[go: up one dir, main page]

EP3880985A1 - Torsional vibration damping assembly - Google Patents

Torsional vibration damping assembly

Info

Publication number
EP3880985A1
EP3880985A1 EP19806151.7A EP19806151A EP3880985A1 EP 3880985 A1 EP3880985 A1 EP 3880985A1 EP 19806151 A EP19806151 A EP 19806151A EP 3880985 A1 EP3880985 A1 EP 3880985A1
Authority
EP
European Patent Office
Prior art keywords
primary
vibration damping
friction
torsional vibration
friction ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19806151.7A
Other languages
German (de)
French (fr)
Inventor
Stefan Rumpel
Vit Prosek
Jörg SUDAU
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZF Friedrichshafen AG
Original Assignee
ZF Friedrichshafen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZF Friedrichshafen AG filed Critical ZF Friedrichshafen AG
Publication of EP3880985A1 publication Critical patent/EP3880985A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/129Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon characterised by friction-damping means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/131Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses
    • F16F15/139Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses characterised by friction-damping means

Definitions

  • the present invention relates to a torsional vibration damping arrangement for a drive train of a motor vehicle.
  • Torsional vibration damping arrangements for a drive train of a motor vehicle such as a dual mass damper (ZMG) or a dual mass flywheel (ZMS) are known per se. These are used, for example, in a drive train of a vehicle to dampen rotational irregularities, for example, introduced by a motor, which can lead to torsional vibrations.
  • the torsional vibration damping arrangement mainly comprises a primary element and a secondary element which can be rotated against an energy store.
  • friction arrangements are also known between the primary element and the secondary element, which additionally cause friction when the primary element is rotated relative to the secondary element. There is a desire to produce this friction arrangement inexpensively, and that it is easy to assemble.
  • the object of the present invention to provide a torsional vibration damping arrangement, wherein the torsional vibration damping arrangement comprises a friction arrangement, wherein the friction arrangement can be produced inexpensively and that the function of the friction device is improved.
  • a torsional vibration damping arrangement for a drive train of a motor vehicle, comprising a rotary axis A rotatable primary element and a rotatable against an energy store relative to the primary element ble secondary element, a friction arrangement being provided in the effective direction between the primary element and the secondary element and where in the friction arrangement comprises at least one friction ring, an energy store, a holding element and a control element, the friction ring, the energy store and the holding element being assigned to one element of the primary element or secondary element, the control element being the other element of the secondary element or primary element is assigned, the control element causing the friction ring to be driven in rotation, the control element being formed from the element of the primary element or secondary element by a reshaping process.
  • the control element is formed by the shaping process from the secondary element.
  • This method is of course also applicable to the primary element in the event that the control element is provided on the primary element.
  • the control element rotates the friction ring only after the clearance angle has been exceeded.
  • the clearance angle can of course be provided in both directions of rotation about the axis of rotation A.
  • the friction ring can provide a recess, this recess providing a larger circumferential extension than is provided for the control element. This can have the effect that when the primary element is rotated relative to the secondary element, the friction ring is only rotated by the control element, that is to say the friction arrangement begins to act when the clearance angle provided for it is exceeded both in one direction of rotation and in the other direction of rotation . This can have the effect that the friction arrangement only begins to act at large amplitudes and thus the effect of the friction arrangement only comes into force when the clearance angle is exceeded.
  • the holding element is non-rotatably connected to one element of the primary element or secondary element, the friction ring being clamped rotatably axially between a holding element and the one element of the primary element or secondary element against a force of the energy store.
  • the energy storage which is advantageously carried out by one or more disc springs, on the one hand against the holding element and on the other hand against the friction ring or against one element of the primary element or secondary element.
  • the friction ring is subjected to an axial force, which causes the friction ring to rub against one element of the primary element or secondary element with relative rotation against the one element of the primary element or secondary element and to generate a frictional torque. Since the friction ring is actuated by the control element, that is to say it is driven in rotation, the friction effect is achieved when the secondary element is turned to the primary element.
  • the friction ring has an axial extent, the axial extent specifying the minimum axial distance between the primary element and the secondary element.
  • the friction ring can not only perform the function for the friction arrangement, namely to provide the friction partner, but it can also be used as an axial stop between the primary element and the secondary element.
  • the friction ring thus comprises two functions. First, the function of rubbing with a rubbing partner, i.e. H. the friction ring provides a friction surface against one element of the primary element or secondary element and it takes over the function of the axial stop, namely that the primary element does not strike the secondary element, but while maintaining the minimum axial distance caused by the axial extension the friction ring is specified, remains.
  • This configuration of the friction ring means that there is no need for a separate axial stop that is often used.
  • a pressure ring is provided axially between the friction ring and the energy store. This means that the additional pressure ring is inserted between the telescopic spring or springs and the friction ring. It can be partially provided that the pressure ring is designed to be non-rotatable but axially displaceable with the holding element. This configuration means that there is no relative rotation on the plate spring. The relative rotation, i.e. the friction arises only between the friction ring and the pressure ring on the one hand and on the other hand between the friction ring and the one element of the primary element or secondary element. This can reduce wear between the plate spring and the friction ring.
  • the friction ring can be made of a wear-resistant material.
  • the shaping process of the control element is carried out in the form of a rivet shape.
  • the formation as a rivet formation is particularly inexpensive to produce and can be integrated at the same time as a further shaping process on the respective element of primary element or secondary element. As a result, it can be provided that no separate operation is provided for this.
  • the friction arrangement is arranged radially within the energy store with respect to the axis of rotation A.
  • the energy store is advantageously to be provided radially on the outside as far as possible, so that the friction arrangement is to be provided as far radially on the inside as possible with respect to space-saving design and towards the axis of rotation A.
  • the friction arrangement is to be seen radially outside of a fastening of the primary element or of the secondary element to a drive unit.
  • the energy store can consist of a plate spring or of axially staggered plate springs.
  • disc springs are particularly space-saving energy stores and can advantageously be stacked axially, so that a desired axial pretensioning force on the friction ring can be provided without great effort.
  • the plate spring can be installed in such a way that when the friction arrangement wears, the axially acting force through the plate spring remains almost constant over a predetermined wear path.
  • Fig. 1 a torsional vibration damping arrangement according to the invention in one
  • Cross-section; 2 shows a detail of a torsional vibration damping arrangement according to the invention in the region of the friction arrangement;
  • FIG. 3 shows a cross section of a friction arrangement according to the invention
  • Fig. 4 is a plan view of a friction arrangement according to the invention with control elements in a rest position;
  • Fig. 5 is a plan view of a friction arrangement according to the invention, wherein in a
  • FIG. 1 shows with FIG. 2 a torsional vibration damping arrangement 1 according to the invention.
  • the structure of the torsional vibration damping arrangement 1 is as follows.
  • a primary element 5 which, as provided here, is fastened by means of a screw connection to a drive unit (for example, not shown in more detail) represents the primary side.
  • a secondary element 8 can also be seen, which acts against the force of an energy store 4, here in the form of helical compression springs, around the Axis of rotation A is relatively rotatable.
  • the friction arrangement 20 is shown radially within the energy store 4, particularly before being watched in part in FIG. 2. It is seen here before that a holding element 24 is screwed non-rotatably to the primary element 5 by means of the screwing of the primary element to the drive unit.
  • the holding element 24 has an S-shaped radially outside. Between the S-shaped deformation of the holding element 24 and the primary element 5, a friction ring 21 is provided axially staggered along the axis of rotation A, then a pressure ring 22 and two plate springs 33. The disc springs 33 exert an axial force. The axial force of the plate springs 33 is based on the one hand on the S-shaped formation of the holding element 24 and on the other hand on the pressure ring 22 which in turn exerts an axial force against the friction ring 21 and the friction ring 21 against the primary element 5.
  • the pressure ring 22 provides an anti-rotation lock radially on the inside, as a result of which the pressure ring 22 is secured against rotation with respect to the holding element 24, but is still axially displaceable with respect to the holding element 24.
  • the friction ring 21 is rotatably provided with respect to the primary element 5 and the pressure ring 22.
  • the rotation of the retaining ring 21 can be opposite the primary element 5 and the pressure ring 22 only take place when this is rotatably carried by the secondary element 8.
  • a control element 25 is provided on the secondary element 8.
  • the control element 25 is formed by means of a molding process from the secondary element 8. It should be mentioned here that the control element is designed similar to a rivet shape 35.
  • the control element 25 projects into a recess 40 in the friction ring 21, this being better seen in FIG. 4.
  • the twisting action counteracts the frictional force on the friction arrangement, more precisely here between the friction ring 21 and the secondary element 5, and the friction ring 21 and the pressure ring 22.
  • a further relative rotation of the primary element 5 relative to the secondary element 8 takes place only under the action of the friction arrangement 20.
  • FIG. 3 shows the friction arrangement 21 according to the invention in a cross section separately.
  • the control element 25 is shaped like a rivet shape 35 from the control element 8. This eliminates the fact that, for example, the control element 25 is designed as a separate component and subsequently has to be firmly connected to the secondary element 8 by means of a connecting process. Since the secondary element 8, as also shown here, Darge must already go through a shaping process, it can be provided in the same shaping process that the control elements 25 are shaped by means of the same shaping process from the secondary element 8.
  • the friction ring 21 and the holding element 24 as well as the pressure ring 22 and the two plate springs 33 can also be seen here well.
  • Radially on the inside of the secondary element 8 there is a toothing area with which the secondary element 8 can be connected, for example, to a transmission input shaft, not shown here.
  • FIG. 4 shows a top view of a friction arrangement according to the invention. It can be clearly seen that here several control elements 25 extend around the circumference Axis of rotation A are evenly distributed. Also clearly visible is the recess 40 located on the friction ring 21. The control element 25 engages in this recess 40. It can be clearly seen that a circumferential extent of the recess 40 is greater than the circumferential extent of the control element 25. For the case provided here that the control element 25 is in a rest position in the middle of the recess 40 of the friction ring 21, applies that the secondary element 8 in both directions of rotation relative to the friction ring 21 has a clearance angle ai in one direction of rotation and a clearance angle a 2 the other direction of rotation.
  • ai is equal to a 2 . Not shown here, however, it may also be the case that ai and a 2 may be different. This also means that in the event that the secondary element 8 rotates relative to the friction ring 21 in both directions only up to a value ai or a 2 about the axis of rotation A, the friction arrangement 20 has no effect at this angle of rotation. Only when the angle of rotation of the secondary element 8 relative to the friction ring 21 is larger than ai or ai, as seen in the respective direction, is it caused that the friction ring 21 is rotated by the control element 25. In retrospect of FIGS.
  • FIG. 5 shows a top view similar to that in FIG. 4, but here the control element 25 has reached an end region of the recess 40 of the friction ring 21. This means that the clearance angle is used up in one direction, that is to say in the direction of angle of rotation a 2 . If the secondary element 8 were now rotated further relative to the friction ring 21, the friction ring 21 would be rotated and the further rotation would be opposed to the frictional force of the friction arrangement 20.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Operated Clutches (AREA)

