EP3728253B1 - 6-azaindole compounds - Google Patents
6-azaindole compounds Download PDFInfo
- Publication number
- EP3728253B1 EP3728253B1 EP18830673.2A EP18830673A EP3728253B1 EP 3728253 B1 EP3728253 B1 EP 3728253B1 EP 18830673 A EP18830673 A EP 18830673A EP 3728253 B1 EP3728253 B1 EP 3728253B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pyridin
- isopropyl
- pyrrolo
- triazolo
- fluoro
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D471/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
- C07D471/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
- C07D471/04—Ortho-condensed systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/4353—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
- A61K31/437—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a five-membered ring having nitrogen as a ring hetero atom, e.g. indolizine, beta-carboline
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/02—Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D491/00—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
- C07D491/02—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
- C07D491/10—Spiro-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D519/00—Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
Definitions
- the present invention generally relates to 6-azaindole compounds useful as inhibitors of signaling through Toll-like receptor 7, 8, or 9 (TLR7, TLR8, TLR9) or combinations thereof.
- TLR7, TLR8, TLR9 Toll-like receptor 7, 8, or 9
- the invention further pertains to pharmaceutical compositions containing at least one compound according to the invention that are useful for the treatment of conditions related to TLR modulation, such as inflammatory and autoimmune diseases, and for inhibiting the activity of TLRs in a mammal.
- Toll/IL-1 receptor family members are important regulators of inflammation and host resistance.
- the Toll-like receptor family recognizes molecular patterns derived from infectious organisms including bacteria, fungi, parasites, and viruses (reviewed in Kawai, T. et al., Nature Immunol., 11:373-384 (2010 )).
- Ligand binding to the receptor induces dimerization and recruitment of adaptor molecules to a conserved cytoplasmic motif in the receptor termed the Toll/IL-1 receptor (TIR) domain with the exception of TLR3, all TLRs recruit the adaptor molecule MyD88.
- TIR Toll/IL-1 receptor
- the IL-1 receptor family also contains a cytoplasmic TIR motif and recruits MyD88 upon ligand binding (reviewed in Sims, J.E. et al., Nature Rev. Immunol., 10:89-102 (2010 )).
- TLRs Toll-like receptors
- PAMPs pathogen associated molecular patterns
- DAMPs danger associated molecular patterns
- TLR7/8/9 are among the set that are endosomally located and respond to single-stranded RNA (TLR7 and TLR8) or unmethylated single-stranded DNA containing cytosine-phosphate-guanine (CpG) motifs (TLR9).
- TLR7/8/9 can initiate a variety of inflammatory responses (cytokine production, B cell activation and IgG production, Type I interferon response).
- cytokine production cytokine production
- B cell activation cytokine production
- IgG production Type I interferon response
- the present invention relates to a new class of 6-azaindole compounds found to be effective inhibitors of signaling through TLR7/8/9. These compounds are provided to be useful as pharmaceuticals with desirable stability, bioavailability, therapeutic index, and toxicity values that are important to their drugability.
- the present invention provides compounds of Formula (I) that are useful as inhibitors of signaling through Toll-like receptor 7, 8, or 9 and are useful for the treatment of proliferative diseases, allergic diseases, autoimmune diseases and inflammatory diseases, or stereoisomers, N-oxides, tautomers, pharmaceutically acceptable salts, or solvates thereof.
- the present invention also provides pharmaceutical compositions comprising a pharmaceutically acceptable carrier and at least one of the compounds of the present invention or stereoisomers, tautomers, pharmaceutically acceptable salts, or solvates thereof.
- the present invention also provides at least one of the compounds of the present invention or stereoisomers, tautomers, pharmaceutically acceptable salts, or solvates thereof for use in the inhibition of Toll-like receptor 7, 8, or 9 in a host in need of such treatment.
- the present invention also provides at least one of the compounds of the present invention or stereoisomers, tautomers, pharmaceutically acceptable salts, or solvates thereof for use in treating proliferative, metabolic, allergic, autoimmune and inflammatory diseases, in a host in need of such treatment.
- the present invention also provides at least one of the compounds of Formula (I) or salts, and solvates thereof for use in treating a disease or disorder associated with Toll-like receptor 7, 8, or 9 activity, in a mammal in need thereof.
- the present invention also provides processes and intermediates for making the compounds of Formula (I) including salts, and solvates thereof.
- the present invention also provides at least one of the compounds of Formula (I) or salts, and solvates thereof, for use in therapy.
- compositions comprising the compounds of Formula (I) may be used in treating, preventing, or curing various Toll-like receptor 7, 8, or 9 related conditions.
- Pharmaceutical compositions comprising these compounds are useful for treating, preventing, or slowing the progression of diseases or disorders in a variety of therapeutic areas, such as allergic disease, autoimmune diseases, inflammatory diseases, and proliferative diseases.
- the first aspect of the present invention provides at least one compound of Formula (I): N-oxide, stereoisomers, tautomers, solvates or a pharmaceutically-acceptable salt thereof, wherein: G is: A is:
- One embodiment provides a compound of Formula (I), N-oxide, stereoisomers, tautomers, solvates or a pharmaceutically-acceptable salt thereof wherein G is: and A, R 1 , R 5 , and n are defined in the first aspect.
- One embodiment provides a compound of Formula (I), N-oxide, stereoisomers, tautomers, solvates or a pharmaceutically-acceptable alt thereof, wherein R 1 is -CH(CH 3 ) 2 .
- One embodiment provides a compound of Formula (I), N-oxide, stereoisomers, tautomers, solvates or a pharmaceutically-acceptable salt thereof wherein A is:
- One embodiment provides a compound of Formula (I), N-oxide, stereoisomers, tautomers, solvates or a pharmaceutically-acceptable salt thereof wherein said compound is selected from Examples 1 to 472.
- One embodiment provides a compound of Formula (I), N-oxide, stereoisomers, tautomers, solvates or a pharmaceutically-acceptable salt thereof wherein said compound is selected from Examples 1 to 351.
- One embodiment provides a compound of Formula (I), N-oxide, stereoisomers, tautomers, solvates or a pharmaceutically-acceptable salt thereof wherein said compound is selected from Examples 352 to 472.
- the present invention may be embodied in other specific forms.
- the invention encompasses all combinations of the aspects and/or embodiments of the invention noted herein. It is understood that any and all embodiments of the present invention may be taken in conjunction with any other embodiment or embodiments to describe additional embodiments. It is also to be understood that each individual element of the embodiments is meant to be combined with any and all other elements from any embodiment to describe an additional embodiment.
- references made in the singular may also include the plural.
- references made in the singular may also include the plural.
- “a” and “an” may refer to either one, or one or more.
- a compound of Formula (I) includes a compound of Formula (I) and two or more compounds of Formula (I).
- any heteroatom with unsatisfied valences is assumed to have hydrogen atoms sufficient to satisfy the valences.
- halo and halogen, as used herein, refer to F, Cl, Br, and I.
- cyano refers to the group -CN.
- amino refers to the group -NH 2 .
- alkyl refers to both branched and straight-chain saturated aliphatic hydrocarbon groups containing, for example, from 1 to 12 carbon atoms, from 1 to 6 carbon atoms, and from 1 to 4 carbon atoms.
- alkyl groups include, but are not limited to, methyl (Me), ethyl (Et), propyl (e.g ., n-propyl and i-propyl), butyl ( e.g ., n-butyl, i-butyl, sec-butyl, and t-butyl), and pentyl ( e.g., n-pentyl, isopentyl, neopentyl), n-hexyl, 2-methylpentyl, 2-ethylbutyl, 3-methylpentyl, and 4-methylpentyl.
- Me methyl
- Et ethyl
- propyl e.g ., n-propyl and i-propyl
- butyl e.g ., n-butyl, i-butyl, sec-butyl, and t-butyl
- pentyl e.g.,
- C 1-6 alkyl denotes straight and branched chain alkyl groups with one to six carbon atoms.
- fluoroalkyl as used herein is intended to include both branched and straight-chain saturated aliphatic hydrocarbon groups substituted with one or more fluorine atoms.
- C 1-4 fluoroalkyl is intended to include C 1 C 2 , C 3 , and C 4 alkyl groups substituted with one or more fluorine atoms.
- Representative examples of fluoroalkyl groups include, but are not limited to, -CF 3 and -CH 2 CF 3 .
- cyanoalkyl includes both branched and straight-chain saturated alkyl groups substituted with one or more cyano groups.
- cyanoalkyl includes -CH 2 CN, -CH 2 CH 2 CN, and C 1-4 cyanoalkyl.
- aminoalkyl includes both branched and straight-chain saturated alkyl groups substituted with one or more amine groups.
- aminoalkyl includes -CH 2 NH 2 , -CH 2 CH 2 NH 2 , and C 1-4 aminoalkyl.
- hydroxyalkyl includes both branched and straight-chain saturated alkyl groups substituted with one or more hydroxyl groups.
- hydroxyalkyl includes -CH 2 OH, -CH 2 CH 2 OH, and C 1-4 hydroxyalkyl.
- hydroxy-fluoroalkyl includes both branched and straight-chain saturated alkyl groups substituted with one or more hydroxyl groups and one or more fluorine atoms.
- hydroxy-fluoroalkyl includes -CHFCH 2 OH, -CH 2 CHFC(CH 3 ) 2 OH, and C 1-4 hydroxy-fluoroalkyl.
- cycloalkyl refers to a group derived from a nonaromatic monocyclic or polycyclic hydrocarbon molecule by removal of one hydrogen atom from a saturated ring carbon atom.
- Representative examples of cycloalkyl groups include, but are not limited to, cyclopropyl, cyclopentyl, and cyclohexyl.
- the subscript defines with more specificity the number of carbon atoms that a particular cycloalkyl group may contain.
- C 3 -C 6 cycloalkyl denotes cycloalkyl groups with three to six carbon atoms.
- alkoxy refers to an alkyl group attached to the parent molecular moiety through an oxygen atom, for example, methoxy group (-OCH 3 ).
- -OCH 3 methoxy group
- C 1-3 alkoxy denotes alkoxy groups with one to three carbon atoms.
- alkoxyalkyl refers to an alkoxy group attached through its oxygen atom to an alkyl group, which is attached to the parent molecular moiety, for example, methoxymethyl group (-CH 2 OCH 3 ).
- C 2-4 alkoxyalkyl denotes alkoxyalkyl groups with two to four carbon atoms, such as -CH 2 OCH 3 , -CH 2 CH 2 OCH 3 , -CH 2 OCH 2 CH 3 , and -CH 2 CH 2 OCH 2 CH 3 .
- phrases "pharmaceutically acceptable” is employed herein to refer to those compounds, materials, compositions, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.
- the compounds of Formula (I) can be provided as amorphous solids or crystalline solids. Lyophilization can be employed to provide the compounds of Formula (I) as amorphous solids.
- solvates e.g., hydrates of the compounds of Formula (I) are also within the scope of the present invention.
- solvate means a physical association of a compound of Formula (I) with one or more solvent molecules, whether organic or inorganic. This physical association includes hydrogen bonding. In certain instances the solvate will be capable of isolation, for example when one or more solvent molecules are incorporated in the crystal lattice of the crystalline solid.
- Solvate encompasses both solution-phase and isolable solvates. Exemplary solvates include hydrates, ethanolates, methanolates, isopropanolates, acetonitrile solvates, and ethyl acetate solvates. Methods of solvation are known in the art.
- compounds of Formula (I) subsequent to their preparation, can be isolated and purified to obtain a composition containing an amount by weight equal to or greater than 99% of a compound of Formula (I) ("substantially pure"), which is then used or formulated as described herein.
- substantially pure compounds of Formula (I) are also contemplated herein as part of the present invention.
- Solid compound and “stable structure” are meant to indicate a compound that is sufficiently robust to survive isolation to a useful degree of purity from a reaction mixture, and formulation into an efficacious therapeutic agent.
- the present invention is intended to embody stable compounds.
- “Therapeutically effective amount” is intended to include an amount of a compound of the present invention alone or an amount of the combination of compounds claimed or an amount of a compound of the present invention in combination with other active ingredients effective to act as an inhibitor to TLR7/8/9, or effective to treat or prevent autoimmune and/or inflammatory disease states, such as SLE, IBD, multiple sclerosis (MS), and Sjögren's syndrome, and rheumatoid arthritis.
- autoimmune and/or inflammatory disease states such as SLE, IBD, multiple sclerosis (MS), and Sjögren's syndrome, and rheumatoid arthritis.
- treating cover the treatment of a disease-state in a mammal, particularly in a human, and include: (a) preventing the disease-state from occurring in a mammal, in particular, when such mammal is predisposed to the disease-state but has not yet been diagnosed as having it; (b) inhibiting the disease-state, i.e., arresting its development; and/or (c) relieving the disease-state, i.e., causing regression of the disease state.
- the compounds of the present invention are intended to include all isotopes of atoms occurring in the present compounds.
- Isotopes include those atoms having the same atomic number but different mass numbers.
- isotopes of hydrogen include deuterium (D) and tritium (T).
- Isotopes of carbon include 13 C and 14 C.
- Isotopically-labeled compounds of the invention can generally be prepared by conventional techniques known to those skilled in the art or by processes analogous to those described herein, using an appropriate isotopically-labeled reagent in place of the non-labeled reagent otherwise employed.
- methyl (-CH 3 ) also includes deuterated methyl groups such as -CD 3 .
- the human immune system has evolved to defend the body from microorganisms, viruses, and parasites that can cause infection, disease or death. Complex regulatory mechanisms ensure that the various cellular components of the immune system target the foreign substances or organisms, while not causing permanent or significant damage to the individual. While the initiating events are not well understood at this time, in autoimmune disease states the immune system directs its inflammatory response to target organs in the afflicted individual.
- autoimmune diseases are typically characterized by the predominate or initial target organ or tissues affected; such as the joint in the case of rheumatoid arthritis, the thyroid gland in the case of Hashimoto's thyroiditis, the central nervous system in the case of multiple sclerosis, the pancreas in the case of type I diabetes, and the bowel in the case of inflammatory bowel disease.
- the compounds of the invention inhibit signaling through Toll-like receptor 7, or 8, or 9 (TLR7, TLR8, TLR9) or combinations thereof. Accordingly, compounds of Formula (I) have utility in treating conditions associated with the inhibition of signaling through one or more of TLR7, TLR8, or TLR9. Such conditions include TLR7, TLR8, or TLR9 receptor associated diseases in which cytokine levels are modulated as a consequence of intracellular signaling.
- the terms "treating” or “treatment” encompass the treatment of a disease state in a mammal, particularly in a human, and include: (a) preventing or delaying the occurrence of the disease state in a mammal, in particular, when such mammal is predisposed to the disease state but has not yet been diagnosed as having it; (b) inhibiting the disease state, i.e., arresting its development; and/or (c) achieving a full or partial reduction of the symptoms or disease state, and/or alleviating, ameliorating, lessening, or curing the disease or disorder and/or its symptoms.
- TLR7, TLR8, or TLR9 are useful in treating TLR7, TLR8, or TLR9 family receptor associated diseases, but not limited to, inflammatory diseases such as Crohn's disease, ulcerative colitis, asthma, graft versus host disease, allograft rejection, chronic obstructive pulmonary disease; autoimmune diseases such as Graves' disease, rheumatoid arthritis, systemic lupus erythematosus, lupus nephritis, cutaneous lupus, psoriasis; auto-inflammatory diseases including Cryopyrin-Associated Periodic Syndromes (CAPS), TNF Receptor Associated Periodic Syndrome (TRAPS), Familial Mediterranean Fever (FMF), adult onset stills, systemic onset juvenile idiopathic arthritis, gout, gouty arthritis; metabolic diseases including type 2 diabetes, atherosclerosis, myocardial infarction; destructive bone disorders such as bone
- the specific conditions or diseases that may be treated with the inventive compounds include, without limitation, pancreatitis (acute or chronic), asthma, allergies, adult respiratory distress syndrome, chronic obstructive pulmonary disease, glomerulonephritis, rheumatoid arthritis, systemic lupus erythematosus, scleroderma, chronic thyroiditis, Graves' disease, autoimmune gastritis, diabetes, autoimmune hemolytic anemia, autoimmune neutropenia, thrombocytopenia, atopic dermatitis, chronic active hepatitis, myasthenia gravis, multiple sclerosis, inflammatory bowel disease, ulcerative colitis, Crohn's disease, psoriasis, graft vs.
- the condition is selected from lupus including lupus nephritis and systemic lupus erythematosus (SLE), Crohn's disease, ulcerative colitis, allograft rejection, rheumatoid arthritis, psoriasis, ankylosing spondylitis, psoriatic arthritis, and pemphigus vulgaris.
- the condition is selected from ischemia reperfusion injury, including cerebral ischemia reperfusions injury arising from stroke and cardiac ischemia reperfusion injury arising from myocardial infarction.
- Another embodiment is one in which the condition is multiple myeloma.
- the compounds of Formula (I) are useful in treating cancer, including Waldenstrom's Macroglobulinemia (WM), diffuse large B cell lymphoma (DLBCL), chronic lymphocytic leukemia (CLL), cutaneous diffuse large B cell lymphoma, and primary CNS lymphoma.
- WM Waldenstrom's Macroglobulinemia
- DLBCL diffuse large B cell lymphoma
- CLL chronic lymphocytic leukemia
- cutaneous diffuse large B cell lymphoma including cutaneous diffuse large B cell lymphoma, and primary CNS lymphoma.
- TLR7, TLR8, or TLR9 inhibitors of the present invention inhibit the expression of inducible pro-inflammatory proteins such as prostaglandin endoperoxide synthase-2 (PGHS-2), also referred to as cyclooxygenase-2 (COX-2), IL-1, IL-6, IL-18, chemokines.
- PGHS-2 prostaglandin endoperoxide synthase-2
- COX-2 cyclooxygenase-2
- IL-1 IL-6
- IL-18 chemokines.
- additional TLR7/8/9 associated conditions include edema, analgesia, fever and pain, such as neuromuscular pain, headache, pain caused by cancer, dental pain and arthritis pain.
- inventive compounds also may be used to treat veterinary viral infections, such as lentivirus infections, including, but not limited to equine infectious anemia virus; or retrovirus infections, including feline immunodeficiency virus, bovine immunodeficiency virus, and canine immunodeficiency virus.
- lentivirus infections including, but not limited to equine infectious anemia virus
- retrovirus infections including feline immunodeficiency virus, bovine immunodeficiency virus, and canine immunodeficiency virus.
- the present invention thus provides at least one compound of Formula (I) or a salt thereof for use in treating such conditions, in a subject in need thereof.
- “Therapeutically effective amount” is intended to include an amount of a compound of the present invention that is effective when administered alone or in combination to inhibit autoimmune disease or chronic inflammatory disease.
- TLR7, TLR8, or TLR9 associated conditions may comprise administering compounds of Formula (I) alone or in combination with each other and/or other suitable therapeutic agents useful in treating such conditions.
- therapeutically effective amount is also intended to include an amount of the combination of compounds claimed that is effective to inhibit TLR7, TLR8, or TLR9 and/or treat diseases associated with TLR7, TLR8, or TLR9.
- Such other therapeutic agents include corticosteroids, rolipram, calphostin, cytokine-suppressive anti-inflammatory drugs (CSAIDs), Interleukin-10, glucocorticoids, salicylates, nitric oxide, and other immunosuppressants; nuclear translocation inhibitors, such as deoxyspergualin (DSG); non-steroidal anti-inflammatory drugs (NSAIDs) such as ibuprofen, celecoxib and rofecoxib; steroids such as prednisone or dexamethasone; antiviral agents such as abacavir; antiproliferative agents such as methotrexate, leflunomide, FK506 (tacrolimus, PROGRAF ® ); anti-malarials such as hydroxychloroquine; cytotoxic drugs such as azathiprine and cyclophosphamide; TNF- ⁇ inhibitors such as tenidap, anti-TNF antibodies or soluble TNF
- the above other therapeutic agents when employed in combination with the compounds of the present invention, may be used, for example, in those amounts indicated in the Physicians' Desk Reference (PDR) or as otherwise determined by one of ordinary skill in the art.
- PDR Physicians' Desk Reference
- such other therapeutic agent(s) may be administered prior to, simultaneously with, or following the administration of the inventive compounds.
- the present invention also provides pharmaceutical compositions capable of treating TLR7/8/9 receptor-associated conditions, including IL-1 family receptor-mediated diseases as described above.
- inventive compositions may contain other therapeutic agents as described above and may be formulated, for example, by employing conventional solid or liquid vehicles or diluents, as well as pharmaceutical additives of a type appropriate to the mode of desired administration (e.g ., excipients, binders, preservatives, stabilizers, flavors, etc.) according to techniques such as those well known in the art of pharmaceutical formulation.
- pharmaceutical additives e.g ., excipients, binders, preservatives, stabilizers, flavors, etc.
- compositions comprising one or more compounds of Formula (I) and a pharmaceutically acceptable carrier.
- a “pharmaceutically acceptable carrier” refers to media generally accepted in the art for the delivery of biologically active agents to animals, in particular, mammals.
- Pharmaceutically acceptable carriers are formulated according to a number of factors well within the purview of those of ordinary skill in the art. These include without limitation the type and nature of the active agent being formulated; the subject to which the agent-containing composition is to be administered; the intended route of administration of the composition; and, the therapeutic indication being targeted.
- Pharmaceutically acceptable carriers include both aqueous and non-aqueous liquid media, as well as a variety of solid and semi-solid dosage forms.
- Such carriers can include a number of different ingredients and additives in addition to the active agent, such additional ingredients being included in the formulation for a variety of reasons, e.g ., stabilization of the active agent, binders, etc., well known to those of ordinary skill in the art.
- suitable pharmaceutically acceptable carriers, and factors involved in their selection are found in a variety of readily available sources such as, for example, Remington's Pharmaceutical Sciences, 17th Edition (1985 ).
- Compounds in accordance with Formula (I) can be administered by any means suitable for the condition to be treated, which can depend on the need for site-specific treatment or quantity of Formula (I) compound to be delivered.
- compositions comprising a compound of Formula (I) and one or more non-toxic, pharmaceutically-acceptable carriers and/or diluents and/or adjuvants (collectively referred to herein as "carrier” materials) and, if desired, other active ingredients.
- carrier non-toxic, pharmaceutically-acceptable carriers and/or diluents and/or adjuvants
- the compounds of Formula (I) may be administered by any suitable route, preferably in the form of a pharmaceutical composition adapted to such a route, and in a dose effective for the treatment intended.
- the compounds and compositions of the present invention may, for example, be administered orally, mucosally, or parenterally including intravascularly, intravenously, intraperitoneally, subcutaneously, intramuscularly, and intrasternally in dosage unit formulations containing conventional pharmaceutically acceptable carriers, adjuvants, and vehicles.
- the pharmaceutical carrier may contain a mixture of mannitol or lactose and microcrystalline cellulose.
- the mixture may contain additional components such as a lubricating agent, e.g. magnesium stearate and a disintegrating agent such as crospovidone.
- the carrier mixture may be filled into a gelatin capsule or compressed as a tablet.
- the pharmaceutical composition may be administered as an oral dosage form or an infusion, for example.
- the pharmaceutical composition may be in the form of, for example, a tablet, capsule, liquid capsule, suspension, or liquid.
- the pharmaceutical composition is preferably made in the form of a dosage unit containing a particular amount of the active ingredient.
- the pharmaceutical composition may be provided as a tablet or capsule comprising an amount of active ingredient in the range of from about 0.1 to 1000 mg, preferably from about 0.25 to 250 mg, and more preferably from about 0.5 to 100 mg.
- a suitable daily dose for a human or other mammal may vary widely depending on the condition of the patient and other factors, but, can be determined using routine methods.
- any pharmaceutical composition contemplated herein can, for example, be delivered orally via any acceptable and suitable oral preparations.
- exemplary oral preparations include, but are not limited to, for example, tablets, troches, lozenges, aqueous and oily suspensions, dispersible powders or granules, emulsions, hard and soft capsules, liquid capsules, syrups, and elixirs.
- Pharmaceutical compositions intended for oral administration can be prepared according to any methods known in the art for manufacturing pharmaceutical compositions intended for oral administration.
- a pharmaceutical composition in accordance with the invention can contain at least one agent selected from sweetening agents, flavoring agents, coloring agents, demulcents, antioxidants, and preserving agents.
- a tablet can, for example, be prepared by admixing at least one compound of Formula (I) with at least one non-toxic pharmaceutically acceptable excipient suitable for the manufacture of tablets.
- excipients include, but are not limited to, for example, inert diluents, such as, for example, calcium carbonate, sodium carbonate, lactose, calcium phosphate, and sodium phosphate; granulating and disintegrating agents, such as, for example, microcrystalline cellulose, sodium crosscarmellose, corn starch, and alginic acid; binding agents, such as, for example, starch, gelatin, polyvinyl-pyrrolidone, and acacia; and lubricating agents, such as, for example, magnesium stearate, stearic acid, and talc.
- inert diluents such as, for example, calcium carbonate, sodium carbonate, lactose, calcium phosphate, and sodium phosphate
- granulating and disintegrating agents such as, for example
- a tablet can either be uncoated, or coated by known techniques to either mask the bad taste of an unpleasant tasting drug, or delay disintegration and absorption of the active ingredient in the gastrointestinal tract thereby sustaining the effects of the active ingredient for a longer period.
- exemplary water soluble taste masking materials include, but are not limited to, hydroxypropyl-methylcellulose and hydroxypropyl-cellulose.
- Exemplary time delay materials include, but are not limited to, ethyl cellulose and cellulose acetate butyrate.
- Hard gelatin capsules can, for example, be prepared by mixing at least one compound of Formula (I) with at least one inert solid diluent, such as, for example, calcium carbonate; calcium phosphate; and kaolin.
- at least one inert solid diluent such as, for example, calcium carbonate; calcium phosphate; and kaolin.
- Soft gelatin capsules can, for example, be prepared by mixing at least one compound of Formula (I) with at least one water soluble carrier, such as, for example, polyethylene glycol; and at least one oil medium, such as, for example, peanut oil, liquid paraffin, and olive oil.
- at least one water soluble carrier such as, for example, polyethylene glycol
- at least one oil medium such as, for example, peanut oil, liquid paraffin, and olive oil.
- An aqueous suspension can be prepared, for example, by admixing at least one compound of Formula (I) with at least one excipient suitable for the manufacture of an aqueous suspension.
- excipients suitable for the manufacture of an aqueous suspension include, but are not limited to, for example, suspending agents, such as, for example, sodium carboxymethylcellulose, methylcellulose, hydroxypropylmethylcellulose, sodium alginate, alginic acid, polyvinyl-pyrrolidone, gum tragacanth, and gum acacia; dispersing or wetting agents, such as, for example, a naturally-occurring phosphatide, e.g., lecithin; condensation products of alkylene oxide with fatty acids, such as, for example, polyoxyethylene stearate; condensation products of ethylene oxide with long chain aliphatic alcohols, such as, for example heptadecaethylene-oxycetanol; condensation products of ethylene oxide with partial esters derived from fatty acids and he
- An aqueous suspension can also contain at least one preservative, such as, for example, ethyl and n-propyl p-hydroxybenzoate; at least one coloring agent; at least one flavoring agent; and/or at least one sweetening agent, including but not limited to, for example, sucrose, saccharin, and aspartame.
- Oily suspensions can, for example, be prepared by suspending at least one compound of Formula (I) in either a vegetable oil, such as, for example, arachis oil; olive oil; sesame oil; and coconut oil; or in mineral oil, such as, for example, liquid paraffin.
- An oily suspension can also contain at least one thickening agent, such as, for example, beeswax; hard paraffin; and cetyl alcohol.
- at least one of the sweetening agents already described hereinabove, and/or at least one flavoring agent can be added to the oily suspension.
- An oily suspension can further contain at least one preservative, including, but not limited to, for example, an anti-oxidant, such as, for example, butylated hydroxyanisol, and alpha-tocopherol.
- Dispersible powders and granules can, for example, be prepared by admixing at least one compound of Formula (I) with at least one dispersing and/or wetting agent; at least one suspending agent; and/or at least one preservative.
- Suitable dispersing agents, wetting agents, and suspending agents are as already described above.
- Exemplary preservatives include, but are not limited to, for example, anti-oxidants, e.g., ascorbic acid.
- dispersible powders and granules can also contain at least one excipient, including, but not limited to, for example, sweetening agents; flavoring agents; and coloring agents.
- An emulsion of at least one compound of Formula (I) thereof can, for example, be prepared as an oil-in-water emulsion.
- the oily phase of the emulsions comprising compounds of Formula (I) may be constituted from known ingredients in a known manner.
- the oil phase can be provided by, but is not limited to, for example, a vegetable oil, such as, for example, olive oil and arachis oil; a mineral oil, such as, for example, liquid paraffin; and mixtures thereof. While the phase may comprise merely an emulsifier, it may comprise a mixture of at least one emulsifier with a fat or an oil or with both a fat and an oil.
- Suitable emulsifying agents include, but are not limited to, for example, naturally-occurring phosphatides, e.g., soy bean lecithin; esters or partial esters derived from fatty acids and hexitol anhydrides, such as, for example, sorbitan monooleate; and condensation products of partial esters with ethylene oxide, such as, for example, polyoxyethylene sorbitan monooleate.
- a hydrophilic emulsifier is included together with a lipophilic emulsifier which acts as a stabilizer. It is also preferred to include both an oil and a fat.
- emulsifier(s) with or without stabilizer(s) make-up the so-called emulsifying wax
- the wax together with the oil and fat make up the so-called emulsifying ointment base which forms the oily dispersed phase of the cream formulations.
- An emulsion can also contain a sweetening agent, a flavoring agent, a preservative, and/or an antioxidant.
- Emulsifiers and emulsion stabilizers suitable for use in the formulation of the present invention include Tween 60, Span 80, cetostearyl alcohol, myristyl alcohol, glyceryl monostearate, sodium lauryl sulfate, glyceryl distearate alone or with a wax, or other materials well known in the art.
- the compounds of Formula (I) can, for example, also be delivered intravenously, subcutaneously, and/or intramuscularly via any pharmaceutically acceptable and suitable injectable form.
- injectable forms include, but are not limited to, for example, sterile aqueous solutions comprising acceptable vehicles and solvents, such as, for example, water, Ringer's solution, and isotonic sodium chloride solution; sterile oil-in-water microemulsions; and aqueous or oleaginous suspensions.
- Formulations for parenteral administration may be in the form of aqueous or non-aqueous isotonic sterile injection solutions or suspensions. These solutions and suspensions may be prepared from sterile powders or granules using one or more of the carriers or diluents mentioned for use in the formulations for oral administration or by using other suitable dispersing or wetting agents and suspending agents.
- the compounds may be dissolved in water, polyethylene glycol, propylene glycol, ethanol, corn oil, cottonseed oil, peanut oil, sesame oil, benzyl alcohol, sodium chloride, tragacanth gum, and/or various buffers. Other adjuvants and modes of administration are well and widely known in the pharmaceutical art.
- the active ingredient may also be administered by injection as a composition with suitable carriers including saline, dextrose, or water, or with cyclodextrin (i.e. Captisol), cosolvent solubilization (i.e. propylene glycol) or micellar solubilization (i.e. Tween 80).
- suitable carriers including saline, dextrose, or water, or with cyclodextrin (i.e. Captisol), cosolvent solubilization (i.e. propylene glycol) or micellar solubilization (i.e. Tween 80).
- the sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent, for example as a solution in 1,3-butanediol.
- a non-toxic parenterally acceptable diluent or solvent for example as a solution in 1,3-butanediol.
- acceptable vehicles and solvents that may be employed are water, Ringer's solution, and isotonic sodium chloride solution.
- sterile, fixed oils are conventionally employed as a solvent or suspending medium.
- any bland fixed oil may be employed, including synthetic mono- or diglycerides.
- fatty acids such as oleic acid find use in the preparation of injectables.
- a sterile injectable oil-in-water microemulsion can, for example, be prepared by 1) dissolving at least one compound of Formula (I) in an oily phase, such as, for example, a mixture of soybean oil and lecithin; 2) combining the Formula (I) containing oil phase with a water and glycerol mixture; and 3) processing the combination to form a microemulsion.
- an oily phase such as, for example, a mixture of soybean oil and lecithin
- combining the Formula (I) containing oil phase with a water and glycerol mixture and 3) processing the combination to form a microemulsion.
- a sterile aqueous or oleaginous suspension can be prepared in accordance with methods already known in the art.
- a sterile aqueous solution or suspension can be prepared with a non-toxic parenterally-acceptable diluent or solvent, such as, for example, 1,3-butane diol; and a sterile oleaginous suspension can be prepared with a sterile non-toxic acceptable solvent or suspending medium, such as, for example, sterile fixed oils, e.g., synthetic mono- or diglycerides; and fatty acids, such as, for example, oleic acid.
- Pharmaceutically acceptable carriers, adjuvants, and vehicles that may be used in the pharmaceutical compositions of this invention include, but are not limited to, ion exchangers, alumina, aluminum stearate, lecithin, self-emulsifying drug delivery systems (SEDDS) such as d-alpha-tocopherol polyethyleneglycol 1000 succinate, surfactants used in pharmaceutical dosage forms such as Tweens, polyethoxylated castor oil such as CREMOPHOR surfactant (BASF), or other similar polymeric delivery matrices, serum proteins, such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts or electrolytes, such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose
- Cyclodextrins such as alpha-, beta-, and gamma-cyclodextrin, or chemically modified derivatives such as hydroxyalkylcyclodextrins, including 2- and 3-hydroxypropyl-cyclodextrins, or other solubilized derivatives may also be advantageously used to enhance delivery of compounds of the formulae described herein.
- the pharmaceutically active compounds of this invention can be processed in accordance with conventional methods of pharmacy to produce medicinal agents for administration to patients, including humans and other mammals.
- the pharmaceutical compositions may be subjected to conventional pharmaceutical operations such as sterilization and/or may contain conventional adjuvants, such as preservatives, stabilizers, wetting agents, emulsifiers, buffers etc. Tablets and pills can additionally be prepared with enteric coatings.
- Such compositions may also comprise adjuvants, such as wetting, sweetening, flavoring, and perfuming agents.
- the amounts of compounds that are administered and the dosage regimen for treating a disease condition with the compounds and/or compositions of this invention depends on a variety of factors, including the age, weight, sex, the medical condition of the subject, the type of disease, the severity of the disease, the route and frequency of administration, and the particular compound employed. Thus, the dosage regimen may vary widely, but can be determined routinely using standard methods.
- the daily dose can be administered in one to four doses per day. Other dosing schedules include one dose per week and one dose per two day cycle.
- the active compounds of this invention are ordinarily combined with one or more adjuvants appropriate to the indicated route of administration.
