EP3859382A1 - Security system and method for locating a person or object in a surveillance area with a security system - Google Patents
Security system and method for locating a person or object in a surveillance area with a security system Download PDFInfo
- Publication number
- EP3859382A1 EP3859382A1 EP20154108.3A EP20154108A EP3859382A1 EP 3859382 A1 EP3859382 A1 EP 3859382A1 EP 20154108 A EP20154108 A EP 20154108A EP 3859382 A1 EP3859382 A1 EP 3859382A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- person
- position data
- radio
- sensor
- evaluation unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B9/00—Safety arrangements
- G05B9/02—Safety arrangements electric
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16P—SAFETY DEVICES IN GENERAL; SAFETY DEVICES FOR PRESSES
- F16P3/00—Safety devices acting in conjunction with the control or operation of a machine; Control arrangements requiring the simultaneous use of two or more parts of the body
- F16P3/12—Safety devices acting in conjunction with the control or operation of a machine; Control arrangements requiring the simultaneous use of two or more parts of the body with means, e.g. feelers, which in case of the presence of a body part of a person in or near the danger zone influence the control or operation of the machine
- F16P3/14—Safety devices acting in conjunction with the control or operation of a machine; Control arrangements requiring the simultaneous use of two or more parts of the body with means, e.g. feelers, which in case of the presence of a body part of a person in or near the danger zone influence the control or operation of the machine the means being photocells or other devices sensitive without mechanical contact
- F16P3/141—Safety devices acting in conjunction with the control or operation of a machine; Control arrangements requiring the simultaneous use of two or more parts of the body with means, e.g. feelers, which in case of the presence of a body part of a person in or near the danger zone influence the control or operation of the machine the means being photocells or other devices sensitive without mechanical contact using sound propagation, e.g. sonar
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
- G01S5/0257—Hybrid positioning
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16P—SAFETY DEVICES IN GENERAL; SAFETY DEVICES FOR PRESSES
- F16P3/00—Safety devices acting in conjunction with the control or operation of a machine; Control arrangements requiring the simultaneous use of two or more parts of the body
- F16P3/12—Safety devices acting in conjunction with the control or operation of a machine; Control arrangements requiring the simultaneous use of two or more parts of the body with means, e.g. feelers, which in case of the presence of a body part of a person in or near the danger zone influence the control or operation of the machine
- F16P3/14—Safety devices acting in conjunction with the control or operation of a machine; Control arrangements requiring the simultaneous use of two or more parts of the body with means, e.g. feelers, which in case of the presence of a body part of a person in or near the danger zone influence the control or operation of the machine the means being photocells or other devices sensitive without mechanical contact
- F16P3/142—Safety devices acting in conjunction with the control or operation of a machine; Control arrangements requiring the simultaneous use of two or more parts of the body with means, e.g. feelers, which in case of the presence of a body part of a person in or near the danger zone influence the control or operation of the machine the means being photocells or other devices sensitive without mechanical contact using image capturing devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16P—SAFETY DEVICES IN GENERAL; SAFETY DEVICES FOR PRESSES
- F16P3/00—Safety devices acting in conjunction with the control or operation of a machine; Control arrangements requiring the simultaneous use of two or more parts of the body
- F16P3/12—Safety devices acting in conjunction with the control or operation of a machine; Control arrangements requiring the simultaneous use of two or more parts of the body with means, e.g. feelers, which in case of the presence of a body part of a person in or near the danger zone influence the control or operation of the machine
- F16P3/14—Safety devices acting in conjunction with the control or operation of a machine; Control arrangements requiring the simultaneous use of two or more parts of the body with means, e.g. feelers, which in case of the presence of a body part of a person in or near the danger zone influence the control or operation of the machine the means being photocells or other devices sensitive without mechanical contact
- F16P3/144—Safety devices acting in conjunction with the control or operation of a machine; Control arrangements requiring the simultaneous use of two or more parts of the body with means, e.g. feelers, which in case of the presence of a body part of a person in or near the danger zone influence the control or operation of the machine the means being photocells or other devices sensitive without mechanical contact using light grids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16P—SAFETY DEVICES IN GENERAL; SAFETY DEVICES FOR PRESSES
- F16P3/00—Safety devices acting in conjunction with the control or operation of a machine; Control arrangements requiring the simultaneous use of two or more parts of the body
- F16P3/12—Safety devices acting in conjunction with the control or operation of a machine; Control arrangements requiring the simultaneous use of two or more parts of the body with means, e.g. feelers, which in case of the presence of a body part of a person in or near the danger zone influence the control or operation of the machine
- F16P3/14—Safety devices acting in conjunction with the control or operation of a machine; Control arrangements requiring the simultaneous use of two or more parts of the body with means, e.g. feelers, which in case of the presence of a body part of a person in or near the danger zone influence the control or operation of the machine the means being photocells or other devices sensitive without mechanical contact
- F16P3/147—Safety devices acting in conjunction with the control or operation of a machine; Control arrangements requiring the simultaneous use of two or more parts of the body with means, e.g. feelers, which in case of the presence of a body part of a person in or near the danger zone influence the control or operation of the machine the means being photocells or other devices sensitive without mechanical contact using electro-magnetic technology, e.g. tags or radar
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/06—Systems determining position data of a target
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/02—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
- G01S15/06—Systems determining the position data of a target
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/88—Sonar systems specially adapted for specific applications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/04—Systems determining the presence of a target
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/08—Systems determining position data of a target for measuring distance only
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/86—Combinations of lidar systems with systems other than lidar, radar or sonar, e.g. with direction finders
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
Definitions
- the present invention relates to a security system for localizing a person or an object according to the preamble of claim 1 and a method for localizing a person or an object in a surveillance area with a security system according to the preamble of claim 11.
- the functional safety sensors are currently up to date so that fundamental physical characteristics of the environment, such as geometry information such as distances, lengths or the presence of objects, can be reliably detected and used in simple safety functions.
- geometry information such as distances, lengths or the presence of objects
- higher-value information or derived meanings for example the information about what kind of object it is, generally cannot be reliably determined by sensors and therefore cannot be used for safety purposes either.
- Optoelectronic safety sensors for example laser scanners or light grids, very reliably detect the presence of an object or a person. Such safety sensors are widely used in the protection of hazardous points in machines and enable the implementation of very simple safety functions.
- Machine movements are usually stopped or slowed down when a safety-relevant object is detected. It does not take into account what kind of object it is or where exactly in the configured protection area the object is located. This information is generally not available at all or cannot be used for safety purposes.
- a simple detection function of existing safety sensors allows a reliable safeguarding of hazardous points but usually has negative effects on the productivity of a machine.
- a class of the detected object for example a person, an object or a malfunction or disruptive objects and regardless of the exact position of the object, a safety-related shutdown must take place, even if this reaction would not be required in certain cases.
- a sensor unit supplies a current 3D image of the work area at defined time intervals to protect a dangerous work area of an automated machine.
- An evaluation unit contains a fail-safe foreign object detector, a classifier, a person follower and a comparator.
- the foreign object detector generates, as a function of the current 3D image and as a function of a defined protection area, a first signal with first position information that is representative of the position of a foreign object in the protection area.
- the classifier tries to identify the foreign object as a person.
- the person follower tracks the identified person over a series of current 3D images and, after each new 3D image, determines second position information that represents the current position of the identified person. If the position of the foreign object according to the first position information and the position of the identified person are different from each other, a control signal for stopping the machine is generated.
- the DE 10 2017 123 295 A1 discloses a safety system for safeguarding the cooperative operation of people, robots and machines on a technical system.
- the security system comprises a first security-related device, the is designed to monitor a first danger area of the technical system and to convert the technical system into a safe state when a dangerous situation is detected.
- the safety system is also designed to identify an autonomously working, technical unit and to register the autonomously working, technical unit if it meets a defined condition, as well as to limit the monitoring of the first danger area by the first safety-related device in response to the registration .
- One object of the invention is to enable a reliable differentiation between an admissible person or an admissible object and an unauthorized person or an unauthorized object. This should enable high-quality safety functions such as targeted interaction between person and actuator or between object and actuator to be implemented.
- the object is achieved according to claim 1 by a security system for localizing a person or an object in a monitoring area, with at least one movable machine, with a control and evaluation unit, with at least one radio location system, with at least one spatially resolving sensor for determining the position of the person or the Object, the radio location system having arranged radio stations, with at least one radio transponder being arranged on the person or the object, the position data of the person or the object being able to be determined by means of the radio location system, the position data being transmitted from the radio stations of the radio location system to the control and evaluation unit and position data of the person or the object can be determined by means of the spatially resolving sensor, the control and evaluation unit is designed to compare the position data of the radio location system and the position data of the sensor and in the event of an overthrow to create verified position data.
- the object is further achieved according to claim 11 by a method for localizing a person or an object in a monitoring area with a security system, with at least one movable machine, with a control and evaluation unit, with at least one radio location system, with at least one spatially resolving sensor for determining position of the person or the object, the radio location system having arranged radio stations, with at least one radio transponder being arranged on the person or the object, the position data of the person or the object being determined by means of the radio location system, the Position data are transmitted from the radio stations of the radio location system to the control and evaluation unit, and position data of the person or object are determined by means of the spatially resolving sensor, the control and evaluation unit compares the position data of the radio location system and the position data of the sensor and, if they match, position data checked to build.
- the security system is formed at least by the control and evaluation unit, the radio location system and the position-resolving sensor.
- the invention is based on the fact that a position of the person or the object can be clearly determined by two subsystems that are independent of one another.
- the position is determined via the spatially resolving sensor, as well as the position which is determined via the radio location system.
- the position is thus determined by a redundant, in particular diverse system.
- the invention uses the combination of two diverse sensor technologies that validate each other with regard to the detection task.
- the first of the two sensor technologies is the radio location system or a radio-based localization system with which the positions of radio transponders can be determined to within a few centimeters.
- the radio location is based, for example, on a triangulation of at least one radio transponder on the person or the object. This requires at least three radio stations that can detect the radio transponder. The radio location system knows the distance between the respective radio stations.
- the radio transponder or the radio transponders are arranged on the person or the object.
- the radio stations receive the radio signals from the radio transponders and can thus determine their position and thus the position of the person or object.
- the position data is transmitted from the radio location system, namely the radio stations, to the control and evaluation unit.
- the second system is the spatially resolving sensor or a spatially resolving environment detection system. No radio transponder is required for localization.
- This environment detection system or the spatially resolving sensor thus supplies information that an object is located at a certain position and determines its position and dimensions or contour.
- the two diverse subsystems namely the radio location system and the spatially resolving sensor, complement each other very well with regard to the functional tasks of position detection and can therefore be combined alternately for validation and thus for safety-related positioning.
- a validation of an object or person position could thus proceed schematically as follows:
- the radio location system determines the position of an object or a person. This information is transmitted to the control and evaluation unit.
- the control and evaluation unit optionally transmits a search field in which the radio location system has located the person or the object to the position-resolving sensor.
- the spatially resolving sensor checks whether a person or an object is present in its detection area or its search field, optionally with its size and possibly other detected validation parameters such as shape, speed, etc.
- the spatially resolving sensor transmits the recorded data to the control and evaluation unit.
- the detected position of the person or the object of the radio location system and the detected position of the person or the object of the spatially resolving sensor are compared with one another by the control and evaluation unit.
- the control and evaluation unit optionally compares the recorded features or the contour of the person or the object of the spatially resolving sensor with the recorded features or the contour of the person or the object of the radio location system.
- the person or object position can thus be validated alternately through the two diverse information channels and thus checked for a safety-related application.