Abstract

The invention relates to a torsional vibration damping assembly (1) for a drive train of a motor vehicle, comprising a primary element (5), which can be rotated about an axis of rotation (A), and a secondary element (8), which can be rotated relative to the primary element (5) against an energy accumulator (4), wherein: a friction assembly (20) is provided between the primary element (5) and the secondary element (8) in the effective direction; the friction assembly (20) comprises at least a friction ring (21), an energy accumulator (23), a retaining element (24) and a control element (25); the friction ring (21), the energy accumulator (23) and the retaining element (24) are associated with one of either the primary element (5) or the secondary element (8) and the control element (25) is associated with the other of the secondary element (8) or the primary element (5); the control element (25) causes the rotational take-up of the friction ring (21); the control element (25) is formed from the primary element (5) or the secondary element (8) by means of a forming operation.

Description

Drehschwingungsdämpfungsanordnung  Torsional vibration damping arrangement
Die vorliegende Erfindung betrifft eine Drehschwingungsdämpfungsanordnung für einen Antriebsstrang eines Kraftfahrzeuges. Drehschwingungsdämpfungsanordnungen für einen Antriebsstrang eines Kraftfahrzeuges wie beispielsweise ein Zweimassendämpfer (ZMG) bzw. ein Zweimassenschwungrad (ZMS) sind an sich bekannt. Diese werden beispielsweise in einem Antriebsstrang eines Fahrzeugs verwendet, um hier beispiels weise von einem Motor eingeleitete Drehungleichförmigkeiten, welche zu Drehschwin gungen führen können, zu dämpfen. Dabei umfasst die Drehschwingungsdämpfungs anordnung vorwiegend ein Primärelement sowie ein, gegen einen Energiespeicher ver drehbares Sekundärelement. Dabei sind hier zwischen dem Primärelement und dem Sekundärelement ebenfalls Reibanordnungen bekannt, die bei einer Verdrehung des Primärelements zu dem Sekundärelement zusätzlich eine Reibung verursachen. Dabei besteht der Wunsch, diese Reibanordnung kostengünstig herzustellen, sowie, dass die se einfach zu montieren ist. The present invention relates to a torsional vibration damping arrangement for a drive train of a motor vehicle. Torsional vibration damping arrangements for a drive train of a motor vehicle, such as a dual mass damper (ZMG) or a dual mass flywheel (ZMS) are known per se. These are used, for example, in a drive train of a vehicle to dampen rotational irregularities, for example, introduced by a motor, which can lead to torsional vibrations. The torsional vibration damping arrangement mainly comprises a primary element and a secondary element which can be rotated against an energy store. Here, friction arrangements are also known between the primary element and the secondary element, which additionally cause friction when the primary element is rotated relative to the secondary element. There is a desire to produce this friction arrangement inexpensively, and that it is easy to assemble.
Es ist daher die Aufgabe der vorliegenden Erfindung eine Drehschwingungsdämp fungsanordnung vorzusehen, wobei die Drehschwingungsdämpfungsanordnung eine Reibanordnung umfasst, wobei die Reibanordnung kostengünstig hergestellt werden kann sowie, dass die Funktion der Reibeinrichtung verbessert wird. It is therefore the object of the present invention to provide a torsional vibration damping arrangement, wherein the torsional vibration damping arrangement comprises a friction arrangement, wherein the friction arrangement can be produced inexpensively and that the function of the friction device is improved.
Erfindungsgemäß wird die Aufgabe gelöst durch eine Drehschwingungsdämpfungsan ordnung für einen Antriebsstrang eines Kraftfahrzeuges, umfassend ein um eine Dreh achse A drehbares Primärelement und ein gegen einen Energiespeicher relativ zu dem Primärelement verdreh bares Sekundärelement, wobei in Wirkrichtung zwischen dem Primärelement und dem Sekundärelement eine Reibanordnung vorgesehen ist und wo bei die Reibanordnung zumindest einen Reibring, einen Energiespeicher, ein Halteele ment und ein Ansteuerelement umfasst, wobei der Reibring, der Energiespeicher und das Halteelement dem einen Element von Primärelement oder Sekundärelement zuge ordnet sind, wobei das Ansteuerelement dem anderen Element von Sekundärelement oder Primärelement zugeordnet ist, wobei das Ansteuerelement eine Drehmitnahme des Reibringes bewirkt, wobei das Ansteuerelement durch einen Umformvorgang aus dem Element von Primärelement oder Sekundärelement geformt ist. Für den Fall, dass das Ansteuerelement an dem Sekundärelement vorgesehen ist, wird durch den Um formvorgang aus dem Sekundärelement das Ansteuerelement geformt. Dies bedeutet, dass beispielsweise ein Umformstempel, der auf das Sekundärelement auftrifft und ähnlich einer Nietausformung das Ansteuerelement aus dem Sekundärelement heraus formt. Dieses Verfahren ist natürlich ebenso für das Primärelement anzuwenden für den Fall, dass das Ansteuerelement an dem Primärelement vorgesehen ist. Durch das Her ausformen des Ansteuerelementes mittels des Umformvorganges entfällt ein nachträg licher Befestigungsvorgang des Ansteuerelements an dem jeweiligen Element von Pri märelement oder Sekundärelement. Hierdurch kann eine Funktionssicherheit wesent lich verbessert werden. Des Weiteren ist durch diesen Umformvorgang die Herstellung des Ansteuerelementes integral mit dem jeweiligen Element von Primärelement oder Sekundärelement kostengünstig herzustellen, da oftmals das Primärelement oder das Sekundärelement schon einen Umformvorgang beinhalten. Dabei kann das Umformen des Ansteuerelementes aus dem jeweiligen Element von Primärelement oder Sekundä relement gleich mit vorgesehen werden. According to the invention the object is achieved by a torsional vibration damping arrangement for a drive train of a motor vehicle, comprising a rotary axis A rotatable primary element and a rotatable against an energy store relative to the primary element ble secondary element, a friction arrangement being provided in the effective direction between the primary element and the secondary element and where in the friction arrangement comprises at least one friction ring, an energy store, a holding element and a control element, the friction ring, the energy store and the holding element being assigned to one element of the primary element or secondary element, the control element being the other element of the secondary element or primary element is assigned, the control element causing the friction ring to be driven in rotation, the control element being formed from the element of the primary element or secondary element by a reshaping process. In case that the control element is provided on the secondary