treatments ensure that a homogeneous, high-strength and, in particular, highly impact-resistant structure is present, in which no cracks are caused, for example, by intermetallic phases, coarse carbides or similar.

Daher sind derartige Bohrstrangkomponenten, um insbesondere für Tieflochbohrungen geeignet zu sein, so gewählt, dass die Mindestwerte der mechanischen Eigenschaften, insbesondere der 0,2% Dehngrenze und Zugfestigkeit den auftretenden, dynamisch wechselnden Belastungen gewachsen sind.Therefore, in order to be particularly suitable for deep hole drilling, such drill string components are selected so that the minimum values of the mechanical properties, in particular the 0.2% yield strength and tensile strength, can withstand the dynamically changing loads that occur.

Eine solche Bohrstrangkomponente ist beispielsweise aus der AT 412 727 B bekannt. DE 3837457 C1 offenbart eine Bohrstangenkomponente.Such a drill string component is, for example, from the AT 412 727 B known. DE 3837457 C1 discloses a drill rod component.

Bei der hier gewählten korrosionsbeständigen austenitischen Stahllegierung handelt es sich um eine Legierung, die insbesondere hohe Gehalte an Mangan, Chrom und Molybdän sowie Nickel umfasst.The corrosion-resistant austenitic steel alloy chosen here is an alloy that contains particularly high contents of manganese, chromium and molybdenum as well as nickel.

Um eine hohe Festigkeit einzustellen, ist Stickstoff in Gehalten von 0,35 Gew.-% bis 1,05 Gew.-% vorhanden, wobei Stickstoff auch zur Korrosionsbeständigkeit beitragen soll und ein starker Austenitbildner ist. Auf der anderen Seite steigt mit zunehmendem Stickstoffgehalt die Neigung zur Bildung von stickstoffhaltigen Ausscheidungen, insbesondere Chromnitrid.In order to achieve high strength, nitrogen is present in amounts of 0.35 wt.% to 1.05 wt.%, whereby nitrogen is also said to contribute to corrosion resistance and is a strong austenite former. On the other hand, as the nitrogen content increases, the tendency to form nitrogen-containing precipitates, especially chromium nitride, increases.

Um diese hohe Stickstofflöslichkeit zu erzielen, wird insbesondere Mangan in Gehalten von mehr als 19 - 30 Gew.% vorgesehen. Dies soll gewährleisten, dass porenfreie Werkstoffe auch beim Erstarren unter Atmosphärendruck herstellbar sind. Im Übrigen soll das Mangan bei hohen Verformungsgraden das Austenitgefüge gegen die Bildung von Umformmartensit stabilisieren.In order to achieve this high nitrogen solubility, manganese in particular is used in amounts of more than 19 - 30 wt.%. This is to ensure that pore-free materials can be produced even when solidifying under atmospheric pressure. In addition, the manganese At high degrees of deformation, the austenite structure is stabilized against the formation of martensite.

Aus der EP 1 069 202 A1 ist ein paramagnetischer, korrosionsbeständiger, austenitischer Stahl mit hoher Dehngrenze, Festigkeit und Zähigkeit bekannt, der insbesondere in Medien mit hoher Chloridkonzentration korrosionsbeständig sein soll, wobei dieser Stahl 0,6 M.-% bis 1,4 M.-% Stickstoff enthalten soll, wobei 17 bis 24 M.-% Chrom, sowie Mangan enthalten sind.From the EP 1 069 202 A1 is a paramagnetic, corrosion-resistant, austenitic steel with high yield strength, strength and toughness, which is said to be corrosion-resistant in particular in media with high chloride concentration, whereby this steel is said to contain 0.6 mass-% to 1.4 mass-% nitrogen, with 17 to 24 mass-% chromium and manganese.

Aus der WO 02/02837 A1 ist ein korrosionsbeständiger Werkstoff für die Anwendung in Medien mit hoher Chloridkonzentration in der Ölfeldtechnik bekannt. Hierbei handelt es sich um ein Chromnickelmolybdänsuperaustenit, der mit vergleichsweise niedrigen Stickstoffgehalten, jedoch sehr hohen Chrom- und sehr hohen Nickelgehalten ausgebildet ist.From the WO 02/02837 A1 is a corrosion-resistant material for use in media with high chloride concentrations in oil field technology. This is a chromium-nickel-molybdenum superaustenite that is formed with comparatively low nitrogen contents, but very high chromium and very high nickel contents.

Diese Chromnickelmolybdänstähle besitzen gegenüber den davor genannten Chrommanganstickstoffstählen üblicherweise noch ein verbessertes Korrosionsverhalten. Insgesamt sind Chrommanganstickstoffstähle eine eher kostengünstige Legierungszusammensetzung, die gleichwohl eine hervorragende Kombination aus Festigkeit, Zähigkeit und Korrosionsbeständigkeit bietet. Die genannten Chromnickelmolybdänstähle erreichen wesentlich höhere Korrosionsbeständigkeiten als Chrommanganstickstoffstähle, sind jedoch aufgrund des sehr hohen Nickelgehaltes mit wesentlich höheren Kosten verbunden.These chromium-nickel-molybdenum steels usually have improved corrosion behavior compared to the previously mentioned chromium-manganese-nitrogen steels. Overall, chromium-manganese-nitrogen steels are a relatively inexpensive alloy composition that nevertheless offers an excellent combination of strength, toughness and corrosion resistance. The chromium-nickel-molybdenum steels mentioned achieve significantly higher corrosion resistance than chromium-manganese-nitrogen steels, but are associated with significantly higher costs due to the very high nickel content.

Superaustenite weisen für gewöhnlich Molybdängehälte > 4% auf, um die hohen Korrosionsbeständigkeiten zu erreichen. Jedoch erhöht Molybdän die Neigung zu Seigerung und somit eine erhöhte Anfälligkeit für Ausscheidungen, insbesondere Sigma- oder Chi-Phasen. Dies hat zur Folge, dass diese Legierungen eine Homogenisierungsglühung benötigen bzw. bei Werten über 4% Molybdän ein Umschmelzen zur Reduzierung der Seigerung notwendig ist.Superaustenites usually have molybdenum contents > 4% in order to achieve high corrosion resistance. However, molybdenum increases the tendency to segregation and thus an increased susceptibility to precipitation, especially sigma or chi phases. This means that these alloys require homogenization annealing or, with values above 4% molybdenum, remelting is necessary to reduce segregation.

Grundsätzlich ist es notwendig, dass die Werkstoffe auch nach einer Kaltverformung noch eine magnetische Permeabilität in Höhe µr < 1,01 aufweisen.Basically, it is necessary that the materials still have a magnetic permeability of µ r < 1.01 even after cold forming.

Derartige Stähle haben üblicherweise eine Dehngrenze Rp 0,2 von 140 KSI = 965 MPa.Such steels typically have a yield strength R p 0.2 of 140 KSI = 965 MPa.

Kennwerte für die Korrosionsbeständigkeit sind unter anderem der sogenannte PREN16-Wert, wobei es auch üblich ist, die sogenannte pitting equivalent number mittels MARCOPT zu definieren, wobei ein Superaustenit mit einer PREN16 zu o>42 gekennzeichnet ist, wobei PREN = % Cr + 3,3 x % Mo + 16 x % N ist.Characteristic values for corrosion resistance include the so-called PREN 16 value, whereby it is also common to define the so-called pitting equivalent number using MARC OPT , whereby a superaustenite is characterized by a PREN 16 of o>42, where PREN = % Cr + 3.3 x % Mo + 16 x % N.