- the invention enables the position of persons or objects to be reliably recognized in a monitoring area and thus opens up the possibility of tailoring a safety function specifically to a particular situation. This makes it possible to meet a requirement for a risk reduction without impairing the productivity of an automation process.
- Radio location systems for example, have a natural immunity to extraneous light due to their operating principle. Radio location systems are also not very sensitive to interfering objects such as dust, chips or fog. In addition, radio location systems make it possible to see through non-metallic walls, so that people or objects can be recognized particularly early. This allows a high quality optimization of processes with constant guarantee of occupational safety.
- the object can be stationary or mobile objects.
- the object is transport material or processing material.
- the movable machine or mobile machine can be, for example, a robot with movable robot arms.
- the movable machine thus has a drive and can be moved in different directions.
- the invention consists in supplementing a classic safety function with presence detection by the spatially resolving sensor and safety-related disconnection by reliable position determination.
- the classic safety function through the spatially resolving sensor serves as a fallback function that takes over if the safe positioning fails.
- control and evaluation unit is designed to compare the position data of the radio location system and the position data of the sensor and, if they match, to allow the person or object with the radio transponder in a protective field of the position-resolving sensor and not to output an object detection signal, whereby the movable Machine is in an active state.
- the classic safety function is bypassed (muting) and a machine control can optionally access the position data of the object or the person for the situation-related protection of the machine.
- the spatially resolving sensor which is used in a stationary manner to protect the machine or the actuator, also provides its measurement data in order to enable the person or the object to be positioned in the protective field. In this way, if the position data of the radio location system and the position data of the spatially resolving sensor are present, a validation of the position of the person or the object is made possible and thus a safety-related use of the position information is accessible.
- the safety-related usability must also be checked for the fault that the position data of the radio location system is missing or the position data of the spatially resolving sensor does not match the position data of the radio location system.
- a validation-dependent bridging or muting of the safety function of the primary safety function i.e. the protective field monitoring by the spatially resolving sensor
- the primary safety function i.e. the protective field monitoring by the spatially resolving sensor
- the validation of the two independent position data or position information is carried out by the control and evaluation unit.
- the control and evaluation unit is optionally a functionally reliable control and evaluation unit.
- the control and evaluation unit has, for example, means for detecting errors.
- These funds are for example Means for testing, for example a redundant and / or diverse structure with two channels for mutual checking of the determined results and the position data.
- the spatially resolving sensor and the radio stations are arranged in a stationary manner.
- the movable machine being, for example, a robot, a handling machine or the like.
- the movable machine can also be a processing machine, for example a press or punch, which can also be in direct interaction with a person or an object.
- the spatially resolving sensor and the radio stations are arranged in a mobile manner on a movable machine.
- the movable machine being, for example, a vehicle, in particular a driverless vehicle or the like.
- the vehicle can also be in direct interaction with a person or an object.
- checked position data are formed on the basis of the position data of the radio location system and the position data of the sensor, the control and evaluation unit being designed to compare the checked position data with reference data and, if they match, a change in the safety function of the safety system using the control and evaluation unit takes place, the actuator being operated in a safe operating mode.
- the movable machine or actuator is braked, stopped, deflected and / or accelerated again.
- the movable machine is operated in a non-dangerous operating mode.
- Safety-critical errors such as the loss of the radio signal, e.g. B. because no radio transponder is available, because a power supply to the radio transponder has failed or because, for example, the radio transponder is shielded or an incorrect localization of the person or the object by the spatially resolving sensor or the incorrect processing of position data by the control and evaluation unit a safety-related shutdown by the primary safety function, namely by the control and evaluation unit if there are no valid position data from the spatially resolving sensor.
- control and evaluation unit is designed to set a changed safety function based on the checked position data of the control and evaluation unit, with a movement of the movable machine being changed or influenced by the control and evaluation unit depending on the distance from the person to the movable machine will.
- a changed safety function is set by means of the control and evaluation unit, the control and evaluation unit converting the checked position information into a safe distance from the danger point and influencing a movement of the movable machine depending on the distance from the person.
- a safe collaboration between the movable machine or actuator and person can also be implemented.
- the movable machine or the actuator is braked, stopped, deflected and / or accelerated again.
- the radio location system is an ultra-broadband radio location system, the frequency used being in the range from 3.1 GHz to 10.6 GHz, the transmission energy per radio station being a maximum of 0.5 mW.
- an absolute bandwidth is at least 500 MHz or a relative bandwidth is at least 20% of the central frequency.
- the range of such a radio location system is, for example, 0 to 50 m, the short duration of the radio pulses being used for the location.
- the radio location system only sends out radio waves with a low energy.
- the system can be used very flexibly and shows no interference.
- At least only one single radio transponder needs to be arranged on the person or the object, which radio transponder is detected by at least three stationary radio stations, the distance between the radio stations being known.
- a plurality, for example more than three, radio stations are preferably arranged which monitor at least part of the movement area of the person or the object.
- At least two or more radio transponders can also be arranged on the person or the object.
- the position of the person or the object can be identified more precisely and the orientation of the person or the object can also be detected when the person or object is stationary if the arrangement of the radio transponders on the person or the object is known.
- the spatially resolving sensor is an optoelectronic sensor, an ultrasonic sensor or a radar sensor.
- the light emitted by a light transmitter that is remitted by the person or object is received by a light receiver and the light transit time from emission to reception from the person or object is evaluated, whereby the distance to the person or object is determined can be.
- the senor can also be an ultrasonic sensor or a radar sensor.
- An ultrasonic sensor sends out ultrasound and evaluates the reflected sound waves, i.e. the echo signals. Frequencies from 16 kHz are used. Detection ranges from a few centimeters to many meters can be achieved.
- a radar sensor is a sensor that emits a so-called primary signal as a bundled electromagnetic wave that receives echoes reflected from people or objects as a secondary signal and evaluates them according to various criteria. This is a localization, namely the determination of distance and angle.
- Position information or the position can be obtained from the waves received and reflected from the person or object.
- the angle or the direction to the object and the distance to the person or the object can be determined from the time difference between sending and receiving the signal.
- the relative movement between the transmitter and the person or object can also be determined, for example by means of a simple multiple measurement at time intervals.
- the stringing together of individual measurements provides the distance and the absolute speed of the object. With a corresponding resolution of the radar sensor, contours of the person or the object can be recognized.
- a radiation from the radar sensor is largely bundled in one direction, for example due to the antenna design.
- the radiation pattern of the antenna then has a so-called lobe shape.
- the wavelength of the radar is in the range of radio waves in the short to microwave range.
- a pulse radar sensor sends pulses with a typical duration in the lower microsecond range and then waits for echoes.
- the duration of the pulse is the time between sending and receiving the echo. It is used to determine the distance.
- a direction of the scanning beam of a pulse radar sensor can also be effected electronically by phase-controlled antenna arrays instead of by the alignment of the antenna or antennas. This means that several objects can be targeted in quick succession and followed virtually simultaneously.
- the radar sensor works with a power of, for example, approx. 10 mW. This performance is so low that there are no health effects.
- the radar frequency permitted for this application is, for example, in the range of 76-77 GHz, corresponding to a wavelength of around 4 mm.
- the spatially resolving sensor is designed for at least two-dimensional monitoring of a monitoring area.
- the spatially resolving sensor for at least two-dimensional monitoring of a monitoring area is a sensor for distance measurement.
- the distance sensor supplies distance values in at least two-dimensional space.
- the sensor gives Measured values with distance information and angle information. For example, the distance is determined using the time-of-flight method or triangulation method.
- the spatially resolving sensor is designed for at least spatial monitoring of a monitoring area.
- the optoelectronic sensor is a laser scanner, a safety laser scanner, a 3D camera, a stereo camera or a time-of-flight camera.
- the spatially resolving sensor, the laser scanner, the safety laser scanner, the 3D camera, the stereo camera or the time-of-flight camera monitors a two-dimensional or three-dimensional monitoring area or a measurement data contour. This can also be synonymous with a monitoring field.
- a safety laser scanner according to such standards is, for example, from DE 43 40 756 A1 famous.
- the term "functionally safe” is to be understood in the sense of the named or comparable standards, so measures have been taken to control errors up to a specified safety level.
- the safety system can therefore be designed to be intrinsically safe.
- the safety system and / or at least one safe sensor also generate non-safe data, such as raw data, point clouds or the like. Not safe is the opposite term too safe, for non-safe devices, transmission paths, evaluations and the like and accordingly the mentioned requirements for fail-safe security are not met.
- a 3D camera for example, also monitors a monitoring area by means of a large number of recorded distance values.
- a 3D camera has the advantage that a volume-like protection area can be monitored.
- a stereo camera for example, also monitors a monitoring area by means of a large number of recorded distance values.
- the distance values are determined on the basis of the two cameras of the stereo camera, which are mounted at a basic distance from one another.
- a stereo camera also has the advantage that a volume-like protection area can be monitored.
- a time-of-flight camera is used to determine distance values based on the measured time of flight, which are determined by an image sensor.
- a time-of-flight camera also has the advantage that a volumetric or spatial protection area can be monitored.
- Figure 1 shows a security system 1 for localizing a person 2 or an object 8 in a monitoring area, with a movable machine 11, with a control and evaluation unit 3, with at least one radio location system 4, with at least one spatially resolving sensor 7 for determining the position of the person 2 or the Object 8, the radio location system 4 having arranged radio stations 5, with at least one radio transponder 6 being arranged on the person 2 or the object 8, wherein position data of the person 2 or the object 8 can be determined by means of the radio location system 4, the position data from the radio stations 5 of the radio location system 4 can be transmitted to the control and evaluation unit 3, and position data of the person 2 or of the object 8 can be determined by means of the position-resolving sensor 7, the control and evaluation unit 3 is designed, the position data of the To compare radio location system 4 and the position data of the spatially resolving sensor 7 and to form checked position data if they match.
- control and evaluation unit 3 designed to compare the position data of the radio location system 4 and the position data of the spatially resolving sensor 7 and, if they match, to allow the person 2 or the object 8 with the radio transponder 6 in a protective field 13 of the spatially resolving sensor 7 and not to output an object detection signal whereby the movable machine 11 is in an active state.
- Figure 3 shows a block structure with the various signals.
- a classic safety function with presence detection by the spatially resolving sensor 7 and safety-related shutdown 16 is supplemented with a safe position determination.
- the laser scanner 10 monitors in accordance with Figure 3 and Figure 2 a two-dimensional monitoring area or a measurement data contour 14. This can also be synonymous with a monitoring field.
- the classic safety function by the spatially resolving sensor 7 serves as a fallback function that takes over if the safe positioning fails.
- the classic safety function is bridged by means of a muting signal 15 and a machine control 12 can optionally provide secure or checked position data 17 for the situation-related safeguarding of the movable machine 11 of the object 8 or the person 2 fall back.
- the spatially resolving sensor 7 which is used in a stationary manner to protect the movable machine 11 or the actuator, also provides its measurement data in order to enable the person 2 or the object 8 to be positioned in the protective field 13. In this way, if the position data of the radio location system 4 and the position data of the spatially resolving sensor 7 are present, a validation of the position of the person 2 or of the object 8 is made possible and thus a safety-related use of the position information is accessible.
- the error case that the position data of the radio location system 4 is missing or the position data of the spatially resolving sensor 7 does not match the position data of the radio location system 4 must also be checked for safety-related usability.
- FIG. 1 a validation-dependent bridging or muting of the safety function of the primary safety function, i.e. the protective field monitoring by the spatially resolving sensor 7, according to which, if the position data of the spatially resolving sensor 7 and the radio location system 4 match, the person 2 or the object 8 with the radio transponder in a protective field of the to allow spatially resolving sensor and not to output an object detection signal, whereby the movable machine 11 or the actuator is in an active state.