element, the control element is formed by the shaping process from the secondary element. This means that, for example, a reshaping die, which strikes the secondary element and, similar to a rivet shape, forms the control element out of the secondary element. This method is of course also applicable to the primary element in the event that the control element is provided on the primary element. By forming the control element by means of the forming process, there is no subsequent fixing process of the control element on the respective element of primary element or secondary element. As a result, functional reliability can be significantly improved. Furthermore, this forming process makes it possible to manufacture the control element integrally with the respective element of the primary element or secondary element at low cost, since the primary element or the secondary element often already include a forming process. The shaping of the control element from the respective element of primary element or secondary element can also be provided.
Weiter kann es vorgesehen sein, dass das Ansteuerelement erst nach einem Über schreiten eines Freiwinkels den Reibring verdrehmitnimmt. Dabei kann natürlich der Freiwinkel in beiden Verdrehrichtungen um die Drehachse A vorgesehen werden. Dabei kann der Reibring eine Ausnehmung vorsehen, wobei diese Ausnehmung eine größere umfangsmäßige Erstreckung vorsieht als dies bei dem Ansteuerelement vorgesehen ist. Hierdurch kann bewirkt werden, dass bei einer relativen Verdrehung des Primärele ments zu dem Sekundärelement der Reibring erst durch das Ansteuerelement mitver dreht wird, also die Reibanordnung zu wirken beginnt, wenn der dafür vorgesehene Freiwinkel sowohl in einer Verdrehrichtung als auch in der anderen Verdrehrichtung überschritten wird. Hierdurch kann bewirkt werden, dass die Reibanordnung erst bei großen Amplituden zu wirken beginnt und damit die Wirkung der Reibanordnung erst ab Überschreiten des Freiwinkels in Kraft tritt. Furthermore, it can be provided that the control element rotates the friction ring only after the clearance angle has been exceeded. The clearance angle can of course be provided in both directions of rotation about the axis of rotation A. The friction ring can provide a recess, this recess providing a larger circumferential extension than is provided for the control element. This can have the effect that when the primary element is rotated relative to the secondary element, the friction ring is only rotated by the control element, that is to say the friction arrangement begins to act when the clearance angle provided for it is exceeded both in one direction of rotation and in the other direction of rotation . This can have the effect that the friction arrangement only begins to act at large amplitudes and thus the effect of the friction arrangement only comes into force when the clearance angle is exceeded.
Weiter kann es vorteilhaft sein, dass das Halteelement mit dem einen Element von Pri märelement oder Sekundärelement drehfest verbunden ist, wobei axial zwischen dem Halteelement und dem einen Element von Primärelement oder Sekundärelement der Reibring gegen eine Kraft des Energiespeichers verdrehbarer eingespannt ist. Dabei stütz sich der Energiespeicher, der vorteilhaft durch eine oder mehrere Tellerfedern ausgeführt wird, einerseits gegen dem Halteelement und andererseits gegen den Reib ring bzw. gegen das eine Element von Primärelement oder Sekundärelement ab. Hier durch wird der Reibring mit einer axialen Kraft beaufschlagt, wodurch der Reibring ge gen das eine Element von Primärelement oder Sekundärelement bei einer relativen Verdrehung gegen das eine Element von Primärelement oder Sekundärelement reibt und ein Reibmoment erzeugt wird. Da der Reibring von dem Ansteuerelement ange steuert wird, sprich also verdrehmitgenommen wird, wird bei dem Verdrehen von Se kundärelement zu Primärelement die Reibwirkung erzielt. Furthermore, it may be advantageous that the holding element is non-rotatably connected to one element of the primary element or secondary element, the friction ring being clamped rotatably axially between a holding element and the one element of the primary element or secondary element against a force of the energy store. Here supports the energy storage, which is advantageously carried out by one or more disc springs, on the one hand against the holding element and on the other hand against the friction ring or against one element of the primary element or secondary element. Here, the friction ring is subjected to an axial force, which causes the friction ring to rub against one element of the primary element or secondary element with relative rotation against the one element of the primary element or secondary element and to generate a frictional torque. Since the friction ring is actuated by the control element, that is to say it is driven in rotation, the friction effect is achieved when the secondary element is turned to the primary element.
Weiter kann es vorgesehen sein, dass der Reibring eine axiale Erstreckung hat, wobei die axiale Erstreckung den minimalen axialen Abstand zwischen dem Primärelement und dem Sekundärelement vorgibt. Durch diese Ausgestaltung des Reibringes kann der Reibring nicht nur die Funktion für die Reibanordnung, nämlich den Reibpartner vorzu sehen, ausführen, sondern er kann auch als axialer Anschlag zwischen dem Pri märelement und dem Sekundärelement verwendet werden. Damit umfasst der Reibring zwei Funktionen. Einmal die Funktion des Reibens mit einem Reibpartner, d. h. der Reibring stellt eine Reibfläche gegenüber dem einen Element von Primärelement oder Sekundärelement zur Verfügung und er übernimmt die Funktion des axialen Anschla ges, nämlich, dass das Primärelement nicht gegen das Sekundärelement anschlägt, sondern unter Beibehaltung des minimalen axialen Abstandes, der durch die axiale Er streckung des Reibringes vorgegeben wird, bestehen bleibt. Durch diese Ausgestaltung des Reibringes kann ein separater oft verwendeter Axialanschlag entfallen. It can further be provided that the friction ring has an axial extent, the axial extent specifying the minimum axial distance between the primary element and the secondary element. With this configuration of the friction ring, the friction ring can not only perform the function for the friction arrangement, namely to provide the friction partner, but it can also be used as an axial stop between the primary element and the secondary element. The friction ring thus comprises two functions. First, the function of rubbing with a rubbing partner, i.e. H. the friction ring provides a friction surface against one element of the primary element or secondary element and it takes over the function of the axial stop, namely that the primary element does not strike the secondary element, but while maintaining the minimum axial distance caused by the axial extension the friction ring is specified, remains. This configuration of the friction ring means that there is no need for a separate axial stop that is often used.