Die bekannte MARC-Formel zur Beschreibung des Lochfraßwiderstands für derartige Stähle lautet wie folgt: MARC = Cr + 3,3 Mo + 20 N + 20 C - 0,25 Ni - 0,5 Mn.The well-known MARC formula for describing the pitting resistance for such steels is as follows: MARC = Cr + 3.3 Mo + 20 N + 20 C - 0.25 Ni - 0.5 Mn.

Klassische Schwerstangenstähle sind die Chrommanganstickstoffstähle, die bereits erwähnt wurden, weil sie bei hervorragenden Eigenschaften noch relativ günstig sind. Sie werden hierbei ohne Niob verwendet, wobei aufgrund höherer Mangangehalte sich Mangansulfide bilden, was sich negativ auf die Korrosionseigenschaften auswirkt.Classic drill collar steels are the chromium manganese nitrogen steels, which have already been mentioned because they have excellent properties and are still relatively inexpensive. They are used without niobium, whereby manganese sulphides form due to the higher manganese content, which has a negative effect on the corrosion properties.

Vergleichbare Stahlgüten sind auch für die Verwendung als Schiffbaustähle für Unterseeboote bekannt, wobei es sich hierbei um Chromnickelmanganstickstoffstähle handelt, die zudem mit Niob legiert sind, um den Kohlenstoff zu stabilisieren, was jedoch die Kerbschlagzähigkeit verschlechtert. Diese Stähle besitzen grundsätzlich wenig Mangan und besitzen hierdurch eine relativ gute Korrosionsbeständigkeit, erreichen jedoch nicht die Festigkeit von Schwerstangengüten und vor allem nicht deren Zähigkeit.Similar steel grades are also known for use as shipbuilding steels for submarines. These are chromium-nickel-manganese-nitrogen steels that are also alloyed with niobium to stabilize the carbon, but this reduces the impact toughness. These steels generally have little manganese and therefore have relatively good corrosion resistance, but do not achieve the strength of drill collar grades and, above all, not their toughness.

Aufgabe der Erfindung ist es, eine Bohrstrangkomponente, insbesondere für die Anwendung in der Ölfeldtechnologie zu schaffen, insbesondere eine Schwerstange, die eine hohe Korrosionsbeständigkeit, eine hohe Festigkeit und gutes paramagnetisches Verhalten zeigt.The object of the invention is to provide a drill string component, in particular for use in oil field technology, in particular a drill collar, which exhibits high corrosion resistance, high strength and good paramagnetic behavior.

Die Aufgabe wird mit einer Komponente mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Weiterbildungen sind in Unteransprüchen gekennzeichnet.The object is achieved with a component having the features of claim 1. Advantageous further developments are characterized in subclaims.

Es ist darüber hinaus eine Aufgabe der Erfindung, ein Verfahren zum Herstellen der Komponente zu schaffen, mit der eine Bohrstrangkomponente geschaffen wird, die bei erhöhter Korrosionsbeständigkeit eine hohe Festigkeit und ein gutes paramagnetisches Verhalten zeigt.It is a further object of the invention to provide a method for manufacturing the component, with which a drill string component is created which exhibits high strength and good paramagnetic behavior with increased corrosion resistance.

Die Aufgabe wird mit den Merkmalen des Anspruch 15 gelöst. Vorteilhafte Weiterbildungen sind in den hiervon abhängigen Unteransprüchen gekennzeichnet.The problem is solved with the features of claim 15. Advantageous further developments are characterized in the dependent subclaims.

Wenn nachfolgend Prozentangaben gemacht werden, sind dies immer Gew.-% (Gewichtsprozent).Whenever percentages are given below, these are always wt.% (percent by weight).

Erfindungsgemäß soll die Bohrstrangkomponente ein vollkommen austenitisches Gefüge insbesondere ohne Verformungsmartensit auch nach der Kaltumformung besitzen, wobei die magnetische Permeabilität µr < 1,01 bevorzugt µr < 1,005 liegt. Da Ferrit oder Verformungsmartensit ein magnetisches Verhalten zeigen, erhöhen sie daher die Permeabilität und sind daher erfindungsgemäß zu vermeiden.According to the invention, the drill string component should have a completely austenitic structure, in particular without deformation martensite even after cold forming, with the magnetic permeability µ r < 1.01, preferably µ r < 1.005. Since ferrite or deformation martensite exhibit magnetic behavior, they increase the permeability and are therefore to be avoided according to the invention.

Nach dem Warmumformschritt dem der Gussblock unterworfen wurde, liegt die Dehngrenze bei Rp0,2>450 MPa und kann ohne weiteres Werte >500 MPa erreichen, wobei die Kerbschlagarbeit bei 20°C größer 350 J liegt und auch Werte bis 440 J erreicht werden.After the hot forming step to which the cast ingot has been subjected, the yield strength at R p0.2 is >450 MPa and can easily reach values >500 MPa, whereby the impact energy at 20°C is greater than 350 J and values up to 440 J can also be reached.

Nach der Kaltverfestigung liegt die Dehngrenze sicher bei Rp0,2>1000 MPa und wobei in der Praxis Werte bis 1100 MPa erreicht werden, wobei kaltverfestigt die Kerbschlagarbeit bei 20°C sicher größer 80J liegt, wobei in der Praxis Werte von 200 J erreicht werden.After work hardening, the yield strength is certainly R p0.2 >1000 MPa, with values of up to 1100 MPa being achieved in practice, while the work hardened impact energy at 20°C is certainly greater than 80 J, with values of 200 J being achieved in practice.

Die Kerbschlagarbeit wurde nach DIN EN ISO 148-1 bestimmt.The impact energy was determined according to DIN EN ISO 148-1.

Diese ausgezeichnete Kombination von Festigkeit und Zähigkeit war bislang nicht erreichbar und auch nicht erwartbar und wird durch die spezielle Legierungslage nach der Erfindung bewirkt, die diesen synergistischen Effekt erzeugt.This excellent combination of strength and toughness was previously unattainable and also not expected and is achieved by the special alloy layer according to the invention, which produces this synergistic effect.

Erfindungsgemäß können Werte für das Produkt aus Zugfestigkeit Rm mit Kerbschlagzähigkeit KV von mehr als 100000 MPa J bevorzugt > 200000 MPa J besonders bevorzugt > 300000 MPa J erreicht werden.According to the invention, values for the product of tensile strength Rm with notched impact strength KV of more than 100,000 MPa J, preferably > 200,000 MPa J, particularly preferably > 300,000 MPa J can be achieved.

Die erfindungsgemäße Legierung umfasst die nachfolgenden Elemente (alle Angaben in Gew.-%): Elemente bevorzugt weiter bevorzugt Silizium (Si) < 0,5 < 0,5 < 0,5 Mangan (Mn) 5,0 - 6,0 Phosphor (P) < 0,05 < 0,05 < 0,05 Schwefel (S) < 0,005 < 0,005 < 0,005 Eisen (Fe) Rest Rest Rest Chrom (Cr) 24,0 - 28,0 26,0 - 28,0 Molybdän (Mo) 2,5 - 3,5 2,5 - 3,5 Nickel (Ni) -10,0 12,0 - 15,5 13,0 - 15,0 Vanadium (V) < 0,5 < 0,3 Unter Nachweisgrenze Wolfram (W) < 0,5 < 0,1 Unter Nachweisgrenze Kupfer (Cu) < 0,5 < 0,15 < 0,1 Kobalt (Co) < 5,0 < 0,5 Unter Nachweisgrenze Titan (Ti) < 0,1 < 0,05 Unter Nachweisgrenze Aluminium (Al) < 0,2 < 0,1 < 0,1 Niob (Nb) < 0,1 < 0,025 Unter Nachweisgrenze Bor (B) < 0,01 < 0,005 < 0,005 Stickstoff (N) 0,52 - 0,85 0,54 - 0,80 The alloy according to the invention comprises the following elements (all values in wt.%): elements preferred further preferred silicon (Si) < 0.5 < 0.5 < 0.5 manganese (Mn) 5.0 - 6.0 phosphorus (P) < 0.05 < 0.05 < 0.05 sulfur (S) < 0.005 < 0.005 < 0.005 iron (Fe) rest rest rest Chromium (Cr) 24.0 - 28.0 26.0 - 28.0 molybdenum (Mo) 2.5 - 3.5 2.5 - 3.5 Nickel (Ni) -10.0 12.0 - 15.5 13.0 - 15.0 Vanadium (V) < 0.5 < 0.3 Below detection limit tungsten (W) < 0.5 < 0.1 Below detection limit copper (Cu) < 0.5 < 0.15 < 0.1 cobalt (Co) < 5.0 < 0.5 Below detection limit titanium (Ti) < 0.1 < 0.05 Below detection limit aluminum (Al) < 0.2 < 0.1 < 0.1 niobium (Nb) < 0.1 < 0.025 Below detection limit boron (B) < 0.01 < 0.005 < 0.005 nitrogen (N) 0.52 - 0.85 0.54 - 0.80