- the compounds may be admixed with lactose, sucrose, starch powder, cellulose esters of alkanoic acids, cellulose alkyl esters, talc, stearic acid, magnesium stearate, magnesium oxide, sodium and calcium salts of phosphoric and sulfuric acids, gelatin, acacia gum, sodium alginate, polyvinylpyrrolidone, and/or polyvinyl alcohol, and then tableted or encapsulated for convenient administration.
- Such capsules or tablets may contain a controlled-release formulation as may be provided in a dispersion of active compound in hydroxypropylmethyl cellulose.
- compositions of this invention comprise at least one compound of Formula (I) and optionally an additional agent selected from any pharmaceutically acceptable carrier, adjuvant, and vehicle.
- Alternate compositions of this invention comprise a compound of the Formula (I) described herein, and a pharmaceutically acceptable carrier, adjuvant, or vehicle.
- the present invention also encompasses an article of manufacture.
- article of manufacture is intended to include, but not be limited to, kits and packages.
- the article of manufacture of the present invention comprises: (a) a first container; (b) a pharmaceutical composition located within the first container, wherein the composition, comprises: a first therapeutic agent, comprising: a compound of the present invention or a pharmaceutically acceptable salt form thereof; and (c) a package insert stating that the pharmaceutical composition can be used for the treatment of an inflammatory disorder and/or an autoimmune disease (as defined previously).
- the package insert states that the pharmaceutical composition can be used in combination (as defined previously) with a second therapeutic agent to treat an inflammatory disorder and/or an autoimmune disease.
- the article of manufacture can further comprise: (d) a second container, wherein components (a) and (b) are located within the second container and component (c) is located within or outside of the second container. Located within the first and second containers means that the respective container holds the item within its boundaries.
- the first container is a receptacle used to hold a pharmaceutical composition.
- This container can be for manufacturing, storing, shipping, and/or individual/bulk selling.
- First container is intended to cover a bottle, jar, vial, flask, syringe, tube ( e.g ., for a cream preparation), or any other container used to manufacture, hold, store, or distribute a pharmaceutical product.
- the second container is one used to hold the first container and, optionally, the package insert.
- the second container include, but are not limited to, boxes ( e.g ., cardboard or plastic), crates, cartons, bags ( e.g., paper or plastic bags), pouches, and sacks.
- the package insert can be physically attached to the outside of the first container via tape, glue, staple, or another method of attachment, or it can rest inside the second container without any physical means of attachment to the first container.
- the package insert is located on the outside of the second container. When located on the outside of the second container, it is preferable that the package insert is physically attached via tape, glue, staple, or another method of attachment. Alternatively, it can be adjacent to or touching the outside of the second container without being physically attached.
- the package insert is a label, tag, marker, etc. that recites information relating to the pharmaceutical composition located within the first container.
- the information recited will usually be determined by the regulatory agency governing the area in which the article of manufacture is to be sold (e.g., the United States Food and Drug Administration).
- the package insert specifically recites the indications for which the pharmaceutical composition has been approved.
- the package insert may be made of any material on which a person can read information contained therein or thereon.
- the package insert is a printable material (e.g. , paper, plastic, cardboard, foil, adhesive-backed paper or plastic, etc.) on which the desired information has been formed ( e.g ., printed or applied).
- the compounds of the present invention can be prepared in a number of ways well known to one skilled in the art of organic synthesis.
- the compounds of the present invention can be synthesized using the methods described below, together with synthetic methods known in the art of synthetic organic chemistry, or variations thereon as appreciated by those skilled in the art. Preferred methods include, but are not limited to, those described below.
- the compounds of this invention may be prepared using the reactions and techniques described in this section.
- the reactions are performed in solvents appropriate to the reagents and materials employed and are suitable for the transformations being effected.
- all proposed reaction conditions including choice of solvent, reaction atmosphere, reaction temperature, duration of the experiment and work up procedures, are chosen to be the conditions standard for that reaction, which should be readily recognized by one skilled in the art. It is understood by one skilled in the art of organic synthesis that the functionality present on various portions of the molecule must be compatible with the reagents and reactions proposed. Such restrictions to the substituents that are compatible with the reaction conditions will be readily apparent to one skilled in the art and alternate methods must then be used.
- Preparation of compounds of Formula (I), and intermediates used in the preparation of compounds of Formula (I), can be prepared using procedures shown in the following Examples and related procedures. The methods and conditions used in these examples, and the actual compounds prepared in these Examples, are not meant to be limiting, but are meant to demonstrate how the compounds of Formula (I) can be prepared. Starting materials and reagents used in these examples, when not prepared by a procedure described herein, are generally either commercially available, or are reported in the chemical literature, or may be prepared by using procedures described in the chemical literature.
- QC-ACN-TFA-XB Column: Waters Acquity UPLC BEH C18, 2.1 x 50 mm, 1.7 ⁇ m particles; Mobile Phase A: 5:95 acetonitrile:water with 0.1% trifluoroacetic acid; Mobile Phase B: 95:5 acetonitrile:water with 0.1% trifluoroacetic acid; Temperature: 50 °C; Gradient: 0-100% B over 3 minutes, then a 0.75 minute hold at 100% B; Flow: 1.0 mL/min; Detection: UV at 220 nm.
- Method A1 L3 Acquity: Column: (LCMS) UPLC BEH C18, 2.1 x 50 mm, 1.7 ⁇ m particles; Mobile Phase: (A) water; (B) acetonitrile; Buffer: 0.05% TFA; Gradient Range: 2%-98% B (0 to 1 min) 98%B (to 1.5 min) 98%-2% B (to 1.6 min); Gradient Time: 1.6 min; Flow Rate: 0.8 mL/min; Analysis Time: 2.2 min; Detection: Detector 1: UV at 220 nm; Detector 2: MS (ESI + ).
- Method B1 L2 Aquity; Column: (LCMS) UPLC BEH C18, 2.1 x 50 mm, 1.7 ⁇ m particles; Mobile Phase: (A) water; (B) acetonitrile; Buffer: 0.05% TFA; Gradient Range: 2%-98% B (0 to 1 min), 98%-2% B (to 1.5 min); Gradient Time: 1.8 min; Flow Rate: 0.8 mL/min; Analysis Time: 2.2 min; Detection: Detector 1: UV at 220 nm; Detector 2: MS (ESI + ).
- Method C1 SCP Column: Waters Acquity UPLC BEH C18, 2.1 x 50 mm, 1.7 ⁇ m particles; Mobile Phase A: 5:95 acetonitrile:water with 10 mM ammonium acetate; Mobile Phase B: 95:5 acetonitrile:water with 10 mM ammonium acetate. Temperature: 50 °C; Gradient: 0-100% B over 3 minutes, then a 0.75 minute hold at 100% B; Flow: 1.11 mL/min; Detection: UV at 220 nm.
- Method D1 SCP: Column: Waters Acquity UPLC BEH C18, 2.1 x 50 mm, 1.7 ⁇ m particles; Mobile Phase A: 5:95 acetonitrile:water with 0.1% trifluoroacetic acid; Mobile Phase B: 95:5 acetonitrile:water with 0.1% trifluoroacetic acid; Temperature: 50 °C; Gradient: 0-100% B over 3 minutes, then a 0.75-minute hold at 100% B; Flow: 1.11 mL/min; Detection: UV at 220 nm.
- Method D2 SCP Column: XBridge C18, 19 x 200 mm, 5 ⁇ m particles; Mobile Phase A: 5:95 acetonitrile: water with 10-mM ammonium acetate; Mobile Phase B: 95:5 acetonitrile: water with 10 mM ammonium acetate; Gradient: 10-50% B over 20 minutes, then a 5 minute hold at 100% B; Flow: 20 mL/min. Detection: UV at 220 nm.
- Method D3 SCP Column: XBridge C18, 19 x 200 mm, 5 ⁇ m particles; Mobile Phase A: 5:95 acetonitrile: water with 0.1% trifluoroacetic acid; Mobile Phase B: 95:5 acetonitrile: water with 0.1% trifluoroacetic acid; Gradient: 6-46% B over 20 minutes, then a 4 minute hold at 100% B; Flow: 20 mL/min. Detection: UV at 220 nm.
- Method E1 iPAC Column: Waters Xbridge C18 4.6 x 50 mm 5 ⁇ m particles; Mobile Phase A: 5:95 acetonitrile:water with 10 mM ammonium acetate; Mobile Phase B: 95:5 acetonitrile:water with 10 mM ammonium acetate. Temperature: 50 °C; Gradient: 0-100% B over 1 minute; Flow: 4 mL/min; Detection: UV at 220 nm.
- Method F1 iPAC Column: Waters Acquity BEH C18 2.1x50 mm 1.7 ⁇ m particles; Mobile Phase A: 5:95 acetonitrile:water with 0.1% trifluoroacetic acid; Mobile Phase B: 95:5 acetonitrile:water with 0.1% trifluoroacetic acid; Temperature: 50 °C; Gradient: 0-100% B over 2.20 minutes; Flow: 0.800 mL/min; Detection: UV at 220 nm.
- 2nd generation XPhos precatalyst (0.223 g, 0.283 mmol) was added and the reaction mixture was stirred at 80 °C for 16 h.
- the reaction mixture was diluted with EtOAc (50 mL), washed with water (30 mL), brine (10 mL), dried (Na 2 SO 4 ) and concentrated to get crude material.
- tert-butyl 4-(4-fluoro-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidine-1-carboxylate (5.75 g, 18.00 mmol, 94% yield) was prepared according to the general procedure described in Intermediate 1G using tert-butyl 4-(4-fluoro-1H-pyrrolo[2,3-c]pyridin-5-yl)-5,6-dihydropyridine-1(2H)-carboxylate (6.1 g, 19.22 mmol) as the starting intermediate.
- tert-butyl 4-(3-bromo-4-fluoro-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidine-1-carboxylate (7.1 g, 17.83 mmol, 99 % yield) was prepared according to the general procedure described in Intermediate 1H using tert-butyl 4-(4-fluoro-1H-pyrrolo[2,3-c] pyridin-5-yl)piperidine-1-carboxylate (5.75 g, 18.00 mmol) as the starting intermediate.
- tert-butyl 3-bromo-5-(1-(tert-butoxycarbonyl)piperidin-4-yl)-4-fluoro-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (6.7 g, 13.44 mmol, 75% yield) was prepared according to the general procedure described in Intermediate 1I using tert-butyl 4-(3-bromo-4-fluoro-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidine-1-carboxylate (7.1 g, 17.83 mmol) as the starting intermediate.
- tert-butyl 5-(1-(tert-butoxycarbonyl)piperidin-4-yl)-4-fluoro-3-(prop-1-en-2-yl)-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (5.7 g, 12.40 mmol, 92% yield) was prepared according to the general procedure described in Intermediate 1J using tert-butyl 3-bromo-5-(1-(tert-butoxycarbonyl)piperidin-4-yl)-4-fluoro-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (6.7 g, 13.44 mmol) as the starting intermediate.
- tert-butyl 5-(1-(tert-butoxycarbonyl)piperidin-4-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (4.6 g, 9.97 mmol, 80% yield) was prepared according to the general procedure described in Intermediate 1K using tert-butyl 5-(1-(tert-butoxycarbonyl)piperidin-4-yl)-4-fluoro-3-(prop-1-en-2-yl)-1H-pyrrolo[2,3-c] pyridine-1-carboxylate (5.7 g, 12.40 mmol) as the starting intermediate.
- 6-(4-fluoro-3-isopropyl-5-(piperidin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4] triazolo[1,5-a]pyridine (0.26 g, 0.637 mmol, 92% yield) was prepared according to the general procedure described in Example 1 using tert-butyl 5-(1-(tert-butoxycarbonyl)piperidin-4-yl)-4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (0.42 g, 0.690 mmol) as the starting intermediate.
- tert-butyl 3-(3-isopropyl-1H-indol-5-yl)azetidine-1-carboxylate (700 mg, 1.759 mmol, 33.4 % yield) was prepared according to the general procedure described in Intermediate 4A using tert-butyl 4-(3-bromo-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidine-1-carboxylate (2.5 g, 6.57 mmol) as the starting intermediate.
- tert-butyl 4-(3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidine-1-carboxylate (1.8 g, 2.52 mmol, 48% yield) was prepared according to the general procedure described in Intermediate 4B using tert-butyl 4-(3-(prop-1-en-2-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl) piperidine-1-carboxylate (1.9 g, 5.56 mmol) as the starting intermediate.
- reaction mixture was degassed with nitrogen for 5 min, potassium phosphate tribasic (335 mg, 1.580 mmol) was added, and the reaction mixture was stirred in a sealed tube at 90 °C for 3 h.
- the reaction mass was concentrated, the residue was dissolved in EtOAc (50 mL), the solid was filtered and washed with EtOAc (2 X 30 mL), the combined filtrates were collected and concentrated to get crude compound.
- reaction mass was purified by preparative LCMS method D2, the fractions containing the product were combined and dried using Genevac centrifugal evaporator to afford 2-(dimethylamino)-1-(4-(3-isopropyl-2-(8-methyl-[1,2,4] triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl) piperidin-1-yl)ethanone (11 mg, 0.024 mmol, 35.9 % yield) as a pale solid.
- LCMS retention time 1.346 min [E].
- tert-butyl 4-(3-bromo-1H-pyrrolo[2,3-c]pyridin-5-yl)piperazine-1-carboxylate (6.5 g, 15.00 mmol, 76 % yield) was prepared according to the general procedure described in Intermediate 4C using tert-butyl 4-(1H-pyrrolo[2,3-c]pyridin-5-yl) piperazine-1-carboxylate (6 g, 19.84 mmol) as the starting intermediate.
- tert-butyl 5-(4-(tert-butoxycarbonyl)piperazin-1-yl)-3-(prop-1-en-2-yl)-1H-pyrrolo[2,3-c] pyridine-1-carboxylate (450 mg, 0.590 mmol, 29% yield) was prepared according to the general procedure described in Intermediate 4D using tert-butyl 5-(4-(tert-butoxycarbonyl)piperazin-1-yl)-3-isopropyl-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (900 mg, 2.024 mmol) as the starting intermediate.
- tert-butyl 5-(4-(tert-butoxycarbonyl)piperazin-1-yl)-3-isopropyl-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (310 mg, 0.572 mmol, 56% yield) was prepared according to the general procedure described in Intermediate 4E using tert-butyl 5-(4-(tert-butoxycarbonyl)piperazin-1-yl)-3-(prop-1-en-2-yl)-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (450 mg, 1.017 mmol) as the starting intermediate.
- tert-butyl 5-(4-(tert-butoxycarbonyl)piperazin-1-yl)-4-chloro-3-isopropyl-2-(4,4, 5, 5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (158 mg, 0.243 mmol, 68.4 % yield) was prepared according to the general procedure described in Intermediate 1L using tert-butyl 5-(4-(tert-butoxycarbonyl)piperazin-1-yl)-4-chloro-3-isopropyl-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (170 mg, 0.355 mmol) as the starting intermediate.
- 6-(4-chloro-3-isopropyl-5-(piperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4] triazolo[1,5-a]pyridine (140 mg, 0.329 mmol, 86 % yield) was prepared according to the general procedure described in Example 4 using tert-butyl 5-(4-(tert-butoxycarbonyl)piperazin-1-yl)-4-chloro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (240 mg, 0.383 mmol) in HCl (3 mL, 12.00 mmol) as the starting intermediate.
- 6-(3-isopropyl-5-(piperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (0.7 mg, 1.788 ⁇ mol, 2% yield) was prepared according to the general procedure described in Example 4 using tert-butyl 5-(4-(tert-butoxycarbonyl) piperazin-1-yl)-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (65 mg, 0.110 mmol) as the starting intermediate.
- tert-butyl 4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-5-(1,4-dioxa-8-azaspiro[4.5]decan-8-yl)-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (0.51 g, 0.900 mmol, 78 % yield) was prepared as described in the preparation of Intermediate 2131 using tert-butyl 4-fluoro-3-isopropyl-5-(1,4-dioxa-8-azaspiro[4.5]decan-8-yl)-2-(4,4, 5, 5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (0.63 g, 1.155 mmol) and 6-bromo-8-methoxy-[1,2,4]triazolo[1,5
- reaction mixture was again purged for 2 min and heated in a sealed tube at 110 °C for 3 h.
- the reaction mixture was filtered through Celite and was diluted with EtOAc (50 mL), washed with water (30 mL), brine (10 mL), dried (Na 2 SO 4 ) and concentrated to get crude material.
- reaction mixture was purged with nitrogen for 5 mins, then 2nd generation XPhos precatalyst (0.51 g, 0.647 mmol) was added. The reaction mixture was purged again for 2 mins. The reaction mixture was heated in a sealed tube at 60 °C for 2 h. The reaction mass was cooled and filtered through small pad of Celite. The filtrate obtained was concentrated to provide crude material.
- 6-(3-isopropyl-4-methyl-5-(piperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (1.4 mg, 3.45 ⁇ mol, 10.46 % yield) was prepared as described in the preparation of Example 4 using tert-butyl 5-(4-(tert-butoxycarbonyl) piperazin-1-yl)-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-methyl-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (20 mg, 0.033 mmol) as the starting intermediate.
- tert-butyl 4-(4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)piperazine-1-carboxylate (2.1 g, 5.79 mmol, 95 % yield) was prepared as described in the preparation of Intermediate 213F using tert-butyl 4-(4-fluoro-3-isopropyl-1-((2-(trimethylsilyl) ethoxy)methyl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperazine-1-carboxylate (3.0 g, 6.09 mmol) as the starting intermediate.
- LCMS retention time 1.81 min [L].
- tert-butyl 5-(4-(tert-butoxycarbonyl)piperazin-1-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (2.3 g, 4.97 mmol, 90 % yield) was prepared according to the general procedure described in Intermediate 1I using tert-butyl 4-(4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)piperazine-1-carboxylate (2 g, 5.52 mmol) as the starting intermediate.
- 6-(4-fluoro-3-isopropyl-5-(piperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (0.27 g, 0.653 mmol, 93% yield) was prepared according to the general procedure described in the preparation of Example 4 using tert-butyl 5-(4-(tert-butoxycarbonyl)piperazin-1-yl)-4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (0.43 g, 0.705 mmol) as the starting intermediate.
- Example 353 The following Example was prepared according to the general procedure used to prepare Example 353: Ex. No. structure LCMS (M+H) RT HPLC method 354 424.3 0.91 L
- tert-butyl 6-(4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)-2,6-diazaspiro[3.3]heptane-2-carboxylate (5.0 g, 12.15 mmol, 92 % yield) was prepared as described in the preparation of Intermediate 213F using tert-butyl 6-(4-fluoro-3-isopropyl-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-2,6-diazaspiro[3.3]heptane-2-carboxylate (6.66 g, 13.20 mmol) as a starting material.
- tert-butyl 5-(6-(tert-butoxycarbonyl)-2,6-diazaspiro[3.3]heptan-2-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (4 g, 8.43 mmol, 63.1 % yield) was prepared as described in the preparation of Intermediate 1I using tert-butyl 6-(4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)-2,6-diazaspiro[3.3]heptane-2-carboxylate (5 g, 13.35 mmol) as a starting material.
- Example 356 The following Examples were prepared according to the general procedure used to prepare Example 356: Ex. No. Structure LCMS (M+H) RT HPLC method 357 528.2 1.397 D4 358 467.3 1.486 D4 359 481.3 1.558 D4 360 495.3 1.62 D4 361 468.3 1.699 D4 362 516.3 1.617 D4 363 537.3 1.616 D4 364 482.3 1.781 D4 365 449.2 1.558 D4 366 492.2 2.023 D4
- Example 367 The following Example was prepared according to the general procedure used to prepare Example 367: Ex. No. Structure LCMS (M+H) RT HPLC method 368 495.3 1.453 D4
- 6-(4-fluoro-3-isopropyl-5-(6-(oxetan-3-yl)-2,6-diazaspiro[3.3]heptan-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (8.2 mg, 0.017 mmol, 23.88 % yield) was prepared as described in the preparation of Example 42 using 6-(4-fluoro-3-isopropyl-5-(2,6-diazaspiro[3.3]heptan-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (30 mg, 0.071 mmol) and oxetan-3-one (10.26 mg, 0.142 mmol) as the starting intermediates.
- Example 369 The following Examples were prepared according to the general procedure used to prepare Example 369: Ex. No. Structure LCMS (M+H) RT HPLC method 370 506.2 1.429 D4 371 520.3 1.402 D4 372 478.3 1.415 D4 373 464.3 1.282 D4 374 476.3 1.332 D4 375 490.3 1.494 D4 376 506.3 1.459 D4 377 547.4 1.318 D4 378 436.2 1.166 D4 379 450.2 1.240 D4 380 464.2 1.376 D4 381 476.2 1.467 D4 382 466.3 11.642 D4 383 508.3 11.872 D4 384 452.3 11.619 D4 385 494.3 11.847 D4 386 494.3 11.661 D4 387 494.3 11.663 D4 388 535.3 11.302 D4 389 438.3 11.401 D4 390 464.2 11.607 D4 391 464.2 11.722 D4
- the reaction mixture was purged with nitrogen for 5 mins, then chloro(2-dicyclohexylphosphino-2',4',6'-triisopropyl-1,1'-biphenyl)[2-(2'-amino-1,1'-biphenyl)]palladium(II) (0.299 g, 0.380 mmol) was added.
- the reaction mixture was purged again for 2 mins and then heated in a sealed tube at 75 °C for 1 h.
- the reaction mixture was filtered through Celite and diluted with EtOAc (50 mL) and washed with water (10 mL), and brine solutions (10 mL).
- Example 392 The following Examples were prepared according to the general procedure used to prepare Example 392: Ex. No. Structure LCMS (M+H) RT HPLC method 393 408.3 1.356 D4 394 507.9 1.92 L
- Example 395 Ex. No. Structure LCMS (M+H) RT HPLC method 396 526.2 1.486 D4 397 459.2 1.609 D4 398 514.3 1.709 D4
- 6-(4-fluoro-3-isopropyl-5-(6-(oxetan-3-yl)-2,6-diazaspiro[3.3]heptan-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (10.4 mg, 0.021 mmol, 28.7 % yield) was prepared as described in the preparation of Example 42 using 6-(4-fluoro-3-isopropyl-5-(2,6-diazaspiro[3.3]heptan-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (30 mg, 0.072 mmol) and oxetan-3-one (10.31 mg, 0.143 mmol) as the starting intermediates.
- Example 400 The following Examples were prepared according to the general procedure used to prepare Example 400: Ex. No. Structure LCMS (M+H) RT HPLC method 401 504.3 1.511 D4 402 476.3 1.586 D4 403 462.3 1.128 D4 404 488.3 1.623 D4 405 504.3 1.608 D4 406 545.3 1.408 D4 407 434.2 1.262 D4 408 448.2 1.322 D4 409 464.3 1.738 D4 410 492.3 1.949 D4 411 506.3 1.968 D4 412 450.3 1.702 D4
- Example 352 Ex. No. Structure LCMS (M+H) RT HPLC method 413 475.3 1.542 D4 414 461.3 1.480 D4 415 510.2 2.176 D
- Example 417 The following Examples were prepared according to the general procedure used to prepare Example 417: Ex. No. Structure LCMS (M+H) RT HPLC method 418 488.3 1.630 D4 419 502.3 1.790 D4
- tert-butyl (1-(1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-4-yl)carbamate 13 g, 27.5 mmol, 71.8 % yield
- intermediate 6C tert-butyl
- E tert-butyl
- 4-(4-(2-(dimethylamino)vinyl)-5-nitropyridin-2-yl) piperazine-1-carboxylate 15 g, 39.7 mmol
- tert-butyl (1-(3-bromo-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-4-yl)carbamate (3 g, 7.59 mmol, 80% yield) was prepared as described in the preparation of Intermediate 6D using tert-butyl (1-(1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-4-yl)carbamate (3 g, 9.48 mmol) as the starting intermediate.
- tert-butyl 3-bromo-5-(4-((tert-butoxycarbonyl)amino)piperidin-1-yl)-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (2g, 4.04 mmol, 80% yield) was prepared as described in the preparation of Intermediate 6E using tert-butyl (1-(3-bromo-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-4-yl) carbamate (2 g, 5.06 mmol) as the starting intermediate.
- tert-butyl 5-(4-((tert-butoxycarbonyl)amino)piperidin-1-yl)-3-(prop-1-en-2-yl)-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (1.6 g, 3.50 mmol, 83 % yield) was prepared as described in the preparation of Intermediate 6F using tert-butyl 3-bromo-5-(4-((tertbutoxycarbonyl)amino)piperidin-1-yl)-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (2.1 g, 4.24 mmol) as the starting intermediate.
- tert-butyl5-(4-((tert-butoxycarbonyl)amino)piperidin-1-yl)-3-isopropyl-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (1.6 g, 3.49 mmol, 88 % yield) was prepared as described in the preparation of Intermediate 6G using tert-butyl 5-(4-((tertbutoxycarbonyl)amino)piperidin-1-yl)-3-(prop-1-en-2-yl)-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (1.8 g, 3.94 mmol) as the starting intermediate.
- LCMS retention time 1.78 min [B], MS (E + ) m / z: 459.6 (M+H).
- tert-butyl 5-(4-((tert-butoxycarbonyl) amino)piperidin-1-yl)-3-isopropyl-2-(4,4, 5, 5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (280 mg, 0.053 mmol, 4.03 % yield) was prepared as described in the preparation of Intermediate 6I using tert-butyl 5-(4-((tert-butoxycarbonyl)amino)piperidin-1-yl)-3-isopropyl-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (600 mg, 1.308 mmol as the starting intermediate.
- the pharmacological properties of the compounds of this invention may be confirmed by a number of biological assays.
- the exemplified biological assays, which follow, have been carried out with compounds of the invention.
- HEK-Blue TM -cells (Invivogen) overexpressing human TLR7, TLR8 or TLR9 receptors were used for screening inhibitors of these receptors using an inducible SEAP (secreted embryonic alkaline phosphatase) reporter gene under the control of the IFN- ⁇ minimal promoter fused to five NF- ⁇ B and AP-1-binding sites. Briefly, cells are seeded into Greiner 384 well plates (15000 cells per well for TLR7, 20,000 for TLR8 and 25,000 for TLR9) and then treated with test compounds in DMSO to yield a final dose response concentration range of 0.05 nM - 50 ⁇ M.
- SEAP secreted embryonic alkaline phosphatase
- the cells are then stimulated with a TLR7 ligand (gardiquimod at a final concentration of 7.5 ⁇ M), TLR8 ligand (R848 at a final concentration of 15.9 ⁇ M) or TLR9 ligand (ODN2006 at a final concentration of 5 nM) to activate NF- ⁇ B and AP-1 which induce the production of SEAP.
- TLR7 ligand gardiquimod at a final concentration of 7.5 ⁇ M
- TLR8 ligand R848 at a final concentration of 15.9 ⁇ M
- ODN2006 TLR9 ligand
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Immunology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Rheumatology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Physical Education & Sports Medicine (AREA)
- Pain & Pain Management (AREA)
- Epidemiology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
- Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
Description
- The present invention generally relates to 6-azaindole compounds useful as inhibitors of signaling through Toll-like receptor 7, 8, or 9 (TLR7, TLR8, TLR9) or combinations thereof. Provided herein are 6-azaindole compounds, compositions comprising such compounds, and uses thereof. The invention further pertains to pharmaceutical compositions containing at least one compound according to the invention that are useful for the treatment of conditions related to TLR modulation, such as inflammatory and autoimmune diseases, and for inhibiting the activity of TLRs in a mammal.
- Toll/IL-1 receptor family members are important regulators of inflammation and host resistance. The Toll-like receptor family recognizes molecular patterns derived from infectious organisms including bacteria, fungi, parasites, and viruses (reviewed in Kawai, T. et al., Nature Immunol., 11:373-384 (2010)). Ligand binding to the receptor induces dimerization and recruitment of adaptor molecules to a conserved cytoplasmic motif in the receptor termed the Toll/IL-1 receptor (TIR) domain with the exception of TLR3, all TLRs recruit the adaptor molecule MyD88. The IL-1 receptor family also contains a cytoplasmic TIR motif and recruits MyD88 upon ligand binding (reviewed in Sims, J.E. et al., Nature Rev. Immunol., 10:89-102 (2010)).
- Toll-like receptors (TLRs) are a family of evolutionarily conserved, transmembrane innate immune receptors that participate in the first-line defense. As pattern recognition receptors, the TLRs protect against foreign molecules, activated by pathogen associated molecular patterns (PAMPs), or from damaged tissue, activated by danger associated molecular patterns (DAMPs). A total of 13 TLR family members have been identified, 10 in human, that span either the cell surface or the endosomal compartment. TLR7/8/9 are among the set that are endosomally located and respond to single-stranded RNA (TLR7 and TLR8) or unmethylated single-stranded DNA containing cytosine-phosphate-guanine (CpG) motifs (TLR9).
- Activation of TLR7/8/9 can initiate a variety of inflammatory responses (cytokine production, B cell activation and IgG production, Type I interferon response). In the case of autoimmune disorders, the aberrant sustained activation of TLR7/8/9 leads to worsening of disease states. Whereas overexpression of TLR7 in mice has been shown to exacerbate autoimmune disease, knockout of TLR7 in mice was found to be protective against disease in lupus-prone MRL/lpr mice. Dual knockout of TLR7 and 9 showed further enhanced protection.
- As numerous conditions may benefit by treatment involving modulation of cytokines, IFN production and B cell activity, it is immediately apparent that new compounds capable of modulating TLR7 and/or TLR8 and/or TLR9 and could provide substantial therapeutic benefits to a wide variety of patients.
- Document
WO 2006/113458 discloses heterocyclic inhibitors of protein arginine methyl transferases. - The present invention relates to a new class of 6-azaindole compounds found to be effective inhibitors of signaling through TLR7/8/9. These compounds are provided to be useful as pharmaceuticals with desirable stability, bioavailability, therapeutic index, and toxicity values that are important to their drugability.
- The present invention provides compounds of Formula (I) that are useful as inhibitors of signaling through Toll-like receptor 7, 8, or 9 and are useful for the treatment of proliferative diseases, allergic diseases, autoimmune diseases and inflammatory diseases, or stereoisomers, N-oxides, tautomers, pharmaceutically acceptable salts, or solvates thereof.
- The present invention also provides pharmaceutical compositions comprising a pharmaceutically acceptable carrier and at least one of the compounds of the present invention or stereoisomers, tautomers, pharmaceutically acceptable salts, or solvates thereof.
- The present invention also provides at least one of the compounds of the present invention or stereoisomers, tautomers, pharmaceutically acceptable salts, or solvates thereof for use in the inhibition of Toll-like receptor 7, 8, or 9 in a host in need of such treatment.
- The present invention also provides at least one of the compounds of the present invention or stereoisomers, tautomers, pharmaceutically acceptable salts, or solvates thereof for use in treating proliferative, metabolic, allergic, autoimmune and inflammatory diseases, in a host in need of such treatment.
- The present invention also provides at least one of the compounds of Formula (I) or salts, and solvates thereof for use in treating a disease or disorder associated with Toll-like receptor 7, 8, or 9 activity, in a mammal in need thereof.
- The present invention also provides processes and intermediates for making the compounds of Formula (I) including salts, and solvates thereof.
- The present invention also provides at least one of the compounds of Formula (I) or salts, and solvates thereof, for use in therapy.
- The compound of Formula (I) and compositions comprising the compounds of Formula (I) may be used in treating, preventing, or curing various Toll-like receptor 7, 8, or 9 related conditions. Pharmaceutical compositions comprising these compounds are useful for treating, preventing, or slowing the progression of diseases or disorders in a variety of therapeutic areas, such as allergic disease, autoimmune diseases, inflammatory diseases, and proliferative diseases.
- These and other features of the invention will be set forth in expanded form as the disclosure continues.
-
- (i) -NR7R8 wherein R7 and R8 together with the nitrogen atom to which they are attached form a heterocyclic ring selected from piperazinyl, piperidinyl, or diazaspiro[3.3]heptanyl, wherein said heterocyclic ring is substituted with zero to 1 R7b and zero to 1 R7c; or
- (ii) -CHR12R13, wherein R12 and R13 together with the carbon atom to which they are attached form a cyclic group selected from cyclopentyl, cyclohexyl, morpholinyl, or piperidinyl, each substituted with zero to 1 R12a;
- R1 is -CH(CH3)2;
- each R2 is independently -CH3 or -OCH3;
- each R5 is independently F, Cl, or -CH3;
- R7b is:
- (i) -CH3, -CH2CH3, -CH2CH2CH3, -CH(CH3)2, -CH2CH(CH3)2, -CH2CF3, -CH2CN, -CH2C(CH3)2OH, -CH2CH2OCH3, -CH2CH2S(O)2CH3, -(CH2)1-2NRxRx, -CH2C(O)NRxRx, -NRxRy, -NRx(C1-4 hydroxyalkyl), -NH(CH2CRxRxOCH3), -NRy(C1-2 cyanoalkyl), -NRx(C1-2 fluoroalkyl), -NRx(C2-5 hydroxyfluoroalkyl), -NRx(CH2)1-2C(O)NRxRx, -NRx(CH2)1-3NRxRx, -NRxCH2CH2N(CH3)2, -NRxC(O)(CH2)1-2NRxRx, -C(O)CH3, -C(O)CH2NRxRx, -S(O)2CH3, -(CH2)1-2R7d, -CH2C(O)R7d, -C(O)CH2R7d, -NHR7d, -NH(CH2)1-2R7d, or -OR7d; or
- (ii) azetidinyl, cyclobutyl, dioxothiomorpholinyl, morpholinyl, oxaazaspiro[3.3]heptanyl, oxetanyl, piperazinonyl, piperazinyl, piperidinyl, tetrahydrofuranyl, or tetrahydropyranyl, each substituted with zero to 1 R8a;
- each R7c is -CH3;
- R7d is azaspiro[3.5]nonanyl, bicyclo[1.1.1]pentanyl, C3-6 cycloalkyl, morpholinyl, oxetanyl, phenyl, piperidinyl, pyrazolyl, pyrrolidinyl, tetrahydrofuranyl, or tetrahydropyranyl, each substituted with zero to 1 substituent selected from C1-3 alkyl, -NRxRx, -C(O)CH3, methylpiperidinyl, methylpyrrolidinyl, tetramethylpiperidinyl, -OCH2CH2(pyrrolidinyl), and -OCH2CH2NHCH2CH3; and zero to 4 substituents selected from -CH3;
- R8a is -CH3, -CH(CH3)2, or -S(O)2CH3;
- each R12a is -CH(CH3)2, -CH2CF3, -CH2C(CH3)2OH, -CH2CH2OCH3, -CH2C(O)NH(CH3), -CH2C(O)N(CH3)2, -CH2C(O)NH2, -CH2CH2S(O)2CH3, -CH2CH2NH(CH3), -NRxRy, -NRx(C2-4 fluoroalkyl), -NH(CH2C(CH3)2OH), -NH(CH2CHFC(CH3)2OH), -NH(CH2CH2OCH3), -NH(CH2C(CH3)2OCH3), -NRx(CH2C(O)NRxRx), -C(O)CH2NH(CH3), -C(O)CH2N(CH3)2, R12b, -CH2R12b, -NRxR12b, -N(CH2CN)Ri2b, or -NRxCH2R12b;
- R12b is azetidinyl, bicyclo[1.1.1]pentanyl, oxaazaspiro[3.3]heptanyl, oxetanyl, piperidinyl, tetrahydrofuranyl, or tetrahydropyranyl, each substituted with zero to 4 substituents independently selected from -CH3, -CH(CH3)2, -CH2OH, or -OCH3; each Rx is independently H or -CH3;
- n is zero or 1; and
- p is zero, 1, 2, 3, or 4.