Weiter kann es vorgesehen sein, dass axial zwischen dem Reibring und dem Energie speicher ein Druckring vorgesehen ist. Dies bedeutet, dass zwischen der oder die Tel lerfedern und den Reibring der zusätzliche Druckring eingelegt wird. Dabei kann es vor teilhaft vorgesehen sein, dass der Druckring verdrehfest aber axial verschiebbar mit dem Halteelement ausgeführt ist. Durch diese Ausgestaltung entsteht an der Tellerfeder keine Relativverdrehung. Die Relativverdrehung, sprich die Reibung entsteht folglich nur noch zwischen dem Reibring und dem Druckring einerseits und andererseits zwi schen dem Reibring und dem einen Element von Primärelement oder Sekundärele ment. Hierdurch kann ein Verschleiß zwischen der Tellerfeder und dem Reibring redu- ziert werden, da beispielsweise der Reibring aus einem verschleißfesten Material aus geführt sein kann. It can further be provided that a pressure ring is provided axially between the friction ring and the energy store. This means that the additional pressure ring is inserted between the telescopic spring or springs and the friction ring. It can be partially provided that the pressure ring is designed to be non-rotatable but axially displaceable with the holding element. This configuration means that there is no relative rotation on the plate spring. The relative rotation, i.e. the friction arises only between the friction ring and the pressure ring on the one hand and on the other hand between the friction ring and the one element of the primary element or secondary element. This can reduce wear between the plate spring and the friction ring. be decorated, for example, the friction ring can be made of a wear-resistant material.
Weiter kann es vorgesehen sein, dass der Umformvorgang des Ansteuerelements in Form einer Nietausformung ausgeführt ist. Wie bereits vorangehend beschrieben, ist die Ausformung als Nietausformung besonders kostengünstig herzustellen und kann zeitgleich mit einem weiteren Umformvorgang an dem jeweiligen Element von Pri märelement oder Sekundärelement mit integriert werden. Hierdurch kann es vorgese hen sein, dass kein gesonderter Arbeitsgang hierfür vorgesehen ist. Furthermore, it can be provided that the shaping process of the control element is carried out in the form of a rivet shape. As already described above, the formation as a rivet formation is particularly inexpensive to produce and can be integrated at the same time as a further shaping process on the respective element of primary element or secondary element. As a result, it can be provided that no separate operation is provided for this.
Weiter kann es vorgesehen sein, dass die Reibanordnung in Bezug auf die Drehachse A radial innerhalb des Energiespeichers angeordnet ist. Dabei ist anzumerken, dass der Energiespeicher vorteilhaft möglichst weit radial außen vorzusehen ist, so dass in vor teilhafter Anwendung und hinsichtlich platzsparender Ausführung die Reibanordnung möglichst weit radial innen zur Drehachse A hin vorzusehen ist. Dabei sei hier erwähnt, dass in vorteilhafter Ausführung die Reibanordnung dabei radial außerhalb einer Befes tigung des Primärelements oder des Sekundärelements an ein Antriebsaggregat vorzu sehen ist. Furthermore, it can be provided that the friction arrangement is arranged radially within the energy store with respect to the axis of rotation A. It should be noted here that the energy store is advantageously to be provided radially on the outside as far as possible, so that the friction arrangement is to be provided as far radially on the inside as possible with respect to space-saving design and towards the axis of rotation A. It should be mentioned here that, in an advantageous embodiment, the friction arrangement is to be seen radially outside of a fastening of the primary element or of the secondary element to a drive unit.
Auch kann es vorteilhaft sein, dass der Energiespeicher aus einer Tellerfeder oder aus axial gestaffelten Tellerfedern besteht. Dabei sei hier erwähnt, dass Tellerfedern be sonders platzsparende Energiespeicher sind und vorteilhaft axiale gestapelt werden können, so dass eine gewünschte axiale Vorspannkraft auf den Reibring ohne großen Aufwand vorgesehen sein kann. Dabei ist zu erwähnen, dass die Tellerfeder aufgrund ihrer vorteilhaften Kraft-Weg-Kennlinie so eingebaut werden kann, dass bei einem Ver schleiß der Reibanordnung, die axial wirkende Kraft durch die Tellerfeder dabei nahezu über einen vorher vorbestimmten Verschleißweg konstant bleibt. It can also be advantageous for the energy store to consist of a plate spring or of axially staggered plate springs. It should be mentioned here that disc springs are particularly space-saving energy stores and can advantageously be stacked axially, so that a desired axial pretensioning force on the friction ring can be provided without great effort. It should be mentioned that, due to its advantageous force-displacement characteristic, the plate spring can be installed in such a way that when the friction arrangement wears, the axially acting force through the plate spring remains almost constant over a predetermined wear path.
Nachfolgend wird die Erfindung beispielhaft beschrieben. Dabei zeigt die The invention is described below by way of example. The shows
Fig. 1 eine erfindungsgemäße Drehschwingungsdämpfungsanordnung in einem Fig. 1 a torsional vibration damping arrangement according to the invention in one
Querschnitt; Fig. 2 einen Ausschnitt einer erfindungsgemäßen Drehschwingungsdämpfungs anordnung im Bereich der Reibanordnung; Cross-section; 2 shows a detail of a torsional vibration damping arrangement according to the invention in the region of the friction arrangement;
Fig. 3 ein Querschnitt einer erfindungsgemäßen Reibanordnung; 3 shows a cross section of a friction arrangement according to the invention;
Fig. 4 eine Draufsicht auf einer erfindungsgemäßen Reibanordnung mit Ansteue relementen in einer Ruheposition; Fig. 4 is a plan view of a friction arrangement according to the invention with control elements in a rest position;
Fig. 5 eine Draufsicht auf eine erfindungsgemäße Reibanordnung, wobei in einer Fig. 5 is a plan view of a friction arrangement according to the invention, wherein in a
Verdrehrichtung die Ansteuerelemente am Reibring anliegen.  Direction of rotation, the control elements rest on the friction ring.