Wobei der Rest auf 100% aus Eisen (wie in der Tabelle vermerkt) und unvermeidlichen Verunreinigungen besteht.The rest consists of 100% iron (as noted in the table) and unavoidable impurities.

Die erste Spalte (ganz links) zeigt die Zusammensetzung, mit welcher grundsätzlich eine erfindungsgemäße Schwerstange mit den jeweiligen positiven Eigenschaften realisierbar ist. Bevorzugte Varianten werden in den folgenden Spalten dargestellt, wobei aber nicht zwingend sämtliche Legierungselemente eingeschränkt vorliegen müssen, es sind auch Kombination von zb unter anderem 5,2 % Mn mit 23,1 % Chrom denkbar.The first column (far left) shows the composition with which a drill collar according to the invention with the respective positive properties can be realized. Preferred variants are shown in the following columns, although not all alloying elements necessarily have to be present in a restricted manner; combinations of, for example, 5.2% Mn with 23.1% chromium are also conceivable.

Mit einer solchen Legierung werden die positiven Eigenschaften der unterschiedlichen Stahlgüten zusammengeführt.Such an alloy combines the positive properties of the different steel grades.

Bei der erfindungsgemäßen Legierung ist völlig überraschend, dass sich sehr hohe Stickstoffwerte einstellen lassen, welches für die Festigkeit ausgesprochen gut ist, wobei diese Stickstoffwerte überraschenderweise über denen liegen, die in der Fachliteratur als möglich angegeben werden. Laut empirischen Methoden sind die hohen Stickstoffgehalte der erfindungsgemäßen Legierung überhaupt nicht möglich.What is completely surprising about the alloy according to the invention is that very high nitrogen levels can be achieved, which is extremely good for strength, and these nitrogen levels are surprisingly higher than those stated as possible in the specialist literature. According to empirical methods, the high nitrogen contents of the alloy according to the invention are not possible at all.

Im Folgenden werden die jeweiligen Elemente und gegebenenfalls im Zusammenwirken mit den übrigen Legierungsbestandteilen näher beschrieben. Alle Angaben bzgl. der Legierungszusammensetzung werden in Gewichtsprozent (Gew.-%) angeführt. Obere und untere Grenzen der einzelnen Legierungselemente können innerhalb der Grenzen der Ansprüche frei miteinander kombiniert werden.The individual elements and, where applicable, their interaction with the other alloy components are described in more detail below. All information regarding the alloy composition are given in weight percent (wt.%). Upper and lower limits of the individual alloying elements can be freely combined within the limits of the claims.

Kohlenstoff ist in Gehalten von 0,01 bis 0,1% enthalten sein. Kohlenstoff ist ein Austenitbildner und wirkt sich in Bezug auf hohe mechanische Kennwerte günstig aus. Im Hinblick auf eine Vermeidung von karbidischen Ausscheidungen wird der Kohlenstoffgehalt zwischen 0,01 und 0,1 Gew.-% eingestellt. Silizium ist in Gehalten bis 0,5 Gew.-% vorgesehen und dient in der Hauptsache der Desoxidation des Stahls. Die angegebene Obergrenze vermeidet sicher eine Ausbildung intermetallischer Phasen. Da Silizium überdies ein Ferritbildner ist, ist auch diesbezüglich die Obergrenze mit einem Sicherheitsbereich gewählt. Insbesondere kann Silizium in Gehalten von 0,1 - 0,3 Gew.-% vorgesehen sein.Carbon is present in amounts of 0.01 to 0.1%. Carbon is an austenite former and has a positive effect on high mechanical properties. In order to avoid carbide precipitation, the carbon content is set between 0.01 and 0.1% by weight. Silicon is provided in amounts of up to 0.5% by weight and is mainly used to deoxidize the steel. The specified upper limit safely prevents the formation of intermetallic phases. Since silicon is also a ferrite former, the upper limit has also been chosen with a safety margin in this regard. In particular, silicon can be provided in amounts of 0.1 - 0.3% by weight.

Mangan ist in Gehalten von 4,0 - 7,0 3 0 Gew.-% enthalten. Dies ist gegenüber Werkstoffen nach dem Stand der Technik ein ausgesprochen niedriger Wert. Bislang wurde angenommen, dass Mangangehalte von mehr als 19 Gew.-%, möglichst mehr als 20 Gew.-% für eine hohe Stickstofflöslichkeit notwendig sind. Überraschenderweise hat sich bei der vorliegenden Legierung ergeben, dass auch mit den erfindungsgemäß niedrigen Mangangehalten eine Stickstofflöslichkeit erzielt wird, die über dem, was nach der herrschenden Fachmeinung möglich ist, liegt. Jedoch hat sich erfindungsgemäß ergeben, dass durch nicht aufgeklärte synergistische Effekte bei der vorliegenden Legierung dies offenbar nicht notwendig ist. Die untere Grenze für Mangan kann bei 4,5 oder 5,0 % gewählt werden. Die obere Grenze für Mangan kann bei 7,5 oder 8,0 % gewählt werden.Manganese is present in contents of 4.0 - 7.0 3 0 wt.%. This is an extremely low value compared to state-of-the-art materials. Until now it was assumed that manganese contents of more than 19 wt.%, preferably more than 20 wt.%, are necessary for high nitrogen solubility. Surprisingly, it has been found with the present alloy that even with the low manganese contents according to the invention, a nitrogen solubility is achieved which is above what is possible according to prevailing expert opinion. However, it has been found with the present alloy that this is apparently not necessary due to unexplained synergistic effects. The lower limit for manganese can be selected at 4.5 or 5.0%. The upper limit for manganese can be selected at 7.5 or 8.0%.