- the validation of the two independent position data or position information is carried out by the control and evaluation unit 3.
- the control and evaluation unit 3 is optionally a functionally reliable control and evaluation unit 3.
- the control and evaluation unit 3 has, for example, means for detecting errors. These means are, for example, means for testing, for example a redundant and / or diverse structure with two channels for mutual checking of the determined results and the position data.
- the spatially resolving sensor 7 and the radio stations 5 are arranged in a stationary manner.
- the movable machine 11 being, for example, a robot, a handling machine or the like.
- the movable machine 11 can also be a processing machine, for example a press or punch, which can likewise be in direct interaction with a person 2 or an object 8.
- the spatially resolving sensor and the radio stations are arranged in a mobile manner on a movable machine.
- the movable machine being, for example, a vehicle, in particular a driverless vehicle or the like.
- the vehicle can also be in direct interaction with a person or an object.
- checked position data are formed on the basis of the position data of the radio location system 4 and the position data of the position-resolving sensor 7, wherein the control and evaluation unit 3 is designed to compare the checked position data with reference data and, if they match, the control and evaluation unit changes the safety function of the safety system 1, the movable machine 11 or the actuator being operated in a safe operating mode.
- a safe collaboration between the movable machine 11 or actuator and the person 2 can be realized.
- the movable machine 11 or the actuator is braked, stopped, deflected and / or accelerated again.
- the movable machine 11 is operated in a safe operating mode.
- Safety-critical errors such as the loss of the radio signal, e.g. B. because there is no radio transponder 6, because a power supply to the radio transponder 6 has failed or because, for example, the radio transponder 6 is shielded or incorrect localization of the person 2 or the object 8 by the spatially resolving sensor 7 or the incorrect processing of position data by the control - and evaluation unit 3, lead to a safety-related shutdown by the primary safety function, namely by the control and evaluation unit 3 if no valid position data are available from the spatially resolving sensor 7.
- the radio location system 4 is optionally an ultra-broadband radio location system, the frequency used being in the range from 3.1 GHz to 10.6 GHz, the transmission energy per radio station being a maximum of 0.5 mW.
- a plurality, for example more than three, radio stations 5 are preferably arranged, which monitor at least part of the movement area of the person 2 or of the object 8.
- At least two or more radio transponders 6 can also be arranged on the person 2 or the object 8.
- the position of person 2 or object 8 can be identified more precisely and the orientation of person 2 or object 8 can also be detected when the vehicle is stationary if the arrangement of radio transponders 6 on person 2 or object 8 is known.
- the spatially resolving sensor 7 is an optoelectronic sensor, an ultrasonic sensor or a radar sensor.
- a light transit time sensor as an optoelectronic sensor
- the light emitted by a light transmitter which is remitted by person 2 or object 8 is received by a light receiver and the light transit time from transmission to reception by person 2 or object 8 is evaluated, thereby determining the distance can be determined to the person 2 or the object 8.
- the spatially resolving sensor 7 can also be an ultrasonic sensor or a radar sensor.
- the spatially resolving sensor 7 is designed for at least two-dimensional monitoring of a monitoring area.
- the spatially resolving sensor 7 for at least two-dimensional monitoring of a monitoring area is a sensor for distance measurement.
- the distance sensor supplies distance values in at least two-dimensional space.
- the spatially resolving sensor outputs 7 measured values with distance information and angle information. For example, the distance is determined using the time-of-flight method or triangulation method.
- the spatially resolving sensor is designed for at least spatial monitoring of a monitoring area.
- the optoelectronic sensor can be a laser scanner 10 or a safety laser scanner.
- the spatially resolving sensor is a 3D camera, a stereo camera or a time-of-flight camera.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Electromagnetism (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Acoustics & Sound (AREA)
- Automation & Control Theory (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
Verfahren zur Lokalisierung einer Person (2) oder eines Objektes (8) in einem Überwachungsbereich mit einem Sicherheitssystem (1) und Sicherheitssystem (1), mit mindestens einer bewegbaren Maschine (11), mit einer Steuer- und Auswerteeinheit (3), mit mindestens einem Funkortungssystem (4), mit mindestens einem ortsauflösenden Sensor (7) zur Positionsbestimmung der Person (2) oder des Objektes (8), wobei das Funkortungssystem (4) angeordnete Funkstationen (5) aufweist, wobei an der Person (2) oder dem Objekt (8) mindestens ein Funktransponder (6) angeordnet ist, wobei mittels dem Funkortungssystem (4) Positionsdaten der Person (2) oder des Objektes (8) ermittelt werden, wobei die Positionsdaten von den Funkstationen (5) des Funkortungssystems (4) an die Steuer- und Auswerteeinheit (3) übermittelt werden, und mittels dem ortsauflösenden Sensor (7) Positionsdaten der Person (2) oder des Objekts (8) ermittelt werden, wobei die Steuer- und Auswerteeinheit (3) die Positionsdaten des Funkortungssystems (4) und die Positionsdaten des Sensors (7) vergleicht und bei einer Übereinstimmung geprüfte Positionsdaten zu bilden.Method for localizing a person (2) or an object (8) in a monitoring area with a security system (1) and security system (1), with at least one movable machine (11), with a control and evaluation unit (3), with at least a radio location system (4), with at least one spatially resolving sensor (7) for determining the position of the person (2) or the object (8), the radio location system (4) having radio stations (5) arranged on the person (2) or the Object (8) at least one radio transponder (6) is arranged, the position data of the person (2) or the object (8) being determined by means of the radio location system (4), the position data from the radio stations (5) of the radio location system (4) being determined the control and evaluation unit (3) are transmitted, and position data of the person (2) or the object (8) are determined by means of the spatially resolving sensor (7), the control and evaluation unit (3) receiving the position data of the radio location ng system (4) and the position data of the sensor (7) compares and to form checked position data if they match.
Description
Die vorliegende Erfindung betrifft ein Sicherheitssystem zur Lokalisierung einer Person oder eines Objektes gemäß dem Oberbegriff von Anspruch 1 und ein Verfahren zur Lokalisierung einer Person oder eines Objektes in einem Überwachungsbereich mit einem Sicherheitssystem gemäß dem Oberbegriff von Anspruch 11.The present invention relates to a security system for localizing a person or an object according to the preamble of claim 1 and a method for localizing a person or an object in a surveillance area with a security system according to the preamble of
Die Sensorik der funktionalen Sicherheit ist aktuell auf dem Stand, dass grundlegende physikalische Merkmale der Umgebung, beispielsweise Geometrieinformationen wie z.B. Abstände, Längen oder die Anwesenheit von Objekten an sich zuverlässig erfasst und in einfachen Sicherheitsfunktionen verwendet werden können. Dagegen sind höherwertige Informationen oder abgeleitete Bedeutungen, zum Beispiel die Information, um was für ein Objekt es sich handelt, in aller Regel nicht zuverlässig durch Sensoren ermittelbar und daher auch nicht sicherheitstechnisch nutzbar.The functional safety sensors are currently up to date so that fundamental physical characteristics of the environment, such as geometry information such as distances, lengths or the presence of objects, can be reliably detected and used in simple safety functions. On the other hand, higher-value information or derived meanings, for example the information about what kind of object it is, generally cannot be reliably determined by sensors and therefore cannot be used for safety purposes either.
In diesem Sinne ist insbesondere die Information, ob es sich bei einem Objekt, um eine Person handelt oder nicht, für hochwertige Sicherheitsfunktionen interessant. Im Allgemeinen ist bereits eine Objektklassifikation ein sehr aufwändiges Verfahren, da hierfür in der Regel Bilddaten verwendet werden, die dann sehr aufwändig prozessiert werden müssen. Dies führt in der Regel zu teuren Sensoren mit oftmals erheblichen Latenzzeiten.In this sense, the information as to whether it is an object or a person is of particular interest for high-quality security functions. In general, an object classification is already a very complex process, since image data are generally used for this, which then have to be processed in a very complex manner. This usually leads to expensive sensors with often considerable latency times.
Optoelektronische Sicherheitssensoren, beispielsweise Laserscanner oder Lichtgitter erfassen sehr zuverlässig die Anwesenheit eines Objektes oder einer Person. Derartige Sicherheitssensoren finden eine große Verbreitung bei der Gefahrstellenabsicherung von Maschinen und ermöglichen die Implementierung sehr einfacher Sicherheitsfunktionen.Optoelectronic safety sensors, for example laser scanners or light grids, very reliably detect the presence of an object or a person. Such safety sensors are widely used in the protection of hazardous points in machines and enable the implementation of very simple safety functions.
Maschinenbewegungen werden bei Detektion eines sicherheitsrelevanten Objekts in aller Regel gestoppt oder verlangsamt. Dabei bleibt unberücksichtigt, um was für ein Objekt es sich handelt oder wo genau im konfigurierten Schutzbereich sich das Objekt befindet. Diese Information ist im Allgemeinen auch gar nicht verfügbar bzw. nicht sicherheitstechnisch verwendbar.Machine movements are usually stopped or slowed down when a safety-relevant object is detected. It does not take into account what kind of object it is or where exactly in the configured protection area the object is located. This information is generally not available at all or cannot be used for safety purposes.
Eine einfache Detektionsfunktion vorhandener Sicherheitssensoren erlaubt eine zuverlässige Absicherung von Gefahrstellen hat aber in alle Regel nachteilige Auswirkungen auf eine Produktivität einer Maschine. Unabhängig von einer Klasse des detektierten Objekts beispielsweise einer Person, einem Gegenstand oder einer Störung bzw. störenden Gegenständen und unabhängig von der genauen Position des Objektes muss sicherheitsgerichtet abgeschaltet werden, selbst wenn diese Reaktion in bestimmten Fällen nicht erforderlich wäre.A simple detection function of existing safety sensors allows a reliable safeguarding of hazardous points but usually has negative effects on the productivity of a machine. Regardless of a class of the detected object, for example a person, an object or a malfunction or disruptive objects and regardless of the exact position of the object, a safety-related shutdown must take place, even if this reaction would not be required in certain cases.
Insbesondere ein sicheres Wissen, dass es sich bei einem detektierten Objekt, um eine Person handelt oder nicht, würde eine sehr viel spezifischere Kontrolle einer potenziell gefährlichen Maschine ermöglichen.In particular, reliable knowledge that a detected object is a person or not would enable a much more specific control of a potentially dangerous machine.
Gemäß der
Die
Eine Aufgabe der Erfindung besteht darin, eine sichere Unterscheidung von zulässiger Person oder zulässigem Objekt und unzulässiger Person oder unzulässigem Objekt zu ermöglichen. Damit sollen hochwertige Sicherheitsfunktionen wie zum Beispiel die gezielte Interaktion zwischen Person und Aktor oder zwischen Objekt und Aktor realisiert werden können.One object of the invention is to enable a reliable differentiation between an admissible person or an admissible object and an unauthorized person or an unauthorized object. This should enable high-quality safety functions such as targeted interaction between person and actuator or between object and actuator to be implemented.