Die Figur 1 zeigt mit der Figur 2 eine erfindungsgemäße Drehschwingungsdämpfungs anordnung 1. Dabei ist der Aufbau der Drehschwingungsdämpfungsanordnung 1 wie folgt. Ein Primärelement 5 das wie hier vorgesehen mittels einer Verschraubung an bei spielsweise einem nicht näher dargestellten Antriebsaggregat befestigt ist stellt hier die Primärseite dar. Dabei ist weiter ein Sekundärelement 8 zu sehen welches gegen die Kraft eines Energiespeichers 4, hier in Form von Schraubendruckfedern, um die Dreh achse A relativ verdrehbar ist. Radial innerhalb des Energiespeichers 4, besonders vor teilhaft Zusehen in der Figur 2, ist die Reibanordnung 20 dargestellt. Dabei ist hier vor gesehen, dass ein Halteelement 24 mittels der Verschraubung des Primärelements an das Antriebsaggregat verdrehfest an das Primärelement 5 verschraubt wird. Dabei weist das Halteelement 24 radial außen eine s-förmige Umformung auf. Zwischen der s- förmigen Umformung des Halteelements 24 und dem Primärelement 5 sind axial gestaf felt entlang der Drehachse A zuerst ein Reibring 21 , danach ein Druckring 22 sowie zwei Tellerfedern 33 vorgesehen. Dabei üben die Tellerfedern 33 eine axiale Kraft aus. Die axiale Kraft der Tellerfedern 33 stütz sich dabei einerseits an der s-förmigen Um formung des Halteelements 24 ab und andererseits an dem Druckring 22 der wiederum gegen den Reibring 21 und der Reibring 21 gegen das Primärelement 5 eine axiale Kraft ausübt. Dabei ist hier gut zu erkennen, dass der Druckring 22 radial innen eine Verdrehsicherung vorsieht, wodurch der Druckring 22 gegenüber des Halteelements 24 verdreh gesichert ist jedoch gegenüber des Halteelements 24 noch axial verschiebbar ist. Der Reibring 21 ist dabei gegenüber dem Primärelement 5 und dem Druckring 22 verdrehbar vorgesehen. Natürlich kann die Verdrehung des Halteringes 21 gegenüber dem Primärelement 5 und dem Druckring 22 erst erfolgen, wenn diese durch das Se kundärelement 8 verdreh mitgenommen wird. Dabei ist an dem Sekundärelement 8 ein Ansteuerelement 25 vorgesehen. Das Ansteuerelement 25 ist dabei mittels eines Um formvorganges aus dem Sekundärelement 8 gebildet. Dabei sei hier erwähnt, dass das Ansteuerelement ähnlich einer Nietausformung 35 ausgeführt ist. Dabei ragt das An steuerelement 25 in eine Ausnehmung 40 des Reibringes 21 , wobei dies besser in der Figur 4 zu sehen ist. Erfolgt nun eine relative Verdrehung des Primärelements 5 gegen über dem Sekundärelement 8 um die Drehachse A und gelangt das Ansteuerelement 25 in der Ausnehmung 40 des Reibringes 21 nach Überwinden eines Freiwinkels, bes ser zu sehen in der Figur 4, an das Ende der Ausnehmung 40, so wird der Reibring 21 durch das Ansteuerelement 25 verdrehmitgenommen. Dabei wirkt der Verdrehmitnah me die Reibkraft an der Reibanordnung, genauer hier zwischen dem Reibring 21 und dem Sekundärelement 5, sowie dem Reibring 21 und dem Druckring 22 entgegen. Hierdurch erfolgt nach der Überwindung des Freiwinkels eine weitere relative Verdre hung des Primärelements 5 zu dem Sekundärelement 8 nur noch unter der Wirkung der Reibanordnung 20. FIG. 1 shows with FIG. 2 a torsional vibration damping arrangement 1 according to the invention. The structure of the torsional vibration damping arrangement 1 is as follows. A primary element 5 which, as provided here, is fastened by means of a screw connection to a drive unit (for example, not shown in more detail) represents the primary side. Here, a secondary element 8 can also be seen, which acts against the force of an energy store 4, here in the form of helical compression springs, around the Axis of rotation A is relatively rotatable. The friction arrangement 20 is shown radially within the energy store 4, particularly before being watched in part in FIG. 2. It is seen here before that a holding element 24 is screwed non-rotatably to the primary element 5 by means of the screwing of the primary element to the drive unit. The holding element 24 has an S-shaped radially outside. Between the S-shaped deformation of the holding element 24 and the primary element 5, a friction ring 21 is provided axially staggered along the axis of rotation A, then a pressure ring 22 and two plate springs 33. The disc springs 33 exert an axial force. The axial force of the plate springs 33 is based on the one hand on the S-shaped formation of the holding element 24 and on the other hand on the pressure ring 22 which in turn exerts an axial force against the friction ring 21 and the friction ring 21 against the primary element 5. It can be clearly seen here that the pressure ring 22 provides an anti-rotation lock radially on the inside, as a result of which the pressure ring 22 is secured against rotation with respect to the holding element 24, but is still axially displaceable with respect to the holding element 24. The friction ring 21 is rotatably provided with respect to the primary element 5 and the pressure ring 22. Of course, the rotation of the retaining ring 21 can be opposite the primary element 5 and the pressure ring 22 only take place when this is rotatably carried by the secondary element 8. A control element 25 is provided on the secondary element 8. The control element 25 is formed by means of a molding process from the secondary element 8. It should be mentioned here that the control element is designed similar to a rivet shape 35. The control element 25 projects into a recess 40 in the friction ring 21, this being better seen in FIG. 4. Now there is a relative rotation of the primary element 5 relative to the secondary element 8 about the axis of rotation A and the control element 25 arrives in the recess 40 of the friction ring 21 after overcoming a clearance angle, best seen in FIG. 4, at the end of the recess 40, so the friction ring 21 is rotated by the control element 25. In this case, the twisting action counteracts the frictional force on the friction arrangement, more precisely here between the friction ring 21 and the secondary element 5, and the friction ring 21 and the pressure ring 22. As a result, after the clearance angle has been overcome, a further relative rotation of the primary element 5 relative to the secondary element 8 takes place only under the action of the friction arrangement 20.