Die obere Grenze für Kupfer ist bei < 0,5 Gew.-% oder < 0,15 Gew.-% oder < 0,10 Gew.-% oder unter der Nachweisgrenze (d.h. ohne jegliche bewusste Zulegierung) gewählt werden. Obwohl laut Literatur das Zulegieren von Kupfer sich als vorteilhaft für die Beständigkeit in Schwefelsäure erweist, zeigte sich, dass Kupfer bei Werten > 0,5 % die Neigung zur Ausscheidung von Chromnitriden erhöht, was sich negativ auf die Korrosionseigenschaften auswirkt. Erfindungsgemäß wird daher der obere Grenzwert auf 0,5 % festgelegt. Chrom erweist sich in Gehalten von 17 Gew.-% oder mehr als für eine höhere Korrosionsbeständigkeit notwendig. Nach der Erfindung sind mindestens 23% und höchstens 28% Chrom enthalten. Bislang wurde angenommen, dass höhere Gehalte als 24 Gew.-% sich nachteilig auf die magnetische Permeabilität auswirken, weil Chrom zu den ferritstabilisierenden Elementen zählt. Dem gegenüber konnte bei der erfindungsgemäßen Legierung festgestellt werden, dass selbst sehr hohe Chromgehalte oberhalb von 23% die magnetische Permeabilität in der vorliegenden Legierung nicht negativ beeinflussen, jedoch bekanntermaßen die Beständigkeit gegen Lochfraß und Spannungsrisskorrosion optimal beeinflusst werden. Die untere Grenze für Chrom kann bei 24 oder 25 oder 26 % gewählt werden. Die obere Grenze für Chrom kann bei 29 oder 30 % gewählt werden.The upper limit for copper is < 0.5 wt.% or < 0.15 wt.% or < 0.10 wt.% or below the detection limit (ie without any deliberate addition of alloys). Although according to the literature the addition of copper is beneficial for resistance in sulphuric acid, it has been shown that copper at values > 0.5% increases the tendency to precipitate chromium nitrides, which has a negative effect on the corrosion properties. According to the invention, the upper limit is therefore set at 0.5%. Chromium in contents of 17 wt.% or more proves to be necessary for higher corrosion resistance. According to the invention, at least 23% and at most 28% chromium is required. It has previously been assumed that contents higher than 24% by weight have a detrimental effect on the magnetic permeability because chromium is one of the ferrite-stabilizing elements. In contrast, it was found that in the alloy according to the invention, even very high chromium contents above 23% do not have a negative effect on the magnetic permeability in the alloy in question, but are known to have an optimal effect on the resistance to pitting and stress corrosion cracking. The lower limit for chromium can be selected at 24 or 25 or 26%. The upper limit for chromium can be selected at 29 or 30%.

Molybdän ist ein Element, welches wesentlich zur Korrosionsbeständigkeit im Allgemeinen und zur Lochfraßkorrosionsbeständigkeit im Besonderen beiträgt, wobei die Wirkung von Molybdän durch Nickel verstärkt wird. Erfindungsgemäß werden 2,5 bis 4,0 Gew.-% Molybdän zugesetzt. Höhere Gehalte an Molybdän machen eine ESU-Behandlung zwingend notwendig, um Seigerungen auszuschließen. Umschmelzverfahren sind sehr aufwendig und teuer. Deshalb sollen erfindungsgemäß DESU- oder ESU-Routen vermieden werden.Molybdenum is an element that makes a significant contribution to corrosion resistance in general and pitting corrosion resistance in particular, with the effect of molybdenum being enhanced by nickel. According to the invention, 2.5 to 4.0 wt.% molybdenum is added. Higher molybdenum contents make ESR treatment absolutely necessary to prevent segregation. Remelting processes are very complex and expensive. Therefore, according to the invention, DESU or ESR routes should be avoided.

Wolfram ist erfindungsgemäß in Gehalten unter 0,5% anwesend und trägt zur Steigerung der Korrosionsbeständigkeit bei. Die obere Grenze für Wolfram kann bei 0,5 oder 0,4 oder 0,3 oder 0,2 oder 0,1 % oder unter der Nachweisgrenze (d.h. ohne jegliche bewusste Zulegierung) gewählt werden.According to the invention, tungsten is present in amounts below 0.5% and contributes to increasing corrosion resistance. The upper limit for tungsten can be selected at 0.5 or 0.4 or 0.3 or 0.2 or 0.1% or below the detection limit (i.e. without any deliberate addition of alloys).

Nickel ist erfindungsgemäß in Gehalten von 11 bis 15,5% anwesend, wodurch in chloridhaltigen Medien eine hohe Spannungsrisskorrosionsbeständigkeit erreicht wird. Die untere Grenze für Nickel kann bei 12 oder 13 % gewählt werden. Die obere Grenze für Nickel kann bei 16% gewählt werden.According to the invention, nickel is present in contents of 11 to 15.5%, which achieves a high stress corrosion cracking resistance in chloride-containing media. The lower limit for nickel can be selected at 12 or 13%. The upper limit for nickel can be selected at 16%.

Kobalt ist in Gehalten bis 5 Gew.-% insbesondere zur Substitution von Nickel vorgesehen sein. Die obere Grenze für Kobalt kann bei 5 oder 3 oder 1 oder 0,5 oder 0,4 oder 0,3 oder 0,2 oder 0,1 % oder unter der Nachweisgrenze (d.h. ohne jegliche bewusste Zulegierung) gewählt werden.Cobalt is intended in contents of up to 5 wt.%, particularly for the substitution of nickel. The upper limit for cobalt can be selected at 5 or 3 or 1 or 0.5 or 0.4 or 0.3 or 0.2 or 0.1% or below the detection limit (ie without any deliberate addition of alloying).

Stickstoff ist in Gehalten von 0,52 bis 0,85 Gew.-% enthalten, um eine hohe Festigkeit sicherzustellen. Weiter trägt Stickstoff zur Korrosionsbeständigkeit bei und ist ein starker Austenitbildner, weshalb höhere Gehalte als 0,52 Gew.-%, insbesondere höher als 0,54 Gew.-% günstig sind. Um stickstoffhaltige Ausscheidungen, insbesondere Chromnitrid, zu vermeiden, ist die Obergrenze des Stickstoffs auf 0,85 Gew.-% begrenzt, wobei sich erwiesen hat, dass trotz des sehr geringen Mangangehaltes im Gegensatz zu bekannten Legierungen, diese hohen Stickstoffgehalte in der Legierung ohne jede Druckaufstickung (DESU) erzielbar sind.Nitrogen is contained in amounts of 0.52 to 0.85 wt.% to ensure high strength. Nitrogen also contributes to corrosion resistance and is a strong austenite former, which is why contents higher than 0.52 wt.%, and especially higher than 0.54 wt.%, are advantageous. In order to avoid nitrogen-containing precipitations, particularly chromium nitride, the upper limit of nitrogen is limited to 0.85 wt.%. It has been proven that, despite the very low manganese content in contrast to known alloys, these high nitrogen contents in the alloy can be achieved without any pressure nitrogen addition (DESU).

Aufgrund der guten Stickstofflöslichkeit einerseits und der Nachteile, die mit höheren Gehalten an Stickstoff, insbesondere über 0,9% erhalten werden, verbietet sich jede Druckaufstickung im Rahmen einer DESU-Route sogar. Durch den erfindungsgemäß niedrigen und durch Chrom und Stickstoff kompensierten Molybdängehalt, ist dies auch nicht notwendig. Insbesondere vorteilhaft ist es, wenn das Verhältnis Stickstoff zu Kohlenstoff größer 15 ist. Die untere Grenze für Stickstoff kann bei 0,54 oder 0,60 oder 0,65 % gewählt werden. Die obere Grenze für Stickstoff kann bei 0,90 % gewählt werden.Due to the good nitrogen solubility on the one hand and the disadvantages that arise with higher nitrogen contents, especially above 0.9%, any pressure nitrogen addition in the context of a DESU route is actually prohibited. Due to the low molybdenum content according to the invention, which is compensated by chromium and nitrogen, this is also not necessary. It is particularly advantageous if the nitrogen to carbon ratio is greater than 15. The lower limit for nitrogen can be selected at 0.54 or 0.60 or 0.65%. The upper limit for nitrogen can be selected at 0.90%.