Die Aufgabe wird gemäß Anspruch 1 gelöst durch ein Sicherheitssystem zur Lokalisierung einer Person oder eines Objektes in einem Überwachungsbereich, mit mindestens einer bewegbaren Maschine, mit einer Steuer- und Auswerteeinheit, mit mindestens einem Funkortungssystem, mit mindestens einem ortsauflösenden Sensor zur Positionsbestimmung der Person oder des Objektes, wobei das Funkortungssystem angeordnete Funkstationen aufweist, wobei an der Person oder dem Objekt mindestens ein Funktransponder angeordnet ist, wobei mittels dem Funkortungssystem Positionsdaten der Person oder des Objektes ermittelbar sind, wobei die Positionsdaten von den Funkstationen des Funkortungssystems an die Steuer- und Auswerteeinheit übermittelbar sind, und mittels dem ortsauflösenden Sensor Positionsdaten der Person oder des Objekts ermittelbar sind, die Steuer- und Auswerteeinheit ausgebildet ist, die Positionsdaten des Funkortungssystems und die Positionsdaten des Sensors zu vergleichen und bei einer Übereinstimmung geprüfte Positionsdaten zu bilden.The object is achieved according to claim 1 by a security system for localizing a person or an object in a monitoring area, with at least one movable machine, with a control and evaluation unit, with at least one radio location system, with at least one spatially resolving sensor for determining the position of the person or the Object, the radio location system having arranged radio stations, with at least one radio transponder being arranged on the person or the object, the position data of the person or the object being able to be determined by means of the radio location system, the position data being transmitted from the radio stations of the radio location system to the control and evaluation unit and position data of the person or the object can be determined by means of the spatially resolving sensor, the control and evaluation unit is designed to compare the position data of the radio location system and the position data of the sensor and in the event of an overthrow to create verified position data.
Die Aufgabe wird weiter gemäß Anspruch 11 gelöst durch ein Verfahren zur Lokalisierung einer Person oder eines Objektes in einem Überwachungsbereich mit einem Sicherheitssystem, mit mindestens einer bewegbaren Maschine, mit einer Steuer- und Auswerteeinheit, mit mindestens einem Funkortungssystem, mit mindestens einem ortsauflösenden Sensor zur Positionsbestimmung der Person oder des Objektes, wobei das Funkortungssystem angeordnete Funkstationen aufweist, wobei an der Person oder dem Objekt mindestens ein Funktransponder angeordnet ist, wobei mittels dem Funkortungssystem Positionsdaten der Person oder des Objektes ermittelt werden, wobei die Positionsdaten von den Funkstationen des Funkortungssystems an die Steuer- und Auswerteeinheit übermittelt werden, und mittels dem ortsauflösenden Sensor Positionsdaten der Person oder des Objekts ermittelt werden, die Steuer- und Auswerteeinheit die Positionsdaten des Funkortungssystems und die Positionsdaten des Sensors vergleicht und bei einer Übereinstimmung geprüfte Positionsdaten zu bilden.The object is further achieved according to
Das Sicherheitssystem wird mindestens durch die Steuer- und Auswerteeinheit, das Funkortungssystem und den ortsauflösenden Sensor gebildet.The security system is formed at least by the control and evaluation unit, the radio location system and the position-resolving sensor.
Die Erfindung beruht darauf, dass eine Position der Person oder des Objekts durch zwei voneinander unabhängige Teilsysteme eindeutig bestimmbar ist. Zum einen wird die Position über den ortsauflösenden Sensor ermittelt, sowie die Position, welche über das Funkortungssystem ermittelt wird. Damit wird die Position durch ein redundantes, insbesondere diversitäres System bestimmt.The invention is based on the fact that a position of the person or the object can be clearly determined by two subsystems that are independent of one another. On the one hand, the position is determined via the spatially resolving sensor, as well as the position which is determined via the radio location system. The position is thus determined by a redundant, in particular diverse system.
Die Erfindung nutzt die Kombination von zwei diversitären Sensortechnologien aus, die sich im Hinblick auf die Detektionsaufgabe gegenseitig validieren.The invention uses the combination of two diverse sensor technologies that validate each other with regard to the detection task.
Die erste der beiden Sensortechnologien ist das Funkortungssystem bzw. ein funkbasiertes Lokalisierungssystem mit dem die Positionen von Funktranspondern bis auf wenige Zentimeter genau bestimmt werden kann.The first of the two sensor technologies is the radio location system or a radio-based localization system with which the positions of radio transponders can be determined to within a few centimeters.
Die Funkortung basiert dabei beispielsweise auf einer Triangulation von mindestens einem Funktransponder an der Person oder dem Objekt. Hierzu sind mindestens drei Funkstationen notwendig die den Funktransponder erfassen können. Dabei ist dem Funkortungssystem der Abstand zwischen den jeweiligen Funkstationen bekannt.The radio location is based, for example, on a triangulation of at least one radio transponder on the person or the object. This requires at least three radio stations that can detect the radio transponder. The radio location system knows the distance between the respective radio stations.
Es handelt es sich vorzugsweise um ein Echtzeitortungssystem oder der englischen Entsprechung RTLS (Real-Time-Locating-System). Dabei ist der Funktransponder oder sind die Funktransponder an der Person oder dem Objekt angeordnet. Die Funkstationen erhalten die Funksignale von den Funktranspondern und können so deren Position und damit die Position der Person oder des Objekts bestimmen.It is preferably a real-time location system or the English equivalent RTLS (Real-Time-Locating-System). In this case, the radio transponder or the radio transponders are arranged on the person or the object. The radio stations receive the radio signals from the radio transponders and can thus determine their position and thus the position of the person or object.
Dabei werden die Positionsdaten von dem Funkortungssystem, nämlich den Funkstationen an die Steuer- und Auswerteeinheit übermittelt.The position data is transmitted from the radio location system, namely the radio stations, to the control and evaluation unit.
Das zweite System ist der ortsauflösende Sensor bzw. ein ortsauflösendes Umfelderfassungssystem. Hierbei wird kein Funktransponder zur Lokalisierung benötigt. Dieses Umfelderfassungssystem bzw. der ortsauflösende Sensor liefert also Informationen, dass sich ein Objekt an einer bestimmten Position befindet und ermittelt dessen Position und Abmessung bzw. Kontur.The second system is the spatially resolving sensor or a spatially resolving environment detection system. No radio transponder is required for localization. This environment detection system or the spatially resolving sensor thus supplies information that an object is located at a certain position and determines its position and dimensions or contour.
Die beiden diversitären Teilsysteme, nämlich das Funkortungssystem und der ortsauflösende Sensor ergänzen sich sehr gut im Hinblick auf die funktionalen Aufgaben Positionserfassung und können daher wechselseitig zur Validierung und damit zur sicherheitstechnischen Positionierung kombiniert werden.The two diverse subsystems, namely the radio location system and the spatially resolving sensor, complement each other very well with regard to the functional tasks of position detection and can therefore be combined alternately for validation and thus for safety-related positioning.
Eine Validierung einer Objekt- oder Personenposition könnte also schematisch wie folgt ablaufen:
Das Funkortungssystem ermittelt die Position eines Objektes oder einer Person. Diese Informationen werden der Steuer- und Auswerteeinheit übermittelt.A validation of an object or person position could thus proceed schematically as follows:
The radio location system determines the position of an object or a person. This information is transmitted to the control and evaluation unit.
Optional übermittelt die Steuer- und Auswerteeinheit ein Suchfeld in dem das Funkortungssystem die Person oder das Objekt geortet hat an den ortsauflösenden Sensor.The control and evaluation unit optionally transmits a search field in which the radio location system has located the person or the object to the position-resolving sensor.
Der ortsauflösende Sensor prüft, ob in seinem Erfassungsbereich oder seinem Suchfeld eine Person oder ein Objekt vorhanden ist, optional mit dessen Größe und ggf. anderer detektierter Validierungsparameter wie Form, Geschwindigkeit usw. Der ortsauflösende Sensor übermittelt die erfassten Daten an die Steuer- und Auswerteeinheit.The spatially resolving sensor checks whether a person or an object is present in its detection area or its search field, optionally with its size and possibly other detected validation parameters such as shape, speed, etc. The spatially resolving sensor transmits the recorded data to the control and evaluation unit.
Durch die Steuer- und Auswerteeinheit wird die erfasste Position der Person oder des Objektes des Funkortungssystems und die erfasste Position der Person oder des Objektes des ortsauflösenden Sensors miteinander verglichen.The detected position of the person or the object of the radio location system and the detected position of the person or the object of the spatially resolving sensor are compared with one another by the control and evaluation unit.
Die Steuer- und Auswerteeinheit vergleicht optional die erfassten Merkmale bzw. die Kontur der Person oder des Objektes des ortsauflösenden Sensors mit den erfassten Merkmalen bzw. der Kontur der Person oder des Objektes des Funkortungssystems.The control and evaluation unit optionally compares the recorded features or the contour of the person or the object of the spatially resolving sensor with the recorded features or the contour of the person or the object of the radio location system.
Somit kann die Personen- bzw. Objektposition wechselseitig durch die beiden diversitären Informationskanäle validiert und so für eine sicherheitstechnische Anwendung geprüft werden.The person or object position can thus be validated alternately through the two diverse information channels and thus checked for a safety-related application.
Die Erfindung ermöglicht eine sichere Positionserkennung von Personen oder Objekten in einem Überwachungsbereich und erschließt damit die Möglichkeit eine Sicherheitsfunktion spezifisch auf eine jeweilige Situation zuzuschneiden. Damit besteht die Möglichkeit eine Forderung nach einer Risikominderung zu erfüllen, ohne eine Produktivität eines Automatisierungsprozesses zu beeinträchtigen.The invention enables the position of persons or objects to be reliably recognized in a monitoring area and thus opens up the possibility of tailoring a safety function specifically to a particular situation. This makes it possible to meet a requirement for a risk reduction without impairing the productivity of an automation process.
Die physikalischen Wirkprinzipien und deren Stärken und Schwächen der diversitären Sensoren sind vorteilhaft komplementär. Funkortungssysteme weisen beispielsweise aufgrund des Wirkprinzips eine natürliche Immunität gegenüber Fremdlicht auf. Weiter sind Funkortungssysteme wenig empfindlich bei störenden Objekten wie Staub, Spänen oder Nebel. Zudem ist es durch Funkortungssysteme möglich durch nichtmetallische Wände hindurchzusehen, so dass eine besonders frühe Erkennung von Personen oder Objekten möglich ist. Diese erlaubt eine qualitativ hochwertige Optimierung von Prozessen bei steter Gewährleistung der Arbeitssicherheit.The physical operating principles and their strengths and weaknesses of the diverse sensors are advantageously complementary. Radio location systems, for example, have a natural immunity to extraneous light due to their operating principle. Radio location systems are also not very sensitive to interfering objects such as dust, chips or fog. In addition, radio location systems make it possible to see through non-metallic walls, so that people or objects can be recognized particularly early. This allows a high quality optimization of processes with constant guarantee of occupational safety.
Bei dem Objekt kann es sich um stationäre oder mobile Gegenstände handeln. Beispielsweise handelt es sich bei dem Objekt um Transportmaterial oder Verarbeitungsmaterial.The object can be stationary or mobile objects. For example, the object is transport material or processing material.
Bei der bewegbaren Maschine bzw. mobilen Maschine kann es sich beispielsweise um einen Roboter mit bewegbaren Roboterarmen handeln. Die bewegbare Maschine weist somit einen Antrieb auf und kann in verschiedenen Richtungen bewegt werden.The movable machine or mobile machine can be, for example, a robot with movable robot arms. The movable machine thus has a drive and can be moved in different directions.
Die Erfindung besteht in anderen Worten darin, eine klassische Sicherheitsfunktion mit Anwesenheitsdetektion durch den ortsauflösenden Sensor und sicherheitsgerichteter Abschaltung durch eine sichere Positionsermittlung zu ergänzen. Dabei dient die klassische Sicherheitsfunktion durch den ortsauflösenden Sensor als Rückfall-Funktion, die einspringt, falls die sichere Positionierung fehlschlägt.In other words, the invention consists in supplementing a classic safety function with presence detection by the spatially resolving sensor and safety-related disconnection by reliable position determination. The classic safety function through the spatially resolving sensor serves as a fallback function that takes over if the safe positioning fails.