In der Figur 3 ist die erfindungsgemäße Reibanordnung 21 in einem Querschnitt sepa rat dargestellt. Dabei ist hier besonders gut zu erkennen, dass das Ansteuerelement 25 ähnlich einer Nietausformung 35 aus dem Ansteuerelement 8 umgeformt ist. Hierdurch entfällt, dass beispielsweise das Ansteuerelement 25 als ein separates Bauteil ausge führt wird und nachträglich mittels eines Verbindungsvorganges fest mit dem Sekundä relement 8 verbunden werden muss. Da das Sekundärelement 8, wie hier auch darge stellt einen Umformvorgang schon durchlaufen muss, kann in dem gleichen Umform vorgang vorgesehen werden, dass die Ansteuerelemente 25 mittels des gleichen Um formvorganges aus dem Sekundärelement 8 umgeformt werden. Weiter sind hier noch gut der Reibring 21 sowie das Halteelement 24 sowie der Druckring 22 und die beiden Tellerfedern 33 zu sehen. Radial innen an dem Sekundärelement 8 befindet sich ein Verzahnungsbereich, mit dem das Sekundärelement 8 beispielsweise mit einer Getrie beeingangswelle, hier nicht dargestellt, verbunden werden kann. FIG. 3 shows the friction arrangement 21 according to the invention in a cross section separately. It can be seen particularly well here that the control element 25 is shaped like a rivet shape 35 from the control element 8. This eliminates the fact that, for example, the control element 25 is designed as a separate component and subsequently has to be firmly connected to the secondary element 8 by means of a connecting process. Since the secondary element 8, as also shown here, Darge must already go through a shaping process, it can be provided in the same shaping process that the control elements 25 are shaped by means of the same shaping process from the secondary element 8. The friction ring 21 and the holding element 24 as well as the pressure ring 22 and the two plate springs 33 can also be seen here well. Radially on the inside of the secondary element 8 there is a toothing area with which the secondary element 8 can be connected, for example, to a transmission input shaft, not shown here.
Die Figur 4 zeigt eine Draufsicht auf eine erfindungsgemäße Reibanordnung . Dabei ist gut zu erkennen, dass hier mehrere Ansteuerelemente 25 über den Umfang um die Drehachse A gleichmäßig verteilt vorgesehen sind. Auch gut zu erkennen ist die Aus nehmung 40, die sich an dem Reibring 21 befindet. In diese Ausnehmung 40 greift das Ansteuerelement 25 ein. Dabei ist gut zu erkennen, dass eine umfangsmäßige Erstre ckung der Ausnehmung 40 größer ist als die umfangsmäßige Erstreckung des Ansteue relements 25. Für den hier vorgesehenen Fall, dass sich das Ansteuerelement 25 in einer Ruheposition in der Mitte der Ausnehmung 40 des Reibringes 21 befindet, gilt, dass das Sekundärelement 8 in beiden Drehrichtungen gegenüber dem Reibring 21 einen Freiwinkel ai in einer Drehrichtung und einen Freiwinkel a2 die andere Drehrich tung hat. Dabei ist hier in diesem Ausführungsbeispiel vorgesehen, dass ai gleich a2 ist. Hier nicht dargestellt, so kann es jedoch auch sein, dass ai und a2 ungleich ausge führt sein können. Dies bedeutet weiterhin, dass für den Fall, dass das Sekundärele ment 8 sich gegenüber dem Reibring 21 in beiden Richtungen jeweils nur bis zu einem Wert ai bzw. a2 um die Drehachse A verdreht, dass zu diesem Verdrehwinkel die Reibanordnung 20 keine Wirkung entfaltet. Erst bei einem Verdrehwinkel des Sekundä relements 8 zu dem Reibring 21 der in die jeweilige Richtung gesehen größer ist als ai bzw. ai wird bewirkt, dass durch das Ansteuerelement 25 der Reibring 21 verdreh mit genommen wird. Im Rückblick auf die Figuren 1 und 2 bedeutet dies, dass bei einem Verdrehwinkel des Sekundärelements 8 zu dem Reibring 21 bzw. dem Primärelement 5 größer ai bzw. a2 der weiteren Verdrehung des Sekundärelements 8 zu dem Reibring 21 bzw. zu dem Primärelement 5 die Reibkraft der Reibanordnung 20 dieser weiteren Verdrehung entgegengesetzt wird. Hierdurch erfolgt eine weitere Verdrehung des Se kundärelements 8 zu dem Primärelement 5 unter der Reibwirkung der Reibanordnung 20. FIG. 4 shows a top view of a friction arrangement according to the invention. It can be clearly seen that here several control elements 25 extend around the circumference Axis of rotation A are evenly distributed. Also clearly visible is the recess 40 located on the friction ring 21. The control element 25 engages in this recess 40. It can be clearly seen that a circumferential extent of the recess 40 is greater than the circumferential extent of the control element 25. For the case provided here that the control element 25 is in a rest position in the middle of the recess 40 of the friction ring 21, applies that the secondary element 8 in both directions of rotation relative to the friction ring 21 has a clearance angle ai in one direction of rotation and a clearance angle a 2 the other direction of rotation. It is provided here in this exemplary embodiment that ai is equal to a 2 . Not shown here, however, it may also be the case that ai and a 2 may be different. This also means that in the event that the secondary element 8 rotates relative to the friction ring 21 in both directions only up to a value ai or a 2 about the axis of rotation A, the friction arrangement 20 has no effect at this angle of rotation. Only when the angle of rotation of the secondary element 8 relative to the friction ring 21 is larger than ai or ai, as seen in the respective direction, is it caused that the friction ring 21 is rotated by the control element 25. In retrospect of FIGS. 1 and 2, this means that if the angle of rotation of the secondary element 8 to the friction ring 21 or the primary element 5 is greater than ai or a 2, the further rotation of the secondary element 8 to the friction ring 21 or the primary element 5 Frictional force of the friction arrangement 20 is opposed to this further rotation. This results in a further rotation of the secondary element 8 to the primary element 5 under the frictional action of the friction arrangement 20th
In der Figur 5 ist eine Draufsicht ähnlich wie in der Figur 4 zu sehen jedoch ist hier das Ansteuerelement 25 an einen Endbereich der Ausnehmung 40 des Reibringes 21 ange langt. Dies bedeutet, dass in einer Richtung, sprich hier in Richtung Verdrehwinkel a2 der Freiwinkel aufgebraucht ist. Würde jetzt eine weitere Verdrehung des Sekundä relements 8 gegenüber dem Reibring 21 erfolgen, so würde der Reibring 21 verdreh mitgenommen und der weiteren Verdrehung würde die Reibkraft der Reibanordnung 20 entgegengesetzt werden. Bezuqszeichenliste FIG. 5 shows a top view similar to that in FIG. 4, but here the control element 25 has reached an end region of the recess 40 of the friction ring 21. This means that the clearance angle is used up in one direction, that is to say in the direction of angle of rotation a 2 . If the secondary element 8 were now rotated further relative to the friction ring 21, the friction ring 21 would be rotated and the further rotation would be opposed to the frictional force of the friction arrangement 20. Reference list
1 Drehschwingungsdämpfungsanordnung1 torsional vibration damping arrangement
4 Energiespeicher 4 energy storage
5 Primärelement  5 primary element
8 Sekundärelement  8 secondary element
9 Nabenscheibe  9 hub disc
20 Reibanordnung  20 friction arrangement
21 Reibring  21 friction ring
22 Druckring  22 pressure ring
23 Energiespeicher  23 energy storage
24 Halteelement  24 holding element
25 Ansteuerelement  25 control element
33 Tellerfeder  33 disc spring
35 Nietausformung  35 rivet molding
40 Ausnehmung  40 recess
A Drehachse  A axis of rotation
d axiale Erstreckung d axial extension
Qi Freiwinkel  Qi clearance angle
02 Freiwinkel  02 clearance angle