-
- One embodiment provides a compound of Formula (I), N-oxide, stereoisomers, tautomers, solvates or a pharmaceutically-acceptable alt thereof, wherein R1 is -CH(CH3)2.
- One embodiment provides a compound of Formula (I), N-oxide, stereoisomers, tautomers, solvates or a pharmaceutically-acceptable salt thereof wherein A is:
- (i) -NR7R8 wherein R7 and R8 together with the nitrogen atom to which they are attached form a heterocyclic ring selected from piperazinyl, piperidinyl, or diazaspiro[3.3]heptanyl, wherein said heterocyclic ring is substituted with zero to 1 R7b and zero to 1 R7c; or
- (ii) -CHR12R13, wherein R12 and R13 together with the carbon atom to which they are attached form a cyclic group selected from cyclopentyl, cyclohexyl, morpholinyl, or piperidinyl, each substituted with zero to 1 R12a;
- One embodiment provides a compound of Formula (I), N-oxide, stereoisomers, tautomers, solvates or a pharmaceutically-acceptable salt thereof wherein said compound is selected from Examples 1 to 472.
- One embodiment provides a compound of Formula (I), N-oxide, stereoisomers, tautomers, solvates or a pharmaceutically-acceptable salt thereof wherein said compound is selected from Examples 1 to 351.
- One embodiment provides a compound of Formula (I), N-oxide, stereoisomers, tautomers, solvates or a pharmaceutically-acceptable salt thereof wherein said compound is selected from Examples 352 to 472.
- The present invention may be embodied in other specific forms. The invention encompasses all combinations of the aspects and/or embodiments of the invention noted herein. It is understood that any and all embodiments of the present invention may be taken in conjunction with any other embodiment or embodiments to describe additional embodiments. It is also to be understood that each individual element of the embodiments is meant to be combined with any and all other elements from any embodiment to describe an additional embodiment.
- The features and advantages of the invention may be more readily understood by those of ordinary skill in the art upon reading the following detailed description. It is to be appreciated that certain features of the invention that are, for clarity reasons, described above and below in the context of separate embodiments, may also be combined to form a single embodiment. Conversely, various features of the invention that are, for brevity reasons, described in the context of a single embodiment, may also be combined so as to form sub-combinations thereof. Embodiments identified herein as exemplary or preferred are intended to be illustrative and not limiting.
- Unless specifically stated otherwise herein, references made in the singular may also include the plural. For example, "a" and "an" may refer to either one, or one or more.
- As used herein, the phrase "compounds" refers to at least one compound. For example, a compound of Formula (I) includes a compound of Formula (I) and two or more compounds of Formula (I).
- Unless otherwise indicated, any heteroatom with unsatisfied valences is assumed to have hydrogen atoms sufficient to satisfy the valences.
- The definitions set forth herein take precedence over definitions set forth in any patent, patent application, and/or patent application publication.
- Listed below are definitions of various terms used to describe the present invention. These definitions apply to the terms as they are used throughout the specification (unless they are otherwise limited in specific instances) either individually or as part of a larger group.
- Throughout the specification, groups and substituents thereof may be chosen by one skilled in the field to provide stable moieties and compounds.
-
- The terms "halo" and "halogen," as used herein, refer to F, Cl, Br, and I.
- The term "cyano" refers to the group -CN.
- The term "amino" refers to the group -NH2.
- The term "oxo" refers to the group =O.
- The term "alkyl" as used herein, refers to both branched and straight-chain saturated aliphatic hydrocarbon groups containing, for example, from 1 to 12 carbon atoms, from 1 to 6 carbon atoms, and from 1 to 4 carbon atoms. Examples of alkyl groups include, but are not limited to, methyl (Me), ethyl (Et), propyl (e.g., n-propyl and i-propyl), butyl (e.g., n-butyl, i-butyl, sec-butyl, and t-butyl), and pentyl (e.g., n-pentyl, isopentyl, neopentyl), n-hexyl, 2-methylpentyl, 2-ethylbutyl, 3-methylpentyl, and 4-methylpentyl. When numbers appear in a subscript after the symbol "C", the subscript defines with more specificity the number of carbon atoms that a particular group may contain. For example, "C1-6 alkyl" denotes straight and branched chain alkyl groups with one to six carbon atoms.
- The term "fluoroalkyl" as used herein is intended to include both branched and straight-chain saturated aliphatic hydrocarbon groups substituted with one or more fluorine atoms. For example, "C1-4 fluoroalkyl" is intended to include C1 C2, C3, and C4 alkyl groups substituted with one or more fluorine atoms. Representative examples of fluoroalkyl groups include, but are not limited to, -CF3 and -CH2CF3.
- The term "cyanoalkyl" includes both branched and straight-chain saturated alkyl groups substituted with one or more cyano groups. For example, "cyanoalkyl" includes -CH2CN, -CH2CH2CN, and C1-4 cyanoalkyl.
- The term "aminoalkyl" includes both branched and straight-chain saturated alkyl groups substituted with one or more amine groups. For example, "aminoalkyl" includes -CH2NH2, -CH2CH2NH2, and C1-4 aminoalkyl.
- The term "hydroxyalkyl" includes both branched and straight-chain saturated alkyl groups substituted with one or more hydroxyl groups. For example, "hydroxyalkyl" includes -CH2OH, -CH2CH2OH, and C1-4 hydroxyalkyl.
- The term "hydroxy-fluoroalkyl" includes both branched and straight-chain saturated alkyl groups substituted with one or more hydroxyl groups and one or more fluorine atoms. For example, "hydroxy-fluoroalkyl" includes -CHFCH2OH, -CH2CHFC(CH3)2OH, and C1-4 hydroxy-fluoroalkyl.
- The term "cycloalkyl," as used herein, refers to a group derived from a nonaromatic monocyclic or polycyclic hydrocarbon molecule by removal of one hydrogen atom from a saturated ring carbon atom. Representative examples of cycloalkyl groups include, but are not limited to, cyclopropyl, cyclopentyl, and cyclohexyl. When numbers appear in a subscript after the symbol "C", the subscript defines with more specificity the number of carbon atoms that a particular cycloalkyl group may contain. For example, "C3-C6 cycloalkyl" denotes cycloalkyl groups with three to six carbon atoms.
- The term "alkoxy," as used herein, refers to an alkyl group attached to the parent molecular moiety through an oxygen atom, for example, methoxy group (-OCH3). For example, "C1-3 alkoxy" denotes alkoxy groups with one to three carbon atoms.
- The term "alkoxyalkyl," as used herein, refers to an alkoxy group attached through its oxygen atom to an alkyl group, which is attached to the parent molecular moiety, for example, methoxymethyl group (-CH2OCH3). For example, "C2-4 alkoxyalkyl" denotes alkoxyalkyl groups with two to four carbon atoms, such as -CH2OCH3, -CH2CH2OCH3, -CH2OCH2CH3, and -CH2CH2OCH2CH3.
- The phrase "pharmaceutically acceptable" is employed herein to refer to those compounds, materials, compositions, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.
- The compounds of Formula (I) can be provided as amorphous solids or crystalline solids. Lyophilization can be employed to provide the compounds of Formula (I) as amorphous solids.
- It should further be understood that solvates (e.g., hydrates) of the compounds of Formula (I) are also within the scope of the present invention. The term "solvate" means a physical association of a compound of Formula (I) with one or more solvent molecules, whether organic or inorganic. This physical association includes hydrogen bonding. In certain instances the solvate will be capable of isolation, for example when one or more solvent molecules are incorporated in the crystal lattice of the crystalline solid. "Solvate" encompasses both solution-phase and isolable solvates. Exemplary solvates include hydrates, ethanolates, methanolates, isopropanolates, acetonitrile solvates, and ethyl acetate solvates. Methods of solvation are known in the art.
- Various forms of prodrugs are well known in the art and are described in:
- a) The Practice of Medicinal Chemistry, Camille G. Wermuth et al., Ch 31, (Academic Press, 1996);
- b) Design of Prodrugs, edited by H. Bundgaard, (Elsevier, 1985);
- c) A Textbook of Drug Design and Development, P. Krogsgaard-Larson and H. Bundgaard, eds. Ch 5, pgs 113 - 191 (Harwood Academic Publishers, 1991); and
- d) Hydrolysis in Drug and Prodrug Metabolism, Bernard Testa and Joachim M. Mayer, (Wiley-VCH, 2003).
- In addition, compounds of Formula (I), subsequent to their preparation, can be isolated and purified to obtain a composition containing an amount by weight equal to or greater than 99% of a compound of Formula (I) ("substantially pure"), which is then used or formulated as described herein. Such "substantially pure" compounds of Formula (I) are also contemplated herein as part of the present invention.
- "Stable compound" and "stable structure" are meant to indicate a compound that is sufficiently robust to survive isolation to a useful degree of purity from a reaction mixture, and formulation into an efficacious therapeutic agent. The present invention is intended to embody stable compounds.
- "Therapeutically effective amount" is intended to include an amount of a compound of the present invention alone or an amount of the combination of compounds claimed or an amount of a compound of the present invention in combination with other active ingredients effective to act as an inhibitor to TLR7/8/9, or effective to treat or prevent autoimmune and/or inflammatory disease states, such as SLE, IBD, multiple sclerosis (MS), and Sjögren's syndrome, and rheumatoid arthritis.
- As used herein, "treating" or "treatment" cover the treatment of a disease-state in a mammal, particularly in a human, and include: (a) preventing the disease-state from occurring in a mammal, in particular, when such mammal is predisposed to the disease-state but has not yet been diagnosed as having it; (b) inhibiting the disease-state, i.e., arresting its development; and/or (c) relieving the disease-state, i.e., causing regression of the disease state.
- The compounds of the present invention are intended to include all isotopes of atoms occurring in the present compounds. Isotopes include those atoms having the same atomic number but different mass numbers. By way of general example and without limitation, isotopes of hydrogen include deuterium (D) and tritium (T). Isotopes of carbon include 13C and 14C. Isotopically-labeled compounds of the invention can generally be prepared by conventional techniques known to those skilled in the art or by processes analogous to those described herein, using an appropriate isotopically-labeled reagent in place of the non-labeled reagent otherwise employed. For example, methyl (-CH3) also includes deuterated methyl groups such as -CD3.
- The human immune system has evolved to defend the body from microorganisms, viruses, and parasites that can cause infection, disease or death. Complex regulatory mechanisms ensure that the various cellular components of the immune system target the foreign substances or organisms, while not causing permanent or significant damage to the individual. While the initiating events are not well understood at this time, in autoimmune disease states the immune system directs its inflammatory response to target organs in the afflicted individual. Different autoimmune diseases are typically characterized by the predominate or initial target organ or tissues affected; such as the joint in the case of rheumatoid arthritis, the thyroid gland in the case of Hashimoto's thyroiditis, the central nervous system in the case of multiple sclerosis, the pancreas in the case of type I diabetes, and the bowel in the case of inflammatory bowel disease.
- The compounds of the invention inhibit signaling through Toll-like receptor 7, or 8, or 9 (TLR7, TLR8, TLR9) or combinations thereof. Accordingly, compounds of Formula (I) have utility in treating conditions associated with the inhibition of signaling through one or more of TLR7, TLR8, or TLR9. Such conditions include TLR7, TLR8, or TLR9 receptor associated diseases in which cytokine levels are modulated as a consequence of intracellular signaling.
- As used herein, the terms "treating" or "treatment" encompass the treatment of a disease state in a mammal, particularly in a human, and include: (a) preventing or delaying the occurrence of the disease state in a mammal, in particular, when such mammal is predisposed to the disease state but has not yet been diagnosed as having it; (b) inhibiting the disease state, i.e., arresting its development; and/or (c) achieving a full or partial reduction of the symptoms or disease state, and/or alleviating, ameliorating, lessening, or curing the disease or disorder and/or its symptoms.
- In view of their activity as selective inhibitors of TLR7, TLR8, or TLR9, compounds of Formula (I) are useful in treating TLR7, TLR8, or TLR9 family receptor associated diseases, but not limited to, inflammatory diseases such as Crohn's disease, ulcerative colitis, asthma, graft versus host disease, allograft rejection, chronic obstructive pulmonary disease; autoimmune diseases such as Graves' disease, rheumatoid arthritis, systemic lupus erythematosus, lupus nephritis, cutaneous lupus, psoriasis; auto-inflammatory diseases including Cryopyrin-Associated Periodic Syndromes (CAPS), TNF Receptor Associated Periodic Syndrome (TRAPS), Familial Mediterranean Fever (FMF), adult onset stills, systemic onset juvenile idiopathic arthritis, gout, gouty arthritis; metabolic diseases including type 2 diabetes, atherosclerosis, myocardial infarction; destructive bone disorders such as bone resorption disease, osteoarthritis, osteoporosis, multiple myeloma-related bone disorder; proliferative disorders such as acute myelogenous leukemia, chronic myelogenous leukemia; angiogenic disorders such as angiogenic disorders including solid tumors, ocular neovascularization, and infantile haemangiomas; infectious diseases such as sepsis, septic shock, and Shigellosis; neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, cerebral ischemias or neurodegenerative disease caused by traumatic injury, oncologic and viral diseases such as metastatic melanoma, Kaposi's sarcoma, multiple myeloma, and HIV infection and CMV retinitis, AIDS, respectively.
- More particularly, the specific conditions or diseases that may be treated with the inventive compounds include, without limitation, pancreatitis (acute or chronic), asthma, allergies, adult respiratory distress syndrome, chronic obstructive pulmonary disease, glomerulonephritis, rheumatoid arthritis, systemic lupus erythematosus, scleroderma, chronic thyroiditis, Graves' disease, autoimmune gastritis, diabetes, autoimmune hemolytic anemia, autoimmune neutropenia, thrombocytopenia, atopic dermatitis, chronic active hepatitis, myasthenia gravis, multiple sclerosis, inflammatory bowel disease, ulcerative colitis, Crohn's disease, psoriasis, graft vs. host disease, inflammatory reaction induced by endotoxin, tuberculosis, atherosclerosis, muscle degeneration, cachexia, psoriatic arthritis, Reiter's syndrome, gout, traumatic arthritis, rubella arthritis, acute synovitis, pancreatic β-cell disease; diseases characterized by massive neutrophil infiltration; rheumatoid spondylitis, gouty arthritis and other arthritic conditions, cerebral malaria, chronic pulmonary inflammatory disease, silicosis, pulmonary sarcoidosis, bone resorption disease, allograft rejections, fever and myalgias due to infection, cachexia secondary to infection, keloid formation, scar tissue formation, ulcerative colitis, pyresis, influenza, osteoporosis, osteoarthritis, acute myelogenous leukemia, chronic myelogenous leukemia, metastatic melanoma, Kaposi's sarcoma, multiple myeloma, sepsis, septic shock, and Shigellosis; Alzheimer's disease, Parkinson's disease, cerebral ischemias or neurodegenerative disease caused by traumatic injury; angiogenic disorders including solid tumors, ocular neovascularization, and infantile haemangiomas; viral diseases including acute hepatitis infection (including hepatitis A, hepatitis B and hepatitis C), HIV infection and CMV retinitis, AIDS, ARC or malignancy, and herpes; stroke, myocardial ischemia, ischemia in stroke heart attacks, organ hypoxia, vascular hyperplasia, cardiac and renal reperfusion injury, thrombosis, cardiac hypertrophy, thrombin-induced platelet aggregation, endotoxemia and/or toxic shock syndrome, conditions associated with prostaglandin endoperoxidase syndase-2, and pemphigus vulgaris. Included in the present invention are embodiments in which the condition is selected from lupus including lupus nephritis and systemic lupus erythematosus (SLE), Crohn's disease, ulcerative colitis, allograft rejection, rheumatoid arthritis, psoriasis, ankylosing spondylitis, psoriatic arthritis, and pemphigus vulgaris. Also included are embodiments in which the condition is selected from ischemia reperfusion injury, including cerebral ischemia reperfusions injury arising from stroke and cardiac ischemia reperfusion injury arising from myocardial infarction. Another embodiment is one in which the condition is multiple myeloma.
- In one embodiment, the compounds of Formula (I) are useful in treating cancer, including Waldenstrom's Macroglobulinemia (WM), diffuse large B cell lymphoma (DLBCL), chronic lymphocytic leukemia (CLL), cutaneous diffuse large B cell lymphoma, and primary CNS lymphoma.
- In addition, the TLR7, TLR8, or TLR9 inhibitors of the present invention inhibit the expression of inducible pro-inflammatory proteins such as prostaglandin endoperoxide synthase-2 (PGHS-2), also referred to as cyclooxygenase-2 (COX-2), IL-1, IL-6, IL-18, chemokines. Accordingly, additional TLR7/8/9 associated conditions include edema, analgesia, fever and pain, such as neuromuscular pain, headache, pain caused by cancer, dental pain and arthritis pain. The inventive compounds also may be used to treat veterinary viral infections, such as lentivirus infections, including, but not limited to equine infectious anemia virus; or retrovirus infections, including feline immunodeficiency virus, bovine immunodeficiency virus, and canine immunodeficiency virus.
- The present invention thus provides at least one compound of Formula (I) or a salt thereof for use in treating such conditions, in a subject in need thereof. "Therapeutically effective amount" is intended to include an amount of a compound of the present invention that is effective when administered alone or in combination to inhibit autoimmune disease or chronic inflammatory disease.
- The embodiments for treating TLR7, TLR8, or TLR9 associated conditions may comprise administering compounds of Formula (I) alone or in combination with each other and/or other suitable therapeutic agents useful in treating such conditions. Accordingly, "therapeutically effective amount" is also intended to include an amount of the combination of compounds claimed that is effective to inhibit TLR7, TLR8, or TLR9 and/or treat diseases associated with TLR7, TLR8, or TLR9.
- Exemplary of such other therapeutic agents include corticosteroids, rolipram, calphostin, cytokine-suppressive anti-inflammatory drugs (CSAIDs), Interleukin-10, glucocorticoids, salicylates, nitric oxide, and other immunosuppressants; nuclear translocation inhibitors, such as deoxyspergualin (DSG); non-steroidal anti-inflammatory drugs (NSAIDs) such as ibuprofen, celecoxib and rofecoxib; steroids such as prednisone or dexamethasone; antiviral agents such as abacavir; antiproliferative agents such as methotrexate, leflunomide, FK506 (tacrolimus, PROGRAF®); anti-malarials such as hydroxychloroquine; cytotoxic drugs such as azathiprine and cyclophosphamide; TNF-α inhibitors such as tenidap, anti-TNF antibodies or soluble TNF receptor, and rapamycin (sirolimus or RAPAMUNE®) or derivatives thereof.
- The above other therapeutic agents, when employed in combination with the compounds of the present invention, may be used, for example, in those amounts indicated in the Physicians' Desk Reference (PDR) or as otherwise determined by one of ordinary skill in the art. In the embodiments of the present invention, such other therapeutic agent(s) may be administered prior to, simultaneously with, or following the administration of the inventive compounds. The present invention also provides pharmaceutical compositions capable of treating TLR7/8/9 receptor-associated conditions, including IL-1 family receptor-mediated diseases as described above.
- The inventive compositions may contain other therapeutic agents as described above and may be formulated, for example, by employing conventional solid or liquid vehicles or diluents, as well as pharmaceutical additives of a type appropriate to the mode of desired administration (e.g., excipients, binders, preservatives, stabilizers, flavors, etc.) according to techniques such as those well known in the art of pharmaceutical formulation.
- Accordingly, the present invention further includes compositions comprising one or more compounds of Formula (I) and a pharmaceutically acceptable carrier.
- A "pharmaceutically acceptable carrier" refers to media generally accepted in the art for the delivery of biologically active agents to animals, in particular, mammals. Pharmaceutically acceptable carriers are formulated according to a number of factors well within the purview of those of ordinary skill in the art. These include without limitation the type and nature of the active agent being formulated; the subject to which the agent-containing composition is to be administered; the intended route of administration of the composition; and, the therapeutic indication being targeted. Pharmaceutically acceptable carriers include both aqueous and non-aqueous liquid media, as well as a variety of solid and semi-solid dosage forms. Such carriers can include a number of different ingredients and additives in addition to the active agent, such additional ingredients being included in the formulation for a variety of reasons, e.g., stabilization of the active agent, binders, etc., well known to those of ordinary skill in the art. Descriptions of suitable pharmaceutically acceptable carriers, and factors involved in their selection, are found in a variety of readily available sources such as, for example, Remington's Pharmaceutical Sciences, 17th Edition (1985).
- Compounds in accordance with Formula (I) can be administered by any means suitable for the condition to be treated, which can depend on the need for site-specific treatment or quantity of Formula (I) compound to be delivered.
- Also embraced within this invention is a class of pharmaceutical compositions comprising a compound of Formula (I) and one or more non-toxic, pharmaceutically-acceptable carriers and/or diluents and/or adjuvants (collectively referred to herein as "carrier" materials) and, if desired, other active ingredients. The compounds of Formula (I) may be administered by any suitable route, preferably in the form of a pharmaceutical composition adapted to such a route, and in a dose effective for the treatment intended. The compounds and compositions of the present invention may, for example, be administered orally, mucosally, or parenterally including intravascularly, intravenously, intraperitoneally, subcutaneously, intramuscularly, and intrasternally in dosage unit formulations containing conventional pharmaceutically acceptable carriers, adjuvants, and vehicles. For example, the pharmaceutical carrier may contain a mixture of mannitol or lactose and microcrystalline cellulose. The mixture may contain additional components such as a lubricating agent, e.g. magnesium stearate and a disintegrating agent such as crospovidone. The carrier mixture may be filled into a gelatin capsule or compressed as a tablet. The pharmaceutical composition may be administered as an oral dosage form or an infusion, for example.
- For oral administration, the pharmaceutical composition may be in the form of, for example, a tablet, capsule, liquid capsule, suspension, or liquid. The pharmaceutical composition is preferably made in the form of a dosage unit containing a particular amount of the active ingredient. For example, the pharmaceutical composition may be provided as a tablet or capsule comprising an amount of active ingredient in the range of from about 0.1 to 1000 mg, preferably from about 0.25 to 250 mg, and more preferably from about 0.5 to 100 mg. A suitable daily dose for a human or other mammal may vary widely depending on the condition of the patient and other factors, but, can be determined using routine methods.
- Any pharmaceutical composition contemplated herein can, for example, be delivered orally via any acceptable and suitable oral preparations. Exemplary oral preparations, include, but are not limited to, for example, tablets, troches, lozenges, aqueous and oily suspensions, dispersible powders or granules, emulsions, hard and soft capsules, liquid capsules, syrups, and elixirs. Pharmaceutical compositions intended for oral administration can be prepared according to any methods known in the art for manufacturing pharmaceutical compositions intended for oral administration. In order to provide pharmaceutically palatable preparations, a pharmaceutical composition in accordance with the invention can contain at least one agent selected from sweetening agents, flavoring agents, coloring agents, demulcents, antioxidants, and preserving agents.
- A tablet can, for example, be prepared by admixing at least one compound of Formula (I) with at least one non-toxic pharmaceutically acceptable excipient suitable for the manufacture of tablets. Exemplary excipients include, but are not limited to, for example, inert diluents, such as, for example, calcium carbonate, sodium carbonate, lactose, calcium phosphate, and sodium phosphate; granulating and disintegrating agents, such as, for example, microcrystalline cellulose, sodium crosscarmellose, corn starch, and alginic acid; binding agents, such as, for example, starch, gelatin, polyvinyl-pyrrolidone, and acacia; and lubricating agents, such as, for example, magnesium stearate, stearic acid, and talc. Additionally, a tablet can either be uncoated, or coated by known techniques to either mask the bad taste of an unpleasant tasting drug, or delay disintegration and absorption of the active ingredient in the gastrointestinal tract thereby sustaining the effects of the active ingredient for a longer period. Exemplary water soluble taste masking materials, include, but are not limited to, hydroxypropyl-methylcellulose and hydroxypropyl-cellulose. Exemplary time delay materials, include, but are not limited to, ethyl cellulose and cellulose acetate butyrate.
- Hard gelatin capsules can, for example, be prepared by mixing at least one compound of Formula (I) with at least one inert solid diluent, such as, for example, calcium carbonate; calcium phosphate; and kaolin.
- Soft gelatin capsules can, for example, be prepared by mixing at least one compound of Formula (I) with at least one water soluble carrier, such as, for example, polyethylene glycol; and at least one oil medium, such as, for example, peanut oil, liquid paraffin, and olive oil.
- An aqueous suspension can be prepared, for example, by admixing at least one compound of Formula (I) with at least one excipient suitable for the manufacture of an aqueous suspension. Exemplary excipients suitable for the manufacture of an aqueous suspension, include, but are not limited to, for example, suspending agents, such as, for example, sodium carboxymethylcellulose, methylcellulose, hydroxypropylmethylcellulose, sodium alginate, alginic acid, polyvinyl-pyrrolidone, gum tragacanth, and gum acacia; dispersing or wetting agents, such as, for example, a naturally-occurring phosphatide, e.g., lecithin; condensation products of alkylene oxide with fatty acids, such as, for example, polyoxyethylene stearate; condensation products of ethylene oxide with long chain aliphatic alcohols, such as, for example heptadecaethylene-oxycetanol; condensation products of ethylene oxide with partial esters derived from fatty acids and hexitol, such as, for example, polyoxyethylene sorbitol monooleate; and condensation products of ethylene oxide with partial esters derived from fatty acids and hexitol anhydrides, such as, for example, polyethylene sorbitan monooleate. An aqueous suspension can also contain at least one preservative, such as, for example, ethyl and n-propyl p-hydroxybenzoate; at least one coloring agent; at least one flavoring agent; and/or at least one sweetening agent, including but not limited to, for example, sucrose, saccharin, and aspartame.
- Oily suspensions can, for example, be prepared by suspending at least one compound of Formula (I) in either a vegetable oil, such as, for example, arachis oil; olive oil; sesame oil; and coconut oil; or in mineral oil, such as, for example, liquid paraffin. An oily suspension can also contain at least one thickening agent, such as, for example, beeswax; hard paraffin; and cetyl alcohol. In order to provide a palatable oily suspension, at least one of the sweetening agents already described hereinabove, and/or at least one flavoring agent can be added to the oily suspension. An oily suspension can further contain at least one preservative, including, but not limited to, for example, an anti-oxidant, such as, for example, butylated hydroxyanisol, and alpha-tocopherol.
- Dispersible powders and granules can, for example, be prepared by admixing at least one compound of Formula (I) with at least one dispersing and/or wetting agent; at least one suspending agent; and/or at least one preservative. Suitable dispersing agents, wetting agents, and suspending agents are as already described above. Exemplary preservatives include, but are not limited to, for example, anti-oxidants, e.g., ascorbic acid. In addition, dispersible powders and granules can also contain at least one excipient, including, but not limited to, for example, sweetening agents; flavoring agents; and coloring agents.
- An emulsion of at least one compound of Formula (I) thereof can, for example, be prepared as an oil-in-water emulsion. The oily phase of the emulsions comprising compounds of Formula (I) may be constituted from known ingredients in a known manner. The oil phase can be provided by, but is not limited to, for example, a vegetable oil, such as, for example, olive oil and arachis oil; a mineral oil, such as, for example, liquid paraffin; and mixtures thereof. While the phase may comprise merely an emulsifier, it may comprise a mixture of at least one emulsifier with a fat or an oil or with both a fat and an oil. Suitable emulsifying agents include, but are not limited to, for example, naturally-occurring phosphatides, e.g., soy bean lecithin; esters or partial esters derived from fatty acids and hexitol anhydrides, such as, for example, sorbitan monooleate; and condensation products of partial esters with ethylene oxide, such as, for example, polyoxyethylene sorbitan monooleate. Preferably, a hydrophilic emulsifier is included together with a lipophilic emulsifier which acts as a stabilizer. It is also preferred to include both an oil and a fat. Together, the emulsifier(s) with or without stabilizer(s) make-up the so-called emulsifying wax, and the wax together with the oil and fat make up the so-called emulsifying ointment base which forms the oily dispersed phase of the cream formulations. An emulsion can also contain a sweetening agent, a flavoring agent, a preservative, and/or an antioxidant. Emulsifiers and emulsion stabilizers suitable for use in the formulation of the present invention include Tween 60, Span 80, cetostearyl alcohol, myristyl alcohol, glyceryl monostearate, sodium lauryl sulfate, glyceryl distearate alone or with a wax, or other materials well known in the art.
- The compounds of Formula (I) can, for example, also be delivered intravenously, subcutaneously, and/or intramuscularly via any pharmaceutically acceptable and suitable injectable form. Exemplary injectable forms include, but are not limited to, for example, sterile aqueous solutions comprising acceptable vehicles and solvents, such as, for example, water, Ringer's solution, and isotonic sodium chloride solution; sterile oil-in-water microemulsions; and aqueous or oleaginous suspensions.
- Formulations for parenteral administration may be in the form of aqueous or non-aqueous isotonic sterile injection solutions or suspensions. These solutions and suspensions may be prepared from sterile powders or granules using one or more of the carriers or diluents mentioned for use in the formulations for oral administration or by using other suitable dispersing or wetting agents and suspending agents. The compounds may be dissolved in water, polyethylene glycol, propylene glycol, ethanol, corn oil, cottonseed oil, peanut oil, sesame oil, benzyl alcohol, sodium chloride, tragacanth gum, and/or various buffers. Other adjuvants and modes of administration are well and widely known in the pharmaceutical art. The active ingredient may also be administered by injection as a composition with suitable carriers including saline, dextrose, or water, or with cyclodextrin (i.e. Captisol), cosolvent solubilization (i.e. propylene glycol) or micellar solubilization (i.e. Tween 80).
- The sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent, for example as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution, and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil may be employed, including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid find use in the preparation of injectables.
- A sterile injectable oil-in-water microemulsion can, for example, be prepared by 1) dissolving at least one compound of Formula (I) in an oily phase, such as, for example, a mixture of soybean oil and lecithin; 2) combining the Formula (I) containing oil phase with a water and glycerol mixture; and 3) processing the combination to form a microemulsion.
- A sterile aqueous or oleaginous suspension can be prepared in accordance with methods already known in the art. For example, a sterile aqueous solution or suspension can be prepared with a non-toxic parenterally-acceptable diluent or solvent, such as, for example, 1,3-butane diol; and a sterile oleaginous suspension can be prepared with a sterile non-toxic acceptable solvent or suspending medium, such as, for example, sterile fixed oils, e.g., synthetic mono- or diglycerides; and fatty acids, such as, for example, oleic acid.
- Pharmaceutically acceptable carriers, adjuvants, and vehicles that may be used in the pharmaceutical compositions of this invention include, but are not limited to, ion exchangers, alumina, aluminum stearate, lecithin, self-emulsifying drug delivery systems (SEDDS) such as d-alpha-tocopherol polyethyleneglycol 1000 succinate, surfactants used in pharmaceutical dosage forms such as Tweens, polyethoxylated castor oil such as CREMOPHOR surfactant (BASF), or other similar polymeric delivery matrices, serum proteins, such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts or electrolytes, such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose-based substances, polyethylene glycol, sodium carboxymethylcellulose, polyacrylates, waxes, polyethylene-polyoxypropylene-block polymers, polyethylene glycol and wool fat. Cyclodextrins such as alpha-, beta-, and gamma-cyclodextrin, or chemically modified derivatives such as hydroxyalkylcyclodextrins, including 2- and 3-hydroxypropyl-cyclodextrins, or other solubilized derivatives may also be advantageously used to enhance delivery of compounds of the formulae described herein.
- The pharmaceutically active compounds of this invention can be processed in accordance with conventional methods of pharmacy to produce medicinal agents for administration to patients, including humans and other mammals. The pharmaceutical compositions may be subjected to conventional pharmaceutical operations such as sterilization and/or may contain conventional adjuvants, such as preservatives, stabilizers, wetting agents, emulsifiers, buffers etc. Tablets and pills can additionally be prepared with enteric coatings. Such compositions may also comprise adjuvants, such as wetting, sweetening, flavoring, and perfuming agents.
- The amounts of compounds that are administered and the dosage regimen for treating a disease condition with the compounds and/or compositions of this invention depends on a variety of factors, including the age, weight, sex, the medical condition of the subject, the type of disease, the severity of the disease, the route and frequency of administration, and the particular compound employed. Thus, the dosage regimen may vary widely, but can be determined routinely using standard methods. A daily dose of about 0.001 to 100 mg/kg body weight, preferably between about 0.0025 and about 50 mg/kg body weight and most preferably between about 0.005 to 10 mg/kg body weight, may be appropriate. The daily dose can be administered in one to four doses per day. Other dosing schedules include one dose per week and one dose per two day cycle.
- For therapeutic purposes, the active compounds of this invention are ordinarily combined with one or more adjuvants appropriate to the indicated route of administration. If administered orally, the compounds may be admixed with lactose, sucrose, starch powder, cellulose esters of alkanoic acids, cellulose alkyl esters, talc, stearic acid, magnesium stearate, magnesium oxide, sodium and calcium salts of phosphoric and sulfuric acids, gelatin, acacia gum, sodium alginate, polyvinylpyrrolidone, and/or polyvinyl alcohol, and then tableted or encapsulated for convenient administration. Such capsules or tablets may contain a controlled-release formulation as may be provided in a dispersion of active compound in hydroxypropylmethyl cellulose.
- Pharmaceutical compositions of this invention comprise at least one compound of Formula (I) and optionally an additional agent selected from any pharmaceutically acceptable carrier, adjuvant, and vehicle. Alternate compositions of this invention comprise a compound of the Formula (I) described herein, and a pharmaceutically acceptable carrier, adjuvant, or vehicle.
- The present invention also encompasses an article of manufacture. As used herein, article of manufacture is intended to include, but not be limited to, kits and packages. The article of manufacture of the present invention, comprises: (a) a first container; (b) a pharmaceutical composition located within the first container, wherein the composition, comprises: a first therapeutic agent, comprising: a compound of the present invention or a pharmaceutically acceptable salt form thereof; and (c) a package insert stating that the pharmaceutical composition can be used for the treatment of an inflammatory disorder and/or an autoimmune disease (as defined previously). In another embodiment, the package insert states that the pharmaceutical composition can be used in combination (as defined previously) with a second therapeutic agent to treat an inflammatory disorder and/or an autoimmune disease. The article of manufacture can further comprise: (d) a second container, wherein components (a) and (b) are located within the second container and component (c) is located within or outside of the second container. Located within the first and second containers means that the respective container holds the item within its boundaries.