Laut V.G. Gavriljuk, H.Berns; "High Nitrogen Steels", S. 264, 1999 erreichen unter Atmosphärendruck erschmolzene CrNiMn(Mo)-Austenitstähle wie der erfindungsgemäße Stickstoffgehalte von 0,2% bis 0,5%. Im Stand der Technik erreichen nur CrMn(Mo)-Austenite Mn-Gehalte von 0,5 bis 1%. Bei der erfindungsgemäßen Legierung ist jedoch von Vorteil, dass es offensichtlich gelungen ist, sehr viel höhere Stickstoffgehalte als erwartet zu erzielen, ohne dass ein Druckaufsticken notwendig wäre.According to VG Gavriljuk, H. Berns; "High Nitrogen Steels", p. 264, 1999 CrNiMn(Mo) austenitic steels melted under atmospheric pressure, such as the steel according to the invention, achieve nitrogen contents of 0.2% to 0.5%. In the prior art, only CrMn(Mo) austenites achieve Mn contents of 0.5 to 1%. However, the advantage of the alloy according to the invention is that it has obviously been possible to achieve much higher nitrogen contents than expected without the need for pressure nitriding.

Zudem können als weitere Legierungsbestandteile Bor, Aluminium und Schwefel enthalten sein, jedoch lediglich optional.Boron, aluminium and sulphur may also be included as additional alloy components, but only optionally.

Die Legierungsbestandteile Vanadium und Titan sind in der vorliegenden Stahllegierung nicht notwendigerweise enthalten. Obwohl diese Elemente positiv zur Löslichkeit von Stickstoff beitragen, kann auch bei deren Abwesenheit die erfindungsgemäß hohe Stickstofflöslichkeit geboten werden.The alloying components vanadium and titanium are not necessarily included in the present steel alloy. Although these elements contribute positively to the solubility of nitrogen, the high nitrogen solubility according to the invention can be achieved even in their absence.

Niob soll in der erfindungsgemäßen Legierung nicht enthalten sein, da es zu Ausscheidungen führen kann, welche die Zähigkeit herabsetzt.Historisch wurde Niob nur zur Abbindung von Kohlenstoff verwendet, was bei der erfindungsgemäßen Legierung nicht notwendig ist. Die Gehalte von Niob sind bis 0,1% noch tolerierbar, sollten aber den Gehalt unvermeidlicher Verunreinigungen nicht übersteigen.Niobium should not be included in the alloy according to the invention, as it can lead to precipitations which reduce the toughness. Historically, niobium was only used to bind carbon, which is not necessary in the alloy according to the invention. The Niobium contents are tolerable up to 0.1%, but should not exceed the content of unavoidable impurities.

Die Erfindung wird anhand einer Zeichnung beispielhaft erläutert. Es zeigen dabei:

Figur 1:
eine Tabelle, zeigend die Bestandteile der Legierung;
Figur 2:
stark schematisiert den Herstellungsweg;
Figur 3:
eine Tabelle mit drei unterschiedlichen Legierungen innerhalb des Konzepts und den daraus resultierenden Ist-Werten des Stickstoffgehaltes gegen die rechnerische Stickstofflöslichkeit einer derartigen Legierung laut geltender Lehrmeinung.
Figur 4:
mechanische Eigenschaften der drei Legierungen aus Figur 3 nach einem Herstellungsverfahren mit Kaltverfestigung hergestellt
The invention is explained by way of example using a drawing. In the drawing:
Figure 1:
a table showing the components of the alloy;
Figure 2:
highly schematized production process;
Figure 3:
a table with three different alloys within the concept and the resulting actual values of the nitrogen content against the calculated nitrogen solubility of such an alloy according to current theory.
Figure 4:
mechanical properties of the three alloys from Figure 3 manufactured using a cold-work hardening process

Die Bestandteile werden unter atmosphärischen Bedingungen erschmolzen und anschließend sekundärmetallurgisch weiter behandelt. Anschließend werden Blöcke gegossen, die direktanschließend warmgeschmiedet werden. Direkt im Sinne der Erfindung bedeutet, dass kein zusätzlicher Umschmelzprozess wie zb. Elektroschlacke-Umschmelzung (ESU) oder Druck-Elektroschlackeumschmelzung (DESU) erfolgt.The components are melted under atmospheric conditions and then subjected to secondary metallurgical treatment. Blocks are then cast and then hot forged. Direct in the sense of the invention means that no additional remelting process such as electroslag remelting (ESR) or pressure electroslag remelting (DESR) takes place.

Bei der erfindungsgemäßen Legierung ist von Vorteil, dass eine Homogenisierungsglühung oder ein Umschmelzen nicht notwendig sind.The advantage of the alloy according to the invention is that homogenization annealing or remelting is not necessary.

Figur 2 zeigt beispielhaft die möglichen Verfahrensrouten für die Fertigung der erfindungsgemäßen Legierungszusammensetzung. Exemplarisch wird nun eine mögliche Route beschrieben. Im Vakuuminduktionsschmelzaggregat (VID) wird Schmelzgut gleichzeitig erschmolzen und sekundärmetallurgisch behandelt. Im Anschluss wird die Schmelze in Kokillen (Ingot) gegossen und erstarrt dort zu Blöcken. Diese werden danach in mehreren Schritten warmumgeformt. Z.B. auf der P52 Schmiedepresse (Forging Press) vorgeschmiedet und auf der Langschmiedemaschine (Rotary Forging Machine) auf Endmaß gebracht. Je nach Anforderungen kann noch ein Lösungsglühschritt und/oder Wasserabkühlung erfolgen. Figure 2 shows examples of the possible process routes for the production of the alloy composition according to the invention. One possible route is now described as an example. In the vacuum induction melting unit (VID), the melt is simultaneously melted and treated using secondary metallurgy. The melt is then poured into molds (ingots) and solidifies there to form blocks. These are then hot-formed in several steps. For example, pre-forged on the P52 forging press and brought to final dimensions on the rotary forging machine. Depending on requirements, a solution annealing step and/or water cooling can also be carried out.

Zur Festlegung der finalen Eigenschaften erfolgt die Kaltumformung auf einer Langschmiedemaschine und im Anschluss werden die so gefertigten Teile noch bearbeitet.To determine the final properties, cold forming is carried out on a long forging machine and the parts manufactured in this way are then machined.

Nach dem letzten Warmumformungsteilschritt erfolgt eine rasche Abkühlung auf Raumtemperatur. Mit diesem besonderen Verfahrensschritt werden kritische Temperaturbereiche rascher durchlaufen und es wird die Bildung von Korngrenzenausscheidungen hintangehalten. Am erfindungsgemäßen Produkt erkennt man, dass z.B. Chromnitridausscheidungen in deutlich geringerem Ausmaß auftreten, die Korrosionseigenschaften werden dadurch optimal beeinflusst. Anschließend erfolgen die erforderlichen Kaltumformschritte, bei denen eine Kaltverfestigung stattfindet. Der Verformungsgrad liegt hier zwischen 10 und 50 %.After the last hot forming step, the material is cooled down quickly to room temperature. This special process step allows critical temperature ranges to be passed through more quickly and prevents the formation of grain boundary precipitation. The product according to the invention shows that, for example, chromium nitride precipitation occurs to a much lesser extent, which has an optimal effect on the corrosion properties. The necessary cold forming steps then follow, during which work hardening takes place. The degree of deformation here is between 10 and 50%.

Erfindungsgemäß ist es vorteilhaft, wenn der folgende Zusammenhang gilt:
MARCopt: 40 < wt % Cr + 3,3 × wt % Mo + 20 × wt % C + 20 × wt % N 0,5 × wt % Mn

Figure imgb0001
According to the invention, it is advantageous if the following relationship applies:
MARC opt : 40 < wt % Cr + 3.3 × wt % Mo + 20 × wt % C + 20 × wt % N 0.5 × wt % Mn
Figure imgb0001

Die MARC-Formel ist dahingehende optimiert, dass herausgefunden wurde, dass der sonst übliche Abzug von Nickel für das erfindungsgemäße System nicht zutrifft sowie der Grenzwert von 40 notwendig ist.The MARC formula has been optimized in such a way that it was found that the otherwise usual deduction for nickel does not apply to the system according to the invention and that the limit value of 40 is necessary.