In Weiterbildung der Erfindung ist die Steuer- und Auswerteeinheit ausgebildet, die Positionsdaten des Funkortungssystems und die Positionsdaten des Sensors zu vergleichen und bei einer Übereinstimmung die Person oder das Objekt mit dem Funktransponder in einem Schutzfeld des ortsauflösenden Sensors zuzulassen und kein Objektfeststellungssignal auszugeben, wodurch die bewegbare Maschine in einem aktiven Zustand ist.In a further development of the invention, the control and evaluation unit is designed to compare the position data of the radio location system and the position data of the sensor and, if they match, to allow the person or object with the radio transponder in a protective field of the position-resolving sensor and not to output an object detection signal, whereby the movable Machine is in an active state.
Wenn mit sicherheitstechnisch erforderlicher Zuverlässigkeit die Position eines Objektes oder einer Person im Schutzfeld erfasst werden konnte, wird die klassische Sicherheitsfunktion überbrückt (Muting) und eine Maschinensteuerung kann optional für die situationsbezogene Absicherung der Maschine auf die Positionsdaten des Objektes oder der Person zurückgreifen.If the position of an object or a person in the protective field can be detected with the required reliability, the classic safety function is bypassed (muting) and a machine control can optionally access the position data of the object or the person for the situation-related protection of the machine.
Gemäß der Weiterbildung stellt der ortsauflösende Sensor, der stationär zur Absicherung der Maschine bzw. des Aktors verwendet wird, zusätzlich seine Messdaten bereit, um eine Positionierung der Person oder des Objektes im Schutzfeld zu ermöglichen. Auf diese Art wird bei Vorhandensein der Positionsdaten des Funkortungssystems und der Positionsdaten des ortsauflösenden Sensors eine Validierung der Position der Person oder des Objektes ermöglicht und damit eine sicherheitstechnische Verwendung der Positionsinformation zugänglich.According to the development, the spatially resolving sensor, which is used in a stationary manner to protect the machine or the actuator, also provides its measurement data in order to enable the person or the object to be positioned in the protective field. In this way, if the position data of the radio location system and the position data of the spatially resolving sensor are present, a validation of the position of the person or the object is made possible and thus a safety-related use of the position information is accessible.
Zusätzlich zu dieser redundanten und diversitären Sensorstruktur muss für die sicherheitstechnische Verwendbarkeit auch der Fehlerfall geprüft werden, dass die Positionsdaten des Funkortungssystems fehlen oder die Positionsdaten des ortsauflösenden Sensors nicht mit den Positionsdaten des Funkortungssystems übereinstimmen.In addition to this redundant and diverse sensor structure, the safety-related usability must also be checked for the fault that the position data of the radio location system is missing or the position data of the spatially resolving sensor does not match the position data of the radio location system.
Daher ist gemäß vorliegender Erfindung eine validierungsabhängige Überbrückung bzw. Muting der Sicherheitsfunktion der primären Sicherheitsfunktion, also der Schutzfeldüberwachung durch den ortsauflösenden Sensor vorgesehen, wonach bei einer Übereinstimmung der Positionsdaten des ortsauflösenden Sensors und des Funkortungssystems die Person oder das Objekt mit dem Funktransponder in einem Schutzfeld des ortsauflösenden Sensors zuzulassen ist und kein Objektfeststellungssignal auszugeben ist, wodurch der Aktor in einem aktiven Zustand ist.Therefore, according to the present invention, a validation-dependent bridging or muting of the safety function of the primary safety function, i.e. the protective field monitoring by the spatially resolving sensor, is provided, according to which, if the position data of the spatially resolving sensor and the radio location system match, the person or object with the radio transponder in a protective field of the spatially resolving sensor is to be allowed and no object detection signal is to be output, whereby the actuator is in an active state.
Entscheidend ist dabei, dass die primäre Sicherheitsfunktion solange überbrückt bleibt, wie die Validierung der Positionsdaten des Funkortungssystems und die Positionsdaten des ortsauflösenden Sensors erfolgreich ist.It is crucial that the primary safety function remains bridged as long as the validation of the position data of the radio location system and the position data of the position-resolving sensor is successful.
Die Validierung der beiden unabhängigen Positionsdaten bzw. Positionsinformationen wird von der Steuer- und Auswerteeinheit durchgeführt. Die Steuer- und Auswerteeinheit ist optional eine funktionssichere Steuer- und Auswerteeinheit. Die Steuer- und Auswerteeinheit weist beispielsweise Mittel zur Fehleraufdeckung auf. Diese Mittel sind beispielsweise Mittel zur Testung, beispielsweise ein redundanter und/oder diversitärer Aufbau mit zwei Kanälen zur gegenseitigen Prüfung der ermittelten Ergebnisse und der Positionsdaten.The validation of the two independent position data or position information is carried out by the control and evaluation unit. The control and evaluation unit is optionally a functionally reliable control and evaluation unit. The control and evaluation unit has, for example, means for detecting errors. These funds are for example Means for testing, for example a redundant and / or diverse structure with two channels for mutual checking of the determined results and the position data.
In Weiterbildung der Erfindung sind der ortsauflösende Sensor und die Funkstationen stationär angeordnet. Damit handelt es sich um eine stationäre Anwendung, wobei die bewegbare Maschine beispielsweise ein Roboter, eine Handhabungsmaschine oder dergleichen ist. Bei der bewegbaren Maschine kann es sich auch um eine Verarbeitungsmaschine, beispielsweise eine Presse oder Stanze handeln, welche ebenfalls in direkter Interaktion mit einer Person oder einem Objekt stehen kann.In a further development of the invention, the spatially resolving sensor and the radio stations are arranged in a stationary manner. This is a stationary application, the movable machine being, for example, a robot, a handling machine or the like. The movable machine can also be a processing machine, for example a press or punch, which can also be in direct interaction with a person or an object.
In Weiterbildung der Erfindung sind der ortsauflösende Sensor und die Funkstationen mobil an einer bewegbaren Maschine angeordnet. Damit handelt es sich um eine mobile Anwendung, wobei die bewegbare Maschine beispielsweise ein Fahrzeug, insbesondere ein fahrerloses Fahrzeug oder dergleichen ist. Das Fahrzeug kann ebenfalls in direkter Interaktion mit einer Person oder einem Objekt stehen.In a further development of the invention, the spatially resolving sensor and the radio stations are arranged in a mobile manner on a movable machine. This is a mobile application, the movable machine being, for example, a vehicle, in particular a driverless vehicle or the like. The vehicle can also be in direct interaction with a person or an object.
In Weiterbildung der Erfindung werden aufgrund der Positionsdaten des Funkortungssystems und der Positionsdaten des Sensors geprüfte Positionsdaten gebildet, wobei die Steuer- und Auswerteeinheit ausgebildet ist die geprüften Positionsdaten mit Referenzdaten zu vergleichen und bei einer Übereinstimmung mittels der Steuer- und Auswerteeinheit eine Veränderung der Sicherheitsfunktion des Sicherheitssystems erfolgt, wobei der Aktor in einer ungefährlichen Betriebsart betrieben ist.In a further development of the invention, checked position data are formed on the basis of the position data of the radio location system and the position data of the sensor, the control and evaluation unit being designed to compare the checked position data with reference data and, if they match, a change in the safety function of the safety system using the control and evaluation unit takes place, the actuator being operated in a safe operating mode.
Gemäß der Weiterbildung der Erfindung kann eine sichere Kollaboration zwischen bewegbarer Maschine bzw. Aktor und Person realisiert werden. Abhängig von der Position, Geschwindigkeit, Bewegungsrichtung und/oder dem Abstand der Person wird die bewegbare Maschine bzw. der Aktor abgebremst, gestoppt, umgelenkt und/oder wieder beschleunigt.According to the development of the invention, a safe collaboration between the movable machine or actuator and person can be realized. Depending on the position, speed, direction of movement and / or the distance of the person, the movable machine or the actuator is braked, stopped, deflected and / or accelerated again.
Insbesondere wenn sich die Person oder das Objekt in einem gefahrbringenden Bereich der bewegbaren Maschine befindet wird die bewegbare Maschine in einer ungefährlichen Betriebsart betrieben.In particular, if the person or the object is located in a dangerous area of the movable machine, the movable machine is operated in a non-dangerous operating mode.
Sicherheitskritische Fehlerfälle wie zum Beispiel der Verlust des Funksignals, z. B. weil kein Funktransponder vorhanden ist, weil eine Energieversorgung des Funktransponders ausgefallen ist oder weil beispielsweise der Funktransponder abgeschirmt wird oder eine fehlerhafte Lokalisierung der Person oder des Objektes durch den ortsauflösenden Sensors oder die fehlerhafte Verarbeitung von Positionsdaten durch die Steuer- und Auswerteeinheit, führen zu einem sicherheitsgerichteten Abschalten durch die primäre Sicherheitsfunktion, nämlich durch die Steuer- und Auswerteeinheit falls keine gültigen Positionsdaten von dem ortsauflösenden Sensor vorliegen.Safety-critical errors such as the loss of the radio signal, e.g. B. because no radio transponder is available, because a power supply to the radio transponder has failed or because, for example, the radio transponder is shielded or an incorrect localization of the person or the object by the spatially resolving sensor or the incorrect processing of position data by the control and evaluation unit a safety-related shutdown by the primary safety function, namely by the control and evaluation unit if there are no valid position data from the spatially resolving sensor.
In Weiterbildung der Erfindung ist die Steuer- und Auswerteeinheit ausgebildet ist basierend auf den geprüften Positionsdaten der Steuer- und Auswerteeinheit eine veränderte Sicherheitsfunktion einzustellen, wobei abstandsabhängig von der Person zur bewegbaren Maschine eine Bewegung der bewegbaren Maschine durch die Steuer- und Auswerteeinheit verändert bzw. beeinflusst wird.In a further development of the invention, the control and evaluation unit is designed to set a changed safety function based on the checked position data of the control and evaluation unit, with a movement of the movable machine being changed or influenced by the control and evaluation unit depending on the distance from the person to the movable machine will.
Beispielsweise wird mittels der Steuer- und Auswerteeinheit eine veränderte Sicherheitsfunktion eingestellt, wobei die Steuer- und Auswerteeinheit die geprüfte Positionsinformation in einen sicheren Abstand von der Gefahrenstelle umrechnet und abstandsabhängig von der Person eine Bewegung der bewegbaren Maschine beeinflusst.For example, a changed safety function is set by means of the control and evaluation unit, the control and evaluation unit converting the checked position information into a safe distance from the danger point and influencing a movement of the movable machine depending on the distance from the person.
Gemäß der Weiterbildung der Erfindung kann ebenfalls eine sichere Kollaboration zwischen bewegbarer Maschine bzw. Aktor und Person realisiert werden. Abhängig von der Position, Geschwindigkeit, Bewegungsrichtung und/oder dem Abstand der Person wird die bewegbare Maschine bzw. der Aktor abgebremst, gestoppt, umgelenkt und/oder wieder beschleunigt.According to the development of the invention, a safe collaboration between the movable machine or actuator and person can also be implemented. Depending on the position, speed, direction of movement and / or the distance of the person, the movable machine or the actuator is braked, stopped, deflected and / or accelerated again.