- The first container is a receptacle used to hold a pharmaceutical composition. This container can be for manufacturing, storing, shipping, and/or individual/bulk selling. First container is intended to cover a bottle, jar, vial, flask, syringe, tube (e.g., for a cream preparation), or any other container used to manufacture, hold, store, or distribute a pharmaceutical product.
- The second container is one used to hold the first container and, optionally, the package insert. Examples of the second container include, but are not limited to, boxes (e.g., cardboard or plastic), crates, cartons, bags (e.g., paper or plastic bags), pouches, and sacks. The package insert can be physically attached to the outside of the first container via tape, glue, staple, or another method of attachment, or it can rest inside the second container without any physical means of attachment to the first container. Alternatively, the package insert is located on the outside of the second container. When located on the outside of the second container, it is preferable that the package insert is physically attached via tape, glue, staple, or another method of attachment. Alternatively, it can be adjacent to or touching the outside of the second container without being physically attached.
- The package insert is a label, tag, marker, etc. that recites information relating to the pharmaceutical composition located within the first container. The information recited will usually be determined by the regulatory agency governing the area in which the article of manufacture is to be sold (e.g., the United States Food and Drug Administration). In one embodiment, the package insert specifically recites the indications for which the pharmaceutical composition has been approved. The package insert may be made of any material on which a person can read information contained therein or thereon. For example, the package insert is a printable material (e.g., paper, plastic, cardboard, foil, adhesive-backed paper or plastic, etc.) on which the desired information has been formed (e.g., printed or applied).
- The compounds of the present invention can be prepared in a number of ways well known to one skilled in the art of organic synthesis. The compounds of the present invention can be synthesized using the methods described below, together with synthetic methods known in the art of synthetic organic chemistry, or variations thereon as appreciated by those skilled in the art. Preferred methods include, but are not limited to, those described below.
- The compounds of this invention may be prepared using the reactions and techniques described in this section. The reactions are performed in solvents appropriate to the reagents and materials employed and are suitable for the transformations being effected. Also, in the description of the synthetic methods described below, it is to be understood that all proposed reaction conditions, including choice of solvent, reaction atmosphere, reaction temperature, duration of the experiment and work up procedures, are chosen to be the conditions standard for that reaction, which should be readily recognized by one skilled in the art. It is understood by one skilled in the art of organic synthesis that the functionality present on various portions of the molecule must be compatible with the reagents and reactions proposed. Such restrictions to the substituents that are compatible with the reaction conditions will be readily apparent to one skilled in the art and alternate methods must then be used. This will sometimes require a judgment to modify the order of the synthetic steps or to select one particular process scheme over another in order to obtain a desired compound of the invention. It will also be recognized that another major consideration in the planning of any synthetic route in this field is the judicious choice of the protecting group used for protection of the reactive functional groups present in the compounds described in this invention. An authoritative account describing the many alternatives to the trained practitioner is Greene and Wuts (Protective Groups In Organic Synthesis, Third Edition, Wiley and Sons, 1999).
- Preparation of compounds of Formula (I), and intermediates used in the preparation of compounds of Formula (I), can be prepared using procedures shown in the following Examples and related procedures. The methods and conditions used in these examples, and the actual compounds prepared in these Examples, are not meant to be limiting, but are meant to demonstrate how the compounds of Formula (I) can be prepared. Starting materials and reagents used in these examples, when not prepared by a procedure described herein, are generally either commercially available, or are reported in the chemical literature, or may be prepared by using procedures described in the chemical literature.
-
- Ac
- acetyl
- ACN
- acetonitrile
- AcOH
- acetic acid
- anhyd.
- anhydrous
- aq.
- aqueous
- Bn
- benzyl
- Bu
- butyl
- Boc
- tert-butoxycarbonyl
- CV
- Column Volumes
- DCE
- dichloroethane
- DCM
- dichloromethane
- DMAP
- dimethylaminopyridine
- DMF
- dimethylformamide
- DMSO
- dimethylsulfoxide
- EDC
- 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride
- EtOAc
- ethyl acetate
- Et
- ethyl
- EtOH
- ethanol
- H or H2
- hydrogen
- h, hr or hrs
- hour(s)
- HCTU
- O-(6-Chlorobenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate
- hex
- hexane
- i
- iso
- IPA
- isopropyl alcohol
- HOAc
- acetic acid
- HCl
- hydrochloric acid
- HPLC
- high pressure liquid chromatography
- LC
- liquid chromatography
- M
- molar
- mM
- millimolar
- Me
- methyl
- MeOH
- methanol
- MHz
- megahertz
- min.
- minute(s)
- mins
- minute(s)
- M+1
- (M+H)+
- MS
- mass spectrometry
- n or N
- normal
- NBS
- n-bromosuccinimide
- nm
- nanometer
- nM
- nanomolar
- NMP
- N-methylpyrrolidine
- Pd/C
- palladium on carbon
- PdCl2(dppf)2
- [1,1'-bis(diphenylphosphino)ferrocene]dichloropalladium(II)
- Pd(PPh3)4
- tetrakis(triphenylphosphine)palladium
- Ph
- phenyl
- PPh3
- triphenylphosphine
- Pr
- propyl
- PSI
- pounds per square inch
- PyBOP
- bromotripyrrolidinophosphonium hexafluorophosphate
- Ret Time
- retention time
- sat.
- saturated
- SFC
- supercritical fluid chromatography
- TEA
- triethylamine
- TFA
- trifluoroacetic acid
- THF
- tetrahydrofuran
- Analytical and Preparative HPLC conditions:
- QC-ACN-AA-XB: Column: Waters Acquity UPLC BEH C18, 2.1 x 50 mm, 1.7 µm particles; Mobile Phase A: 5:95 acetonitrile:water with 10 mM ammonium acetate;
- Mobile Phase B: 95:5 acetonitrile:water with 10 mM ammonium acetate; Temperature:
50 °C; Gradient: 0-100% B over 3 minutes, then a 0.75 minute hold at 100% B; Flow: 1.0 mL/min; Detection: UV at 220 nm. - QC-ACN-TFA-XB: Column: Waters Acquity UPLC BEH C18, 2.1 x 50 mm, 1.7 µm particles; Mobile Phase A: 5:95 acetonitrile:water with 0.1% trifluoroacetic acid; Mobile Phase B: 95:5 acetonitrile:water with 0.1% trifluoroacetic acid; Temperature: 50 °C; Gradient: 0-100% B over 3 minutes, then a 0.75 minute hold at 100% B; Flow: 1.0 mL/min; Detection: UV at 220 nm.
- Method A1: L3 Acquity: Column: (LCMS) UPLC BEH C18, 2.1 x 50 mm, 1.7 µm particles; Mobile Phase: (A) water; (B) acetonitrile; Buffer: 0.05% TFA; Gradient Range: 2%-98% B (0 to 1 min) 98%B (to 1.5 min) 98%-2% B (to 1.6 min); Gradient Time: 1.6 min; Flow Rate: 0.8 mL/min; Analysis Time: 2.2 min; Detection: Detector 1: UV at 220 nm; Detector 2: MS (ESI+).
- Method B1: L2 Aquity; Column: (LCMS) UPLC BEH C18, 2.1 x 50 mm, 1.7 µm particles; Mobile Phase: (A) water; (B) acetonitrile; Buffer: 0.05% TFA; Gradient Range: 2%-98% B (0 to 1 min), 98%-2% B (to 1.5 min); Gradient Time: 1.8 min; Flow Rate: 0.8 mL/min; Analysis Time: 2.2 min; Detection: Detector 1: UV at 220 nm; Detector 2: MS (ESI+).
- Method C1 SCP: Column: Waters Acquity UPLC BEH C18, 2.1 x 50 mm, 1.7 µm particles; Mobile Phase A: 5:95 acetonitrile:water with 10 mM ammonium acetate; Mobile Phase B: 95:5 acetonitrile:water with 10 mM ammonium acetate. Temperature: 50 °C; Gradient: 0-100% B over 3 minutes, then a 0.75 minute hold at 100% B; Flow:
1.11 mL/min; Detection: UV at 220 nm. - Method D1 SCP: Column: Waters Acquity UPLC BEH C18, 2.1 x 50 mm, 1.7 µm particles; Mobile Phase A: 5:95 acetonitrile:water with 0.1% trifluoroacetic acid; Mobile Phase B: 95:5 acetonitrile:water with 0.1% trifluoroacetic acid; Temperature: 50 °C; Gradient: 0-100% B over 3 minutes, then a 0.75-minute hold at 100% B; Flow: 1.11 mL/min; Detection: UV at 220 nm.
- Method D2 SCP: Column: XBridge C18, 19 x 200 mm, 5 µm particles;
Mobile Phase A: 5:95 acetonitrile: water with 10-mM ammonium acetate; Mobile Phase B: 95:5 acetonitrile: water with 10 mM ammonium acetate; Gradient: 10-50% B over 20 minutes, then a 5 minute hold at 100% B; Flow: 20 mL/min. Detection: UV at 220 nm. Method D3 SCP: Column: XBridge C18, 19 x 200 mm, 5 µm particles; Mobile Phase A: 5:95 acetonitrile: water with 0.1% trifluoroacetic acid; Mobile Phase B: 95:5 acetonitrile: water with 0.1% trifluoroacetic acid; Gradient: 6-46% B over 20 minutes, then a 4 minute hold at 100% B; Flow: 20 mL/min. Detection: UV at 220 nm. - Method E1 iPAC: Column: Waters Xbridge C18 4.6 x 50 mm 5 µm particles; Mobile Phase A: 5:95 acetonitrile:water with 10 mM ammonium acetate; Mobile Phase B: 95:5 acetonitrile:water with 10 mM ammonium acetate. Temperature: 50 °C; Gradient: 0-100% B over 1 minute; Flow: 4 mL/min; Detection: UV at 220 nm.
- Method F1 iPAC: Column: Waters Acquity BEH C18 2.1x50 mm 1.7 µm particles; Mobile Phase A: 5:95 acetonitrile:water with 0.1% trifluoroacetic acid; Mobile Phase B: 95:5 acetonitrile:water with 0.1% trifluoroacetic acid; Temperature: 50 °C; Gradient: 0-100% B over 2.20 minutes; Flow: 0.800 mL/min; Detection: UV at 220 nm.
- (A): Column-Ascentis Express C18 (50 x 2.1 mm-2.7 µm) Mphase A: 10 mM NH4COOH in water: ACN (98:02); Mphase B: 10 mM NH4COOH in water: ACN (02:98), Gradient: 0-100% B over 3 minutes, Flow = 1 mL/min.
- (B): Waters Acquity BEH C18 (2.1 x 50 mm) 1.7 micron; Buffer: 5 mM ammonium acetate pH 5 adjusted with HCOOH, Solvent A: Buffer:ACN (95:5), Solvent B: Buffer:ACN (5:95), Method:%B: 0 min-5%: 1.1 min -95%: 1.7 min-95%, Flow: 0.8 mL/min.
- (C): Column-Ascentis Express C18 (50 x 2.1 mm, 2.7 µm) Mobile phase A: 0.1% HCOOH in water; Mobile phase B: ACN. Temperature: 50 °C; Gradient: 0-100% B over 3 minutes; Flow rate: 1.0 mL/min.
- (D): Kinetex XB-C18 (75 x 3 mm) 2.6 micron; Solvent A: 10 mM ammonium formate in water: acetonitrile (98:02); Mobile Phase B: 10 mM ammonium formate in water: acetonitrile (02:98); Temperature: 50 °C; Gradient: 0-100% B over 3 minutes; Flow rate: 1.1 mL/min; Detection: UV at 220 nm.
- (E): Column: Ascentis Express C18 (50 x 2.1)mm, 2.7 µm; Mobile Phase A: 5:95 acetonitrile: water with 10 mM NH4OAc; Mobile Phase B: 95:5 acetonitrile: water with 10 mM NH4OAc; Temperature: 50 °C; Gradient: 0-100% B over 3 minutes; Flow: 1.1 mL/min.
- (F): Column: Ascentis Express C18 (50 x 2.1)mm, 2.7 µm; Mobile Phase A: 5:95 acetonitrile: water with 0.1% TFA; Mobile Phase B: 95:5 acetonitrile: water with 0.1% TFA; Temperature: 50 °C; Gradient: 0-100%B over 3 minutes; Flow: 1.1 mL/min.
- (G): Column: Waters Acquity UPLC BEH C18 (2.1 x 50 mm), 1.7 micron; Solvent A = 100% water with 0.05% TFA; Solvent B = 100% acetonitrile with 0.05% TFA; gradient = 2-98% B over 1 minute, then a 0.5 minute hold at 98% B; Flow rate: 0.8 mL/min; Detection: UV at 220 nm.
- (H): Column: Acentis Express C18 (50 x 2.1 mm) 1.7 µm, Acentis C8 NH4COOH 5 min. M, Mobile Phase A: 10 mM ammonium formate: ACN (98:2), Mobile Phase B: 10 mM ammonium formate: ACN (2:98), gradient: 20%-100% B (0-4 min); 100% B (4-4.6 min); Flow: 1 mL/min
- (I) Column: Sunfire C18 (4.6 x 150) mm, 3.5 µm; Mobile Phase A: 5:95 acetonitrile: water with 0.05% TFA; Mobile Phase B: 95:5 acetonitrile: water with 0.05% TFA; Temperature: 50 °C; Gradient:10-100%B over 12 minutes; Flow:1 mL/min.
- (J) Column: Sunfire C18 (4.6 x 150)mm, 3.5 µm; Mobile Phase A: 5:95 acetonitrile: water with 0.05% TFA; Mobile Phase B: 95:5 acetonitrile: water with 0.05% TFA;
- (K) Waters Acquity SDS Mobile Phase: A: water B: ACN; 5%-95%B in 1 min; Gradient Range: 50%-98% B (0-0.5 min); 98%B (0.5 min-1 min); 98%-2% B (1-1.1 min); Run time: 1.2 min; Flow Rate: 0.7 mL/min; Analysis Time: 1.7 min; Detection: Detector 1: UV at 220 nm; Detector 2: MS (ES+).
- (L) Acquity UPLC BEH C18 (3.0 x 50 mm) 1.7 µm. Buffer: 5 mM ammonium acetate Mobile phase A: Buffer:ACN (95:5); Mobile phase B:Buffer:ACN (5:95) Method: %B: 0 min-20%:1.1 min -90%:1.7 min-90%. Run time: 2.25 min; Flow Rate: 0.7 mL/min; Detection: Detector 1: UV at 220 nm; Detector 2: MS (ES+).
- (M): Kinetex SBC18 (4.6 x 50 mm) 5 micron; Solvent A: 10 mM ammonium formate in water: acetonitrile (98:02); Mobile Phase B: 10 mM ammonium formate in water: acetonitrile (02:98); Temperature: 50 °C; Gradient: 30-100% B (0-4 min), 100% B (4-4.6 min), 100-30% B (4.6-4.7 min), 30% B (4.7-5.0 min); Flow rate: 1.5 mL/min; Detection: UV at 220 nm.
- (N): Column-Ascentis Express C18 (50 x 2.1 mm-2.7 µm) Mphase A: 10 mM NH4COOH in water: ACN (98:02); Mphase B: 10 mM NH4COOH in water: ACN (02:98), Gradient: 0-100% B (0-1.7 minutes); 100% B (1.7-3.4 minutes). Flow = 1 mL/min.
- (O) Waters Acquity SDS Column BEH C18 (2.1 x 50 mm) 1.7 µm. Phase A: buffer in water; Mphase B: buffer in ACN, Gradient: 20-98% B (0-1.25 minutes); 98% B (1.25-1.70 minutes); 98%-2% B (1.70-1.75 minutes); Flow = 0.8 mL/min.
- (Q): Column: XBridge BEH XP C18 (50 x 2.1) mm, 2.5 µm; Mobile Phase A: 5:95 acetonitrile: water with 0.1% TFA; Mobile Phase B: 95:5 acetonitrile: water with 0.1% TFA; Temperature: 50 °C; Gradient: 0-100%B over 3 minutes; Flow: 1.1 mL/min.
-
-
- To a solution of 4-methyl-5-nitropyridin-2-ol (4.0 g, 26.0 mmol) in acetic acid (40 mL) was added bromine (1.604 mL, 31.1 mmol) dropwise at 0 °C. The reaction mixture was stirred for 3 h at room temperature. The reaction mass was concentrated, ice cold water was added to the residue, the mixture was stirred for 5 min and filtered to afford 3-bromo-4-methyl-5-nitropyridin-2-ol (5.2 g, 22.32 mmol, 86% yield) as an off-white solid. LCMS retention time 1.082 min [D]. MS m/z: 235 [M+2H]+.
-
- To a solution of 3-bromo-4-methyl-5-nitropyridin-2-ol (5.2 g, 22.32 mmol) in acetonitrile (50 mL) were added POCl3 (20.80 mL, 223 mmol) and DIPEA (3.90 mL, 22.32 mmol) at 0 °C. The reaction mixture was stirred for 3 h at 80 °C. The reaction mass was concentrated, ice cold water and solid NaHCOs were added to the residue, extracted with EtOAc (2 x 50 mL), the organic layer was washed with brine solution, dried over Na2SO4, concentrated and purified over 40 g silica column, the compound was eluted in 15% EA in hexane, the fractions were collected and concentrated to afford 3-bromo-2-chloro-4-methyl-5-nitropyridine (0.48 g, 1.909 mmol, 89% yield) as an off-white solid. LCMS retention time 2.619 min [D]. MS m/z: 248.9 [M-2H]+.
-
- A solution of 3-bromo-2-chloro-4-methyl-5-nitropyridine (8.7 g, 34.6 mmol) in DMF-DMA (46.3 mL, 346 mmol) was stirred for 16 h at 45 °C. The reaction mass was concentrated under high vacuum, then purified over silica gel column, the compound was eluted in 30% EA in hexanes, the fractions were collected and concentrated to afford (E)-2-(3-bromo-2-chloro-5-nitropyridin-4-yl)-N,N-dimethylethenamine (10.0 g, 32.6 mmol, 94% yield) as a brown solid. LCMS retention time 2.685 min [D]. MS m/z: 306.0 [M+2H]+.
-
- To a solution of (E)-2-(3-bromo-2-chloro-5-nitropyridin-4-yl)-N,N-dimethylethenamine (4.2 g, 13.70 mmol) in acetic acid (40 mL) was added iron (3.83 g, 68.5 mmol) at room temperature. The reaction mixture was stirred at 60 °C for 3 h. The reaction mixture was cooled to room temperature, quenched with cold water (80 mL), extracted with DCM (3 X 50 mL), combined organic layers were dried over Na2SO4 and concentrated to get crude compound. The crude compound was purified by silica gel column chromatography, the compound was eluted in 0 to 30% EA in hexane, the fractions were collected and concentrated to afford 4-bromo-5-chloro-1H-pyrrolo[2,3-c] pyridine (2.6 g, 11.23 mmol, 82% yield) as light brown solid. LCMS retention time 1.992 min [D]. MS m/z: 233.0 [M+2H]+.
-
- To a solution of 4-bromo-5-chloro-1H-pyrrolo[2,3-c]pyridine (2.6 g, 11.23 mmol) and methylboronic acid (2.017 g, 33.7 mmol) in mixture of THF (2 mL) and water (0.2 mL) was added potassium phosphate tribasic (7.15 g, 33.7 mmol). The reaction mixture was purged with nitrogen for 5 mins, then PdCl2(dppf)-CH2Cl2 adduct (0.917 g, 1.123 mmol) was added. The reaction mixture was purged again for 2 mins. The reaction mixture was heated in a sealed tube at 75 °C for 8 h. The reaction mixture was diluted with EtOAc (50 mL), washed with water (30 mL), brine (10 mL), dried (Na2SO4) and concentrated to get crude material. The crude material was purified by silica gel chromatography on an ISCO instrument using 24 g silica column, the compound was eluted in 30% EtOAc in hexanes, the fractions were collected and concentrated to afford 5-chloro-4-methyl-1H-pyrrolo[2,3-c]pyridine (1.35 g, 8.10 mmol, 72.1 % yield). LCMS retention time 1.623 min [D]. MS m/z: 167.1 [M+H]+.
-
- A solution of 5-chloro-4-methyl-1H-pyrrolo[2,3-c]pyridine (1.35 g, 8.10 mmol), tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5,6-dihydropyridine-1(2H)-carboxylate (2.76 g, 8.91 mmol) and potassium phosphate tribasic (5.16 g, 24.31 mmol) in mixture of THF (20 mL) and water (2 mL) was degassed for 10 min with nitrogen gas. Next, PdCl2(dppf)-CH2Cl2 adduct (0.638 g, 0.810 mmol) was added and the reaction mixture was stirred at 80 °C for 16 h. The reaction mixture was diluted with EtOAc (50 mL), washed with water (30 mL), brine (10 mL), dried (Na2SO4) and concentrated to get crude material. The crude material was purified by silica gel chromatography on an ISCO instrument using 24 g silica column, the compound was eluted in 30% EtOAc in hexanes, the fractions were collected and concentrated to afford tert-butyl 4-(4-methyl-1H-pyrrolo[2,3-c]pyridin-5-yl)-5,6-dihydropyridine-1(2H)-carboxylate (2.05 g, 6.54 mmol, 81% yield) as an off-white solid. LCMS retention time 2.077 min [D]. MS m/z: 314.2 [M+H]+.
-
- To a solution of tert-butyl 4-(4-methyl-1H-pyrrolo[2,3-c]pyridin-5-yl)-5,6-dihydropyridine-1(2H)-carboxylate (2.0 g, 6.38 mmol) in MeOH (20 mL) was added Pd/C (0.204 g, 1.915 mmol). The reaction mixture was stirred under hydrogen bladder at room temperature for 16 h. The reaction mass was filtered through celite, washed with MeOH, the filtrates were collected and concentrated to afford tert-butyl 4-(4-methyl-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidine-1-carboxylate (1.9 g, 6.02 mmol, 94% yield) as a white solid. LCMS retention time 2.069 min [D]. MS m/z: 316.2 [M+H]+.
-
- To a solution of tert-butyl 4-(4-methyl-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidine-1-carboxylate (1.8 g, 5.71 mmol) in DMF (20 mL) at 0 °C was added a solution of NBS (1.016 g, 5.71 mmol) in DMF (3 mL). The reaction mixture was stirred at room temperature for 3 h. The reaction mass was concentrated, partitioned between EtOAc and water, the two layers were separated, the organic layer was washed with water, brine solution, dried over Na2SO4 and concentrated to afford tert-butyl 4-(3-bromo-4-methyl-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidine-1-carboxylate (1.8 g, 3.70 mmol, 65% yield) as light brown solid. LCMS retention time 3.077 min [D]. MS m/z: 396.2 [M+2H]+.
-
- To a solution of tert-butyl 4-(3-bromo-4-methyl-1H-pyrrolo[2,3-c]pyridin-5-yl) piperidine-1-carboxylate (1.8 g, 4.56 mmol) in THF (40 mL) at 0 °C were added TEA (1.273 mL, 9.13 mmol), Boc2O (1.590 mL, 6.85 mmol) and DMAP (0.279 g, 2.282 mmol). The reaction mixture was stirred at room temperature for 6 h. The reaction mass was diluted with EtOAc (50 mL), the organic layer was washed with water and brine solution, dried over Na2SO4 and concentrated to get crude compound. The crude compound was purified by silica gel column chromatography, the compound was eluted in 20% EA in hexane, the fractions were collected and concentrated to afford tert-butyl 3-bromo-5-(1-(tert-butoxycarbonyl)piperidin-4-yl)-4-methyl-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (1.5 g, 3.03 mmol, 66% yield) as an off-white solid. LCMS retention time 2.246 min [D]. MS m/z: 496.2 [M+2H]+.
-
- A solution of tert-butyl 3-bromo-5-(1-(tert-butoxycarbonyl)piperidin-4-yl)-4-methyl-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (1.4 g, 2.83 mmol), 4,4,5,5-tetramethyl-2-(prop-1-en-2-yl)-1,3,2-dioxaborolane (0.571 g, 3.40 mmol) and potassium phosphate tribasic (1.803 g, 8.49 mmol) in THF (20 mL) and water (2 mL) solvent mixture was degassed for 10 min with nitrogen. Next, 2nd generation XPhos precatalyst (0.223 g, 0.283 mmol) was added and the reaction mixture was stirred at 80 °C for 16 h. The reaction mixture was diluted with EtOAc (50 mL), washed with water (30 mL), brine (10 mL), dried (Na2SO4) and concentrated to get crude material. The crude material was purified by silica gel chromatography on an ISCO instrument using 24 g silica column, the compound was eluted in 25% EtOAc in hexanes, the fractions were collected and concentrated to afford tert-butyl 5-(1-(tert-butoxycarbonyl)piperidin-4-yl)-4-methyl-3-(prop-1-en-2-yl)-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (1.05 g, 2.305 mmol, 81% yield) as an off-white solid. LCMS retention time 0.81 min [D] MS m/z: 456.2 [M+H]+.
-
- To a solution of tert-butyl 5-(1-(tert-butoxycarbonyl)piperidin-4-yl)-4-methyl-3-(prop-1-en-2-yl)-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (1.05 g, 2.305 mmol) in ethyl acetate (30 mL) was added Pd/C (0.123 g, 1.152 mmol). The reaction mixture was stirred under hydrogen bladder for 2 h. The reaction mass was filtered through celite, washed with MeOH, the filtrate was collected and concentrated to get crude compound. The crude was purified by silica gel column chromatography, the compound was eluted in 10% EA in hexane, the fractions were collected and concentrated to afford tert-butyl 5-(1-(tert-butoxycarbonyl)piperidin-4-yl)-3-isopropyl-4-methyl-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (0.65 g, 1.419 mmol, 61.6 % yield) as a gummy solid. LCMS retention time 4.761 min [D]. MS m/z: 458.2 [M+H]+.
-
- To a solution of tert-butyl 5-(1-(tert-butoxycarbonyl)piperidin-4-yl)-3-isopropyl-4-methyl-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (0.5 g, 1.093 mmol) in THF (12 mL) was added LDA (2.185 mL, 4.37 mmol) at -78 °C. The reaction mixture was stirred at the same temperature for 1.5 h, then 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (0.892 mL, 4.37 mmol) was added. The reaction mixture was stirred for 1 h at -50 °C. The reaction was quenched with aqueous NH4Cl. The reaction mixture was extracted with EtOAc, washed with water, brine, dried over Na2SO4 and concentrated to get crude compound. The crude was purified by silica gel column chromatography, the compound was eluted in 40% EA in hexane, the fractions were collected and concentrated to afford tert-butyl 5-(1-(tert-butoxycarbonyl)piperidin-4-yl)-3-isopropyl-4-methyl-2-(4,4, 5, 5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (0.4 g, 0.685 mmol, 62.7 % yield) as a semi solid. LCMS retention time 1.48 min [G], MS m/z: 584.5 [M+H]+.
-
- A solution of tert-butyl 5-(1-(tert-butoxycarbonyl)piperidin-4-yl)-3-isopropyl-4-methyl-2-(4,4, 5, 5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (0.4 g, 0.685 mmol), 6-bromo-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (0.172 g, 0.754 mmol) and potassium phosphate tribasic (0.436 g, 2.056 mmol) in 1,4-dioxane (8 mL) and water (1 mL) solvent mixture was degassed for 10 min with nitrogen. Next, PdCl2(dppf)-CH2Cl2 adduct (0.056 g, 0.069 mmol) was added and the reaction mixture was stirred at 90 °C for 8 h. The reaction mixture was diluted with EtOAc (50 mL), washed with water (30 mL), brine (10 mL), dried (Na2SO4) and concentrated to get crude material. The crude material was purified by silica gel chromatography on an ISCO instrument using 24 g silica column, compound was eluted in 60% EtOAc in hexanes, the fractions were collected and concentrated to afford tert-butyl 5-(1-(tert-butoxycarbonyl) piperidin-4-yl)-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-methyl-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (0.3 g, 0.496 mmol, 72% yield) as an off-white solid. LCMS retention time 2.779 min [D]. MS m/z: 605.4 [M+H]+.
- To a stirred solution of tert-butyl 5-(1-(tert-butoxycarbonyl)piperidin-4-yl)-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-methyl-1H-pyrrolo[2,3-c] pyridine-1-carboxylate (0.3 g, 0.496 mmol) in DCM (1 mL) was added 4 M HCl in dioxane (1.240 mL, 4.96 mmol) at 0 °C. The reaction mixture was stirred at room temperature for 2 h and then concentrated to get crude compound. The crude compound was purified by preparative LCMS using method D2, fractions containing the product were combined and dried using Genevac centrifugal evaporator to afford 6-(3-isopropyl-4-methyl-5-(piperidin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo [1,5-a]pyridine (0.18 g, 0.445 mmol, 90% yield). LCMS retention time 1.356 min [P]. MS m/z: 405.1 [M+H]+; 1H NMR (400 MHz, DMSO-d 6) δ ppm 11.58 (br. s., 1 H) 8.69 (d, J=1.22 Hz, 1 H) 8.45-8.58 (m, 2 H) 7.14 (d, J=0.98 Hz, 1 H) 4.04 (s, 3 H) 3.58-3.68 (m, 1 H) 3.10-3.20 (m, 2 H) 2.79 (t, J=11.74 Hz, 1 H) 2.68 (s, 3 H) 1.87-1.98 (m, 2 H) 1.82 (s, 3 H) 1.65 (d, J=11.49 Hz, 2 H) 1.21-1.35 (m, 6 H).
-
- To a solution of 6-(3-isopropyl-4-methyl-5-(piperidin-4-yl)-1H-pyrrolo[2,3-c] pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (20 mg, 0.049 mmol) and 2-chloro-N-methylacetamide (7.98 mg, 0.074 mmol) in DMF (0.5 mL) and THF (1 mL) solvent mixture was added TEA (0.021 mL, 0.148 mmol) at room temperature. The reaction mixture was stirred for 16 h. The reaction mass was concentrated to get crude compound. The crude compound was purified by preparative LCMS using method D2, fractions containing the product were combined and dried using Genevac centrifugal evaporator to afford 2-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-methyl-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-1-yl)-N-methylacetamide (9.1 mg, 0.018 mmol, 36.8 % yield). LCMS retention time 1.632 min [P]. MS m/z: 476.1 [M+H]+; 1H NMR (400 MHz, DMSO-d 6) δ ppm 11.52 (s, 1 H) 8.69 (d, J=1.22 Hz, 1 H) 8.54 (s, 1 H) 8.50 (s, 1 H) 7.69 (d, J=3.67 Hz, 1 H) 7.14 (s, 1 H) 4.04 (s, 3 H) 3.57-3.66 (m, 1 H) 3.17 (d, J=4.16 Hz, 1 H) 2.87-2.94 (m, 3 H) 2.63-2.69 (m, 4 H) 2.18-2.27 (m, 2 H) 2.02-2.14 (m, 2 H) 1.91 (s, 3 H) 1.62 (d, J=11.98 Hz, 2 H) 1.28 (d, J=7.09 Hz, 6 H).
-
-
- To a solution of 4-methyl-5-nitropyridin-2(1H)-one (30 g, 195 mmol) in a mixture of acetonitrile (300 mL) and water (30 mL) was added Selectfluor (76 g, 214 mmol) at room temperature. The reaction mixture was stirred at 65 °C for 48 h. The reaction mass was partitioned between water and EtOAc, the organic layer was washed with water and brine, dried over Na2SO4 and concentrated to afford 3-fluoro-4-methyl-5-nitropyridin-2(1H)-one (32.1 g, 121 mmol, 62% yield) as a gummy solid. LCMS retention time 2.075 min [D]. MS m/z: 171.0 [M-H]+.
-
- 2-chloro-3-fluoro-4-methyl-5-nitropyridine (8 g, 42.0 mmol, 70% yield) was prepared according to the general procedure described in Intermediate 1B using 3-fluoro-4-methyl-5-nitropyridin-2-ol (19.1, 59.9 mmol) as the starting intermediate. LCMS retention time 2.399 min [D]. MS m/z: 189.1 [M-H]+.
-
- (E)-2-(2-chloro-3-fluoro-5-nitropyridin-4-yl)-N,N-dimethylethenamine (6.5 g, 26.5 mmol, 70.0 % yield) was prepared according to the general procedure described in Intermediate 1C using 2-chloro-3-fluoro-4-methyl-5-nitropyridine (7.2 g, 37.8 mmol) as the starting intermediate. LCMS retention time 2.634 min [D]. MS m/z: 246.0 [M+H]+.
-
- 5-chloro-4-fluoro-1H-pyrrolo[2,3-c]pyridine (4.8 g, 28.1 mmol, 93% yield) was prepared according to the general procedure described in Intermediate 1D using (E)-2-(2-chloro-3-fluoro-5-nitropyridin-4-yl)-N,N-dimethylethenamine (7.4 g, 30.1 mmol) as the starting intermediate. LCMS retention time 1.658 min [D]. MS m/z: 171.0 [M+H]+.
-
- tert-butyl 4-(4-fluoro-1H-pyrrolo[2,3-c]pyridin-5-yl)-5,6-dihydropyridine-1(2H)-carboxylate (6.1 g, 19.22 mmol, 72.9 % yield) was prepared according to the general procedure described in Intermediate 1F using 5-chloro-4-fluoro-1H-pyrrolo[2,3-c]pyridine (4.5 g, 26.4 mmol) as the starting intermediate. LCMS retention time 2.582 min [D]. MS m/z: 318.2 [M+H]+.
-
- tert-butyl 4-(4-fluoro-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidine-1-carboxylate (5.75 g, 18.00 mmol, 94% yield) was prepared according to the general procedure described in Intermediate 1G using tert-butyl 4-(4-fluoro-1H-pyrrolo[2,3-c]pyridin-5-yl)-5,6-dihydropyridine-1(2H)-carboxylate (6.1 g, 19.22 mmol) as the starting intermediate. LCMS retention time 2.647 min [D]. MS m/z: 320.2 [M+H]+.
-
- tert-butyl 4-(3-bromo-4-fluoro-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidine-1-carboxylate (7.1 g, 17.83 mmol, 99 % yield) was prepared according to the general procedure described in Intermediate 1H using tert-butyl 4-(4-fluoro-1H-pyrrolo[2,3-c] pyridin-5-yl)piperidine-1-carboxylate (5.75 g, 18.00 mmol) as the starting intermediate. LCMS retention time 3.067 min [D]. MS m/z: 400.2 [M+2H]+.