Anschließend erfolgen die erforderlichen Kaltumformschritte, bei denen eine Kaltverfestigung stattfindet, und anschließend die mechanische Bearbeitung, die insbesondere ein Drehen oder Schälen sein kann.This is followed by the necessary cold forming steps, in which work hardening takes place, and then the mechanical processing, which can in particular be turning or peeling.

Ein erfindungsgemäßer superaustenitischer Werkstoff kann nicht nur über die beschriebenen (und insbesondere in Figur 2 dargestellten) Herstellungsrouten erzeugt werden, die vorteilhaften Eigenschaften der erfindungsgemäßen Legierung lassen sich auch durch einen pulvermetallurgischen Erzeugungsweg erzielen lassen.A superaustenitic material according to the invention can not only be used in the ways described (and in particular in Figure 2 shown) production routes, the advantageous properties of the alloy according to the invention can also be achieved by a powder metallurgical production route.

In Figur 3 sind drei unterschiedliche Varianten innerhalb der Legierungszusammensetzungen gezeigt, mit den jeweils gemessenen Stickstoffwerten, die sich bei der erfindungsgemäßen Verfahrensweise in Verbindung mit den erfindungsgemäßen Legierungen ergeben haben. Diese sehr hohen Stickstoffanteile stehen im Widerspruch zu den in den rechten Spalten angegebenen Stickstofflöslichkeit nach Stein, Satir, Kowandar und Medovar aus "On restricting aspects in the production of non-magnetic Cr-Mn-N-alloy steels, Saller, 2005." Bei Medovar sind unterschiedliche Temperaturen angegeben. Es ist jedoch erkennbar, dass die hohen Stickstoffwerte die theoretisch zu erwartenden weit übersteigen.In Figure 3 Three different variants within the alloy compositions are shown, with the nitrogen values measured in each case, which resulted from the procedure according to the invention in connection with the alloys according to the invention. These very high nitrogen contents contradict the nitrogen solubility given in the right-hand columns according to Stein, Satir, Kowandar and Medovar from "On restricting aspects in the production of non-magnetic Cr-Mn-N-alloy steels, Saller, 2005." Different temperatures are indicated for Medovar. However, it is clear that the high nitrogen values far exceed those theoretically expected.

Dies ist umso erstaunlicher, als dass bei der erfindungsgemäßen Legierung ein Weg gegangen wurde, der eine so hohe Stickstofflöslichkeit nicht erwarten lässt, insbesondere weil der die Stickstofflöslichkeit stark positiv beeinflussende Mangangehalt gegenüber bekannten entsprechenden Legierungen stark herabgesetzt ist.This is all the more surprising since the alloy according to the invention follows a path which would not lead one to expect such a high nitrogen solubility, in particular because the manganese content, which has a strongly positive influence on nitrogen solubility, is greatly reduced compared to known corresponding alloys.

In Figur 4 werden die drei Legierungen aus Figur 3 nach einem Verfahren hergestellt und einer Kaltverfestigung unterzogen.In Figure 4 The three alloys are made of Figure 3 manufactured using a process and subjected to work hardening.

Nach dieser Kaltverfestigung lag Rp0,2 bei alle drei Werkstoffen bei etwa 1000 MPa und die Zugfestigkeit Rm jeweils zwischen 1100 MPa und 1250 MPa. Zusätzlich lag die Kerbschlagarbeit bei hervorragenden 270 J bis sogar über 300 J (Legierung C - 329,5 J).After this work hardening, R p0.2 was around 1000 MPa for all three materials and the tensile strength Rm was between 1100 MPa and 1250 MPa. In addition, the notched bar impact energy was an excellent 270 J to even over 300 J (alloy C - 329.5 J).

Damit konnten ausgezeichnete Kombination an Festigkeit und Zähigkeit erreicht werden, wobei das Produkt aus Rm*KV bei allen drei Beispielen mehr als 300000 MPa J betrug.This enabled an excellent combination of strength and toughness to be achieved, with the product of Rm*KV being more than 300000 MPa J for all three examples.

Somit ist bei der Erfindung von Vorteil, dass eine Schwerstangenlegierung mit erhöhter Korrosionsbeständigkeit und niedrigem Nickelgehalt geschaffen wurde, die gleichzeitig hohe Festigkeit und paramagnetisches Verhalten zeigt. Auch nach Kaltumformung liegt ein vollkommen austenitisches Gefüge mit einer magnetischen Permeabilität µr<1,005 vor, so dass es gelungen ist, die positiven Eigenschaften eines kostengünstigen Chrommangannickelstahls mit den technischen herausragenden Eigenschaften eines Chromnickelmolybdänstahls zu kombinieren.The invention therefore has the advantage that a drill collar alloy with increased corrosion resistance and low nickel content has been created, which at the same time shows high strength and paramagnetic behavior. Even after cold forming, a completely austenitic structure with a magnetic permeability µ r <1.005 is present, so that it has been possible to combine the positive properties of a cost-effective chromium manganese nickel steel with the outstanding technical properties of a chromium nickel molybdenum steel.

Claims (18)