Claims

Patentansprüche Claims
1 . Drehschwingungsdämpfungsanordnung (1 ) für einen Antriebsstrang eines Kraftfahr zeuges, umfassend ein um eine Drehachse (A) drehbares Primärelement (5) und ein, gegen einen Energiespeicher (4) relativ zu dem Primärelement (5) verdrehbares Se kundärelement (8), wobei in Wirkrichtung zwischen dem Primärelement (5) und dem Sekundärelement (8) eine Reibanordnung (20) vorgesehen ist und wobei die Reiban ordnung (20) zumindest einen Reibring (21 ), einen Energiespeicher (23), ein Halteele ment (24) und ein Ansteuerelement (25) umfasst, wobei der Reibring (21 ), der Energie speicher (23) und das Halteelement (24) dem einen Element von Primärelement (5) oder Sekundärelement (8) zugeordnet ist, wobei das Ansteuerelement (25) dem ande ren Element von Sekundärelement (8) oder Primärelement (5) zugeordnet ist, wobei das Ansteuerelement (25) eine Drehmitnahme des Reibringes (21 ) bewirkt, dadurch gekennzeichnet, dass das Ansteuerelement (25) durch einen Umformvorgang aus dem Element von Primärelement (5) oder Sekundärelement (8) geformt ist. 1 . Torsional vibration damping arrangement (1) for a drive train of a motor vehicle, comprising a primary element (5) rotatable about an axis of rotation (A) and a secondary element (8) rotatable against an energy store (4) relative to the primary element (5), in the effective direction A friction arrangement (20) is provided between the primary element (5) and the secondary element (8) and the Reiban arrangement (20) has at least one friction ring (21), an energy store (23), a holding element (24) and a control element ( 25), wherein the friction ring (21), the energy store (23) and the holding element (24) is assigned to one element of the primary element (5) or secondary element (8), the control element (25) being the other element of A secondary element (8) or primary element (5) is assigned, the control element (25) causing the friction ring (21) to rotate, characterized in that the control element (25) is formed from the element of primary elements by a shaping process nt (5) or secondary element (8) is formed.
2. Drehschwingungsdämpfungsanordnung (1 ) nach Anspruch 1 , dadurch gekennzeich net, dass das Ansteuerelement (25) erst nach einem Überschreiten eines Freiwinkels (a-i; 02 ) den Reibring (21 ) verdrehmitnimmt. 2. Torsional vibration damping arrangement (1) according to claim 1, characterized in that the control element (25) only rotates the friction ring (21) after exceeding a clearance angle (ai ; 02).
3. Drehschwingungsdämpfungsanordnung (1 ) nach Anspruch 1 oder 2, dadurch ge kennzeichnet, dass das Halteelement (24) mit dem einen Element von Primärelement (5) oder Sekundärelement (8) drehfest verbunden ist, wobei axial zwischen dem Hal teelement (24) und dem einen Element von Primärelement (5) oder Sekundärelement (8) der Reibring (21 ) gegen eine Kraft des Energiespeichers (23) verdrehbar einge spannt ist. 3. torsional vibration damping arrangement (1) according to claim 1 or 2, characterized in that the holding element (24) with the one element of the primary element (5) or secondary element (8) is rotatably connected, axially between the Hal teelement (24) and one element of the primary element (5) or secondary element (8) of the friction ring (21) is rotatably clamped against a force of the energy store (23).
4. Drehschwingungsdämpfungsanordnung (1 ) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Reibring (21 ) eine axiale Erstreckung d hat, wobei die axiale Erstreckung d den minimalen axialen Abstand zwischen dem Primärelement (5) und dem Sekundärelement (8) vorgibt. 4. torsional vibration damping arrangement (1) according to one of claims 1 to 3, characterized in that the friction ring (21) has an axial extension d, wherein the axial extent d specifies the minimum axial distance between the primary element (5) and the secondary element (8).
5. Drehschwingungsdämpfungsanordnung (1 ) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass axial zwischen dem Reibring (21 ) und dem Energiespei cher (23) ein Druckring (22) vorgesehen ist. 5. torsional vibration damping arrangement (1) according to one of claims 1 to 4, characterized in that axially between the friction ring (21) and the Energiespei cher (23) a pressure ring (22) is provided.
6. Drehschwingungsdämpfungsanordnung (1 ) nach Anspruch 5, dadurch gekennzeich net, dass der Druckring (22) verdrehfest und axial verschiebbar mit dem Halteelement (24) vorgesehen ist. 6. torsional vibration damping arrangement (1) according to claim 5, characterized in that the pressure ring (22) is provided in a rotationally fixed and axially displaceable manner with the holding element (24).
7. Drehschwingungsdämpfungsanordnung (1 ) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Umformvorgang des Ansteuerelements (25) in Form einer Nietausformung (35) ausgeführt ist. 7. torsional vibration damping arrangement (1) according to one of claims 1 to 6, characterized in that the forming process of the control element (25) is carried out in the form of a rivet formation (35).
8. Drehschwingungsdämpfungsanordnung (1 ) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Reibanordnung (20) in Bezug auf die Drehachse (A) radial innerhalb des Energiespeichers (4) angeordnet ist. 8. torsional vibration damping arrangement (1) according to one of claims 1 to 7, characterized in that the friction arrangement (20) with respect to the axis of rotation (A) is arranged radially within the energy store (4).
9. Drehschwingungsdämpfungsanordnung (1 ) nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der Energiespeicher (23) aus einer Tellerfeder (33) oder aus mehreren axial gestaffelt angeordneten Tellerfedern (33) besteht. 9. torsional vibration damping arrangement (1) according to one of claims 1 to 8, characterized in that the energy store (23) consists of a plate spring (33) or of a plurality of axially staggered plate springs (33).
EP19806151.7A 2018-11-15 2019-11-15 Torsional vibration damping assembly Withdrawn EP3880985A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018219568.4A DE102018219568A1 (en) 2018-11-15 2018-11-15 Torsional vibration damping arrangement
PCT/EP2019/081434 WO2020099618A1 (en) 2018-11-15 2019-11-15 Torsional vibration damping assembly