-
- tert-butyl 3-bromo-5-(1-(tert-butoxycarbonyl)piperidin-4-yl)-4-fluoro-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (6.7 g, 13.44 mmol, 75% yield) was prepared according to the general procedure described in Intermediate 1I using tert-butyl 4-(3-bromo-4-fluoro-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidine-1-carboxylate (7.1 g, 17.83 mmol) as the starting intermediate. LCMS retention time 1.894 min [D]. MS m/z: 500.0 [M+2H]+.
-
- tert-butyl 5-(1-(tert-butoxycarbonyl)piperidin-4-yl)-4-fluoro-3-(prop-1-en-2-yl)-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (5.7 g, 12.40 mmol, 92% yield) was prepared according to the general procedure described in Intermediate 1J using tert-butyl 3-bromo-5-(1-(tert-butoxycarbonyl)piperidin-4-yl)-4-fluoro-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (6.7 g, 13.44 mmol) as the starting intermediate. LCMS retention time 4.576 min [D]. MS m/z: 460.2 [M+H]+.
-
- tert-butyl 5-(1-(tert-butoxycarbonyl)piperidin-4-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (4.6 g, 9.97 mmol, 80% yield) was prepared according to the general procedure described in Intermediate 1K using tert-butyl 5-(1-(tert-butoxycarbonyl)piperidin-4-yl)-4-fluoro-3-(prop-1-en-2-yl)-1H-pyrrolo[2,3-c] pyridine-1-carboxylate (5.7 g, 12.40 mmol) as the starting intermediate. LCMS retention time 1.602 min [D]. MS m/z: 462.2 [M+H]+.
-
- tert-butyl 5-(1-(tert-butoxycarbonyl)piperidin-4-yl)-4-fluoro-3-isopropyl-2-(4,4, 5, 5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (2.42 g, 3.87 mmol, 74.5 % yield) was prepared according to the general procedure described in Intermediate 1L using tert-butyl 5-(1-(tert-butoxycarbonyl)piperidin-4-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (2.4 g, 5.20 mmol) as the starting intermediate. LCMS retention time 2.358 min [D]. MS m/z: 588.2 [M+H]+.
-
- tert-butyl 5-(1-(tert-butoxycarbonyl)piperidin-4-yl)-4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4] triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (0.42 g, 0.661 mmol, 48.5 % yield) was prepared according to the general procedure described in Intermediate 1M using tert-butyl 5-(1-(tert-butoxycarbonyl)piperidin-4-yl)-4-fluoro-3-isopropyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrrolo[2,3-c] pyridine-1-carboxylate (0.8 g, 1.362 mmol) as the starting intermediate. LCMS retention time 3.396 min [D]. MS m/z: 609.3 [M+H]+.
- 6-(4-fluoro-3-isopropyl-5-(piperidin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4] triazolo[1,5-a]pyridine (0.26 g, 0.637 mmol, 92% yield) was prepared according to the general procedure described in Example 1 using tert-butyl 5-(1-(tert-butoxycarbonyl)piperidin-4-yl)-4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (0.42 g, 0.690 mmol) as the starting intermediate. LCMS retention time 1.086 min [P]. MS m/z: 409.3 [M+H]+; 1H NMR (400 MHz, DMSO-d 6) δ ppm 12.01 (bs, 1 H) 8.69 (d, J=1.0 Hz, 1H), 8.56 (d, J=2.4 Hz, 1H), 8.55 (s, 1H), 7.17 (s, 1H), 4.07 (s, 3H), 3.19-3.09 (m, 3H), 2.78 (t, J=11.2 Hz, 2H), 1.92 (d, J=8.8 Hz, 2H), 1.86 (s, 3H), 1.72 (d, J=12.7 Hz, 2H), 1.35 (d, J=6.8 Hz, 6H).
-
-
- To a solution of 5-bromo-1H-pyrrolo[2,3-c]pyridine (3.2 g, 16.24 mmol) in dioxane (60 mL) and water (20.00 mL) solvent mixture were added tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5,6-dihydropyridine-1(2H)-carboxylate(5.02 g, 16.24 mmol) and potassium phosphate tribasic (10.34 g, 48.7 mmol). The reaction mixture was degassed with nitrogen for 5 min., PdCl2(dppf)-CH2Cl2 adduct (1.326 g, 1.624 mmol) was added, and the reaction mixture was stirred in a sealed tube at 90 °C for 3 h. The reaction mass was concentrated, then the residue was diluted with EtOAc (20 mL), the solids were filtered, the filtrate was collected and concentrated to get crude compound. The crude compound was purified by silica gel chromatography on an ISCO instrument using 40 g silica column, the compound was eluted in 15% EA in hexanes, the fractions were collected and concentrated to afford tert-butyl 4-(1H-pyrrolo[2,3-c] pyridin-5-yl)-5,6-dihydropyridine-1(2H)-carboxylate (2.5 g, 8.35 mmol, 51% yield) as a pale brown solid. LCMS retention time 0.95 min [L] MS m/z: 300.2 [M+H]+.
-
- To a solution of tert-butyl 4-(1H-pyrrolo[2,3-c]pyridin-5-yl)-5,6-dihydropyridine-1(2H)-carboxylate (3.2 g, 10.69 mmol) in MeOH (20 mL) and EtOAc (20 mL) solvent mixture was added Pd/C (1.138 g, 10.69 mmol). The reaction mixture was stirred at room temperature for 3 h under hydrogen. The reaction mass was filtered through celite, washed with EtOAc (2 X 50 mL) and concentrated to afford tert-butyl 4-(1H-pyrrolo[2,3-c]pyridin-5-yl)piperidine-1-carboxylate (2.5 g, 8.30 mmol, 78 % yield) as an off-white solid. LCMS retention time 0.88min [D] MS m/z: 302.2 [M+H]+.
-
- To a solution of tert-butyl 4-(1H-pyrrolo[2,3-c]pyridin-5-yl)piperidine-1-carboxylate (300 mg, 0.995 mmol) in DMF (5 mL) was added NBS (142 mg, 0.796 mmol) at 0 °C. The reaction mixture was stirred at same temperature for 1 h. The reaction was quenched with ice (50 g). The reaction mixture was extracted with EtOAc (3 X 50 mL), the combined organic layer was concentrated to get crude compound. The crude was purified by silica gel chromatography on an ISCO instrument using 24 g silica column, the compound was eluted in 10% EA in hexanes, the fractions were collected and concentrated to afford tert-butyl 4-(3-bromo-1H-pyrrolo[2,3-c]pyridin-5-yl) piperidine-1-carboxylate (300 mg, 0.789 mmol, 79 % yield) as an off-white solid. LCMS retention time 1.31min [G] MS m/z: 382.1 [M+2H]+.
-
- tert-butyl 3-(3-isopropyl-1H-indol-5-yl)azetidine-1-carboxylate (700 mg, 1.759 mmol, 33.4 % yield) was prepared according to the general procedure described in Intermediate 4A using tert-butyl 4-(3-bromo-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidine-1-carboxylate (2.5 g, 6.57 mmol) as the starting intermediate. LCMS retention time 0.51 min [D] MS m/z: 340.8 [M+H]+.
-
- tert-butyl 4-(3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidine-1-carboxylate (1.8 g, 2.52 mmol, 48% yield) was prepared according to the general procedure described in Intermediate 4B using tert-butyl 4-(3-(prop-1-en-2-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl) piperidine-1-carboxylate (1.9 g, 5.56 mmol) as the starting intermediate. LCMS retention time 0.80 min [D]. MS m/z: 344.2 [M+H]+.
-
- To a solution of tert-butyl 4-(3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl) piperidine-1-carboxylate (1.9 g, 5.53 mmol) in DCM (10 mL) were added Boc2O (1.670 mL, 7.19 mmol) and DMAP (10.14 g, 83 mmol) at room temperature. The reaction mixture was stirred at same temperature for 12 h. The reaction mass was concentrated to get crude compound. The crude compound was purified by silica gel chromatography on an ISCO instrument using 12 g silica column, the compound was eluted in 35% EA in hexanes, the fractions were collected and concentrated to afford tert-butyl 5-(1-(tert-butoxycarbonyl)piperidin-4-yl)-3-isopropyl-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (1.2 g, 2.71 mmol, 49 % yield) as an off-white solid. LCMS retention time 1.99 min [D] MS m/z: 444.4 [M+H]+.
-
- To a solution of tert-butyl 5-(1-(tert-butoxycarbonyl)piperidin-4-yl)-3-isopropyl-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (550 mg, 1.240 mmol) in THF (3 mL) was added LDA (2.480 mL, 4.96 mmol) at -78 °C. The reaction mixture was stirred at the same temperature for 1.5 h. Next, 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (0.769 mL, 3.72 mmol) was added and the reaction mixture was stirred at -45 °C for 2 h. The reaction was quenched with ammonia chloride (20 mL). The reaction mixture was separated, the organic layers were concentrated to get crude compound. The crude compound was purified by silica gel chromatography on an ISCO instrument using 24 g silica column, the compound was eluted in 25% EA in hexanes, the fractions were collected and concentrated to afford tert-butyl 5-(1-(tert-butoxycarbonyl)piperidin-4-yl)-3-isopropyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (320 mg, 0.562 mmol, 45% yield). LCMS retention time 1.03 min [D]. MS m/z: 514.4 [M+H-tBu]+.
-
- To a solution of tert-butyl 5-(1-(tert-butoxycarbonyl)piperidin-4-yl)-3-isopropyl-2-(4,4, 5, 5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (300 mg, 0.527 mmol) in dioxane (18 mL) and water (6.00 mL) solvent mixture were added 6-bromo-8-methyl-[1,2,4]triazolo[1,5-a]pyridine (335 mg, 1.580 mmol) and potassium phosphate tribasic (335 mg, 1.580 mmol). The reaction mixture was degassed with nitrogen for 5 min, potassium phosphate tribasic (335 mg, 1.580 mmol) was added, and the reaction mixture was stirred in a sealed tube at 90 °C for 3 h. The reaction mass was concentrated, the residue was dissolved in EtOAc (50 mL), the solid was filtered and washed with EtOAc (2 X 30 mL), the combined filtrates were collected and concentrated to get crude compound. The crude compound was purified by silica gel chromatography on an ISCO instrument using 24 g silica column, the compound was eluted in 35% EA in hexanes, the fractions were collected and concentrated to afford tert-butyl 5-(1-(tert-butoxycarbonyl)piperidin-4-yl)-3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (150 mg, 0.261 mmol, 49.5 % yield) as an off-white solid. LCMS retention time 1.16 min [D] MS m/z: 575.3 [M+H]+.
- To a solution of tert-butyl 5-(1-(tert-butoxycarbonyl)piperidin-4-yl)-3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (31 mg, 0.054 mmol) in DCM (2 mL) was added 4 M HCl in dioxane (1 mL, 4.00 mmol). The mixture was stirred at room temperature for 3 h. The reaction mass was concentrated and the residue was triturated with diethyl ether (2 X 10 mL), and dried under vacuum to afford 6-(3-isopropyl-5-(piperidin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methyl-[1,2,4] triazolo[1,5-a]pyridine (2.1 mg, 5.61 µmol, 10% yield) as a white solid. LCMS retention time 1.209 min [G], MS m/z: 375.2 [M+H]+; 1H NMR (400 MHz, METHANOL-d 4) δ ppm 8.85 (s, 1 H), 8.69 (s, 1 H), 8.52 (s, 1 H), 7.70 (s, 2 H), 3.44-3.61 (m, 3 H), 3.38 (br. s., 1 H), 3.05-3.27 (m, 3 H), 2.75 (s, 3 H), 2.03-2.27 (m, 4 H), 1.94 (s, 3 H), 1.53 (d, J=6.85 Hz, 5 H).
-
- To a solution of 6-(3-isopropyl-5-(piperidin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine (25 mg, 0.067 mmol) in DMF (1 mL) were added triethylamine (0.028 mL, 0.200 mmol), 2-(dimethylamino)acetic acid (13.77 mg, 0.134 mmol) and HATU (76 mg, 0.200 mmol) at 0 °C. The reaction mixture was stirred at room temperature for 3 h. The reaction mass was purified by preparative LCMS method D2, the fractions containing the product were combined and dried using Genevac centrifugal evaporator to afford 2-(dimethylamino)-1-(4-(3-isopropyl-2-(8-methyl-[1,2,4] triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl) piperidin-1-yl)ethanone (11 mg, 0.024 mmol, 35.9 % yield) as a pale solid. LCMS retention time 1.346 min [E]. MS m/z: 460.3 [M+H]+; 1H NMR (400 MHz, DMSO-d 6) δ ppm 11.62 (s, 1 H), 8.90 (s, 1 H), 8.65 (s, 1 H), 8.55 (s, 1 H), 7.62 (s, 1 H), 7.53 (s, 1 H), 4.52-4.48 (m, 1 H), 4.16-4.11 (m, 1 H), 3.26-3.12 (m, 3 H), 3.04-2.96 (m, 2 H), 2.67-2.64 (m, 1 H), 2.63 (s 3 H), 2.25 (s, 6 H), 1.90-1.85 (m 2 H), 1.82-1.75 (m, 1 H), 1.66-1.62 (m, 1 H), 1.41 (d, J=6.85 Hz, 6 H).
-
-
- To a solution of 2-bromo-4-methyl-5-nitropyridine (10 g, 46.1 mmol) in acetonitrile (50 mL) were added tert-butyl piperazine-1-carboxylate (8.58 g, 46.1 mmol) and DIPEA (12.07 mL, 69.1 mmol) at room temperature. The reaction mixture was stirred at 60 °C for 4 h. The solids were filtered, washed with acetonitrile (50 mL) and dried under vacuum to afford tert-butyl 4-(4-methyl-5-nitropyridin-2-yl)piperazine-1-carboxylate (10 g, 19.85 mmol, 43% yield) as a white solid. LCMS retention time 1.39 min [G], MS m/z: 323.5 [M+H]+.
-
- To a solution tert-butyl 4-(4-methyl-5-nitropyridin-2-yl)piperazine-1-carboxylate (24 g, 74.5 mmol) in DMF (70 mL) was added 1,1-dimethoxy-N,N-dimethylmethanamine (49.8 mL, 372 mmol). The reaction mixture was stirred at 90 °C for 24 h. The reaction mass was concentrated, the residue was dissolved in DCM (250 mL), washed with water (2 X 50 mL), brine (20 mL), dried (Na2SO4) and concentrated to afford (E)-tert-butyl 4-(4-(2-(dimethylamino)vinyl)-5-nitropyridin-2-yl)piperazine-1-carboxylate (12 g, 20.03 mmol, 27% yield) as an oil. LCMS retention time 1.39 min [L] MS m/z: 378.5 [M+H]+.
-
- To a solution tert-butyl (E)-tert-butyl 4-(4-(2-(dimethylamino)vinyl)-5-nitropyridin-2-yl)piperazine-1-carboxylate (15 g, 39.7 mmol) in MeOH (150 mL) was added Pd/C (1.5 g, 14.10 mmol). The reaction mixture was stirred at 60 psi under hydrogen in an autoclave for 12 h. The Pd/C was filtered through celite, washed with EtOAc (2 X 50 mL), the filtrates were collected and concentrated to afford tert-butyl 4-(1H-pyrrolo[2,3-c]pyridin-5-yl)piperazine-1-carboxylate (6.5 g, 16.34 mmol, 41.1 % yield) as an off-white solid. LCMS retention time 2.10 min [L] MS m/z: 303.2 [M+H]+.
-
- tert-butyl 4-(3-bromo-1H-pyrrolo[2,3-c]pyridin-5-yl)piperazine-1-carboxylate (6.5 g, 15.00 mmol, 76 % yield) was prepared according to the general procedure described in Intermediate 4C using tert-butyl 4-(1H-pyrrolo[2,3-c]pyridin-5-yl) piperazine-1-carboxylate (6 g, 19.84 mmol) as the starting intermediate. LCMS retention time 0.98 min [G]. MS m/z: 382.9 [M+H]+.
-
- To a solution of tert-butyl 4-(3-bromo-1H-pyrrolo[2,3-c]pyridin-5-yl)piperazine-1-carboxylate (1.1 g, 2.89 mmol) in THF (20 mL) were added triethylamine (1.206 mL, 8.66 mmol), Boc2O (0.804 mL, 3.46 mmol) and DMAP (7.05 mg, 0.058 mmol) at room temperature. The reaction mixture was stirred at same temperature for 12 h. The reaction mass was concentrated to get the crude compound. The crude compound was purified by silica gel chromatography on an ISCO instrument using 24 g silica column, the compound was eluted in 35% EA in hexanes, the fractions were collected and concentrated to afford tert-butyl 3-bromo-5-(4-(tert-butoxycarbonyl)piperazin-1-yl)-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (900 mg, 1.458 mmol, 50% yield) as a gummy solid. LCMS retention time 1.88 min [G] MS m/z: 483.3 [M+H]+.
-
- tert-butyl 5-(4-(tert-butoxycarbonyl)piperazin-1-yl)-3-(prop-1-en-2-yl)-1H-pyrrolo[2,3-c] pyridine-1-carboxylate (450 mg, 0.590 mmol, 29% yield) was prepared according to the general procedure described in Intermediate 4D using tert-butyl 5-(4-(tert-butoxycarbonyl)piperazin-1-yl)-3-isopropyl-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (900 mg, 2.024 mmol) as the starting intermediate. LCMS retention time 1.88 min [L] MS m/z: 443.5 [M+H]+.
-
- tert-butyl 5-(4-(tert-butoxycarbonyl)piperazin-1-yl)-3-isopropyl-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (310 mg, 0.572 mmol, 56% yield) was prepared according to the general procedure described in Intermediate 4E using tert-butyl 5-(4-(tert-butoxycarbonyl)piperazin-1-yl)-3-(prop-1-en-2-yl)-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (450 mg, 1.017 mmol) as the starting intermediate. LCMS retention time 1.92 min [L] MS m/z: 445.5 [M+H]+.
-
- To a solution of tert-butyl 5-(4-(tert-butoxycarbonyl)piperazin-1-yl)-3-isopropyl-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (1 g, 2.249 mmol) in DCE (10 mL) was added NCS (0.751 g, 5.62 mmol) at room temperature. The reaction mixture was stirred at room temperature for 12 h. The reaction was quenched with water. The reaction mixture was extracted with DCM, the organic layer was concentrated to get crude compound. The crude compound was purified by silica gel chromatography on an ISCO instrument using 24 g silica column, the compound was eluted in 20% EA in hexanes, the fractions were collected and concentrated to afford tert-butyl 5-(4-(tert-butoxycarbonyl)piperazin-1-yl)-4-chloro-3-isopropyl-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (150 mg, 0.307 mmol, 13% yield) as an off-white solid. LCMS retention time 3.487 min [G], MS m/z: 479.2 [M+H]+.
-
- tert-butyl 5-(4-(tert-butoxycarbonyl)piperazin-1-yl)-4-chloro-3-isopropyl-2-(4,4, 5, 5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (158 mg, 0.243 mmol, 68.4 % yield) was prepared according to the general procedure described in Intermediate 1L using tert-butyl 5-(4-(tert-butoxycarbonyl)piperazin-1-yl)-4-chloro-3-isopropyl-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (170 mg, 0.355 mmol) as the starting intermediate. LCMS retention time 3.328 min [G], MS m/z: 605.4 [M+H]+.
-
- tert-butyl 5-(4-(tert-butoxycarbonyl)piperazin-1-yl)-4-chloro-3-isopropyl-2-(8-methoxy-[1,2,4] triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (180 mg, 0.207 mmol, 62.6 % yield) was prepared according to the general procedure described in Intermediate 1M using tert-butyl 5-(4-(tert-butoxycarbonyl)piperazin-1-yl)-4-chloro-3-isopropyl-2-(4,4,5,5-tetramethyl-15-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrrolo[2,3-c] pyridine-1-carboxylate (200 mg, 0.331 mmol) as the starting intermediate. LCMS retention time 1.96 min [D], MS m/z: 628.2 [M+H]+.
- 6-(4-chloro-3-isopropyl-5-(piperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4] triazolo[1,5-a]pyridine (140 mg, 0.329 mmol, 86 % yield) was prepared according to the general procedure described in Example 4 using tert-butyl 5-(4-(tert-butoxycarbonyl)piperazin-1-yl)-4-chloro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (240 mg, 0.383 mmol) in HCl (3 mL, 12.00 mmol) as the starting intermediate. LCMS retention time 1.329 min [E], MS m/z: 426.2 [M+H]+; 1H NMR (400 MHz, DMSO-d6) δ ppm 8.71 (d, J=1.2 Hz, 1H), 8.54 (s, 1H), 8.45 (s, 1H), 7.15 (s, 1H), 4.04 (s, 3H), 3.06 (d, J=5.1 Hz, 4H), 2.99-2.91 (m, 4H), 1.87 (s, 2H), 1.33 (d, J=7.3 Hz, 6H).
-
-
- To a solution of tert-butyl 5-(4-(tert-butoxycarbonyl)piperazin-1-yl)-4-chloro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (100 mg, 0.160 mmol) in MeOH (5 mL) was added Pd/C (17.00 mg, 0.160 mmol). The mixture was stirred at room temperature under hydrogen bladder for 3 h. The reaction mass was filtered, washed with EtOAc (2 × 50 mL) and concentrated to afford tert-butyl 5-(4-(tert-butoxycarbonyl)piperazin-1-yl)-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (65 mg, 0.019 mmol, 11% yield) as a pale solid. LCMS retention time 1.64 min [D] MS m/z: 592.6 [M+H]+.
- 6-(3-isopropyl-5-(piperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (0.7 mg, 1.788 µmol, 2% yield) was prepared according to the general procedure described in Example 4 using tert-butyl 5-(4-(tert-butoxycarbonyl) piperazin-1-yl)-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (65 mg, 0.110 mmol) as the starting intermediate. LCMS retention time 1.18 min [F], MS m/z: 392.1 [M+H]+; 1H NMR (400MHz, DMSO-d6) δ ppm 11.30 (s, 1H), 8.64 (s, 1H), 8.53 (s, 1H), 8.42 (s, 1H), 7.17 (s, 1H), 6.90 (s, 1H), 4.07 (s, 3H), 2.90 (br. s., 4H), 1.90 (s, 2H), 1.42 (d, J=7.1 Hz, 6H).
-
-
- 8-(4-fluoro-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-1,4-dioxa-8-azaspiro[4.5]decane (3.7 g, 9.08 mmol, 68.3 % yield) was prepared as described in the preparation of Intermediate 213B using 5-chloro-4-fluoro-1-((2-(trimethylsilyl)ethoxy) methyl)-1H-pyrrolo[2,3-c]pyridine (4.0 g, 13.30 mmol) and 1,4-dioxa-8-azaspiro[4.5]decane (2.86 g, 19.94 mmol) as the starting intermediates. LCMS retention time 3.410 min [D]. MS (E-) m/z: 408.2 (M+H).
-
- 8-(3-bromo-4-fluoro-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-1,4-dioxa-8-azaspiro[4.5]decane (5.01 g, 10.30 mmol, 87 % yield) was prepared as described in the preparation of Intermediate 213C using 8-(4-fluoro-1-((2-(trimethylsilyl)ethoxy) methyl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-1,4-dioxa-8-azaspiro[4.5]decane (4.8 g, 11.78 mmol) as the starting intermediate. LCMS retention time 1.77 min [L]. MS (E-) m/z: 488.8 (M+2H).
-
- 8-(4-fluoro-3-(prop-1-en-2-yl)-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-1,4-dioxa-8-azaspiro[4.5]decane (3.8 g, 8.49 mmol, 82 % yield) was prepared as described in the preparation of intermediate 213D using 8-(3-bromo-4-fluoro-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-1,4-dioxa-8-azaspiro[4.5]decane (5.01 g, 10.30 mmol) and 4,4,5,5-tetramethyl-2-(prop-1-en-2-yl)-1,3,2-dioxaborolane (2.077 g, 12.36 mmol) as the starting intermediates. LCMS retention time 4.033 min [D]. MS (E-) m/z: 448.2 (M+H).
-
- 8-(4-fluoro-3-isopropyl-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrrolo[2,3-c] pyridin-5-yl)-1,4-dioxa-8-azaspiro[4.5]decane (3.6 g, 8.01 mmol, 97 % yield) was prepared as described in the preparation of Intermediate 213E using 8-(4-fluoro-3-(prop-1-en-2-yl)-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-1,4-dioxa-8-azaspiro[4.5]decane (3.7 g, 8.27 mmol) as the starting intermediate. LCMS retention time 4.193 min [D]. MS (E-) m/z: 450.2 (M+H).
-
- 8-(4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)-1,4-dioxa-8-azaspiro[4.5]decane (1.4 g, 4.38 mmol, 79 % yield) was prepared as described in the preparation of Intermediate 213F using 8-(4-fluoro-3-isopropyl-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-1,4-dioxa-8-azaspiro[4.5]decane (2.5 g, 5.56 mmol) as the starting intermediate. LCMS retention time 2.709 min [D]. MS (E-) m/z: 320.2 (M+H).
-
- tert-butyl 4-fluoro-3-isopropyl-5-(1,4-dioxa-8-azaspiro[4.5]decan-8-yl)-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (1.41 g, 3.36 mmol, 89 % yield) was prepared as described in the preparation of Intermediate 213G using 8-(4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)-1,4-dioxa-8-azaspiro[4.5]decane (1.2 g, 3.76 mmol) as the starting intermediate. LCMS retention time 4.227 min [D]. MS (E-) m/z: 420.2 (M+H).
-
- tert-butyl 4-fluoro-3-isopropyl-5-(1,4-dioxa-8-azaspiro[4.5]decan-8-yl)-2-(4,4, 5, 5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (1.26 g, 2.310 mmol, 69.2 % yield) was prepared as described in the preparation of Intermediate 213H using tert-butyl 4-fluoro-3-isopropyl-5-(1,4-dioxa-8-azaspiro[4.5]decan-8-yl)-1H-pyrrolo[2,3-c] pyridine-1-carboxylate (1.4 g, 3.34 mmol) as the starting intermediate. LCMS retention time 4.527 min [D]. MS (E-) m/z: 546.3 (M+H).
-
- tert-butyl 4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-5-(1,4-dioxa-8-azaspiro[4.5]decan-8-yl)-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (0.51 g, 0.900 mmol, 78 % yield) was prepared as described in the preparation of Intermediate 2131 using tert-butyl 4-fluoro-3-isopropyl-5-(1,4-dioxa-8-azaspiro[4.5]decan-8-yl)-2-(4,4, 5, 5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (0.63 g, 1.155 mmol) and 6-bromo-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (0.342 g, 1.501 mmol) as the starting intermediates. LCMS retention time 3.460 min [D]. MS (E-) m/z: 567.5 (M+H).
-
- 1-(4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-4-one (0.32 g, 0.757 mmol, 95 % yield) was prepared as described in the preparation of Example 4 using tert-butyl 4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-5-(1,4-dioxa-8-azaspiro[4.5]decan-8-yl)-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (0.45 g, 0.794 mmol) as the starting intermediate. LCMS retention time 2.129 min [D]. MS (E-) m/z: 423.2 (M+H).
- To a solution of 1-(4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-4-one (25 mg, 0.059 mmol) and oxetan-3-amine (6.49 mg, 0.089 mmol) in mixture of DMF (0.5 mL) and THF (0.5 mL) was added AcOH (0.339 µl, 5.92 µmοl). The reaction mixture was stirred for 12 h at ambient temperature. Sodium cyanoborohydride (7.44 mg, 0.118 mmol) was added, and the reaction mixture was stirred for 1 h at ambient temperature. The reaction was quenched with 0.2 ml of water. The reaction mixture was concentrated to get crude compound. The crude material was purified by Preparative LCMS using method D2, fractions containing the product was combined and dried using Genevac centrifugal evaporator to afford 1-(4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-(oxetan-3-yl)piperidin-4-amine (16.6 mg, 0.034 mmol, 57.0 % yield). LCMS retention time 1.383 min [P]. MS m/z: 480.3 [M+H] +; 1H NMR (400MHz, DMSO-d6) δ 11.77 (s, 1H), 8.67 (s, 1H), 8.54 (s, 1H), 8.29 (s, 1H), 7.15 (s, 1H), 4.66 (t, J=6.6 Hz, 2H), 4.36 (t, J=6.2 Hz, 2H), 4.06 (s, 4H), 3.26 (br. s., 2H), 3.17 (s, 1H), 2.80 (t, J=11.9 Hz, 2H), 1.91 (s, 2H), 1.79 (d, J=13.9 Hz, 2H), 1.50-1.38 (m, 2H), 1.34 (d, J=7.1 Hz, 6H).
-
-
- To a solution of 5-chloro-4-methyl-1H-pyrrolo[2,3-c]pyridine (5.6 g, 33.6 mmol) in dry THF (120 mL) was added sodium hydride (1.266 g, 52.8 mmol) portion wise at 0 °C, then stirred for 30 mins, then SEM-Cl (7.49 mL, 42.2 mmol) was added to the reaction mixture at 0 °C. The reaction was continued for 4 hrs at ambient temperature. The reaction was quenched with aqueous NH4Cl solution. The mixture was partitioned between water and EtOAc. Combined organic layers were washed with water, brine solution, dried over Na2SO4 and concentrated, then purified over silica gel eluting 40% EA/hexane to get 5-chloro-4-methyl-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrrolo[2,3-c]pyridine (8.9 g, 30.0 mmol, 89 % yield). LCMS retention time 3.500 min [D]. MS (E-) m/z: 297.3 (M+H).
-
- A solution of 5-chloro-4-methyl-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrrolo[2,3-c]pyridine (5g, 16.84 mmol) and tert-butyl piperazine-1-carboxylate (3.76 g, 20.21 mmol) in 1,4-Dioxane (60 mL) was purged with nitrogen for 5 mins, then chloro(2-dicyclohexylphosphino-2',6'-diisopropoxy-1,1 '-biphenyl)[2-(2'-amino-1,1'-biphenyl)]palladium(II) (0.680 g, 0.875 mmol) was added. The reaction mixture was again purged for 2 min and heated in a sealed tube at 110 °C for 3 h. The reaction mixture was filtered through Celite and was diluted with EtOAc (50 mL), washed with water (30 mL), brine (10 mL), dried (Na2SO4) and concentrated to get crude material. The crude material was purified by silica gel chromatography on an ISCO instrument using 24 g silica column, the compound was eluted in 30% EtOAc in hexanes, the fractions were collected and concentrated to afford tert-butyl 4-(4-methyl-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperazine-1-carboxylate (5.1 g, 11.42 mmol, 67.8 % yield). LCMS retention time 1.46 min [L]. MS (E-) m/z: 447.3 (M+H).
-
- To a solution of tert-butyl 4-(4-methyl-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperazine-1-carboxylate (3.6 g, 8.06 mmol) in DMF (60 mL) at 0 °C was added a solution of NBS (1.41 g, 8.08 mmol) in DMF (20 mL). The reaction mixture was stirred for 3 h at room temperature. The reaction mixture was concentrated under vacuum and 50 mL of water was added. The mixture was extracted with EtOAc(2×100ml), combined organic layers washed with brine solution, dried over Na2SO4, concentrated and purified over silica gel eluting 25% EA in hexane to afford tert-butyl4-(3-bromo-4-methyl-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperazine-1-carboxylate (3.5 g, 6.66 mmol, 83 % yield). LCMS retention time 1.73 min [L]. MS (E-) m/z: 527.3
-
- To a solution of 4-(3-bromo-4-methyl-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperazine-1-carboxylate (3.4 g, 6.47 mmol) and 4,4,5,5-tetramethyl-2-(prop-1-en-2-yl)-1,3,2-dioxaborolane (3.04 g, 18.12 mmol) in mixture of THF (160 mL) and water (16 mL) was added potassium phosphate tribasic (4.12 g, 19.41 mmol). The reaction mixture was purged with nitrogen for 5 mins, then 2nd generation XPhos precatalyst (0.51 g, 0.647 mmol) was added. The reaction mixture was purged again for 2 mins. The reaction mixture was heated in a sealed tube at 60 °C for 2 h. The reaction mass was cooled and filtered through small pad of Celite. The filtrate obtained was concentrated to provide crude material. The crude material was purified by column chromatography through silica gel eluting 25% EtOAc in hexane to afford tert-butyl 4-(4-methyl-3-(prop-1-en-2-yl)-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperazine-1-carboxylate (2.6 g, 5.34 mmol, 83 % yield). LCMS retention time 1.79 min [L]. MS (E-) m/z: 487.5 (M+H).
-
- To a solution of tert-butyl 4-(4-methyl-3-(prop-1-en-2-yl)-1-((2-(trimethylsilyl) ethoxy)methyl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperazine-1-carboxylate (3.5 g, 7.19 mmol) was taken in ethyl acetate (120 mL). Pd-C (0.71 g, 7.19 mmol) was added and the reaction mixture was stirred under H2 pressure (bladder) for 2 h. The reaction mixture was filtered through Celite, washed the Celite bed with MeOH, MeOH was concentrated under vacuum to get tert-butyl 4-(3-isopropyl-4-methyl-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperazine-1-carboxylate (2.3 g, 4.71 mmol, 65.4 % yield). LCMS retention time 1.83 min [L]. MS (E-) m/z: 489.4 (M+H).
-
- To a solution of tert-butyl 4-(3-isopropyl-4-methyl-1-((2-(trimethylsilyl)ethoxy) methyl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperazine-1-carboxylate (2.6 g, 5.32 mmol) in DMF (30 mL) at 0 °C was added TBAF (21.28 mL, 21.28 mmol) and ethylenediamine (1.602 mL, 23.94 mmol). The reaction mixture was stirred for 6 h at 80 °C. The reaction mixture was concentrated and partitioned between water and EtOAc, the organic layer was separated and washed with water, brine solution, dried over Na2SO4, concentrated to get tert-butyl 4-(3-isopropyl-4-methyl-1H-pyrrolo[2,3-c]pyridin-5-yl)piperazine-1-carboxylate (1.81 g, 5.05 mmol, 95 % yield). LCMS retention time 1.07 min [L]. MS (E- ) m/z: 359.3 (M+H).
-
- To a solution of tert-butyl 5-(4-(tert-butoxycarbonyl)piperazin-1-yl)-3-isopropyl-4-methyl-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (1.5 g, 3.27 mmol, 58.6 % yield) was prepared as described in the preparation of Intermediate 11 using tert-butyl 4-(3-isopropyl-4-methyl-1H-pyrrolo[2,3-c]pyridin-5-yl)piperazine-1-carboxylate (2 g, 5.58 mmol) as the starting intermediate. LCMS retention time 1.96 min [L]. MS (E-) m/z: 459.5 (M+H).