In Weiterbildung der Erfindung ist das Funkortungssystem ein Ultrabreitband-Funkortungssystem, wobei die verwendete Frequenz im Bereich von 3,1 GHz bis 10,6 GHz ist, wobei die Sendeenergie pro Funkstation maximal 0,5 mW beträgt.In a further development of the invention, the radio location system is an ultra-broadband radio location system, the frequency used being in the range from 3.1 GHz to 10.6 GHz, the transmission energy per radio station being a maximum of 0.5 mW.
Eine absolute Bandbreite beträgt bei einem Ultrabreitband-Funkortungssystem wenigstens 500 MHz oder eine relative Bandbreite beträgt mindestens 20 % der zentralen Frequenz.In the case of an ultra-wideband radio location system, an absolute bandwidth is at least 500 MHz or a relative bandwidth is at least 20% of the central frequency.
Die Reichweite eines derartigen Funkortungssystems beträgt beispielsweise 0 bis 50 m. Dabei wird die kurze zeitliche Dauer der Funkpulse für die Ortung benutzt.The range of such a radio location system is, for example, 0 to 50 m, the short duration of the radio pulses being used for the location.
Das Funkortungssystem sendet damit nur Funkwellen mit einer niedrigen Energie aus. Das System ist sehr flexibel einsetzbar und weist keine Interferenzen auf.The radio location system only sends out radio waves with a low energy. The system can be used very flexibly and shows no interference.
An der Person oder dem Objekt muss minimal nur ein einziger Funktransponder angeordnet sein, der von mindestens drei stationär angeordneten Funkstationen erfasst wird, wobei der Abstand der Funkstationen bekannt ist.At least only one single radio transponder needs to be arranged on the person or the object, which radio transponder is detected by at least three stationary radio stations, the distance between the radio stations being known.
Vorzugsweise sind eine Vielzahl, beispielsweise mehr als drei Funkstationen angeordnet, welche mindestens einen Teil des Bewegungsbereichs der Person oder des Objektes überwachen.A plurality, for example more than three, radio stations are preferably arranged which monitor at least part of the movement area of the person or the object.
Es können auch mindestens zwei oder mehr Funktransponder an der Person oder dem Objekt angeordnet sein. Dadurch kann die Position der Person oder des Objektes genauer identifiziert werden und auch die Ausrichtung der Person oder des Objektes im Stillstand erfasst werden, wenn die Anordnung der Funktransponder an der Person oder dem Objekt bekannt ist.At least two or more radio transponders can also be arranged on the person or the object. As a result, the position of the person or the object can be identified more precisely and the orientation of the person or the object can also be detected when the person or object is stationary if the arrangement of the radio transponders on the person or the object is known.
In Weiterbildung der Erfindung ist der ortsauflösende Sensor ein optoelektronischer Sensor, ein Ultraschallsensor oder ein Radarsensor.In a further development of the invention, the spatially resolving sensor is an optoelectronic sensor, an ultrasonic sensor or a radar sensor.
Bei einem Lichtlaufzeitsensor wird das von einem Lichtsender ausgesendete Licht welches von der Person oder dem Objekt remittiert wird von einem Lichtempfänger empfangen und die Lichtlaufzeit vom Aussenden bis zum Empfangen von der Person oder dem Objekt wird ausgewertet, wodurch die Entfernung zu der Person oder dem Objekt bestimmt werden kann.In the case of a light transit time sensor, the light emitted by a light transmitter that is remitted by the person or object is received by a light receiver and the light transit time from emission to reception from the person or object is evaluated, whereby the distance to the person or object is determined can be.
Jedoch kann der Sensor auch ein Ultraschallsensor, oder ein Radar-Sensor sein.However, the sensor can also be an ultrasonic sensor or a radar sensor.
Ein Ultraschallsensor sendet Ultraschall aus und wertet die reflektierten Schallwellen, also die Echosignale aus. Dabei werden Frequenzen ab 16 kHz verwendet. Dabei können Detektionsreichweiten von wenigen Zentimetern bis vielen Metern realisiert werden.An ultrasonic sensor sends out ultrasound and evaluates the reflected sound waves, i.e. the echo signals. Frequencies from 16 kHz are used. Detection ranges from a few centimeters to many meters can be achieved.
Ein Radarsensor ist ein Sensor, der ein sogenanntes Primärsignal als gebündelte elektromagnetische Welle aussendet, die von Personen oder Objekten reflektierten Echos als Sekundärsignal empfängt und nach verschiedenen Kriterien auswertet. Dabei handelt es sich um eine Ortung, nämlich der Bestimmung von Entfernung und Winkel.A radar sensor is a sensor that emits a so-called primary signal as a bundled electromagnetic wave that receives echoes reflected from people or objects as a secondary signal and evaluates them according to various criteria. This is a localization, namely the determination of distance and angle.
Aus den empfangenen, von der Person oder dem Objekt reflektierten Wellen können Positionsinformationen bzw. die Position gewonnen werden. Wie bereits erwähnt, kann der Winkel bzw. die Richtung zum Objekt und die Entfernung zur Person oder dem Objekt aus der Zeitverschiebung zwischen Senden und Empfangen des Signals ermittelt werden. Weiter kann auch die Relativbewegung zwischen Sender und Person bzw. Objekt festgestellt werden, beispielsweise durch eine einfache Mehrfachmessung in zeitlichen Abständen. Das Aneinanderreihen einzelner Messungen liefert die Wegstrecke und die Absolutgeschwindigkeit des Objektes. Bei entsprechender Auflösung des Radarsensors können Konturen der Person bzw. des Objektes erkannt werden.Position information or the position can be obtained from the waves received and reflected from the person or object. As already mentioned, the angle or the direction to the object and the distance to the person or the object can be determined from the time difference between sending and receiving the signal. The relative movement between the transmitter and the person or object can also be determined, for example by means of a simple multiple measurement at time intervals. The stringing together of individual measurements provides the distance and the absolute speed of the object. With a corresponding resolution of the radar sensor, contours of the person or the object can be recognized.
Eine Abstrahlung von dem Radarsensor erfolgt beispielsweise aufgrund des Antennenentwurfs weitgehend gebündelt in eine Richtung. Die Strahlungscharakteristik der Antenne hat dann eine sogenannte Keulenform.A radiation from the radar sensor is largely bundled in one direction, for example due to the antenna design. The radiation pattern of the antenna then has a so-called lobe shape.
Die Wellenlänge des Radars liegt im Bereich der Funkwellen im Kurz- bis Mikrowellenbereich. Ein Pulsradarsensor sendet Impulse mit einer typischen Dauer im unteren Mikrosekundenbereich und wartet dann auf Echos. Die Laufzeit des Impulses ist die Zeit zwischen dem Senden und dem Empfang des Echos. Sie wird zur Entfernungsbestimmung genutzt.The wavelength of the radar is in the range of radio waves in the short to microwave range. A pulse radar sensor sends pulses with a typical duration in the lower microsecond range and then waits for echoes. The duration of the pulse is the time between sending and receiving the echo. It is used to determine the distance.
Eine Richtung des Abtaststrahles eines Impulsradarsensors kann statt durch die Ausrichtung der Antenne bzw. der Antennen auch elektronisch durch phasengesteuerte Antennenarrays bewirkt werden. Damit können in schnellem Wechsel mehrere Objekte angepeilt und quasi simultan verfolgt werden.A direction of the scanning beam of a pulse radar sensor can also be effected electronically by phase-controlled antenna arrays instead of by the alignment of the antenna or antennas. This means that several objects can be targeted in quick succession and followed virtually simultaneously.
Der Radarsensor arbeitet mit einer Leistung von beispielsweise ca. 10 mW. Diese Leistung ist so gering, dass keine gesundheitlichen Auswirkungen bestehen. Die für diese Anwendung zugelassene Radarfrequenz liegt beispielsweise im Bereich von 76-77 GHz, entsprechend einer Wellenlänge von etwa 4 mm.The radar sensor works with a power of, for example, approx. 10 mW. This performance is so low that there are no health effects. The radar frequency permitted for this application is, for example, in the range of 76-77 GHz, corresponding to a wavelength of around 4 mm.
In Weiterbildung der Erfindung ist der ortsauflösende Sensor zur mindestens flächigen Überwachung eines Überwachungsbereiches ausgebildet.In a further development of the invention, the spatially resolving sensor is designed for at least two-dimensional monitoring of a monitoring area.
Der ortsauflösende Sensor zur mindestens flächigen Überwachung eines Überwachungsbereiches ist ein Sensor zur Entfernungsmessung. Der Entfernungssensor liefert Entfernungswerte im mindestens zweidimensionalen Raum. Dabei gibt der Sensor Messwerte mit Distanzangaben und Winkelangaben aus. Beispielsweise wird die Entfernung mittels Lichtlaufzeitverfahren oder Triangulationsverfahren ermittelt.The spatially resolving sensor for at least two-dimensional monitoring of a monitoring area is a sensor for distance measurement. The distance sensor supplies distance values in at least two-dimensional space. The sensor gives Measured values with distance information and angle information. For example, the distance is determined using the time-of-flight method or triangulation method.
In Weiterbildung der Erfindung ist der ortsauflösende Sensor zur mindestens räumlichen Überwachung eines Überwachungsbereiches ausgebildet.In a further development of the invention, the spatially resolving sensor is designed for at least spatial monitoring of a monitoring area.
In Weiterbildung der Erfindung ist der optoelektronische Sensor ein Laserscanner, ein Sicherheitslaserscanner, eine 3D-Kamera, eine Stereokamera oder eine Lichtlaufzeitkamera.In a further development of the invention, the optoelectronic sensor is a laser scanner, a safety laser scanner, a 3D camera, a stereo camera or a time-of-flight camera.
Zur Positionserfassung überwacht der ortsauflösende Sensor, der Laserscanner, der Sicherheitslaserscanner, die 3D-Kamera, die Stereokamera oder die Lichtlaufzeitkamera einen zweidimensionalen oder dreidimensionalen Überwachungsbereich bzw. eine Messdatenkontur. Dabei kann es sich auch synonym um ein Überwachungsfeld handeln.For position detection, the spatially resolving sensor, the laser scanner, the safety laser scanner, the 3D camera, the stereo camera or the time-of-flight camera monitors a two-dimensional or three-dimensional monitoring area or a measurement data contour. This can also be synonymous with a monitoring field.
In der Sicherheitstechnik eingesetzte Sicherheitssysteme müssen besonders zuverlässig und eigensicher arbeiten und deshalb hohe Sicherheitsanforderungen erfüllen, beispielsweise die Norm EN13849 für Maschinensicherheit und die Gerätenorm EN61496 für berührungslos wirkende Schutzeinrichtungen (BWS).Safety systems used in safety technology must work particularly reliably and intrinsically safely and therefore meet high safety requirements, for example the EN13849 standard for machine safety and the EN61496 device standard for electro-sensitive protective devices (ESPE).
Zur Erfüllung dieser Sicherheitsnormen sind eine Reihe von Maßnahmen zu treffen, wie beispielsweise sichere elektronische Auswertung durch redundante und/oder diversitäre Elektronik oder verschiedene Funktionsüberwachungen, speziell die Überwachung der Verschmutzung optischer Bauteile einschließlich einer Frontscheibe. Ein Sicherheitslaserscanner entsprechend derartigen Normen ist beispielsweise aus der
Der Begriff, funktional sicher' ist im Sinne der genannten oder vergleichbaren Normen zu verstehen, es sind also Maßnahmen ergriffen, um Fehler bis zu einem spezifizierten Sicherheitsniveau zu beherrschen. Das Sicherheitssystem kann daher eigensicher ausgebildet sein. Das Sicherheitssystem und/oder mindestens ein sicherer Sensor erzeugen zudem nicht sichere Daten, wie Rohdaten, Punktwolken oder dergleichen. Nicht sicher ist der Gegenbegriff zu sicher, für nicht sichere Geräte, Übertragungswege, Auswertungen und dergleichen und dabei sind demnach die genannten Anforderungen an eine Fehlersicherheit nicht erfüllt.The term "functionally safe" is to be understood in the sense of the named or comparable standards, so measures have been taken to control errors up to a specified safety level. The safety system can therefore be designed to be intrinsically safe. The safety system and / or at least one safe sensor also generate non-safe data, such as raw data, point clouds or the like. Not safe is the opposite term too safe, for non-safe devices, transmission paths, evaluations and the like and accordingly the mentioned requirements for fail-safe security are not met.