Publications (1)

Publication Number Publication Date
EP3880985A1 true EP3880985A1 (en) 2021-09-22

Family

ID=68621255

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19806151.7A Withdrawn EP3880985A1 (en) 2018-11-15 2019-11-15 Torsional vibration damping assembly

Country Status (4)

Country Link
EP (1) EP3880985A1 (en)
CN (1) CN113056625B (en)
DE (1) DE102018219568A1 (en)
WO (1) WO2020099618A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10028150A1 (en) * 2000-06-07 2001-12-13 Mannesmann Sachs Ag Multi-weight flywheel has two weight arrangements, axial support element, bearings, friction arrangement with contact formation and counter engaging formation.
DE4327017C2 (en) * 1992-08-20 2002-03-28 Mannesmann Sachs Ag torsional vibration damper
EP1707843B1 (en) * 2005-03-29 2015-07-22 Valeo Embrayages Double mass flywheel for vehicle
DE102016223413A1 (en) * 2015-11-30 2017-06-01 Schaeffler Technologies AG & Co. KG Dual mass flywheel with friction control disc

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2706006B1 (en) * 1993-06-02 1995-07-07 Valeo Shock absorber steering wheel, especially for motor vehicles.
FR2706963B1 (en) * 1993-06-25 1995-09-15 Valeo
DE19817906A1 (en) * 1997-10-29 1999-05-06 Rohs Voigt Patentverwertungsge Torsion oscillation dampener for vehicular clutch
CN101086279A (en) * 2006-06-07 2007-12-12 卢克摩擦片和离合器两合公司 Rotational vibration attenuation device
DE102016210740A1 (en) * 2016-06-16 2017-12-21 Zf Friedrichshafen Ag Torsion damper with a vibration-dependent friction device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4327017C2 (en) * 1992-08-20 2002-03-28 Mannesmann Sachs Ag torsional vibration damper
DE10028150A1 (en) * 2000-06-07 2001-12-13 Mannesmann Sachs Ag Multi-weight flywheel has two weight arrangements, axial support element, bearings, friction arrangement with contact formation and counter engaging formation.
EP1707843B1 (en) * 2005-03-29 2015-07-22 Valeo Embrayages Double mass flywheel for vehicle
DE102016223413A1 (en) * 2015-11-30 2017-06-01 Schaeffler Technologies AG & Co. KG Dual mass flywheel with friction control disc

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2020099618A1 *

Also Published As

Publication number Publication date
DE102018219568A1 (en) 2020-05-20
CN113056625B (en) 2022-11-15
CN113056625A (en) 2021-06-29
WO2020099618A1 (en) 2020-05-22

Similar Documents

Publication Publication Date Title
DE19603248B4 (en) torsional vibration dampers
DE8509108U1 (en) Device for compensating torsional shocks
EP2561245B1 (en) Stop cap
DE102006010270B4 (en) gearing
DE3143163A1 (en) "Torsion Damper Device"
DE102008044820A1 (en) friction clutch
DE102013106291A1 (en) vibration absorber
EP2835547B1 (en) Adjusting device
DE102007026988A1 (en) Dual mass flywheel for motor vehicle, has torsional damper with springs exhibiting screw shaped windings and comprising coaxial long springs and short springs, where short springs are screwed into middle section of long springs
EP1621796B2 (en) Torsional vibration damper
DE102008013577B4 (en) torsional vibration damper
DE102004016365B4 (en) Torque transfer device
DE19819824B4 (en) Torsional vibration damper with a damping device
EP3880985A1 (en) Torsional vibration damping assembly
DE102004022511B4 (en) Coupling device, in particular for a motor vehicle
DE19545629C1 (en) Flywheel mass with anti-loss safety device
WO2017194053A1 (en) Friction disc for a clutch disc damper
DE3501466C2 (en) Torsional vibration damper with a speed-dependent friction device that is effective in the torsion angle range of the idling system
DE10290513B3 (en) Device for transmitting torque in the version with two-mass damping flywheel
DE102006015134B4 (en) Torsional vibration damper
DE102018215156A1 (en) Spring package for a torsion damper
DE102007046245A1 (en) Torsion vibration damper for use between drive motor and shaft to be propelled, has free wheel device provided between parts, where wheel is operated in swivelable directions between parts, and supports storages during deformation
DE102006008362B4 (en) Internal combustion engine damper
DE102014201408B4 (en) Torsional vibration damping arrangement for a vehicle drive train
DE102010052147A1 (en) Torsional vibration damper for use in drive train of motor vehicle, has elastic element whose spring force is adjusted by utilizing adjustment device, where force opposes axial movement of primary and secondary masses

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210512

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230323

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20230803