-
- To a solution of tert-butyl 5-(4-(tert-butoxycarbonyl)piperazin-1-yl)-3-isopropyl-4-methyl-2-(4,4, 5, 5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (1.22 g, 2.087 mmol, 80 % yield) was prepared as described in the preparation of Intermediate 1L using tert-butyl 5-(4-(tert-butoxycarbonyl)piperazin-1-yl)-3-isopropyl-4-methyl-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (1.2 g, 2.62 mmol) and 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (5.34 mL, 26.2 mmol) as the starting intermediates. LCMS retention time 3.155 min [D]. MS (E-) m/z: 585.4 (M+H).
-
- To a solution of tert-butyl 5-(4-(tert-butoxycarbonyl)piperazin-1-yl)-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-methyl-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (0.51 g, 0.842 mmol, 82 % yield) was prepared as described in the preparation of Intermediate 1M using tert-butyl 5-(4-(tert-butoxycarbonyl)piperazin-1-yl)-3-isopropyl-4-methyl-2-(4,4,5,5-tetramethyl-15-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (0.6 g, 1.026 mmol) and 6-bromo-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (0.281 g, 1.232 mmol) as the starting intermediates. LCMS retention time 2.23 min [L]. MS (E-) m/z: 606.5 (M+H).
- 6-(3-isopropyl-4-methyl-5-(piperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (1.4 mg, 3.45 µmol, 10.46 % yield) was prepared as described in the preparation of Example 4 using tert-butyl 5-(4-(tert-butoxycarbonyl) piperazin-1-yl)-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-methyl-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (20 mg, 0.033 mmol) as the starting intermediate. LCMS retention time 1.055 min [D4]. MS (E-) m/z: 406.2 (M+H). 1H NMR (400MHz, DMSO-d6) δ 11.44 (s, 1H), 8.69 (d, J=1.5 Hz, 1H), 8.54 (s, 1H), 8.34 (s, 1H), 7.15 (d, J=1.5 Hz, 1H), 4.04 (s, 3H), 3.62 (d, J=7.0 Hz, 1H), 2.92-2.86 (m, 8H), 2.66 (s, 4H), 1.26 (d, J=7.0 Hz, 6H).
- The examples in Table 1 were prepared according to the general procedures described in the above examples. Examples 8-9 are not according to the present invention.
TABLE 1 Ex. No. Structure Mol. Wt. LCMS M+ Ret Time (min) HPLC Method 8 408.55 409.3 0.76 QC-ACN-TFA-XB 9 490.69 491.4 1.35 QC-ACN-AA-XB 10 479.56 480.3 1.2 P 11 461.57 462 1.591 P 12 475.6 476.1 1.476 P 13 406.51 407 0.897 Q 14 514.62 515.3 1.53 P 15 463.56 464.3 1.461 P 16 460.58 461.1 1.766 P 17 492.6 493.3 1.551 P 18 450.56 451.3 1.285 P 19 465.53 466.3 1.38 P 20 479.56 480.3 1.442 P 21 466.56 467.3 1.363 P 22 491.62 492.3 1.457 P 23 445.57 446.1 1.559 P 24 489.62 490.1 1.599 P 25 510.66 511 1.742 P 26 459.6 460.1 1.637 P 27 459.6 460.2 1.401 P 28 388.52 389.1 1.323 P 29 491.62 492.3 1.369 P 30 444.58 445.1 1.745 P 31 473.63 474.2 1.578 P 32 489.62 490.2 1.533 P 33 446.6 447.1 1.537 P 34 493.59 494.3 1.381 P 35 430.6 431.1 1.491 P 36 473.63 474.2 1.493 P 37 493.59 494.3 1.289 P 38 464.55 465.3 1.571 P 39 463.56 464.3 1.259 P 40 476.59 477.3 1.371 P 41 474.51 475.2 2.113 P 42 479.56 480.3 1.383 P 43 477.59 478.3 1.492 P 44 489.6 490.3 1.394 P 45 506.63 507.4 1.426 P 46 462.57 463.3 1.31 P 47 507.66 508.4 1.921 P 48 476.64 477.4 1.875 P 49 478.62 479.4 1.367 P 50 502.64 503.3 1.421 P 51 461.59 462 1.368 p 52 477.63 478 1.434 p 53 485.64 486.4 1.573 p 54 501.68 502.4 1.448 p 55 459.64 460.4 1.381 p 56 485.64 486.3 1.796 p 57 498.68 499 1.402 p 58 486.71 487.4 1.625 p 59 474.61 475.3 1.273 p 60 460.63 461 1.38 p 61 458.65 459.3 1.532 p 62 488.64 489.4 1.057 p 63 446.6 447.3 1.381 p 64 523.66 524.4 1.396 p 65 477.59 478.3 1.329 p 66 477.59 478.3 1.43 p 67 507.61 508.3 1.348 p 68 463.61 464.3 1.346 p 69 449.58 450.4 1.32 p 70 447.56 448.3 1.276 p 71 421.52 422.3 1.2 p 72 522.63 523.3 1.382 p 73 464.59 465.3 1.331 p 74 494.62 495.3 1.331 P 75 462.57 463.3 1.514 P 76 478.62 479.4 1.605 P 77 464.59 465.3 1.543 P 78 493.59 494 1.828 P 79 521.64 522 1.68 P 80 462.57 463.3 1.511 P 81 476.6 477.3 1.576 P 82 490.63 491.3 1.362 P 83 463.61 464 1.399 P 84 476.64 477.4 1.844 P 85 462.62 463 1.738 P 86 475.64 476 1.298 P 87 459.6 460 1.427 P 88 489.67 490 1.361 P 89 522.67 523.4 1.331 P 90 458.65 459.3 1.319 P 91 472.64 473.4 1.686 P 92 488.68 489.4 1.606 P 93 446.56 447.3 1.329 P 94 474.61 475 1.597 P 95 460.63 461.4 1.645 P 96 476.63 477.4 1.346 P 97 408.57 409.3 1.461 P 98 476.59 477 1.145 P 99 481.58 482.2 1.265 P 100 507.61 508.3 1.263 P 101 479.6 480.3 1.295 P 102 465.58 466.4 1.264 P 103 493.59 494.2 1.642 D 104 493.59 494.3 1.529 P 105 492.6 493.3 1.515 P 106 492.6 493.4 1.912 P 107 462.57 463.3 1.8 P 108 462.62 463.3 1.607 P 109 446.57 447.3 1.352 P 110 490.63 491.3 1.599 P 111 503.63 504.4 1.476 P 112 473.67 474 1.777 P 113 459.64 460 1.357 P 114 517.61 518 1.967 P 115 517.61 518.3 1.746 P 116 460.63 461.4 1.503 P 117 522.67 523.3 1.602 P 118 472.59 473.3 1.249 P 119 500.69 501.4 1.355 P 120 500.69 501 1.615 P 121 472.64 473.4 1.39 P 122 488.68 489.4 1.371 P 123 476.63 477 1.479 P 124 459.64 460 1.546 P 125 449.53 450.3 1.424 P 126 463.59 464 1.46 P 127 490.51 491.3 2.054 P 128 464.59 465.3 1.432 P 129 491.62 492.3 1.41 P 130 477.59 478.3 1.582 P 131 507.61 508 1.886 P 132 488.61 489.3 1.707 P 133 488.61 489.3 1.392 P 134 504.65 505.4 1.381 P 135 462.62 463.4 1.528 P 136 462.62 463 1.488 P 137 475.6 476.3 1.497 P 138 461.61 462.3 1.482 P 139 501.64 502.3 1.505 P 140 459.6 460 1.596 P 141 472.59 473.3 1.208 P 142 498.68 499.4 1.691 P 143 458.65 459.3 1.633 P 144 460.63 461.4 1.564 P 145 446.6 447.3 1.215 P 146 477.59 478 1.508 P 147 503.65 504.4 1.558 P 148 469.64 470.3 1.856 P 149 498.62 499.3 1.572 P 150 437.56 438.3 1.605 P 151 366.48 367.3 1.209 P 152 423.54 424 1.532 P 153 451.59 452.3 1.579 P 154 490.61 491 1.243 P 155 462.56 463 1.312 P 156 495.6 496.4 1.255 P 157 465.58 466.4 1.267 P 158 478.58 479.3 1.48 P 159 464.59 465.3 1.573 P 160 506.63 507.3 1.312 P 161 504.61 505.3 1.661 P 162 492.64 493.3 1.601 P 163 448.59 449.3 1.408 P 164 478.62 479.4 1.604 P 165 460.6 461.3 1.37 P 166 463.61 464 1.396 P 167 491.66 492 1.695 P 168 476.64 477.3 1.497 P 169 489.67 490.4 1.656 P 170 487.65 488.4 1.563 P 171 504.65 505 1.728 P 172 504.65 505.4 2.077 P 173 503.7 504 1.539 P 174 476.6 477.3 1.568 P 175 524.66 525.4 1.817 P 176 502.66 503.4 1.504 P 177 432.57 433 1.382 P 178 446.56 447 1.277 P 179 476.63 477.3 1.293 P 180 488.64 489.4 1.248 P 181 463.56 464.3 1.49 P 182 448.55 449.3 1.631 P 183 450.56 451.3 1.406 P 184 392.48 393.2 1.111 P 185 451.59 452.3 1.432 P 186 511.65 512.3 1.451 P 187 476.6 477.3 0.953 Q 188 493.59 494.3 1.456 P 189 501.56 502.3 1.938 P 190 493.59 1.593 D 191 437.52 438.3 1.162 P 192 492.6 493.3 1.832 P 193 506.63 507.3 1.384 P 194 506.63 507.3 1.562 P 195 494.62 495.4 1.565 P 196 491.66 492.4 1.982 P 197 492.6 493.3 1.661 P 198 448.59 449.3 1.624 P 199 448.59 449.3 1.45 P 200 490.67 491.4 1.676 P 201 503.65 504.4 1.346 P 202 461.61 462 1.451 P 203 500.69 501.4 1.726 P 204 500.69 501.4 1.437 P 205 501.68 502 1.333 P 206 504.68 505.3 1.659 P 207 504.68 505.4 1.413 P 208 472.59 473.3 1.394 P 209 472.59 473.3 1.32 P 210 460.63 461.3 1.415 P 211 476.63 477.3 1.518 P 212 434.56 435.3 1.322 P 213 405.51 406.2 1.055 P 214 437.56 438.3 1.35 P 215 450.6 451.3 1.798 P 216 424.56 425 1.558 P 217 492.6 493.3 1.333 P 218 451.55 452.3 1.21 P 219 449.58 450.3 1.313 P 220 491.62 492.4 1.308 P 221 508.6 509.3 1.532 P 222 494.58 495.3 1.419 P 223 478.57 1.756 P 224 478.57 479.3 1.465 P 225 506.63 507.4 1.692 P 226 504.61 505.3 1.348 P 227 478.62 479.3 1.394 P 228 464.59 465 1.371 P 229 492.64 493.3 1.833 P 230 448.59 449.3 1.385 P 231 476.6 477.3 1.886 P 232 504.65 505.4 1.678 P 233 460.6 461.3 1.58 P 234 490.67 491.4 1.924 P 235 445.62 446 1.535 P 236 445.62 446.3 1.504 P 237 473.63 474 1.494 P 238 486.64 487.4 2.289 P 239 486.64 487.3 1.888 P 240 524.66 525.4 1.505 P 241 502.66 503.4 1.233 P 242 474.61 475.4 1.605 P 243 474.61 475.4 1.337 P 244 492.64 493.4 1.821 P 245 500.65 501.3 1.546 P 246 500.65 501.3 1.26 P 247 486.71 487.4 1.625 P 248 432.57 433.3 1.246 P 249 432.57 433.3 1.367 P 250 476.6 477.3 1.626 P 251 422.55 423.2 1.768 P 252 490.61 491 1.429 P 253 463.56 464.2 1.241 P 254 505.6 506.3 1.34 P 255 463.56 464.3 1.428 P 256 435.55 436.3 1.269 P 257 485.56 486.3 2.006 P 258 479.6 480.4 1.303 P 259 492.6 493.2 1.584 P 260 476.64 477.4 1.269 P 261 462.62 463.3 2.006 P 262 446.57 447.3 1.303 P 263 462.62 463 1.727 P 264 505.64 506 1.406 P 265 487.65 488 1.545 P 266 520.65 503.3 1.532 P 267 476.6 477.3 1.966 P 268 460.63 461.4 1.321 P 269 502.66 503.4 1.584 P 270 502.66 503.4 1.303 P 271 492.64 493.4 1.3 P 272 432.57 433 1.529 P 273 446.56 447 1.335 P 274 446.56 447.3 1.32 P 275 474.61 475.4 1.378 P 276 474.61 475 1.251 P 277 458.65 459.4 1.255 P 278 489.62 490.3 1.525 P 279 443.6 444.3 1.466 P 280 470.63 471.4 1.99 P 281 521.68 522.3 1.15 Q 282 473.63 474.3 1 Q 283 475.64 476.4 1.191 Q 284 486.62 487.3 1.107 Q 285 550.73 551.3 1.828 P 286 484.65 485.4 1.209 Q 287 445.57 446.2 1.498 P 288 462.56 462.1 2.369 P 289 462.56 462.1 2.37 P 290 497.62 498.2 1.228 P 291 497 497 1.491 P 292 461.57 462.2 1.453 P 293 497 497.3 0.935 P 294 532.06 532.1 1.827 P 295 391.48 392.1 1.181 P 296 462.6 463.2 1.376 P 297 460.59 461.2 1.423 P 298 475.6 476.2 1.393 P 299 459.6 460.2 1.424 P 300 476.59 477.3 1.241 P 301 375.48 376 1.155 P 302 446.56 447.2 1.406 P 303 447.54 447.2 1.227 P 304 511.03 511.2 1.626 P 305 511.03 511.1 1.813 P 306 446.56 447.1 1.577 P 307 447.59 448.3 1.113 P 308 460.58 461.3 1.417 P 309 486.62 487 1.401 P 310 474.65 475 1.624 P 311 442.61 443.3 1.43 P 312 390.49 391.3 0.916 P 313 475.64 476.3 1.325 P 314 475.6 476.3 1.405 P 315 446.6 447.4 1.401 P 316 446.6 447.4 1.332 P 317 474.61 475 1.397 P 318 444.63 445.3 1.333 P 319 448.53 449.2 1.106 P 320 461.57 462.3 1.197 P 321 489.62 490 1.102 P 322 489.62 490.3 1.212 P 323 446.6 447.3 1.258 P 324 444.58 445.3 1.19 P 325 474.65 475 1.452 P 326 444.63 445.3 1.489 P 327 472.64 473 1.752 P 328 489.62 490.3 1.596 P 329 476.59 477.3 1.116 P 330 460.58 461.4 1.309 P 331 446.6 447 1.247 P 332 444.58 445.3 1.318 P 333 490.61 491.3 1.124 P 334 458.61 459 1.456 P 335 442.61 443.4 1.562 P 336 466.58 467 2.17 P 337 472.68 473.4 1.657 P 338 489.62 490.3 1.443 P 339 476.59 477.3 1.007 P 340 432.57 433.3 1.194 P 341 430.56 431.1 1.622 P 342 474.61 475 1.23 P 343 475.6 476.3 1.092 P 344 490.61 491.3 1.208 P 345 462.56 463.3 1.036 P 346 458.61 459 1.616 P 347 460.63 461.4 1.709 P 348 460.63 461 1.332 P 349 472.64 473 1.403 P 350 466.58 467 1.794 P 351 472.68 473.4 1.728 P -
-
- tert-butyl5-(4-(tert-butoxycarbonyl)piperazin-1-yl)-3-isopropyl-4-methyl-2-(4,4, 5, 5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (0.68 g, 1.163 mmol) was taken in a sealed tube and heated at 160 °C for 15 min to afford tert-butyl 4-(3-isopropyl-4-methyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrrolo[2,3-c] pyridin-5-yl)piperazine-1-carboxylate (0.56g, 1.152 mmol, 99% yield). LCMS retention time 1.64 min [L]. MS (E-) m/z: 485.4 (M+H).
-
- tert-butyl4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-4-methyl-1H-pyrrolo[2,3-c]pyridin-5-yl)piperazine-1-carboxylate (0.43 g, 0.854 mmol, 75 % yield) was prepared as described in the preparation of Intermediate 213I using tert-butyl 4-(3-isopropyl-4-methyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperazine-1-carboxylate (0.55 g, 1.135 mmol) and 6-bromo-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (0.308 g, 1.362 mmol) as the starting intermediates. LCMS retention time 1.99 min [L]. MS (E-) m/z: 504.4 (M+H).
-
- 6-(3-isopropyl-4-methyl-5-(piperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (0.31 g, 0.768 mmol, 90 % yield) was prepared as described in the preparation of Example 4 using tert-butyl 4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-4-methyl-1H-pyrrolo[2,3-c]pyridin-5-yl) piperazine-1-carboxylate (0.43 g, 0.854 mmol) as the starting intermediate. LCMS retention time 0.95 min [L]. MS (E-) m/z: 404.4 (M+H).
- 2-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-4-methyl-1H-pyrrolo[2,3-c]pyridin-5-yl)piperazin-1-yl)-N,N-dimethylacetamide (16.9 mg, 0.035 mmol, 55.8 % yield) was prepared as described in the preparation of Example 2 using 6-(3-isopropyl-4-methyl-5-(piperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (25 mg, 0.062 mmol) and 2-chloro-N,N-dimethylacetamide (15.06 mg, 0.124 mmol) the starting intermediates. LCMS retention time 1.539 min [D4]. MS m/z: 489.3 [M+H]+; 1H NMR (400MHz, DMSO-d6) δ 11.96-11.83 (m, 1H), 8.95 (s, 1H), 8.52 (s, 1H), 8.49 (s, 1H), 4.40 (s, 2H), 3.42-3.26 (m, 9H), 2.99 (s, 3H), 2.95 (s, 3H), 2.70 (s, 3H), 2.61 (s, 3H), 2.16-2.05 (m, 3H), 1.24 (d, J=7.1 Hz, 3H), 1.02 (d, J=6.8 Hz, 3H).
-
-
- 5-chloro-4-fluoro-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrrolo[2,3-c]pyridine (9.6 g, 31.9 mmol, 91 % yield) was prepared as described in the preparation of Intermediate 213A using 5-chloro-4-fluoro-1H-pyrrolo[2,3-c]pyridine (6 g, 35.2 mmol) as the starting material. LCMS retention time min 2.17[L]. MS (E-) m/z: 301.2 (M+H).
-
- 3-bromo-5-chloro-4-fluoro-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrrolo[2,3-c] pyridine (5.65 g, 14.88 mmol, 90 % yield) as brown solid was prepared as described in the preparation of Intermediate 213C using 5-chloro-4-fluoro-1-((2-(trimethylsilyl)ethoxy) methyl)-1H-pyrrolo[2,3-c]pyridine (5 g, 16.62 mmol) as the starting intermediate. LCMS retention time 381.1 min [L]. MS (E-) m/z: (M+2H).
-
- 5-chloro-4-fluoro-3-(prop-1-en-2-yl)-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrrolo[2,3-c]pyridine (6.0 g, 17.60 mmol, 84 % yield) was prepared as described in the preparation of Intermediate 213D using 3-bromo-5-chloro-4-fluoro-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrrolo[2,3-c]pyridine (8.0 g, 21.07 mmol) and 4,4,5,5-tetramethyl-2-(prop-1-en-2-yl)-1,3,2-dioxaborolane (3.54 g, 21.07 mmol) as the starting intermediates. LCMS retention time 1.48 min [L]. MS (E-) m/z: 341.1 (M+H).
-
- 5-chloro-4-fluoro-3-isopropyl-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrrolo[2,3-c]pyridine (5.82 g, 13.92 mmol, 79 % yield) was prepared as described in the preparation of Intermediate 213E using 5-chloro-4-fluoro-3-(prop-1-en-2-yl)-1-((2-(trimethylsilyl)ethoxy) methyl)-1H-pyrrolo[2,3-c]pyridine (6.0 g, 17.60 mmol) as the starting intermediate. LCMS retention time 1.61 min [L]. MS (E-) m/z: 343.5 (M+H).
-
- tert-butyl 4-(4-fluoro-3-isopropyl-1-((2-(trimthylsilyl)ethoxy)methyl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperazine-1-carboxylate (3.6 g, 7.31 mmol, 84 % yield) was prepared as described in the preparation of Intermediate 213B using 5-chloro-4-fluoro-3-isopropyl-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrrolo[2,3-c]pyridine (3.000 g, 8.75 mmol) and tert-butyl piperazine-1-carboxylate (1.955 g, 10.50 mmol) as the starting intermediates. LCMS retention time 1.81 min [L]. MS (E-) m/z: 493.9 (M+H).
-
- tert-butyl 4-(4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)piperazine-1-carboxylate (2.1 g, 5.79 mmol, 95 % yield) was prepared as described in the preparation of Intermediate 213F using tert-butyl 4-(4-fluoro-3-isopropyl-1-((2-(trimethylsilyl) ethoxy)methyl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperazine-1-carboxylate (3.0 g, 6.09 mmol) as the starting intermediate. LCMS retention time 1.81 min [L]. MS (E-) m/z: 363.2 (M+H).
-
- tert-butyl 5-(4-(tert-butoxycarbonyl)piperazin-1-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (2.3 g, 4.97 mmol, 90 % yield) was prepared according to the general procedure described in Intermediate 1I using tert-butyl 4-(4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)piperazine-1-carboxylate (2 g, 5.52 mmol) as the starting intermediate. LCMS retention time 1.87 min [L]. MS m/z: 463.4 [M+H]+.
-
- tert-butyl 5-(4-(tert-butoxycarbonyl)piperazin-1-yl)-4-fluoro-3-isopropyl-2-(4,4, 5, 5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (1.45 g, 2.464 mmol, 92 % yield) was prepared according to the general procedure described in Intermediate 1L using tert-butyl 5-(4-(tert-butoxycarbonyl)piperazin-1-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (1.24 g, 2.68 mmol) as the starting intermediate. LCMS retention time 2.127 min [D]. MS m/z: 589.2 [M+H]+.
-
- tert-butyl 5-(4-(tert-butoxycarbonyl)piperazin-1-yl)-4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (0.85 g, 1.394 mmol, 70.7 % yield) was prepared according to the general procedure described in Intermediate 1M using tert-butyl 5-(4-(tert-butoxycarbonyl)piperazin-1-yl)-4-fluoro-3-isopropyl-2-(4,4,5,5-tetramethyl-15-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (1.16 g, 1.971 mmol) as the starting intermediate. LCMS retention time 1.37 min [L]. MS m/z: 610.5 [M+H]+.
- 6-(4-fluoro-3-isopropyl-5-(piperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (0.27 g, 0.653 mmol, 93% yield) was prepared according to the general procedure described in the preparation of Example 4 using tert-butyl 5-(4-(tert-butoxycarbonyl)piperazin-1-yl)-4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (0.43 g, 0.705 mmol) as the starting intermediate. LCMS retention time 1.270 min [D4]. MS m/z: 410.3 [M+H]+; 1H NMR (400MHz, DMSO-d6) δ 11.79 (br. s., 1H), 8.70 (d, J=1.2 Hz, 1H), 8.55 (s, 1H), 8.32 (d, J=1.5 Hz, 1H), 7.18 (s, 1H), 4.07 (s, 3H), 3.28 (dd, J=7.3, 3.9 Hz, 1H), 3.18-3.11 (m, 5H), 2.98-2.86 (m, 4H), 1.34 (d, J=6.8 Hz, 6H).
-
-
-
- tert-butyl 6-(4-fluoro-3-isopropyl-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-2,6-diazaspiro[3.3]heptane-2-carboxylate (6.66 g, 13.20 mmol, 94 % yield) was prepared as described in the preparation of Intermediate 213B using 5-chloro-4-fluoro-3-isopropyl-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrrolo[2,3-c]pyridine (4.8 g, 14.00 mmol) and tert-butyl 2,6-diazaspiro[3.3]heptane-2-carboxylate (3.33 g, 16.80 mmol) as starting materials. LCMS retention time 1.69 min [L]. MS (E-) m/z: 505.7 (M+H).
-
-
- tert-butyl 6-(4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)-2,6-diazaspiro[3.3]heptane-2-carboxylate (5.0 g, 12.15 mmol, 92 % yield) was prepared as described in the preparation of Intermediate 213F using tert-butyl 6-(4-fluoro-3-isopropyl-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-2,6-diazaspiro[3.3]heptane-2-carboxylate (6.66 g, 13.20 mmol) as a starting material. LCMS retention time 0.93 min [L]. MS (E-) m/z: 375.3 (M+H).
-
- tert-butyl 5-(6-(tert-butoxycarbonyl)-2,6-diazaspiro[3.3]heptan-2-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (4 g, 8.43 mmol, 63.1 % yield) was prepared as described in the preparation of Intermediate 1I using tert-butyl 6-(4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)-2,6-diazaspiro[3.3]heptane-2-carboxylate (5 g, 13.35 mmol) as a starting material. LCMS retention time 1.71 min [L]. MS (E-) m/z: 475.3 (M+H).
-
- tert-butyl 5-(6-(tert-butoxycarbonyl)-2,6-diazaspiro[3.3]heptan-2-yl)-4-fluoro-3-isopropyl-2-(4,4, 5, 5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (4.5 g, 7.49 mmol, 89 % yield) was prepared as described in the preparation of Intermediate 1L using tert-butyl 5-(6-(tert-butoxycarbonyl)-2,6-diazaspiro[3.3]heptan-2-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (4.0 g, 8.43 mmol) as the starting material. LCMS retention time 2.834 min [D]. MS (E-) m/z: 601.4 (M+H).
-
- tert-butyl 5-(6-(tert-butoxycarbonyl)-2,6-diazaspiro[3.3]heptan-2-yl)-4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (1.4 g, 2.252 mmol, 67.6 % yield) was prepared as described in the preparation of Intermediate 1M using tert-butyl 5-(6-(tert-butoxycarbonyl)-2,6-diazaspiro[3.3]heptan-2-yl)-4-fluoro-3-isopropyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (2.0 g, 3.33 mmol) and 6-bromo-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (0.835 g, 3.66 mmol) as starting materials. LCMS retention time 1.12 min [L]. MS (E-) m/z: 622.4 (M+H).
- 6-(4-fluoro-3-isopropyl-5-(2,6-diazaspiro[3.3]heptan-2-yl)-1H-pyrrolo[2,3-c] pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (0.55 g, 1.305 mmol, 62.4 % yield) was prepared according to the general procedure described in the preparation of Example 4 using tert-butyl 5-(6-(tert-butoxycarbonyl)-2,6-diazaspiro[3.3]heptan-2-yl)-4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c] pyridine-1-carboxylate (1.3 g, 2.091 mmol) in DCM (15 mL) as starting material. LCMS retention time 0.83 min [L]. MS (E-) m/z: 422.3 (M+H).
-
- 2-(6-(4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-2,6-diazaspiro[3.3]heptan-2-yl)-N-methylacetamide (3.1 mg, 6.04 µmol, 8.49 % yield) was prepared as described in the preparation of Example 2 using 6-(4-fluoro-3-isopropyl-5-(2,6-diazaspiro[3.3]heptan-2-yl)-1H-pyrrolo[2,3-c] pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (30 mg, 0.071 mmol) and 2-chloro-N-methylacetamide (11.48 mg, 0.107 mmol) as the starting intermediates. LCMS retention time 1.322 min [P]. MS m/z: 493.3 [M+H]+; 1H NMR (400 MHz, DMSO-d6) δ = 11.62 (d, J = 1.2 Hz, 1H), 8.69 (s, 1H), 8.55 (s, 1H), 8.22 (d, J = 1.7 Hz, 1H), 7.70-7.55 (m, 1H), 7.17 (s, 1H), 4.11-4.03 (m, 8H), 3.43 (s, 4H), 3.28-3.20 (m, 1H), 3.01 (s, 2H), 2.60 (d, J = 4.9 Hz, 2H), 1.33 (d, J = 7.3 Hz, 6H).
- The following Examples were prepared according to the general procedure used to prepare Example 356:
Ex. No. Structure LCMS (M+H) RT HPLC method 357 528.2 1.397 D4 358 467.3 1.486 D4 359 481.3 1.558 D4 360 495.3 1.62 D4 361 468.3 1.699 D4 362 516.3 1.617 D4 363 537.3 1.616 D4 364 482.3 1.781 D4 365 449.2 1.558 D4 366 492.2 2.023 D4 -
- 1-(6-(4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-2,6-diazaspiro[3.3]heptan-2-yl)-2-morpholinoethan-1-one (2.3 mg, 4.19 µmol, 5.89 % yield) was prepared as described in the preparation of Example 5 using 6-(4-fluoro-3-isopropyl-5-(2,6-diazaspiro[3.3]heptan-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (30 mg, 0.071 mmol) and 2-morpholinoacetic acid (15.50 mg, 0.107 mmol) as the starting intermediates. LCMS retention time 1.407 min [P]. MS m/z: 549.3 [M+H]+; 1H NMR (400 MHz, DMSO-d6) δ = 11.64 (s, 1H), 8.69 (s, 1H), 8.55 (s, 1H), 8.23 (d, J = 1.7 Hz, 1H), 7.18 (s, 1H), 4.41 (s, 2H), 4.13 (s, 4H), 4.08 (s, 5H), 3.59 (br d, J = 3.4 Hz, 6H), 2.99 (br d, J = 1.7 Hz, 2H), 2.43 (br d, J = 2.2 Hz, 3H), 1.33 (d, J = 7.1 Hz, 6H).
-
-
- 6-(4-fluoro-3-isopropyl-5-(6-(oxetan-3-yl)-2,6-diazaspiro[3.3]heptan-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (8.2 mg, 0.017 mmol, 23.88 % yield) was prepared as described in the preparation of Example 42 using 6-(4-fluoro-3-isopropyl-5-(2,6-diazaspiro[3.3]heptan-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (30 mg, 0.071 mmol) and oxetan-3-one (10.26 mg, 0.142 mmol) as the starting intermediates. LCMS retention time 1.410 min [P]. MS m/z: 478.2 [M+H]+; 1H NMR (400 MHz, DMSO-d6) δ = 11.62 (s, 1H), 8.69 (d, J = 0.7 Hz, 1H), 8.55 (s, 1H), 8.22 (d, J = 2.0 Hz, 1H), 7.17 (s, 1H), 4.55 (t, J = 6.5 Hz, 2H), 4.35 (t, J = 5.7 Hz, 2H), 4.07 (s, 7H), 3.73-3.64 (m, 1H), 3.39 (s, 4H), 3.25 (dt, J = 4.6, 6.8 Hz, 1H), 1.33 (d, J = 7.1 Hz, 6H).
- The following Examples were prepared according to the general procedure used to prepare Example 369:
Ex. No. Structure LCMS (M+H) RT HPLC method 370 506.2 1.429 D4 371 520.3 1.402 D4 372 478.3 1.415 D4 373 464.3 1.282 D4 374 476.3 1.332 D4 375 490.3 1.494 D4 376 506.3 1.459 D4 377 547.4 1.318 D4 378 436.2 1.166 D4 379 450.2 1.240 D4 380 464.2 1.376 D4 381 476.2 1.467 D4 382 466.3 11.642 D4 383 508.3 11.872 D4 384 452.3 11.619 D4 385 494.3 11.847 D4 386 494.3 11.661 D4 387 494.3 11.663 D4 388 535.3 11.302 D4 389 438.3 11.401 D4 390 464.2 11.607 D4 391 464.2 11.722 D4 -
-
- tert-Butyl 5-(6-(tert-butoxycarbonyl)-2,6-diazaspiro[3.3]heptan-2-yl)-4-fluoro-3-isopropyl-2-(4,4, 5, 5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (2.3 g, 3.83 mmol) was placed in a sealed tube and heated at 160 °C for 15 min. LCMS retention time 1.33 min [L]. MS (E-) m/z: 501.4 (M+H).
-
- To a solution of tert-butyl 6-(4-fluoro-3-isopropyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-2,6-diazaspiro[3.3]heptane-2-carboxylate (1.9 g, 3.80 mmol) and 6-bromo-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (0.944 g, 4.18 mmol) in mixture of THF (30 mL) and water (3 mL) was added tripotassium phosphate (2.015 g, 9.49 mmol). The reaction mixture was purged with nitrogen for 5 mins, then chloro(2-dicyclohexylphosphino-2',4',6'-triisopropyl-1,1'-biphenyl)[2-(2'-amino-1,1'-biphenyl)]palladium(II) (0.299 g, 0.380 mmol) was added. The reaction mixture was purged again for 2 mins and then heated in a sealed tube at 75 °C for 1 h. The reaction mixture was filtered through Celite and diluted with EtOAc (50 mL) and washed with water (10 mL), and brine solutions (10 mL). The organic layer was dried over Na2SO4, filter and concentrated to give crude compound which was purified over silica gel eluting 5% MeOH in DCM. LCMS retention time 0.93 min [L]. MS (E-) m/z: 520.3 (M+H).
-
- 6-(4-fluoro-3-isopropyl-5-(2,6-diazaspiro[3.3]heptan-2-yl)-1H-pyrrolo[2,3-c] pyridin-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (0.79 g, 1.751 mmol, 79 % yield) was prepared as described in the preparation of Example 4 using tert-butyl 6-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)-2,6-diazaspiro[3.3]heptane-2-carboxylate (1.15 g, 2.213 mmol) as the starting intermediate. LCMS retention time 1.163 min [D4]. MS (E-) m/z: 420.1 (M+H). 1H NMR (400 MHz, DMSO-d6) δ ppm 11.38-11.56 (m, 1 H) 8.88 (s, 1 H) 8.50 (s, 1 H) 8.12-8.22 (m, 1 H) 4.01-4.15 (m, 4 H) 3.76 (s, 4 H) 2.81 (td, J=7.09, 3.67 Hz, 1 H) 2.59 (s, 3 H) 2.11-2.17 (m, 3 H) 1.77 (s, 1 H) 1.23 (br t, J=6.72 Hz, 6 H).
-
-
- 2-(6-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)-2,6-diazaspiro[3.3]heptan-2-yl)-N-methylacetamide (3.9 mg, 7.95 µmol, 11 % yield) was prepared as described in the preparation of Example 2 using 6-(4-fluoro-3-isopropyl-5-(2,6-diazaspiro[3.3]heptan-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (30 mg, 0.072 mmol) and 2-chloro-N-methylacetamide (11.54 mg, 0.107 mmol) as the starting intermediates. LCMS retention time 1.057min [D4]. MS m/z: 491.3 [M+H]+; 1H NMR (400 MHz, DMSO-d 6) δ ppm 11.44 (d, J=0.98 Hz, 1 H) 8.88 (s, 1 H) 8.50 (s, 1 H) 8.18 (d, J=1.96 Hz, 1 H) 7.67-7.77 (m, 1 H) 4.02-4.13 (m, 4H) 3.50-3.61 (m, 3 H) 3.11-3.21 (m, 2 H) 2.81 (dtd, J=13.72, 6.89, 6.89, 3.79 Hz, 1 H) 2.58-2.63 (m, 6 H) 2.55 (s, 1 H) 2.14 (s, 3 H) 1.23 (t, J=6.60 Hz, 6H).