Eine 3D-Kamera überwacht beispielsweise ebenfalls einen Überwachungsbereich mittels einer Vielzahl von erfassten Distanzwerten. Eine 3D-Kamera hat den Vorteil, dass ein volumenartiger Schutzbereich überwacht werden kann.A 3D camera, for example, also monitors a monitoring area by means of a large number of recorded distance values. A 3D camera has the advantage that a volume-like protection area can be monitored.
Eine Stereokamera überwacht beispielsweise ebenfalls einen Überwachungsbereich mittels einer Vielzahl von erfassten Distanzwerten. Die Distanzwerte werden auf Basis der zwei Kameras der Stereokamera ermittelt, die in einem Basisabstand zueinander montiert sind. Eine Stereokamera hat ebenso den Vorteil, dass ein volumenartiger Schutzbereich überwacht werden kann.A stereo camera, for example, also monitors a monitoring area by means of a large number of recorded distance values. The distance values are determined on the basis of the two cameras of the stereo camera, which are mounted at a basic distance from one another. A stereo camera also has the advantage that a volume-like protection area can be monitored.
Mittels einer Lichtlaufzeitkamera werden Distanzwerte aufgrund der gemessenen Lichtlaufzeit ermittelt, welche von einem Bildsensor ermittelt werden. Eine Lichtlaufzeitkamera hat ebenso den Vorteil, dass ein volumenartiger bzw. räumlicher Schutzbereich überwacht werden kann.A time-of-flight camera is used to determine distance values based on the measured time of flight, which are determined by an image sensor. A time-of-flight camera also has the advantage that a volumetric or spatial protection area can be monitored.
Die Erfindung wird nachstehend auch hinsichtlich weiterer Vorteile und Merkmale unter Bezugnahme auf die beigefügte Zeichnung anhand von Ausführungsbeispielen erläutert. Die Figuren der Zeichnung zeigen in:
- Figur 1 und 2
- jeweils ein Sicherheitssystem in einer schematischen Darstellung;
Figur 3- ein Sicherheitssystem in einer Blockdarstellung.
- Figures 1 and 2
- each a security system in a schematic representation;
- Figure 3
- a security system in a block diagram.
In den nachfolgenden Figuren sind identische Teile mit identischen Bezugszeichen versehen.In the following figures, identical parts are provided with identical reference symbols.
Optional ist gemäß
Gemäß
Zusätzlich zu dieser redundanten und diversitären Sensorstruktur muss für die sicherheitstechnische Verwendbarkeit auch der Fehlerfall geprüft werden, dass die Positionsdaten des Funkortungssystems 4 fehlen oder die Positionsdaten des ortsauflösenden Sensors 7 nicht mit den Positionsdaten des Funkortungssystems 4 übereinstimmen.In addition to this redundant and diverse sensor structure, the error case that the position data of the
Daher ist gemäß
Entscheidend ist dabei, dass die primäre Sicherheitsfunktion solange überbrückt bleibt, wie die Validierung der Positionsdaten des Funkortungssystems 4 und die Positionsdaten des ortsauflösenden Sensors 7 erfolgreich ist.It is crucial that the primary safety function remains bridged as long as the validation of the position data of the
Die Validierung der beiden unabhängigen Positionsdaten bzw. Positionsinformationen wird von der Steuer- und Auswerteeinheit 3 durchgeführt. Die Steuer- und Auswerteeinheit 3 ist optional eine funktionssichere Steuer- und Auswerteeinheit 3. Die Steuer- und Auswerteeinheit 3 weist beispielsweise Mittel zur Fehleraufdeckung auf. Diese Mittel sind beispielsweise Mittel zur Testung, beispielsweise ein redundanter und/oder diversitärer Aufbau mit zwei Kanälen zur gegenseitigen Prüfung der ermittelten Ergebnisse und der Positionsdaten.The validation of the two independent position data or position information is carried out by the control and
Gemäß
Gemäß einer nicht dargestellten Ausführung sind der ortsauflösende Sensor und die Funkstationen mobil an einer bewegbaren Maschine angeordnet. Damit handelt es sich um eine mobile Anwendung, wobei die bewegbare Maschine beispielsweise ein Fahrzeug, insbesondere ein fahrerloses Fahrzeug oder dergleichen ist. Das Fahrzeug kann ebenfalls in direkter Interaktion mit einer Person oder einem Objekt stehen.According to an embodiment not shown, the spatially resolving sensor and the radio stations are arranged in a mobile manner on a movable machine. This is a mobile application, the movable machine being, for example, a vehicle, in particular a driverless vehicle or the like. The vehicle can also be in direct interaction with a person or an object.
Gemäß
Gemäß
Insbesondere wenn sich die Person 2 oder das Objekt 8 in einem gefahrbringenden Bereich der bewegbaren Maschine 11 befindet wird die bewegbare Maschine 11 in einer ungefährlichen Betriebsart betrieben.In particular, when the
Sicherheitskritische Fehlerfälle wie zum Beispiel der Verlust des Funksignals, z. B. weil kein Funktransponder 6 vorhanden ist, weil eine Energieversorgung des Funktransponders 6 ausgefallen ist oder weil beispielsweise der Funktransponder 6 abgeschirmt wird oder eine fehlerhafte Lokalisierung der Person 2 oder des Objektes 8 durch den ortsauflösenden Sensors 7 oder die fehlerhafte Verarbeitung von Positionsdaten durch die Steuer- und Auswerteeinheit 3, führen zu einem sicherheitsgerichteten Abschalten durch die primäre Sicherheitsfunktion, nämlich durch die Steuer- und Auswerteeinheit 3 falls keine gültigen Positionsdaten von dem ortsauflösenden Sensor 7 vorliegen.Safety-critical errors such as the loss of the radio signal, e.g. B. because there is no
Gemäß
An der Person 2 oder dem Objekt 8 muss minimal nur ein einziger Funktransponder 6 angeordnet sein, der von mindestens drei stationär angeordneten Funkstationen 5 erfasst wird, wobei der Abstand der Funkstationen 5 bekannt ist.Only a
Vorzugsweise sind eine Vielzahl, beispielsweise mehr als drei Funkstationen 5 angeordnet, welche mindestens einen Teil des Bewegungsbereichs der Person 2 oder des Objektes 8 überwachen.A plurality, for example more than three,
Es können auch mindestens zwei oder mehr Funktransponder 6 an der Person 2 oder dem Objekt 8 angeordnet sein. Dadurch kann die Position der Person 2 oder des Objektes 8 genauer identifiziert werden und auch die Ausrichtung der Person 2 oder des Objektes 8 im Stillstand erfasst werden, wenn die Anordnung der Funktransponder 6 an der Person 2 oder dem Objekt 8 bekannt ist.At least two or
Gemäß
Bei einem Lichtlaufzeitsensor als optoelektronischer Sensor wird das von einem Lichtsender ausgesendete Licht welches von der Person 2 oder dem Objekt 8 remittiert wird von einem Lichtempfänger empfangen und die Lichtlaufzeit vom Aussenden bis zum Empfangen von der Person 2 oder dem Objekt 8 wird ausgewertet, wodurch die Entfernung zu der Person 2 oder dem Objekt 8 bestimmt werden kann.In the case of a light transit time sensor as an optoelectronic sensor, the light emitted by a light transmitter which is remitted by
Jedoch kann der ortsauflösende Sensor 7 auch ein Ultraschallsensor, oder ein Radar-Sensor sein.However, the spatially resolving
Gemäß
Der ortsauflösende Sensor 7 zur mindestens flächigen Überwachung eines Überwachungsbereiches ist ein Sensor zur Entfernungsmessung. Der Entfernungssensor liefert Entfernungswerte im mindestens zweidimensionalen Raum. Dabei gibt der ortsauflösende Sensor 7 Messwerte mit Distanzangaben und Winkelangaben aus. Beispielsweise wird die Entfernung mittels Lichtlaufzeitverfahren oder Triangulationsverfahren ermittelt.The spatially resolving
Gemäß einer nicht dargestellten Ausführungsform ist der ortsauflösende Sensor zur mindestens räumlichen Überwachung eines Überwachungsbereiches ausgebildet.According to an embodiment not shown, the spatially resolving sensor is designed for at least spatial monitoring of a monitoring area.
Gemäß
Gemäß einer nicht dargestellten Ausführungsform ist der ortsauflösende Sensor eine 3D-Kamera, eine Stereokamera oder eine Lichtlaufzeitkamera.According to an embodiment not shown, the spatially resolving sensor is a 3D camera, a stereo camera or a time-of-flight camera.
- 11
- Sicherheitssystemsecurity system
- 22
- Personperson
- 33
- Steuer- und AuswerteeinheitControl and evaluation unit
- 44th
- FunkortungssystemRadio location system
- 55
- FunkstationenRadio stations
- 66th
- FunktransponderRadio transponder
- 77th
- ortsauflösender Sensorspatially resolving sensor
- 88th
- Objektobject
- 1010
- LaserscannerLaser scanner
- 1111
- bewegbare Maschinemovable machine
- 1212th
- MaschinensteuerungMachine control
- 1313th
- SchutzfeldProtective field
- 1414th
- MesskonturMeasuring contour
- 1515th
- MutingsignalMuting signal
- 1616
- sicherheitsgerichtete Abschaltungsafety-related shutdown
- 1717th
- sichere oder geprüfte Positionsdatensecure or verified position data
Claims (11)
wobei das Funkortungssystem (4) angeordnete Funkstationen (5) aufweist,
wobei an der Person (2) oder dem Objekt (8) mindestens ein Funktransponder (6) angeordnet ist,
wobei mittels dem Funkortungssystem (4) Positionsdaten der Person (2) oder des Objektes (8) ermittelbar sind,
wobei die Positionsdaten von den Funkstationen (5) des Funkortungssystems (4) an die Steuer- und Auswerteeinheit (3) übermittelbar sind,
und mittels dem ortsauflösenden Sensor (7) Positionsdaten der Person (2) oder des Objekts (8) ermittelbar sind,
dadurch gekennzeichnet, dass die Steuer- und Auswerteeinheit (3) ausgebildet ist, die Positionsdaten des Funkortungssystems (4) und die Positionsdaten des Sensors (7) zu vergleichen und bei einer Übereinstimmung geprüfte Positionsdaten zu bilden.Security system (1) for localizing at least one person (2) or at least one object (8) in a monitoring area, with at least one movable machine (11), with a control and evaluation unit (3), with at least one radio location system (4), with at least one spatially resolving sensor (7) for determining the position of the person (2) or the object (8),
wherein the radio location system (4) has arranged radio stations (5),
wherein at least one radio transponder (6) is arranged on the person (2) or the object (8),
whereby position data of the person (2) or the object (8) can be determined by means of the radio location system (4),
wherein the position data can be transmitted from the radio stations (5) of the radio location system (4) to the control and evaluation unit (3),
and position data of the person (2) or the object (8) can be determined by means of the spatially resolving sensor (7),
characterized in that the control and evaluation unit (3) is designed to compare the position data of the radio location system (4) and the position data of the sensor (7) and to form checked position data if they match.