  1. Drill string component, in particular drill collar, MWD- or LWD component for use in oil field technology and in particular in deep drilling, made of an alloy with the following composition, all values in % by weight, as well as unavoidable impurities:
    elements carbon (C) 0.01 - 0.1 silicon (Si) < 0.5 manganese (Mn) 4.0 - 7.0 phosphorous (P) < 0.05 sulphur (S) < 0.005 iron (Fe) residue chromium (Cr) 23.0 - 28 molybdenum (Mo) 2.5 - 4.0 nickel (Ni) 11 - 15.5 vanadium (V) < 0.5 tungsten (W) < 0.5 copper (Cu) < 0.5 cobalt (Co) < 5 titanium (Ti) < 0.1 aluminium (Al) < 0.2 niobium (Nb) < 0.1 boron (B) < 0.01 nitrogen (N) 0.52 - 0.85
    wherein the drill string component has a yield strength cold-worked with a degree of deformation of 10 to 50% of Rp0.2 > 1000 MPa.
  2. Drill string component according to Claim 1,
    characterized in that the alloy consists of the following elements, all values in % by weight, as well as unavoidable impurities:
    elements carbon (C) 0.01 - 0.1 silicon (Si) < 0.5 manganese (Mn) 4.0 - 7.0 phosphorous (P) < 0.05 sulphur (S) < 0.005 iron (Fe) residue chromium (Cr) 24.0 - 28.0 molybdenum (Mo) 2.5 - 3.5 nickel (Ni) 12.0 - 15.5 vanadium (V) < 0.3 tungsten (W) < 0.1 copper (Cu) < 0.15 cobalt (Co) < 0.5 titanium (Ti) < 0.05 aluminium (Al) < 0.1 niobium (Nb) < 0.025 boron (B) < 0.01 nitrogen (N) 0.52 - 0.85.
  3. Drill string component according to Claim 1 or 2,
    characterized in that the alloy consists of the following elements, all values in % by weight, as well as unavoidable impurities:
    elements carbon (C) 0.01 - 0.10 silicon (Si) < 0.5 manganese (Mn) 5.0 - 6.0 phosphorous (P) < 0.05 sulphur (S) < 0.005 iron (Fe) residue chromium (Cr) 26.0 - 28.0 molybdenum (Mo) 2.5 - 3.5 nickel (Ni) 13.0 - 15.0 vanadium (V) below detection limit tungsten (W) below detection limit copper (Cu) < 0.1 cobalt (Co) below detection limit titanium (Ti) below detection limit aluminium (Al) < 0.1 niobium (Nb) below detection limit boron (B) < 0.01 nitrogen (N) 0.54 - 0.80.
  4. Drill string component according to Claim 1,
    characterized in that in the alloy composition, the element cobalt is < 5 or < 1 or < 0.5% or < 0.4% or < 0.3% or < 0.2% or < 0.1% or below the detection limit.
  5. Drill string component according to one of Claims 1 to 4,
    characterized in that in the alloy composition, the element copper is < 0.3 or < 0.2 or < 0.1 or below the detection limit.
  6. Drill string component according to one of Claims 1 to 5,
    characterized in that in the alloy composition, the element tungsten is < 0.5 or < 0.3% or < 0.2% or < 0.1% or below the detection limit.
  7. Drill string component according to one of Claims 1 to 6,
    characterized in that nickel has an upper limit value of 15% or 15.5% or 15.8%
    and
    a lower limit value of 10.2% or 11% or 12% or 13%.
  8. Drill string component according to one of the preceding claims,
    characterized in that
    the drill string component is achieved by secondary metallurgical treatment of the melt, casting into ingots, directly followed by hot forging, cold forging and, if necessary, further mechanical processing.
  9. Drill string component according to one of the preceding claims,
    characterized in that
    the magnetic permeability is µr < 1.01 after cold forming.
  10. Drill string component according to one of the preceding claims,
    characterized in that,
    when cold-worked, the notch impact energy at 20°C is greater than 80J, preferably > 110J, particularly preferably > 130J and in particular the product of Rm * KV > 100000 MPaJ.
  11. Drill string component according to one of the preceding claims,
    characterized in that
    the material is completely austenitic, i.e. free of deformation martensite, after cold forming.
  12. Drill string component according to one of the preceding claims,
    characterized in that,
    sulphur as an impurity does not exceed 0.005% by weight.
  13. Drill string component according to one of the preceding claims,
    characterized in that,
    phosphorus is present as an impurity with no more than 0.05% by weight.
  14. Method for producing a drill string component in particular according to one of the preceding claims,
    characterized in that
    an alloy with the following components, all values in % by weight, as well as unavoidable impurities:
    elements carbon (C) 0.01 - 0.1 silicon (Si) < 0.5 manganese (Mn) 4.0 - 7.0 phosphorous (P) < 0.05 sulphur (S) < 0.005 iron (Fe) residue chromium (Cr) 23.0 - 28 molybdenum (Mo) 2.5 - 4.0 nickel (Ni) 11 - 15.5 vanadium (V) < 0.5 tungsten (W) < 0.5 copper (Cu) < 0.5 cobalt (Co) < 5.0 titanium (Ti) < 0.1 aluminium (Al) < 0.2 niobium (Nb) < 0.1 boron (B) < 0.01 nitrogen (N) 0.52 - 0.85
    is melted and then undergoes secondary metallurgical treatment, the alloy thus obtained is then cast into ingots and left to solidify and then heated up and is straight after hot formed by forging, wherein the forged parts are subject to further cold forming and subsequent mechanical processing, wherein a yield strength cold-worked with a degree of deformation of 10 to 50% of Rp0.2 > 1000 MPa is achieved.
  15. Method according to Claim 14,
    characterized in that
    an alloy with the following components, all values in % by weight, as well as unavoidable impurities is melted: elements carbon (C) 0.01 - 0.1 silicon (Si) < 0.5 manganese (Mn) 4.0 - 7.0 phosphorous (P) < 0.05 sulphur (S) < 0.005 iron (Fe) residue chromium (Cr) 24.0 - 28.0 molybdenum (Mo) 2.5 - 3.5 nickel (Ni) 12.0 - 15.5 vanadium (V) < 0.3 tungsten (W) < 0.1 copper (Cu) < 0.15 cobalt (Co) < 0.5 titanium (Ti) < 0.05 aluminium (Al) < 0.1 niobium (Nb) < 0.025 boron (B) < 0.01 nitrogen (N) 0.52 - 0.85.
  16. Method according to Claim 14,
    characterized in that
    an alloy with the following components, all values in % by weight, as well as unavoidable impurities is melted
    elements
    carbon (C) 0.01 - 0.10 silicon (Si) < 0.5 manganese (Mn) 5.0 - 6.0 phosphorous (P) < 0.05 sulphur (S) < 0.005 iron (Fe) residue chromium (Cr) 26.0 - 28.0 molybdenum (Mo) 2.5 - 3.5 nickel (Ni) 13.0 - 15.0 vanadium (V) below detection limit tungsten (W) below detection limit copper (Cu) < 0.1 cobalt (Co) below detection limit titanium (Ti) below detection limit aluminium (Al) < 0.1 niobium (Nb) below detection limit boron (B) < 0.005 nitrogen (N) 0.54 - 0.80.
  17. Method according to one of Claims 14 to 16,
    characterized in that
    hot forming takes place in several sub-steps.
  18. Method according to one of Claims 14 to 17,
    characterized in that
    in between the hot forming sub-steps, the forged part is heated up again, and after the last hot forming step, solution annealing takes place if necessary.
EP19835388.0A 2018-12-20 2019-12-19 Component for drill rod with high corrosion resistance and manufacturing method thereof Active EP3899065B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018133251.3A DE102018133251A1 (en) 2018-12-20 2018-12-20 Drill string component with high corrosion resistance and process for their manufacture
PCT/EP2019/086381 WO2020127786A1 (en) 2018-12-20 2019-12-19 Drill string component with high corosion resistance, and method for the production of same

Publications (3)

Publication Number Publication Date
EP3899065A1 EP3899065A1 (en) 2021-10-27
EP3899065C0 EP3899065C0 (en) 2024-12-04
EP3899065B1 true EP3899065B1 (en) 2024-12-04

Family

ID=69157791

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19835388.0A Active EP3899065B1 (en) 2018-12-20 2019-12-19 Component for drill rod with high corrosion resistance and manufacturing method thereof

Country Status (8)

Country Link
US (1) US12365960B2 (en)
EP (1) EP3899065B1 (en)
CN (1) CN113195749A (en)
CA (1) CA3118803A1 (en)
DE (1) DE102018133251A1 (en)
ES (1) ES2999343T3 (en)
PL (1) PL3899065T3 (en)
WO (1) WO2020127786A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11885183B2 (en) * 2022-04-12 2024-01-30 Joe Fox Downhole inductive coupler with ingot
JP2023166911A (en) * 2022-05-10 2023-11-22 大同特殊鋼株式会社 Non-magnetic austenitic stainless steel material and production method therefor
US20240183014A1 (en) 2022-12-03 2024-06-06 Arthur Craig Reardon High Speed Steel Composition