-
-
- 1-(6-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)-2,6-diazaspiro[3.3]heptan-2-yl)-2-morpholinoethan-1-one (9.5 mg, 0.017 mmol, 23.6 % yield) was prepared as described in the preparation of Example 5 using 6-(4-fluoro-3-isopropyl-5-(2,6-diazaspiro[3.3]heptan-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (30 mg, 0.072 mmol) and 2-morpholinoacetic acid (15.57 mg, 0.107 mmol) as the starting intermediates. LCMS retention time 1.470 min [P]. MS m/z: 547.3 [M+H]+; 1H NMR (400 MHz, DMSO-d 6) δ ppm 11.46 (d, J=1.71 Hz, 1 H) 8.89 (s, 1 H) 8.50 (s, 1 H) 8.19 (d, J=1.96 Hz, 1 H) 4.40 (s, 2 H) 4.05-4.18 (m, 6 H) 3.56-3.63 (m, 4 H) 2.94-3.03 (m, 2 H) 2.76-2.86 (m, 1 H) 2.60 (s, 3 H) 2.39-2.47 (m, 4 H) 2.14 (s, 3 H) 1.20-1.27 (m, 6 H).
-
- 6-(4-fluoro-3-isopropyl-5-(6-(oxetan-3-yl)-2,6-diazaspiro[3.3]heptan-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (10.4 mg, 0.021 mmol, 28.7 % yield) was prepared as described in the preparation of Example 42 using 6-(4-fluoro-3-isopropyl-5-(2,6-diazaspiro[3.3]heptan-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (30 mg, 0.072 mmol) and oxetan-3-one (10.31 mg, 0.143 mmol) as the starting intermediates. LCMS retention time 1.498 min [D4]. MS m/z: 476.2 [M+H] +; 1H NMR (400 MHz, DMSO-d 6) δ ppm 11.41-11.50 (m, 1 H) 8.89 (s, 1 H) 8.50 (s, 1 H) 8.17-8.23 (m, 1 H) 4.73-4.79 (m, 1 H) 4.53-4.64 (m, 2 H) 4.33-4.43 (m, 2 H) 4.03-4.11 (m, 3 H) 3.91-3.98 (m, 1 H) 3.65-3.76 (m, 1 H) 3.41 (br s, 3 H) 2.76-2.87 (m, 1 H) 2.59 (s, 3 H) 2.14 (s, 3 H) 1.23 (br t, J=6.60 Hz, 6 H).
- The following Examples were prepared according to the general procedure used to prepare Example 400:
Ex. No. Structure LCMS (M+H) RT HPLC method 401 504.3 1.511 D4 402 476.3 1.586 D4 403 462.3 1.128 D4 404 488.3 1.623 D4 405 504.3 1.608 D4 406 545.3 1.408 D4 407 434.2 1.262 D4 408 448.2 1.322 D4 409 464.3 1.738 D4 410 492.3 1.949 D4 411 506.3 1.968 D4 412 450.3 1.702 D4 -
-
- 1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-4-methyl-1H-pyrrolo[2,3-c]pyridin-5-yl)piperazin-1-yl)-2-(dimethylamino)ethan-1-one (10 mg, 0.020 mmol, 16.35 % yield) was prepared as described in the preparation of Example 5 using 6-(3-isopropyl-4-methyl-5-(piperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (50 mg, 0.124 mmol) and dimethylglycine (25.6 mg, 0.248 mmol) as the starting intermediates. LCMS retention time 1.939 min [D]. MS m/z: 489.2 [M+H] +; 1H NMR (400 MHz, DMSO-d6) δ 11.30 (s, 1H), 8.85 (s, 1H), 8.46 (s, 1H), 8.29 (s, 1H), 3.99-4.16 (m, 1H), 3.56-3.83 (m, 4H), 3.05-3.22 (m, 3H), 2.80-3.03 (m, 6H), 2.63-2.71 (m, 5H), 2.30 (t, J=2.01 Hz, 1H), 2.20 (s, 3H), 2.08 (s, 3H), 1.19 (d, J=7.03 Hz, 3H), 0.98 (d, J=7.03 Hz, 3H).
-
- 6-(3-isopropyl-4-methyl-5-(4-(oxetan-3-yl)piperazin-1-yl)-1H-pyrrolo[2,3-c] pyridin-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (16.3 mg, 0.033 mmol, 66.8 % yield) was prepared as described in the preparation of Intermediate 2C with 6-(3-isopropyl-4-methyl-5-(piperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (20 mg, 0.050 mmol) and oxetan-3-one (14.29 mg, 0.198 mmol) the starting intermediate. LCMS retention time 1.652 min [D4]. MS m/z: 460.3 [M+H]+; 1H NMR (400MHz, DMSO-d6) δ = 12.02-11.82 (m, 1H), 8.95 (s, 1H), 8.52 (s, 1H), 8.49 (s, 1H), 4.86-4.76 (m, 4H), 4.54-4.42 (m, 1H), 3.87 (br d, J=4.9 Hz, 1H), 3.37-3.26 (m, 8H), 2.71 (s, 3H), 2.61 (s, 3H), 2.14-2.07 (m, 3H), 1.24 (d, J=7.1 Hz, 3H), 1.02 (d, J=7.1 Hz, 3H).
-
-
-
- tert-butyl (1-(4-methyl-5-nitropyridin-2-yl)piperidin-4-yl)carbamate (1 g, 2.91 mmol, 63.2 % yield) was prepared as described in the preparation of Intermediate 6A using 2-bromo-4-methyl-5-nitropyridine (1 g, 4.61 mmol) and tert-butyl piperidin-4-ylcarbamate (0.923 g, 4.61 mmol) as starting material. LCMS retention time 1.41 min [B]. MS (E-) m/z: 335.5 (M-H).
-
- (E)-tert-butyl (1-(4-(2-(dimethylamino)vinyl)-5-nitropyridin-2-yl)piperidin-4-yl) carbamate (13 g, 31.9 mmol, 46 % yield) was prepared as described in the preparation of Intermediate 6B using tert-butyl (1-(4-methyl-5-nitropyridin-2-yl)piperidin-4-yl) carbamate (23 g, 68.4 mmol) and 1,1-dimethoxy-N,N-dimethylmethanamine (45.8 mL, 342 mmol) as the starting intermediates. LCMS retention time 1.38 min [B], MS (E+) m/z: 392.6 (M+H).
-
- tert-butyl (1-(1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-4-yl)carbamate (13 g, 27.5 mmol, 71.8 % yield) was prepared as described in the preparation of intermediate 6C using tert-butyl (E)-tert-butyl 4-(4-(2-(dimethylamino)vinyl)-5-nitropyridin-2-yl) piperazine-1-carboxylate (15 g, 39.7 mmol) as the starting intermediate. LCMS retention time 1.04 min [B], MS m/z: 317.5 (M+H).
-
- tert-butyl (1-(3-bromo-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-4-yl)carbamate (3 g, 7.59 mmol, 80% yield) was prepared as described in the preparation of Intermediate 6D using tert-butyl (1-(1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-4-yl)carbamate (3 g, 9.48 mmol) as the starting intermediate. LCMS retention time 1.28 min [B], MS (E-) m/z: 397.4 (M+2H).
-
- tert-butyl 3-bromo-5-(4-((tert-butoxycarbonyl)amino)piperidin-1-yl)-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (2g, 4.04 mmol, 80% yield) was prepared as described in the preparation of Intermediate 6E using tert-butyl (1-(3-bromo-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-4-yl) carbamate (2 g, 5.06 mmol) as the starting intermediate. LCMS retention time 1.64 min [B], MS (E-) m/z: 495.3 (M+H).
-
- tert-butyl 5-(4-((tert-butoxycarbonyl)amino)piperidin-1-yl)-3-(prop-1-en-2-yl)-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (1.6 g, 3.50 mmol, 83 % yield) was prepared as described in the preparation of Intermediate 6F using tert-butyl 3-bromo-5-(4-((tertbutoxycarbonyl)amino)piperidin-1-yl)-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (2.1 g, 4.24 mmol) as the starting intermediate. LCMS retention time 1.30 min [B], MS (E-) m/z: 457.3 (M+H).
-
- tert-butyl5-(4-((tert-butoxycarbonyl)amino)piperidin-1-yl)-3-isopropyl-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (1.6 g, 3.49 mmol, 88 % yield) was prepared as described in the preparation of Intermediate 6G using tert-butyl 5-(4-((tertbutoxycarbonyl)amino)piperidin-1-yl)-3-(prop-1-en-2-yl)-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (1.8 g, 3.94 mmol) as the starting intermediate. LCMS retention time 1.78 min [B], MS (E+) m/z: 459.6 (M+H).
-
- tert-butyl 5-(4-((tert-butoxycarbonyl) amino)piperidin-1-yl)-3-isopropyl-2-(4,4, 5, 5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (280 mg, 0.053 mmol, 4.03 % yield) was prepared as described in the preparation of Intermediate 6I using tert-butyl 5-(4-((tert-butoxycarbonyl)amino)piperidin-1-yl)-3-isopropyl-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (600 mg, 1.308 mmol as the starting intermediate. LCMS retention time 2.10 min [B], MS (E-) m/z: 586.8 (M+H).
-
- tert-butyl-5-(4-((tert-butoxycarbonyl)amino)piperidin-1-yl)-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (200 mg, 0.023 mmol) was prepared as described in the preparation of Intermediate 6J using tert-butyl 5-(4-((tert-butoxycarbonyl)amino)piperidin-1-yl)-3-isopropyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (523 mg, 0.895 mmol) and 6-bromo-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (245 mg, 1.074 mmol) as the starting intermediates. LCMS retention time 1.57 min [B], MS (E-) m/z: 606.6 (M+H).
- 1-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-4-amine (145 mg, 0.318 mmol) was prepared according to the general procedure described in Example 4 using tert-butyl 5-(4-((tert-butoxycarbonyl) amino)piperidin-1-yl)-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridine-1-carboxylate (200 mg, 0.330 mmol) as starting material intermediate. LCMS retention time 0.68 min [B], MS (E+) m/z: 406.5 (M+H);
- The following examples were prepared according to the general procedures described in the above examples.
Ex. No. Structure Obs. MS Ion RT QC Method 421 535.3 1.59 E 422 493.3 1.41 E 423 535.3 1.56 E 424 466.3 1.66 E 425 486.2 1.67 E 426 480.3 1.11 E 427 450.2 1.55 E 428 493.3 1.57 E 429 465.2 1.43 E 430 462.3 1.75 E 431 492.1 1.64 E 432 478.3 2.51 E 433 436.3 1.54 E 434 502.0 1.95 E 435 505.0 1.34 E 436 438.2 1.39 E 437 466.2 1.64 E 438 551.2 1.49 E 439 509.3 1.31 E 440 480.3 1.56 E 441 478.3 1.82 E 442 478.2 1.63 E 443 466.3 1.52 E 444 482.3 1.57 E 445 495.3 1.45 E 446 509.3 1.53 E 447 481.2 1.38 E 448 551.2 1.48 E 449 506.2 2.03 E 450 530.3 1.52 E 451 549.3 1.35 E 452 508.3 1.54 E 453 480.2 1.98 E 454 436.3 1.51 E 455 464.0 1.78 E 456 506.3 1.68 E 457 478.0 1.65 E 458 476.0 1.9 E 459 476.0 1.77 E 460 478.0 2.14 E 461 464.3 1.61 E 462 547.0 1.45 E 463 528.0 1.08 F 464 479.0 0.99 F 465 493.3 1.03 F 466 507.3 1.61 E 467 461.3 1.72 E 468 504.3 2.18 E 469 549.3 1.6 E 470 507.3 1.43 E 471 549.3 1.61 E 472 480.3 1.12 F - The pharmacological properties of the compounds of this invention may be confirmed by a number of biological assays. The exemplified biological assays, which follow, have been carried out with compounds of the invention.
- HEK-Blue™-cells (Invivogen) overexpressing human TLR7, TLR8 or TLR9 receptors were used for screening inhibitors of these receptors using an inducible SEAP (secreted embryonic alkaline phosphatase) reporter gene under the control of the IFN-β minimal promoter fused to five NF-κB and AP-1-binding sites. Briefly, cells are seeded into Greiner 384 well plates (15000 cells per well for TLR7, 20,000 for TLR8 and 25,000 for TLR9) and then treated with test compounds in DMSO to yield a final dose response concentration range of 0.05 nM - 50 µM. After a 30 minute compound pre-treatment at room temperature, the cells are then stimulated with a TLR7 ligand (gardiquimod at a final concentration of 7.5 µM), TLR8 ligand (R848 at a final concentration of 15.9 µM) or TLR9 ligand (ODN2006 at a final concentration of 5 nM) to activate NF-κB and AP-1 which induce the production of SEAP. After a 22 hour incubation at 37 °C, 5% CO2, SEAP levels are determined with the addition of HEK-Blue™ Detection reagent (Invivogen), a cell culture medium that allows for detection of SEAP, according to manufacturer's specifications. The percent inhibition is determined as the % reduction in the HEK-Blue signal present in wells treated with agonist plus DMSO alone compared to wells treated with a known inhibitor.
TABLE 2 TLR7/8/9 Reporter Assay Data (NT = not tested) Ex. No. TLR7 IC50 (nM) TLR8 IC50 (nM) TLR9 IC50 (nM) Ex. No. TLR7 IC50 (nM) TLR8 IC50 (nM) TLR9 IC50 (nM) 1 4.7 89 550 234 13 2.6 733 2 1.6 14 398 235 0.24 1.0 2207 3 3.2 11 1582 236 0.66 1.1 939 4 NT 973 13083 237 1.6 0.95 2072 5 9.5 100 250 238 62 21 28464 6 0.61 1.4 664 239 2.6 2.6 15894 7 1.5 0.56 168 240 0.96 0.39 2777 8 6638 15946 258 241 3.5 11 285 9 551 8225 26 242 11 14 401 10 5.6 19 896 243 0.79 4.8 430 11 1.6 8.3 91 244 8.9 16 583 12 53 273 866 245 6.3 47 257 13 6.5 6.8 2783 246 2.0 17 705 14 3.9 3.4 13016 247 16 10 718 15 3.5 1.6 13498 248 5.7 6.8 396 16 4.7 26 1286 249 12 12 1446 17 1.3 1.6 1861 250 3.2 3.4 4773 18 0.76 2.6 1790 251 15 23 14850 19 2.0 3.0 1758 252 6.4 5.2 3360 20 2.5 4.3 6546 253 0.97 0.77 2859 21 2.0 2.7 3338 254 1.5 0.55 3011 22 6.2 1.8 4250 255 0.50 0.49 14492 23 2.6 3.4 147 256 1.4 1.2 15352 24 9.7 39 279 257 5.3 6.4 36023 25 2.3 7.2 188 258 0.77 0.35 6015 26 3.1 6.9 633 259 2.1 2.6 16752 27 49 86 477 260 1.4 1.7 837 28 13 26 608 261 0.61 1.1 1271 29 4.3 4.7 1696 262 1.3 4.2 1328 30 4.7 7.7 855 263 1.9 4.1 5654 31 2.1 6.2 132 264 0.69 0.16 1643 32 40 124 279 265 0.36 0.42 1025 33 1.4 6.9 134 266 26 23 2035 34 2.5 2.0 1506 267 6.9 1.9 16699 35 1.7 2.8 154 268 4.8 17 757 36 19 48 208 269 4.4 6.4 205 37 3.3 4.4 409 270 2.6 3.2 392 38 2.8 12 13055 271 1.6 4.2 333 39 6.4 16 5530 272 7.0 22 391 40 9.9 11 8313 273 8.6 16 376 41 36 158 >50000 274 42 35 648 42 1.6 0.59 9177 275 35 37 845 43 1.0 0.60 12749 276 7.7 1.2 114 44 0.63 0.36 2766 277 5.5 13 265 45 2.2 1.9 2766 278 0.79 0.58 1104 46 0.98 1.6 NT 279 0.65 1.5 1111 47 5.2 1.5 2580 280 1.3 1.2 2503 48 12 13 9533 281 16 43 36393 49 0.46 0.62 2426 282 1.1 0.97 1068 50 0.76 0.83 1007 283 0.46 0.27 1617 51 0.74 0.58 2773 284 8.3 14 23513 52 0.98 0.42 1857 285 1.3 1.6 1868 53 0.50 2.0 1391 286 2.2 2.2 2858 54 0.90 0.30 935 287 2.0 16 718 55 1.3 1.3 769 288 27 8.5 2866 56 1.8 1.5 1007 289 3.7 58 14030 57 4.9 19 682 290 20 7.1 >50000 58 60 23 692 291 3.0 4.9 494 59 15 4.7 197 292 7.0 47 303 60 5.0 1.2 502 293 3.1 4.7 29055 61 28 35 346 294 3.0 4.7 7634 62 5.1 21 417 296 3.3 5.4 132 63 11 11 2992 297 >3125 >3125 17861 64 4.2 1.5 2794 298 14 75 459 65 2.2 5.6 3318 299 2.9 25 356 66 2.1 4.9 3623 300 13 1.6 11926 67 9.1 11 5799 301 >3125 >3125 2681 68 NT NT 5289 302 1586 >3125 >50000 69 0.55 0.55 4053 303 19 12 >50000 70 0.23 0.78 3998 304 1.5 2.2 505 71 0.41 0.65 3608 305 2.5 1.4 2829 72 1.5 1.3 6085 306 3.9 16 786 73 0.87 0.77 2960 307 3.0 0.85 657 74 1.7 0.77 694 308 7.9 25 159 75 2.5 5.6 447 309 7.3 49 133 76 0.58 3.8 959 310 13 32 640 77 2.7 4.5 403 312 8.5 114 920 78 4.3 11 8618 313 2.9 0.27 2416 79 3.0 3.6 842 314 4.3 1.5 3705 80 0.16 0.60 1833 315 7.6 47 166 81 0.15 0.61 2167 316 9.5 33 80 82 0.18 0.36 1465 317 2.1 7.1 34 83 1.3 1.4 9103 318 6.0 21 846 85 2.6 1.1 924 319 12 3.7 14449 86 0.37 0.43 1127 320 4.4 2.0 3007 87 0.33 1.0 701 321 2.8 0.64 1009 88 0.62 0.28 322 322 2.1 0.23 1452 89 6.5 4.9 435 323 4.5 20 258 90 20 31 1395 324 3.0 20 283 91 40 27 676 325 2.4 12 512 92 34 32 548 326 14 78 1218 93 18 37 2826 327 7.1 17 771 95 41 35 1383 328 11 60 1392 96 24 7.7 294 329 7.5 7.4 647 97 2.5 7.4 1080 330 1.1 5.5 255 98 4.7 14 1199 331 263 637 3304 99 0.49 0.41 3976 332 7.7 56 154 100 0.80 0.25 2336 333 5.4 4.3 1061 101 1.2 0.66 4137 334 0.35 1.4 452 102 0.34 0.24 2824 335 4.3 42 669 103 0.86 0.48 5916 336 8.8 36 3997 104 3.6 1.7 5296 337 3.9 4.0 777 105 0.22 0.59 2249 338 3.4 30 1109 106 4.9 5.0 1946 339 12 28 677 107 3.6 4.5 2055 340 1274 708 11475 108 2.1 4.0 2764 341 3.2 21 1031 109 0.61 1.7 1665 342 3.8 8.3 224 110 2.0 1.3 1163 343 28 190 217 111 1.0 0.48 2999 344 1.7 3.5 257 112 1.6 2.3 1880 345 11 13 712 113 0.72 0.57 510 346 3.3 14 750 114 4.8 6.6 17394 347 3.9 30 790 115 1.4 2.4 15793 348 3.5 9.0 468 116 10 42 766 349 1.1 3.6 344 117 28 41 868 350 1.4 4.7 1082 118 8.6 1.4 294 351 11 5.4 345 119 8.1 11 558 352 14 0.73 19800 120 2.3 2.0 71 353 0.61 1.4 2526 121 2.7 5.9 759 354 1.6 9.9 3432 122 14 10 400 355 33 22 5593 123 26 31 1113 356 15 6.1 18544 124 0.38 0.65 905 357 21 10 37404 125 3.1 6.5 7031 358 3.6 3.8 >50000 126 8.2 3.2 2531 359 2.5 2.7 >50000 127 47 150 >50000 360 2.9 1.5 23031 128 1.9 1.4 2477 361 3.8 0.76 4852 129 0.75 0.15 5903 362 4.9 4.0 NT 130 1.3 0.76 5250 363 NT 3.7 43685 131 5.0 7.9 11424 364 2.7 0.38 8704 132 3.4 5.0 2130 365 0.42 0.51 1490 133 0.52 1.2 1356 366 3.8 39 16209 134 0.98 0.27 1025 367 159 52 >50000 135 0.24 0.48 6501 368 1.3 2.3 5886 136 0.41 0.32 620 369 27 23 >50000 137 0.63 0.90 3163 370 19 174 10349 138 0.26 0.49 1904 371 9.0 5.9 5477 139 1.1 1.0 1029 372 7.9 440 5441 140 0.53 1.4 3047 373 8.1 7.1 5815 141 27 25 482 374 6.0 39 5470 142 13 39 282 375 17 >3125 7209 143 33 33 683 376 9.5 >3125 6005 144 14 14 1252 377 16 16 1413 145 9.1 11 506 378 6.0 3.4 5108 146 1.1 0.46 6659 379 4.0 2.3 3632 147 0.62 0.27 2059 380 5.6 7.8 1479 148 1.1 1.7 1171 381 9.9 11 2579 149 3.6 5.1 13082 382 4.5 18 >50000 150 3.4 5.3 6057 383 2.7 0.31 5394 151 1.1 4.4 768 384 0.96 0.55 3263 152 5.0 6.4 4090 385 4.1 1.4 42122 153 8.8 5.2 3826 386 26 6.8 >50000 154 4.0 4.4 1225 387 33 13 >50000 155 7.3 5.0 6312 388 2.7 0.81 1892 156 0.79 0.26 6429 389 1.1 0.38 6162 157 0.80 0.51 4178 390 2.3 0.15 4062 158 1.4 2.1 17503 391 1.4 0.90 4046 159 3.4 4.5 455 392 24 13 8839 160 0.56 0.57 1279 393 1.4 0.51 8732 161 2.4 4.6 293 394 1.6 1.0 13706 162 1.3 1.0 2152 395 44 6.6 17520 163 0.39 0.87 1321 396 99 19 >50000 164 6.2 4.6 1800 397 48 30 43179 165 0.40 0.62 905 398 7.2 1.9 46809 166 0.41 0.18 3343 399 409 4.1 >50000 167 2.6 0.49 4329 400 82 1.6 >50000 168 3.6 4.5 17459 401 27 4.4 6437 169 0.36 0.33 1731 402 30 4.4 5969 170 0.42 0.71 2291 403 25 1.7 9265 171 0.43 0.12 1964 404 32 4.0 5807 172 4.4 0.75 2652 405 46 15 17055 173 1.5 0.54 653 406 8.4 4.8 937 174 0.78 0.67 7716 407 47 828 35363 175 23 6.4 7938 408 16 61 12421 176 16 18 325 409 2.5 3.4 >50000 177 8.7 4.0 549 410 15 1.3 >50000 178 7.0 2.7 321 411 9.6 0.18 11154 179 20 7.0 486 412 6.7 0.29 5739 180 1.3 9.6 664 413 29 6.1 >50000 181 1.5 5.0 6552 414 41 6.2 >50000 182 3.8 11 18769 415 26 5.2 >50000 183 1.8 3.4 2446 416 10 1.7 1729 184 1.9 7.9 1871 417 16 13 >50000 185 6.2 7.8 1553 418 19 2.2 6014 186 12 6.6 26512 419 32 1.4 5905 187 2.1 2.0 1526 421 16 12 >50000 188 1.6 0.21 5163 422 3.1 2.0 6817 189 20 16 30736 423 5.4 0.59 42520 190 0.77 0.22 874 424 6.3 0.39 17690 191 0.91 1.1 3501 425 13 17 >50000 192 5.3 3.9 3143 426 30 0.54 >50000 193 0.84 0.40 1252 427 35 37 >50000 194 5.3 2.6 575 428 12 1.1 39542 195 5.2 3.0 577 429 9.3 2.3 >50000 196 3.0 1.1 2079 430 5.9 0.27 6111 197 0.30 0.44 1572 431 3.5 0.32 8176 198 2.4 2.6 1151 432 102 2.7 >50000 199 0.83 2.0 1211 433 3.0 0.32 6914 200 3.0 1.1 8782 434 90 48 >50000 201 0.49 0.52 1788 436 1.8 5.1 10338 202 0.35 1.2 2459 437 2.6 6.4 7666 203 27 9.3 513 438 25 13 >50000 204 6.6 3.1 466 439 7.1 4.3 11236 205 1.2 0.55 600 440 11 62 >50000 206 9.2 13 260 441 4.0 11 7321 207 5.3 7.7 437 442 2.5 7.1 7489 208 12 16 276 443 4.0 9.3 6551 209 29 97 1078 444 5.0 6.7 19901 210 34 6.6 1080 445 13 25 >50000 211 41 44 2253 446 18 21 >50000 212 1.6 3.8 2082 447 11 32 >50000 213 1.5 3.0 517 448 28 22 >50000 214 7.5 16 2071 449 37 171 >50000 215 4.2 3.7 1996 450 12 39 >50000 216 14 12 4647 451 2.6 5.7 792 217 3.4 4.4 7599 452 4.8 11 12564 218 0.82 0.60 4744 453 16 34 >50000 219 0.85 0.56 1893 454 0.05 0.05 10860 220 0.74 0.35 4536 455 0.59 0.17 14561 221 1.1 0.70 2574 456 5.7 1.6 16284 222 3.2 2.7 5774 457 3.2 2.5 21953 223 2.7 2.4 1110 458 2.5 1.2 16792 224 0.40 0.62 679 459 1.6 0.54 13834 225 4.0 1.4 4699 460 10 4.4 >50000 226 0.51 0.73 1292 461 5.4 1.5 9015 227 1.9 2.6 4322 462 1.1 1.5 1974 228 1.5 2.6 812 463 9.0 5.2 38772 229 8.7 4.2 1458 464 7.3 2.6 43951 230 0.41 0.77 1703 465 8.5 3.1 47913 231 5.9 6.6 4167 466 16 2.5 47526 232 11 3.2 4496 467 2.8 1.4 17054 233 2.7 3.6 1161 468 43 50 >50000 234 13 2.6 733 469 13 3.5 47935 235 0.24 1.0 2207 470 4.9 0.49 15491 236 0.66 1.1 939 471 27 2.7 >50000 237 1.6 0.95 2072 472 5.3 0.92 46640
Claims (8)
- A compound of Formula (I)N-oxide, stereoisomers, tautomers, solvates or a pharmaceutically-acceptable salt thereof, wherein: G is:A is:(i) -NR7R8 wherein R7 and R8 together with the nitrogen atom to which they are attached form a heterocyclic ring selected from piperazinyl, piperidinyl, or diazaspiro[3.3]heptanyl, wherein said heterocyclic ring is substituted with zero to 1 R7b and zero to 1 R7c; or(ii) -CHR12R13, wherein R12 and R13 together with the carbon atom to which they are attached form a cyclic group selected from cyclopentyl, cyclohexyl, morpholinyl, or piperidinyl, each substituted with zero to 1 R12a;R1 is -CH(CH3)2;each R2 is independently-CH3 or -OCH3;R5 is F, Cl, or -CH3;R7b is:(i) -CH3, -CH2CH3, -CH2CH2CH3, -CH(CH3)2, -CH2CH(CH3)2, -CH2CF3, -CH2CN, -CH2C(CH3)2OH, -CH2CH2OCH3, -CH2CH2S(O)2CH3, -(CH2)1-2NRxRx, -CH2C(O)NRxRx, -NRxRy, -NRx(C1-4 hydroxyalkyl), -NH(CH2CRxRxOCH3), -NRy(C1-2 cyanoalkyl), -NRx(C1-2 fluoroalkyl), -NRx(C2-5 hydroxyfluoroalkyl), -NRx(CH2)1-2C(O)NRxRx, -NRx(CH2)1-3NRxRx, -NRxCH2CH2N(CH3)2, -NRxC(O)(CH2)1-2NRxRx, -C(O)CH3, -C(O)CH2NRxRx, -S(O)2CH3, -(CH2)1-2R7d, -CH2C(O)R7d, -C(O)CH2R7d, -NHR7d, -NH(CH2)1-2R7d, or -OR7d; or(ii) azetidinyl, cyclobutyl, dioxothiomorpholinyl, morpholinyl, oxaazaspiro[3.3]heptanyl, oxetanyl, piperazinonyl, piperazinyl, piperidinyl, tetrahydrofuranyl, or tetrahydropyranyl, each substituted with zero to 1 R8a;R7c is -CH3;R7d is azaspiro[3.5]nonanyl, bicyclo[1.1.1]pentanyl, C3-6 cycloalkyl, morpholinyl, oxetanyl, phenyl, piperidinyl, pyrazolyl, pyrrolidinyl, tetrahydrofuranyl, or tetrahydropyranyl, each substituted with zero to 1 substituent selected from C1-3 alkyl, -NRxRx, -C(O)CH3, methylpiperidinyl, methylpyrrolidinyl, tetramethylpiperidinyl, -OCH2CH2(pyrrolidinyl), and -OCH2CH2NHCH2CH3; and zero to 4 substituents selected from -CH3;R8a is -CH3, -CH(CH3)2, or -S(O)2CH3;R12a is -CH(CH3)2, -CH2CF3, -CH2C(CH3)2OH, -CH2CH2OCH3, -CH2C(O)NH(CH3), -CH2C(O)N(CH3)2, -CH2C(O)NH2, -CH2CH2S(O)2CH3, -CH2CH2NH(CH3), -NRxRy, -NRx(C2-4 fluoroalkyl), -NH(CH2C(CH3)2OH), -NH(CH2CHFC(CH3)2OH), -NH(CH2CH2OCH3), -NH(CH2C(CH3)2OCH3), -NRx(CH2C(O)NRxRx), -C(O)CH2NH(CH3), -C(O)CH2N(CH3)2, R12b, -CH2R12b, -NRxR12b, -N(CH2CN)R12b, or -NRxCH2R12b;R12b is azetidinyl, bicyclo[1.1.1]pentanyl, oxaazaspiro[3.3]heptanyl, oxetanyl, piperidinyl, tetrahydrofuranyl, or tetrahydropyranyl, each substituted with zero to 4 substituents independently selected from -CH3, -CH(CH3)2, -CH2OH, or -OCH3;each Rx is independently H or -CH3;p is zero, 1, 2, 3, or 4 andn is zero or 1.
- The compound according to claim 1, N-oxide, stereoisomers, tautomers, solvates or a pharmaceutically-acceptable salt thereof, wherein:A is: -NR7R8 wherein R7 and R8 together with the nitrogen atom to which they are attached form a heterocyclic ring selected from piperazinyl, piperidinyl, or diazaspiro[3.3]heptanyl, wherein said heterocyclic ring is substituted with zero to 1 R7b and zero to 1 R7c; orR1 is -CH(CH3)2;each R2 is independently-CH3 or -OCH3;R5 is F, Cl, or -CH3;R7b is:(i) -CH3, -CH2CH3, -CH2CH2CH3, -CH(CH3)2, -CH2CH(CH3)2, -CH2CF3, -CH2CN, -CH2C(CH3)2OH, -CH2CH2OCH3, -CH2CH2S(O)2CH3, -(CH2)1-2NRxRx, -CH2C(O)NRxRx, -NRxRy, -NRx(C1-4 hydroxyalkyl), -NH(CH2CRxRxOCH3), -NRy(C1-2 cyanoalkyl), -NRx(C1-2 fluoroalkyl), -NRx(C2-5 hydroxyfluoroalkyl), -NRx(CH2)1-2C(O)NRxRx, -NRx(CH2)1-3NRxRx, -NRxCH2CH2N(CH3)2, -NRxC(O)(CH2)1-2NRxRx, -C(O)CH3, -C(O)CH2NRxRx, -S(O)2CH3, -(CH2)1-2R7d, -CH2C(O)R7d, -C(O)CH2R7d, -NHR7d, -NH(CH2)1-2R7d, or -OR7d; or(ii) azetidinyl, bicyclo[1.1.1]pentanyl, cyclobutyl, dioxothiomorpholinyl, morpholinyl, oxaazaspiro[3.3]heptanyl, oxetanyl, piperazinonyl, piperazinyl, piperidinyl, tetrahydrofuranyl, or tetrahydropyranyl, each substituted with zero to 1 R8a;R7c is -CH3;R8a is -CH3, -CH(CH3)2, or -S(O)2CH3;and n is zero or 1.
- The compound according to claim 1, N-oxide, stereoisomers, tautomers, solvates or a pharmaceutically-acceptable salt thereof, wherein:A is: -CHR12R13, wherein R12 and R13 together with the carbon atom to which they are attached form a cyclic group selected from cyclopentyl, cyclohexyl, morpholinyl, or piperidinyl, each substituted with zero to 1 R12a;R1 is -CH(CH3)2;each R2 is independently-CH3 or -OCH3;R5 is F, Cl, or -CH3;R12a is -CH(CH3)2, -CH2CF3, -CH2C(CH3)2OH, -CH2CH2OCH3, -CH2C(O)NH(CH3), -CH2C(O)N(CH3)2, -CH2C(O)NH2, -CH2CH2S(O)2CH3, -CH2CH2NH(CH3), -NRxRy, -NRx(C2-4 fluoroalkyl), -NH(CH2C(CH3)2OH), -NH(CH2CHFC(CH3)2OH), -NH(CH2CH2OCH3), -NH(CH2C(CH3)2OCH3), -NRx(CH2C(O)NRxRx), -C(O)CH2NH(CH3), -C(O)CH2N(CH3)2, R12b, -CH2R12b, -NRxR12b, -N(CH2CN)R12b, or -NRxCH2R12b;R12b is azetidinyl, bicyclo[1.1.1]pentanyl, oxaazaspiro[3.3]heptanyl, oxetanyl, piperidinyl, tetrahydrofuranyl, or tetrahydropyranyl, each substituted with zero to 4 substituents independently selected from -CH3, -CH(CH3)2, -CH2OH, or -OCH3;and n is zero or 1.