wobei das Funkortungssystem (4) angeordnete Funkstationen (5) aufweist,
wobei an der Person (2) oder dem Objekt (8) mindestens ein Funktransponder (6) angeordnet ist,
wobei mittels dem Funkortungssystem (4) Positionsdaten der Person (2) oder des Objektes (8) ermittelt werden,
wobei die Positionsdaten von den Funkstationen (5) des Funkortungssystems (4) an die Steuer- und Auswerteeinheit (3) übermittelt werden,
und mittels dem ortsauflösenden Sensor (7) Positionsdaten der Person (2) oder des Objekts (8) ermittelt werden,
dadurch gekennzeichnet, dass die Steuer- und Auswerteeinheit (3) die Positionsdaten des Funkortungssystems (4) und die Positionsdaten des Sensors (7) vergleicht und bei einer Übereinstimmung geprüfte Positionsdaten zu bilden.Method for localizing a person (2) or an object (8) in a monitoring area with a security system (1), with at least one movable machine (11), with a control and evaluation unit (3), with at least one radio location system (4) , with at least one spatially resolving sensor (7) for determining the position of the person (2) or the object (8),
wherein the radio location system (4) has arranged radio stations (5),
wherein at least one radio transponder (6) is arranged on the person (2) or the object (8),
whereby position data of the person (2) or the object (8) are determined by means of the radio location system (4),
the position data from the radio stations (5) of the radio location system (4) being transmitted to the control and evaluation unit (3),
and position data of the person (2) or the object (8) are determined by means of the spatially resolving sensor (7),
characterized in that the control and evaluation unit (3) compares the position data of the radio location system (4) and the position data of the sensor (7) and, if they match, to form checked position data.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20154108.3A EP3859382B1 (en) | 2020-01-28 | 2020-01-28 | Security system and method for locating a person or object in a surveillance area with a security system |
US17/159,883 US20210232102A1 (en) | 2020-01-28 | 2021-01-27 | Safety system and method for localizing a person or object in a monitored zone using a safety system |
CN202110118713.8A CN113253198A (en) | 2020-01-28 | 2021-01-28 | Security system and method for locating persons or objects in a monitored area using a security system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20154108.3A EP3859382B1 (en) | 2020-01-28 | 2020-01-28 | Security system and method for locating a person or object in a surveillance area with a security system |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3859382A1 true EP3859382A1 (en) | 2021-08-04 |
EP3859382B1 EP3859382B1 (en) | 2022-08-03 |
Family
ID=69374240
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20154108.3A Active EP3859382B1 (en) | 2020-01-28 | 2020-01-28 | Security system and method for locating a person or object in a surveillance area with a security system |
Country Status (3)
Country | Link |
---|---|
US (1) | US20210232102A1 (en) |
EP (1) | EP3859382B1 (en) |
CN (1) | CN113253198A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11804119B2 (en) | 2020-12-16 | 2023-10-31 | Sick Ag | Safety system and method using a safety system |
EP4328614A1 (en) * | 2022-07-26 | 2024-02-28 | Pilz GmbH & Co. KG | Radio location system with test device |
EP4365477A1 (en) * | 2022-11-02 | 2024-05-08 | Leuze electronic GmbH + Co. KG | Monitoring device |
EP4451085A1 (en) | 2023-04-17 | 2024-10-23 | Sick Ag | Loading and unloading a cargo area with a loading vehicle |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4312049A1 (en) | 2022-07-29 | 2024-01-31 | OMRON Corporation | Localizing an rfid tag in a monitored zone |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4340756A1 (en) | 1992-12-08 | 1994-06-09 | Sick Optik Elektronik Erwin | Laser range finder, e.g. for driverless transport system - measures distance using pulse travel time and light deflection angle to determine position of object in measuring region |
EP1635107A1 (en) * | 2004-09-08 | 2006-03-15 | Sick Ag | Method and apparatus for the control of a machine safety function |
DE102012102236A1 (en) | 2012-03-16 | 2013-09-19 | Pilz Gmbh & Co. Kg | Method and device for securing a hazardous working area of an automated machine |
DE102016007519A1 (en) * | 2016-06-20 | 2017-12-21 | Kuka Roboter Gmbh | Monitoring a system with at least one robot |
DE102017123295A1 (en) | 2017-10-06 | 2019-04-11 | Pilz Gmbh & Co. Kg | Security system to ensure the cooperative operation of people, robots and machines |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006311111A (en) * | 2005-04-27 | 2006-11-09 | Daikin Ind Ltd | Position detection system and position detection method |
DE102006048163B4 (en) * | 2006-07-31 | 2013-06-06 | Pilz Gmbh & Co. Kg | Camera-based monitoring of moving machines and / or moving machine elements for collision prevention |
US7768450B2 (en) * | 2007-04-04 | 2010-08-03 | Trimble Navigation Ltd. | Position determination system using radio and laser in combination |
US20090122340A1 (en) * | 2007-11-13 | 2009-05-14 | Sharp Kabushiki Kaisha | Information processing apparatus, method for controlling print job, and recording medium having information processing program recorded thereon |
FR2950723B1 (en) * | 2009-09-28 | 2012-08-17 | Univ Sud Toulon Var | SYSTEM AND METHOD FOR DETECTING THE PRESENCE OF A SENSITIVE AREA SUBJECT |
FI122157B (en) * | 2010-05-10 | 2011-09-15 | Sandvik Mining & Constr Oy | Method and equipment for mining vehicle safety equipment |
CN103092211B (en) * | 2013-01-05 | 2015-05-13 | 中国航天空气动力技术研究院 | Unmanned aerial vehicle emergent land method based on guidance of radio and laser |
CN104714209B (en) * | 2015-03-27 | 2017-04-26 | 中国矿业大学 | Dynamic positioning method and device based on UWB and laser ranging combination |
DE102016217532A1 (en) * | 2016-09-14 | 2018-03-15 | Continental Teves Ag & Co. Ohg | Mobile radio unit to improve traffic safety |
CN107765220B (en) * | 2017-09-20 | 2020-10-23 | 武汉木神机器人有限责任公司 | Pedestrian following system and method based on UWB and laser radar hybrid positioning |
DE102018117274A1 (en) * | 2018-07-17 | 2020-01-23 | Sick Ag | Secure camera and method for the safe recording and evaluation of image data |
CN109490825B (en) * | 2018-11-20 | 2021-02-09 | 武汉万集信息技术有限公司 | Positioning navigation method, device, equipment, system and storage medium |
EP3884201A1 (en) * | 2018-11-20 | 2021-09-29 | Transocean Sedco Forex Ventures Limited | Proximity-based personnel safety system and method |
US11416000B2 (en) * | 2018-12-07 | 2022-08-16 | Zebra Technologies Corporation | Method and apparatus for navigational ray tracing |
CN110531398A (en) * | 2019-09-02 | 2019-12-03 | 中国安全生产科学研究院 | Outdoor robot positioning system and method based on GPS and ultrasonic wave |
-
2020
- 2020-01-28 EP EP20154108.3A patent/EP3859382B1/en active Active
-
2021
- 2021-01-27 US US17/159,883 patent/US20210232102A1/en not_active Abandoned
- 2021-01-28 CN CN202110118713.8A patent/CN113253198A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4340756A1 (en) | 1992-12-08 | 1994-06-09 | Sick Optik Elektronik Erwin | Laser range finder, e.g. for driverless transport system - measures distance using pulse travel time and light deflection angle to determine position of object in measuring region |
EP1635107A1 (en) * | 2004-09-08 | 2006-03-15 | Sick Ag | Method and apparatus for the control of a machine safety function |
DE102012102236A1 (en) | 2012-03-16 | 2013-09-19 | Pilz Gmbh & Co. Kg | Method and device for securing a hazardous working area of an automated machine |
DE102016007519A1 (en) * | 2016-06-20 | 2017-12-21 | Kuka Roboter Gmbh | Monitoring a system with at least one robot |
DE102017123295A1 (en) | 2017-10-06 | 2019-04-11 | Pilz Gmbh & Co. Kg | Security system to ensure the cooperative operation of people, robots and machines |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11804119B2 (en) | 2020-12-16 | 2023-10-31 | Sick Ag | Safety system and method using a safety system |
EP4328614A1 (en) * | 2022-07-26 | 2024-02-28 | Pilz GmbH & Co. KG | Radio location system with test device |
EP4365477A1 (en) * | 2022-11-02 | 2024-05-08 | Leuze electronic GmbH + Co. KG | Monitoring device |
EP4451085A1 (en) | 2023-04-17 | 2024-10-23 | Sick Ag | Loading and unloading a cargo area with a loading vehicle |
Also Published As
Publication number | Publication date |
---|---|
CN113253198A (en) | 2021-08-13 |
EP3859382B1 (en) | 2022-08-03 |
US20210232102A1 (en) | 2021-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3859382B1 (en) | Security system and method for locating a person or object in a surveillance area with a security system | |
DE102020101482B3 (en) | Security system and procedures | |
EP3828584B1 (en) | Safety system | |
DE10312972B3 (en) | Optical sensor for detecting objects within surveillance zone with selection of different protected fields within latter by activation signals received via bidirectional data communications interface | |
EP3220164B1 (en) | Method for operating a distance measuring monitoring sensor and monitoring sensor | |
DE102018125736B4 (en) | Method for protecting people in the vicinity of a moving machine | |
DE202019106569U1 (en) | security system | |
EP4086661A1 (en) | Optoelectronic sensor and method for monitoring a windshield | |
EP3910231B1 (en) | Safety system | |
DE202020100454U1 (en) | Security system for the localization of a person or an object in a surveillance area | |
DE102021120131A1 (en) | Security system and method using a security system | |
DE102021120130A1 (en) | Security system and method using a security system | |
EP3527332A1 (en) | Secure sensor device and method for securing a mobile machine | |
EP3578867A1 (en) | Sensor system with optoelectronic distance sensors | |
DE102022120424A1 (en) | Security system and method with a security system | |
EP4524450A1 (en) | Security system | |
DE102017119283A1 (en) | sensor system | |
DE102022130166B4 (en) | Security system and method with a security system | |
EP3367129B1 (en) | Optoelectronic sensor and method for detecting objects | |
DE202023104951U1 (en) | security system | |
DE202022106398U1 (en) | Security system with a security system | |
DE102023122397A1 (en) | Safety system for a vehicle and method with a safety system for a vehicle | |
DE202023104763U1 (en) | security system for a vehicle | |
DE102022133248A1 (en) | System with one sensor and method with one sensor for monitoring several protection areas | |
DE202022106978U1 (en) | System with one sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20211221 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F16P 3/12 20060101ALI20220303BHEP Ipc: G01S 13/00 20060101AFI20220303BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20220506 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1509182 Country of ref document: AT Kind code of ref document: T Effective date: 20220815 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502020001437 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20220803 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220803 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220803 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221205 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221103 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220803 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220803 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220803 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220803 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220803 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220803 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221203 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220803 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221104 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220803 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220803 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220803 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220803 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502020001437 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220803 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220803 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220803 |
|
26N | No opposition filed |
Effective date: 20230504 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220803 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230128 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20230131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230128 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240119 Year of fee payment: 5 Ref country code: GB Payment date: 20240124 Year of fee payment: 5 Ref country code: CH Payment date: 20240202 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220803 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240124 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220803 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220803 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220803 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220803 |