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB778597A (en) 1955-02-15 1957-07-10 Ford Motor Co Improvements in or relating to the manufacture of nitrogen-rich wrought austenitic alloys
AT277302B (en) 1963-05-24 1969-12-29 Boehler & Co Ag Geb Austenitic corrosion-resistant steel
JPS5521547A (en) * 1978-08-01 1980-02-15 Hitachi Metals Ltd Austenite stainless steel having high strength and pitting corrosion resistance
DE3037954C2 (en) * 1980-10-08 1983-12-01 ARBED Saarstahl GmbH, 6620 Völklingen Use of an austenitic steel in the work-hardened state for extreme corrosion loads
US4554028A (en) * 1983-12-13 1985-11-19 Carpenter Technology Corporation Large warm worked, alloy article
NO891969L (en) * 1988-05-17 1989-11-20 Thyssen Edelstahlwerke Ag Corrosion resistant AUSTENITIC STEEL.
DE3837456C1 (en) 1988-05-17 1990-03-29 Thyssen Edelstahlwerke Ag, 4000 Duesseldorf, De Use of a fully austenitic steel for components which are severely stressed corrosion-chemically and mechanically
DE3837457C1 (en) * 1988-05-17 1989-12-21 Thyssen Edelstahlwerke Ag, 4000 Duesseldorf, De Steel for components of plants or equipment for the conveying, storage and transport of oil or gas
JP2591256B2 (en) 1990-05-21 1997-03-19 住友金属工業株式会社 High strength non-magnetic steel
EP0864663B1 (en) 1995-09-27 2003-05-14 Sumitomo Metal Industries, Ltd. High-strength welded steel structures having excellent corrosion resistance
JP3347582B2 (en) 1996-04-12 2002-11-20 大同特殊鋼株式会社 Austenitic stainless steel for metal gasket and method for producing the same
AT407882B (en) 1999-07-15 2001-07-25 Schoeller Bleckmann Oilfield T METHOD FOR PRODUCING A PARAMAGNETIC, CORROSION-RESISTANT MATERIAL AND THE LIKE MATERIALS WITH A HIGH STRETCH LIMIT, STRENGTH AND TENSITY
DE29921813U1 (en) 1999-12-12 2000-02-24 Friederich, Heinrich, Dr.-Ing., 68649 Groß-Rohrheim High-strength, corrosion-resistant stainless steel profile bar
SE0000678L (en) * 2000-03-02 2001-04-30 Sandvik Ab Duplex stainless steel
AT408889B (en) 2000-06-30 2002-03-25 Schoeller Bleckmann Oilfield T CORROSION-RESISTANT MATERIAL
KR100445246B1 (en) * 2001-12-28 2004-08-21 김영식 High Pitting Resistant and High Ni bearing duplex stainless steel
SE527175C2 (en) * 2003-03-02 2006-01-17 Sandvik Intellectual Property Duplex stainless steel alloy and its use
CN100451153C (en) * 2003-08-19 2009-01-14 杰富意钢铁株式会社 High strength stainless steel pipe excellent in corrosion resistance for use in oil well and method for production thereof
AT412727B (en) * 2003-12-03 2005-06-27 Boehler Edelstahl CORROSION RESISTANT, AUSTENITIC STEEL ALLOY
JP4210999B2 (en) * 2003-12-19 2009-01-21 大同特殊鋼株式会社 Ring material for continuously variable transmission, method for manufacturing the same, and ring for continuously variable transmission
JP2005281855A (en) 2004-03-04 2005-10-13 Daido Steel Co Ltd Heat resistant austenitic stainless steel and method for producing the same
JP5092204B2 (en) * 2005-04-28 2012-12-05 Jfeスチール株式会社 Stainless steel pipe for oil wells with excellent pipe expandability
CN101613834A (en) * 2008-06-25 2009-12-30 宝山钢铁股份有限公司 Peracidity deep-well Fe based austenite alloy tubing and casing and manufacture method
CN101994052B (en) * 2009-08-21 2013-04-03 宝山钢铁股份有限公司 Nitrogen-containing austenitic alloy
CN102414764B (en) 2009-09-29 2014-06-04 古河电气工业株式会社 Substrate for superconducting wiring, superconducting wiring and production method for same
KR20200001625A (en) 2011-05-26 2020-01-06 유나이티드 파이프라인스 아시아 패시픽 피티이 리미티드 Austenitic stainless steel
US9347121B2 (en) 2011-12-20 2016-05-24 Ati Properties, Inc. High strength, corrosion resistant austenitic alloys
BR112017000121B1 (en) 2014-10-29 2021-06-08 Nippon Steel Corporation austenitic stainless steel and manufacturing method for it
US10941469B2 (en) * 2015-07-16 2021-03-09 Ab Sandvik Materials Technology Martensitic stainless steel
CN106555133B (en) * 2015-09-24 2018-12-07 宝山钢铁股份有限公司 A kind of high-strength corrosion-resistant stainless steel, tubing and casing and its manufacturing method
AU2017247759B2 (en) 2016-04-07 2020-04-30 Nippon Steel Corporation Austenitic stainless steel material
DE102018133255A1 (en) 2018-12-20 2020-06-25 Voestalpine Böhler Edelstahl Gmbh & Co Kg Super austenitic material

Also Published As

Publication number Publication date
EP3899065C0 (en) 2024-12-04
US20220033924A1 (en) 2022-02-03
CA3118803A1 (en) 2020-06-25
US12365960B2 (en) 2025-07-22
WO2020127786A1 (en) 2020-06-25
PL3899065T3 (en) 2025-06-09
ES2999343T3 (en) 2025-02-25
CN113195749A (en) 2021-07-30
DE102018133251A1 (en) 2020-06-25
EP3899065A1 (en) 2021-10-27

Similar Documents

Publication Publication Date Title
EP1538232B1 (en) Corrosion resistant austenitic steel
DE602004000140T2 (en) Stainless austenitic steel
DE69706224T2 (en) Heat resistant steel and steam turbine rotor
EP3899063B1 (en) Super austenitic material
EP3168312B1 (en) Engineering steel with bainitic structure, forged part produced therefrom and method for making a forged part
DE69003202T2 (en) High-strength, heat-resistant, low-alloy steels.
EP1780293B1 (en) Procedure for manufacturing of steel starting material by warm deforming
EP3899065B1 (en) Component for drill rod with high corrosion resistance and manufacturing method thereof
DE69608773T2 (en) Steel for the manufacture of divisible machine parts and machine parts made from this steel
WO2009090231A1 (en) Parts made of austenitic cast iron having an increased carbon content, methods for the production thereof, and use thereof
DE102015222183A1 (en) Hot-rolled steel and method of making the same
DE2927091A1 (en) NON-MAGNETIC MANGANIC STEEL WITH EXCELLENT WELDABILITY AND WORKABILITY AND USE OF THIS STEEL
DE69601340T2 (en) HIGH-STRENGTH, HIGH-STRENGTH HEAT-RESISTANT STEEL AND METHOD FOR THE PRODUCTION THEREOF
DE3236268C2 (en) Wear-resistant cast iron alloy
DE1483218B2 (en) Process for producing a heat-resistant, ferritic Cr-Mo-V steel with high creep strength and improved creep elongation
EP2662461A1 (en) Iron-chromium-manganese-nickel alloy
WO2020058269A1 (en) Steel for surface hardening with high edge hardness and with a fine ductile core structure
DE102013106990B4 (en) Chain link or chain component for mining applications
EP1069202B1 (en) A paramagnetic, corrosion resistant austenitic steel with high elasticity, strength and toughness and a process for its manufacture
DE2105745A1 (en) Age-hardenable nickel-chromium steel alloy
EP3458623B1 (en) Method for producing a steel material, and steel material
DE69708574T2 (en) Use of a weldable ferritic cast steel with a low chromium content and very good heat resistance
AT414341B (en) STEEL FOR CHEMICALS - PLANTS - COMPONENTS
DE69707678T2 (en) STEEL ALLOY
EP2809818B1 (en) Duplex steel with improved notch-impact strength and machinability

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210429

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20231205

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240625

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019012623

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20241227

Year of fee payment: 6

U01 Request for unitary effect filed

Effective date: 20241219

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT RO SE SI

Effective date: 20250113

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2999343

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20250225

U20 Renewal fee for the european patent with unitary effect paid

Year of fee payment: 6

Effective date: 20250227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20241204

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20250102

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20241230

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20250305

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20250108

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20250304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20241204

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20241218

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20250404