- The compound according to claim 1, N-oxide, stereoisomers, tautomers, solvates or a pharmaceutically-acceptable salt thereof, wherein said compound is 6-(3-isopropyl-4-methyl-5-(piperidin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4] triazolo[1,5-a]pyridine (1); 2-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-methyl-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-1-yl)-N-methylacetamide (2); 6-(4-fluoro-3-isopropyl-5-(piperidin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (3); 6-(3-isopropyl-5-(piperidin-4-yl)-1h-pyrrolo[2,3-c]pyridin-2-yl)-8-methyl-[1,2,4]triazolo [1,5-a]pyridine (4); 2-(dimethylamino)-1-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a] pyridine-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-1-yl)ethan-1-one (5); 6-(4-chloro-3-isopropyl-5-(piperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (6); 6-(3-isopropyl-5-(piperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo [1,5-a]pyridine (7, 295); 1-(4-(4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-1-yl)-2-(methylamino)ethan-1-one (10); 2-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-methyl-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-1-yl)acetamide (11); 1-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-methyl-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-1-yl)-2-(methylamino)ethan-1-one (12); 6-(4-fluoro-3-isopropyl-5-(piperidin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (13); 6-(4-fluoro-3-isopropyl-5-(1-(2-(methylsulfonyl)ethyl)piperidin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (14); 2-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-1-yl)acetamide (15); 6-(3-isopropyl-4-methyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (16); 6-(4-fluoro-3-isopropyl-5-(1-((3-methyloxetan-3-yl)methyl)piperidin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (17); 6-(4-fluoro-3-isopropyl-5-(1-isopropylpiperidin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (18); 2-(4-(4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-1-yl) acetamide (19); 2-(4-(4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-1-yl)-N-methylacetamide (20); 6-(4-fluoro-3-isopropyl-5-(1-(2-methoxyethyl)piperidin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (21); 2-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-1-yl)-N,N-dimethylacetamide (22); 2-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-1-yl)acetamide (23); 2-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-methyl-1H-pyrrolo[2,3-c] pyridin-5-yl)piperidin-1-yl)-N,N-dimethylacetamide (24); 6-(3-isopropyl-4-methyl-5-(1-(2-(methylsulfonyl)ethyl)piperidin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (25); 2-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-1-yl)-N-methylacetamide (26); 2-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-pyrrolo[2,3-c] pyridin-5-yl)piperidin-1-yl)-N-methylacetamide (27); 6-(3-isopropyl-5-(piperidin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (28); 1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-1-yl)-2-(dimethylamino)ethan-1-one (29); 6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine(30);2-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-1-yl)-N,N-dimethylacetamide (31); 2-(dimethylamino)-1-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-methyl-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-1-yl)ethan-1-one (32); 6-(3-isopropyl-5-(1-isopropylpiperidin-4-yl)-4-methyl-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (33); 2-(4-(4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-1-yl)-N,N-dimethylacetamide (34); 6-(3-isopropyl-5-(1-isopropylpiperidin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (35); 1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-1-yl)-2-(dimethylamino)ethan-1-one (36); 2-(dimethylamino)-1-(4-(4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-1-yl)ethan-1-one (37); 6-(4-fluoro-3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (38); 1-(4-(4-fluoro-3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-1-yl)-2-(methylamino)ethan-1-one (39); 2-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-methyl-1H-pyrrolo[2,3-c]pyridin-5-yl)piperazin-1-yl)-N-methylacetamide (40); 6-(4-fluoro-3-isopropyl-5-(1-(2,2,2-trifluoroethyl)piperidin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine (41); 1-(4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c] pyridin-5-yl)-N-(oxetan-3-yl)piperidin-4-amine (42); 1-(4-fluoro-3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-(3-methyloxetan-3-yl)piperidin-4-amine (43); 6-(1-(4-fluoro-3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-4-yl)-2-oxa-6-azaspiro[3.3]heptane (44); 2-((1-(4-fluoro-3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-4-yl)(methyl)amino)-N,N-dimethylacetamide (45); 6-(5-(4-(azetidin-1-yl)cyclohexyl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (46, 75); 1-(4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c] pyridin-5-yl)-N-methyl-N-neopentylpiperidin-4-amine (47); 4-(4-fluoro-3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-neopentylcyclohexan-1-amine (48, 260); 1-((4-(4-fluoro-3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)cyclohexyl)amino)-2-methylpropan-2-ol (49, 164); 6-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)cyclohexyl)-2-oxa-6-azaspiro[3.3]heptane (50); 6-(5-(4-(azetidin-1-yl)piperidin-1-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (51); 1-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-isopropyl-N-methylpiperidin-4-amine (52); 6-(1-(3-isopropyl-4-methyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-4-yl)-2-oxa-6-azaspiro[3.3]heptane (53); 1-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-4-methyl-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-((3-methyloxetan-3-yl)methyl)piperidin-4-amine (54); 1-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-4-methyl-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-ethyl-N-methylpiperidin-4-amine (55); N-(bicyclo[1.1.1]pentan-1-yl)-1-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-methyl-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-4-amine (56); 6-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-4-methyl-1H-pyrrolo[2,3-c]pyridin-5-yl)cyclohexyl)-2-oxa-6-azaspiro[3.3]heptane (57, 142); 4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-4-methyl-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-neopentylcyclohexan-1-amine (58, 247); 3-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c] pyridin-5-yl)-N-((3-methyloxetan-3-yl)methyl)cyclopentan-1-amine (59, 94, 275-276); 3-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-neopentylcyclopentan-1-amine (60, 95, 144, 210); 4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-4-methyl-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-isopropylcyclohexan-1-amine (61, 277); 6-(3-isopropyl-5-(4-(3-methoxyazetidin-1-yl)cyclohexyl)-4-methyl-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a] pyridine (62, 180); N-isopropyl-3-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-methylcyclopentan-1-amine (63, 145); (R)-3-fluoro-4-((1-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-methyl-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-4-yl)amino)-2-methylbutan-2-ol (64); 2-(dimethylamino)-1-(4-(4-fluoro-3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-1-yl)ethan-1-one (65); 2-(dimethylamino)-1-(4-(4-fluoro-3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-1-yl)ethan-1-one (66); 1-(4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-((3-methyloxetan-3-yl)methyl)piperidin-4-amine (67); 1-(4-fluoro-3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-isopropyl-N-methylpiperidin-4-amine (68); N-ethyl-1-(4-fluoro-3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-methylpiperidin-4-amine (69); 6-(5-(4-(azetidin-1-yl)piperidin-1-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine (70); 1-(4-fluoro-3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-methylpiperidin-4-amine (71); 2-((1-(4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-4-yl)(methyl)amino)-N,N-dimethylacetamide (72); 4-(4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-isopropylcyclohexan-1-amine (73, 159); 1-((4-(4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)cyclohexyl)amino)-2-methylpropan-2-ol (74, 195); 4-(4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-isopropyl-N-methylcyclohexan-1-amine (76, 227); N-ethyl-4-(4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-methylcyclohexan-1-amine (77, 228); 2-((4-(4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)cyclohexyl)(methyl)amino)acetamide (78); 2-((4-(4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)cyclohexyl)(methyl)amino)-N,N-dimethylacetamide (79, 131); N-(4-(4-fluoro-3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl) cyclohexyl)oxetan-3-amine (80); N-(4-(4-fluoro-3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)cyclohexyl)-3-methyloxetan-3-amine (81, 105, 192); N-(4-(4-fluoro-3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)cyclohexyl)tetrahydro-2H-pyran-4-amine (82, 110); 1-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-ethyl-N-methylpiperidin-4-amine (83); 4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-isopropyl-N-methylcyclohexan-1-amine (84); 4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c] pyridin-5-yl)-N-isopropylcyclohexan-1-amine (85, 136); N-isopropyl-1-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-methyl-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-methylpiperidin-4-amine (86); 6-(5-(4-(azetidin-1-yl)piperidin-1-yl)-3-isopropyl-4-methyl-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (87); 1-((1-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-4-methyl-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-4-yl)amino)-2-methylpropan-2-ol (88); (R)-3-fluoro-4-((4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-methyl-1H-pyrrolo[2,3-c]pyridin-5-yl)cyclohexyl)amino)-2-methylbutan-2-ol (89, 117); 4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-4-methyl-1H-pyrrolo[2,3-c] pyridin-5-yl)-N-ethyl-N-methylcyclohexan-1-amine (90); N-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-4-methyl-1H-pyrrolo[2,3-c]pyridin-5-yl) cyclohexyl)oxetan-3-amine (91, 121); 1-((4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-3-isopropyl-4-methyl-1H-pyrrolo[2,3-c]pyridin-5-yl)cyclohexyl)amino)-2-methylpropan-2-ol (92, 122); N-(3-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)cyclopentyl)oxetan-3-amine (93, 178, 273-274); 3-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c] pyridin-5-yl)-N-(2-methoxy-2-methylpropyl)cyclopentan-1-amine (96, 123, 179); 2-(2,6-dimethylpyridin-4-yl)-4-fluoro-3-isopropyl-5-(1-isopropylpiperidin-4-yl)-1H-pyrrolo[2,3-c]pyridine (97); 1-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-4-methyl-1H-pyrrolo[2,3-c]pyridin-5-yl)piperazin-1-yl)-2-(methylamino) ethan-1-one (98); 1-(4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-(2-methoxyethyl)piperidin-4-amine (99); 1-(4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c] pyridin-5-yl)-N-(tetrahydro-2H-pyran-4-yl)piperidin-4-amine (100); 1-(4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-isopropyl-N-methylpiperidin-4-amine (101); N-ethyl-1-(4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-methylpiperidin-4-amine (102); 1-(4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-(tetrahydrofuran-3-yl)piperidin-4-amine (103, 190); 1-(4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-methyl-N-(oxetan-3-yl)piperidin-4-amine (104); N-(4-(4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)cyclohexyl)-N-methyloxetan-3-amine (106, 197); N-(4-(4-fluoro-3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)cyclohexyl)oxetan-3-amine (107); 4-(4-fluoro-3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-isopropyl-N-methylcyclohexan-1-amine (108, 261); 6-(5-(4-(azetidin-1-yl) cyclohexyl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine (109, 262); 6-(1-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-4-yl)-2-oxa-6-azaspiro[3.3]heptane (111); 1-(3-isopropyl-4-methyl-2-(8-methyl-[1,2,4]triazolo[1,5-a ]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-neopentylpiperidin-4-amine (112); 1-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-4-methyl-1H-pyrrolo[2,3-c] pyridin-5-yl)-N-isopropylpiperidin-4-amine (113); 2-((4-(4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)cyclohexyl) (oxetan-3-yl)amino)acetonitrile (114-115); N-ethyl-4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-methyl-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-methylcyclohexan-1-amine (116, 268); 6-(3-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)cyclopentyl)-2-oxa-6-azaspiro[3.3]heptane (118, 141, 208-209); N-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-3-isopropyl-4-methyl-1H-pyrrolo[2,3-c]pyridin-5-yl)cyclohexyl)tetrahydro-2H-pyran-4-amine (119); N-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-4-methyl-1H-pyrrolo[2,3-c]pyridin-5-yl)cyclohexyl)tetrahydro-2H-pyran-4-amine (120); N-isopropyl-1-(3-isopropyl-4-methyl-2-(8-methyl-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-methylpiperidin-4-amine (124); 2-(4-(4-fluoro-3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c] pyridin-5-yl)piperidin-1-yl)acetamide (125); 6-(3-isopropyl-5-(4-(2-methoxyethyl)piperazin-1-yl)-4-methyl-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (126); 6-(4-fluoro-3-isopropyl-5-(1-(2,2,2-trifluoroethyl) piperidin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (127); 1-(4-(4-fluoro-3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-1-yl)-2-methylpropan-2-ol (128); 1-(4-fluoro-3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-((3-methyloxetan-3-yl)methyl)piperidin-4-amine (129); 1-(4-fluoro-3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-methyl-N-(oxetan-3-yl)piperidin-4-amine (130); 6-(4-(4-fluoro-3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)cyclohexyl)-2-oxa-6-azaspiro[3.3]heptane (132-133); N-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)cyclohexyl)tetrahydro-2H-pyran-4-amine (134, 232); 4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-ethyl-N-methylcyclohexan-1-amine (135, 263); 1-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-methyl-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-(oxetan-3-yl)piperidin-4-amine (137); N-ethyl-1-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-methyl-1H-pyrrolo[2,3-c] pyridin-5-yl)-N-methylpiperidin-4-amine (138); 6-(1-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-methyl-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-4-yl)-2-oxa-6-azaspiro[3.3]heptane (139); 1-(3-isopropyl-4-methyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-(oxetan-3-yl) piperidin-4-amine (140); 1-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-(oxetan-3-yl)piperidin-4-amine (146); 1-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-methyl-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-((3-methyloxetan-3-yl)methyl)piperidin-4-amine (147); N-(bicyclo[1.1.1]pentan-1-yl)-1-(3-isopropyl-4-methyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-4-amine (148); 6-(4-fluoro-3-isopropyl-5-(1-(2-(methylsulfonyl)ethyl)piperidin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine (149); 2-(4-(2-(2,6-dimethylpyridin-4-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-1-yl)-N-methylacetamide (150); 2-(2,6-dimethylpyridin-4-yl)-4-fluoro-3-isopropyl-5-(piperidin-4-yl)-1H-pyrrolo[2,3-c]pyridine (151); 2-(4-(2-(2,6-dimethylpyridin-4-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-1-yl)acetamide (152); 2-(4-(2-(2,6-dimethylpyridin-4-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-1-yl)-N,N-dimethylacetamide (153); 2-(dimethylamino)-1-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-methyl-1H-pyrrolo[2,3-c]pyridin-5-yl)piperazin-1-yl)ethan-1-one (154); 2-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-methyl-1H-pyrrolo[2,3-c]pyridin-5-yl)piperazin-1-yl)acetamide (155); 1-((1-(4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-4-yl)amino)-2-methylpropan-2-ol (156); 1-(4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-isopropylpiperidin-4-amine (157); 2-((1-(4-fluoro-3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-4-yl)(methyl) amino)acetamide (158); N-(4-(4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)cyclohexyl)tetrahydro-2H-pyran-4-amine (160, 194); 6-(4-(4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)cyclohexyl)-2-oxa-6-azaspiro[3.3]heptane (161, 226); 4-(4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c] pyridin-5-yl)-N-neopentylcyclohexan-1-amine (162, 229); N-ethyl-4-(4-fluoro-3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-methylcyclohexan-1-amine (163, 199); 6-(5-(4-(azetidin-1-yl)cyclohexyl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (165, 233); 1-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-isopropylpiperidin-4-amine (166); 1-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-neopentylpiperidin-4-amine (167); 4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-isopropyl-N-methylcyclohexan-1-amine (168); 1-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-4-methyl-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-neopentylpiperidin-4-amine (169); 1-(3-isopropyl-4-methyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-((3-methyloxetan-3-yl)methyl)piperidin-4-amine (170); 4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-((3-methyloxetan-3-yl)methyl)cyclohexan-1-amine (171-172); 1-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-4-methyl-1H-pyrrolo[2,3-c] pyridin-5-yl)-N-(2-methoxy-2-methylpropyl)piperidin-4-amine (173); N-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c] pyridin-5-yl)cyclohexyl)oxetan-3-amine (174, 267); (R)-4-((4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)cyclohexyl)amino)-3-fluoro-2-methylbutan-2-ol (175, 240); N-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-methyl-1H-pyrrolo[2,3-c]pyridin-5-yl) cyclohexyl)tetrahydro-2H-pyran-4-amine (176); N-ethyl-3-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-methylcyclopentan-1-amine (177, 248-249, 272); 2-(4-(4-fluoro-3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-1-yl)-N-methylacetamide (181); 6-(4-fluoro-3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine (182); 6-(4-fluoro-3-isopropyl-5-(1-(2-methoxyethyl)piperidin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine (183); 6-(4-fluoro-3-isopropyl-5-(piperidin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine (184); 2-(dimethylamino)-1-(4-(2-(2,6-dimethylpyridin-4-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-1-yl)ethan-1-one (185); 6-(3-isopropyl-4-methyl-5-(4-(2-(methylsulfonyl)ethyl)piperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (186); 6-(4-fluoro-3-isopropyl-5-(1-(tetrahydro-2H-pyran-4-yl)piperidin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a] pyridine (187); 1-(4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-(3-methyloxetan-3-yl)piperidin-4-amine (188); N-(2,2-difluoroethyl)-1-(4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-methylpiperidin-4-amine (189); 1-(4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-methylpiperidin-4-amine (191); 4-(4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-((3-methyloxetan-3-yl)methyl)cyclohexan-1-amine (193, 225); 1-(4-fluoro-3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-methyl-N-neopentylpiperidin-4-amine (196); 4-(4-fluoro-3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-isopropylcyclohexan-1-amine (198, 230); 4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-neopentylcyclohexan-1-amine (200, 234); 1-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-methyl-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-(tetrahydro-2H-pyran-4-yl)piperidin-4-amine (201); N-isopropyl-1-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-methyl-1H-pyrrolo[2,3-c]pyridin-5-yl) piperidin-4-amine (202); 4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-4-methyl-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-((3-methyloxetan-3-yl)methyl) cyclohexan-1-amine (203-204); 1-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-4-methyl-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-(tetrahydro-2H-pyran-4-yl) piperidin-4-amine (205); 4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-methyl-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-(2-methoxy-2-methylpropyl)cyclohexan-1-amine (206-207); 3-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-(2-methoxy-2-methylpropyl)cyclopentan-1-amine (211); 6-(4-fluoro-3-isopropyl-5-(1-isopropylpiperidin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine (212); 1-(4-(2-(2,6-dimethylpyridin-4-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-1-yl)-2-(methylamino)ethan-1-one (214); 2-(2,6-dimethylpyridin-4-yl)-4-fluoro-3-isopropyl-5-(1-((3-methyloxetan-3-yl) methyl)piperidin-4-yl)-1H-pyrrolo[2,3-c]pyridine (215); 2-(2,6-dimethylpyridin-4-yl)-4-fluoro-3-isopropyl-5-(1-(2-methoxyethyl)piperidin-4-yl)-1H-pyrrolo[2,3-c]pyridine (216); 6-(4-fluoro-3-isopropyl-5-(1-(tetrahydro-2H-pyran-4-yl)piperidin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (217); 1-(4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-N,N-dimethylpiperidin-4-amine (218); 1-(4-fluoro-3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-isopropylpiperidin-4-amine (219); 1-(4-fluoro-3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-(tetrahydro-2H-pyran-4-yl)piperidin-4-amine (220); 2-((1-(4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-4-yl)(methyl)amino)-N-methylacetamide (221); 2-((1-(4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-4-yl)(methyl)amino)acetamide (222); N-(4-(4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)cyclohexyl)oxetan-3-amine (223-224); N-(4-(4-fluoro-3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)cyclohexyl)-3-methyloxetan-3-amine (231); N-ethyl-1-(3-isopropyl-4-methyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-methylpiperidin-4-amine (235); N-isopropyl-1-(3-isopropyl-4-methyl-2-(8-methyl-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-4-amine (236); 1-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-4-methyl-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-(oxetan-3-yl)piperidin-4-amine (237); N-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)cyclohexyl) bicyclo[1.1.1]pentan-1-amine (238-239); N-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-methyl-1H-pyrrolo[2,3-c]pyridin-5-yl)cyclohexyl)tetrahydro-2H-pyran-4-amine (241); N-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-methyl-1H-pyrrolo[2,3-c]pyridin-5-yl) cyclohexyl)oxetan-3-amine (242-243); N-(2-fluoro-2-methylpropyl)-4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-methyl-1H-pyrrolo[2,3-c]pyridin-5-yl) cyclohexan-1-amine (244, 271); 6-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-4-methyl-1H-pyrrolo[2,3-c]pyridin-5-yl)cyclohexyl)-2-oxa-6-azaspiro[3.3]heptane (245-246); 6-(4-fluoro-3-isopropyl-5-(1-((3-methyloxetan-3-yl) methyl)piperidin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a] pyridine (250); 2-(2,6-dimethylpyridin-4-yl)-4-fluoro-3-isopropyl-5-(1-(oxetan-3-yl) piperidin-4-yl)-1H-pyrrolo[2,3-c]pyridine (251); 2-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-methyl-1H-pyrrolo[2,3-c]pyridin-5-yl)piperazin-1-yl)-N,N-dimethylacetamide (252); 6-(5-(4-(azetidin-1-yl)piperidin-1-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (253); 6-(1-(4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-4-yl)-2-oxa-6-azaspiro[3.3]heptane (254); 1-(4-fluoro-3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c] pyridin-5-yl)-N-(oxetan-3-yl)piperidin-4-amine (255); 1-(4-fluoro-3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-N,N-dimethylpiperidin-4-amine (256); N-(2,2-difluoroethyl)-1-(4-fluoro-3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-methylpiperidin-4-amine (257); 1-((1-(4-fluoro-3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-4-yl)amino)-2-methylpropan-2-ol (258); 2-((1-(4-fluoro-3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-4-yl)(methyl)amino)-N-methylacetamide (259); 1-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-(tetrahydro-2H-pyran-4-yl)piperidin-4-amine (264); 1-(3-isopropyl-4-methyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-(tetrahydro-2H-pyran-4-yl)piperidin-4-amine (265); (1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)cyclohexyl)azetidine-3,3-diyl)dimethanol (266); 4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-methyl-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-((3-methyloxetan-3-yl)methyl)cyclohexan-1-amine (269-270); 4-(1-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-methyl-1H-pyrrolo[2,3-c]pyridin-5-yl) piperidin-4-yl)morpholine (278); 6-(5-(4-(azetidin-1-yl)piperidin-1-yl)-3-isopropyl-4-methyl-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine (279); 3-((1-(3-isopropyl-4-methyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-4-yl)(methyl)amino)propanenitrile (280); 4-(1-(3-isopropyl-4-methyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c] pyridin-5-yl)piperidin-4-yl)thiomorpholine 1,1-dioxide (281); 4-(1-(3-isopropyl-4-methyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl) piperidin-4-yl)morpholine (282); 1-((1-(3-isopropyl-4-methyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-4-yl)amino)-2-methylpropan-2-ol (283); 4-(1-(3-isopropyl-4-methyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-4-yl)piperazin-2-one (284); 6-(3-isopropyl-4-methyl-5-(4-(4-(methylsulfonyl)piperazin-1-yl)piperidin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine (285); 3-(ethyl(1-(3-isopropyl-4-methyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c] pyridin-5-yl)piperidin-4-yl)amino)propanenitrile (286); 2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-1-yl)-N-methylacetamide (287); 2-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperazin-1-yl)-N-methylacetamide (288); 1-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperazin-1-yl)-2-(methylamino)ethan-1-one (289); 6-(3-isopropyl-5-(4-(2-(methylsulfonyl)ethyl)piperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (290); 1-(4-(4-chloro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperazin-1-yl)-2-(methylamino)ethan-1-one (291); 2-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-1-yl)-N-methylacetamide (292); 2-(4-(4-chloro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperazin-1-yl)-N-methylacetamide (293); 6-(4-chloro-3-isopropyl-5-(4-(2-(methylsulfonyl)ethyl)piperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (294); 1-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-1-yl)-2-methylpropan-2-ol (296); 2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperazin-1-yl)-N,N-dimethylacetamide (297, 302); 2-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c] pyridin-5-yl)piperidin-1-yl)-N,N-dimethylacetamide (298); 2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-1-yl)-N,N-dimethylacetamide (299); 2-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperazin-1-yl)-N,N-dimethylacetamide (300); 6-(3-isopropyl-5-(piperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine (301); 6-(3-isopropyl-5-(4-(oxetan-3-yl)piperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (303); 1-(4-(4-chloro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c] pyridin-5-yl)piperazin-1-yl)-2-(dimethylamino)ethan-1-one (304); 2-(4-(4-chloro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperazin-1-yl)-N,N-dimethylacetamide (305); 6-(3-isopropyl-5-(1-(oxetan-3-yl) piperidin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (306); N-isopropyl-1-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-4-amine (307); N-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)cyclohexyl)oxetan-3-amine (308, 330); 6-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)cyclohexyl)-2-oxa-6-azaspiro[3.3]heptane (309); 4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-neopentylcyclohexan-1-amine (310, 325); 6-(5-(4-(azetidin-1-yl)cyclohexyl)-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (311, 335); 6-(3-isopropyl-5-(piperidin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (312); 1-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-(3-methylbutan-2-yl)piperidin-4-amine (313); 1-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c] pyridin-5-yl)-N-methyl-N-(oxetan-3-yl)piperidin-4-amine (314); N-isopropyl-4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)cyclohexan-1-amine (315, 323); N-ethyl-4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-methylcyclohexan-1-amine (316, 331); N-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)cyclohexyl)tetrahydrofuran-3-amine (317, 342); 4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-isopropylcyclohexan-1-amine (318, 326); 2-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperazin-1-yl) acetamide (319); 1-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-(oxetan-3-yl)piperidin-4-amine (320); 1-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-(tetrahydro-2H-pyran-4-yl)piperidin-4-amine (321); 1-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-((3-methyloxetan-3-yl)methyl)piperidin-4-amine (322); 6-(5-(4-(azetidin-1-yl)cyclohexyl)-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (324, 332); N-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)cyclohexyl)tetrahydrofuran-3-amine (327, 349); 2-((4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)cyclohexyl)(methyl)amino)-N-methylacetamide (328, 338); 2-((1-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-4-yl) amino)-N-methylacetamide (329); 2-((1-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-4-yl)amino)-N,N-dimethylacetamide (333); N-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)cyclohexyl)oxetan-3-amine (334, 346); N-(2,2-difluoroethyl)-4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)cyclohexan-1-amine (336, 350); 4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-neopentylcyclohexan-1-amine (337, 351); N-(1-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-4-yl)-2-(methylamino)acetamide (339); 4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-N,N-dimethylcyclohexan-1-amine (340); 6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine (341); 2-(dimethylamino)-1-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-1-yl)ethan-1-one (343); 2-(dimethylamino)-N-(1-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-4-yl)acetamide (344); 2-((1-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperidin-4-yl)amino)acetamide (345); 4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)-N-(2-methoxyethyl) cyclohexan-1-amine (347-348); 2-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-4-methyl-1H-pyrrolo[2,3-c]pyridin-5-yl)piperazin-1-yl)-N,N-dimethylacetamide (352); 6-(4-fluoro-3-isopropyl-5-(piperazin-1-yl)-1H-pyrrolo[2,3-c] pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (353); (R)-6-(4-fluoro-3-isopropyl-5-(2-methylpiperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (354); 6-(4-fluoro-3-isopropyl-5-(2,6-diazaspiro[3.3]heptan-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (355); 2-(6-(4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-2,6-diazaspiro[3.3]heptan-2-yl)-N-methylacetamide (356); 6-(4-fluoro-3-isopropyl-5-(6-(2-(methylsulfonyl)ethyl)-2,6-diazaspiro[3.3]heptan-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (357); 2-(4-(4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperazin-1-yl) acetamide (358); 2-(4-(4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperazin-1-yl)-N-methylacetamide (359); 2-(4-(4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c] pyridin-5-yl)piperazin-1-yl)-N,N-dimethylacetamide (360); 6-(4-fluoro-3-isopropyl-5-(4-(2-methoxyethyl)piperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (361); 6-(4-fluoro-3-isopropyl-5-(4-(2-(methylsulfonyl) ethyl)piperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a] pyridine (362); 2-(4-(4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperazin-1-yl)-1-morpholinoethan-1-one (363); 1-(4-(4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c] pyridin-5-yl)piperazin-1-yl)-2-methylpropan-2-ol (364); 2-(4-(4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperazin-1-yl)acetonitrile (365); 6-(4-fluoro-3-isopropyl-5-(4-(2,2,2-trifluoroethyl)piperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (366); 1-(6-(4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c] pyridin-5-yl)-2,6-diazaspiro[3.3]heptan-2-yl)-2-morpholinoethan-1-one (367); 2-(dimethylamino)-1-(4-(4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)piperazin-1-yl)ethan-1-one (368); 6-(4-fluoro-3-isopropyl-5-(6-(oxetan-3-yl)-2,6-diazaspiro[3.3]heptan-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (369); 6-(4-fluoro-3-isopropyl-5-(6-(tetrahydro-2H-pyran-4-yl)-2,6-diazaspiro[3.3]heptan-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (370); 6-(4-fluoro-3-isopropyl-5-(6-((tetrahydro-2H-pyran-4-yl)methyl)-2,6-diazaspiro[3.3]heptan-2-yl)-1H-pyrrolo[2,3-c] pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (371); 6-(4-fluoro-5-(6-isobutyl-2,6-diazaspiro[3.3]heptan-2-yl)-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (372); 6-(4-fluoro-3-isopropyl-5-(6-isopropyl-2,6-diazaspiro[3.3]heptan-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (373); 6-(5-(6-(cyclopropylmethyl)-2,6-diazaspiro[3.3]heptan-2-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (374); 6-(5-(6-(cyclobutylmethyl)-2,6-diazaspiro[3.3]heptan-2-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (375); 6-(4-fluoro-3-isopropyl-5-(6-((3-methyloxetan-3-yl)methyl)-2,6-diazaspiro[3.3]heptan-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (376); 6-(4-fluoro-3-isopropyl-5-(6-(1-isopropylpiperidin-4-yl)-2,6-diazaspiro[3.3]heptan-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (377); 6-(4-fluoro-3-isopropyl-5-(6-methyl-2,6-diazaspiro[3.3]heptan-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (378); 6-(5-(6-ethyl-2,6-diazaspiro[3.3]heptan-2-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a] pyridine (379); 6-(4-fluoro-3-isopropyl-5-(6-propyl-2,6-diazaspiro[3.3]heptan-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (380); 6-(5-(6-cyclobutyl-2,6-diazaspiro[3.3]heptan-2-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c] pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (381); 6-(4-fluoro-3-isopropyl-5-(4-(oxetan-3-yl)piperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (382); 6-(4-fluoro-3-isopropyl-5-(4-((tetrahydro-2H-pyran-4-yl)methyl)piperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (383); 6-(4-fluoro-3-isopropyl-5-(4-isopropylpiperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (384); 6-(4-fluoro-3-isopropyl-5-(4-((3-methyloxetan-3-yl)methyl)piperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (385); 6-(4-fluoro-3-isopropyl-5-(4-(tetrahydro-2H-pyran-3-yl)piperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (386-387); 6-(4-fluoro-3-isopropyl-5-(4-(1-isopropylpiperidin-4-yl)piperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (388); 6-(5-(4-ethylpiperazin-1-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (389); 6-(5-(4-(cyclopropylmethyl)piperazin-1-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (390); 6-(5-(4-cyclobutylpiperazin-1-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a] pyridine (391); 6-(4-fluoro-3-isopropyl-5-(2,6-diazaspiro[3.3]heptan-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (392); 6-(4-fluoro-3-isopropyl-5-(piperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (393); ®-6-(4-fluoro-3-isopropyl-5-(2-methylpiperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (394); 2-(6-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)-2,6-diazaspiro[3.3]heptan-2-yl)-N-methylacetamide (395); 6-(4-fluoro-3-isopropyl-5-(6-(2-(methylsulfonyl)ethyl)-2,6-diazaspiro[3.3]heptan-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (396); 2-(6-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)-2,6-diazaspiro[3.3]heptan-2-yl)acetonitrile (397); 6-(4-fluoro-3-isopropyl-5-(4-(2-(methylsulfonyl)ethyl)piperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (398); 1-(6-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-fluoro-3-isopropyl-1H- pyrrolo[2,3-c]pyridin-5-yl)-2,6-diazaspiro[3.3]heptan-2-yl)-2-morpholinoethan-1-one (399); 6-(4-fluoro-3-isopropyl-5-(6-(oxetan-3-yl)-2,6-diazaspiro[3.3]heptan-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (400); 6-(4-fluoro-3-isopropyl-5-(6-(tetrahydro-2H-pyran-4-yl)-2,6-diazaspiro[3.3]heptan-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (401); 6-(4-fluoro-5-(6-isobutyl-2,6-diazaspiro[3.3]heptan-2-yl)-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (402); 6-(4-fluoro-3-isopropyl-5-(6-isopropyl-2,6-diazaspiro[3.3]heptan-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (403); 6-(5-(6-(cyclobutylmethyl)-2,6-diazaspiro[3.3]heptan-2-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (404); 6-(4-fluoro-3-isopropyl-5-(6-((3-methyloxetan-3-yl)methyl)-2,6-diazaspiro[3.3]heptan-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (405); 6-(4-fluoro-3-isopropyl-5-(6-(1-isopropylpiperidin-4-yl)-2,6-diazaspiro[3.3]heptan-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (406); 6-(4-fluoro-3-isopropyl-5-(6-methyl-2,6-diazaspiro[3.3]heptan-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (407); 6-(5-(6-ethyl-2,6-diazaspiro[3.3]heptan-2-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (408); 6-(4-fluoro-3-isopropyl-5-(4-(oxetan-3-yl)piperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (409); 6-(4-fluoro-3-isopropyl-5-(4-((3-methyloxetan-3-yl)methyl)piperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (410); 6-(4-fluoro-3-isopropyl-5-(4-((tetrahydro-2H-pyran-4-yl)methyl)piperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (411); 6-(4-fluoro-3-isopropyl-5-(4-isopropylpiperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (412); 2-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-4-methyl-1H-pyrrolo[2,3-c]pyridin-5-yl)piperazin-1-yl)-N-methylacetamide (413); 2-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-4-methyl-1H-pyrrolo[2,3-c]pyridin-5-yl)piperazin-1-yl)acetamide (414); 6-(3-isopropyl-4-methyl-5-(4-(2-(methylsulfonyl)ethyl)piperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (415); 1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-4-methyl-1H-pyrrolo[2,3-c]pyridin-5-yl)piperazin-1-yl)-2-(dimethylamino)ethan-1-one (416); 6-(3-isopropyl-4-methyl-5-(4-(oxetan-3-yl)piperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (417); 6-(3-isopropyl-4-methyl-5-(4-(tetrahydro-2H-pyran-4-yl)piperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (418); 6-(3-isopropyl-4-methyl-5-(4-((tetrahydro-2H-pyran-4-yl)methyl)piperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (419); 1-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c] pyridin-5-yl)piperidin-4-amine (420); 1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)piperazin-1-yl)-2-morpholinoethan-1-one (421); 1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)piperazin-1-yl)-2-(dimethylamino)ethan-1-one (422); 2-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)piperazin-1-yl)-1-morpholinoethan-1-one (423); 6-(4-fluoro-3-isopropyl-5-(4-(2-methoxyethyl)piperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (424); 6-(4-fluoro-3-isopropyl-5-(4-(methylsulfonyl)piperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (425); 1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)piperazin-1-yl)-2-methylpropan-2-ol (426); 1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-fluoro-3 -isopropyl- 1H-pyrrolo[2,3-c]pyridin-5-yl)piperazin-1-yl)ethan-1-one (427); 2-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)piperazin-1-yl)-N,N-dimethylacetamide (428); 2-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)piperazin-1-yl)acetamide (429); 6-(5-(4-(cyclopropylmethyl)piperazin-1-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (430); 6-(4-fluoro-3-isopropyl-5-(4-(tetrahydro-2H-pyran-4-yl)piperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (431); 6-(4-fluoro-3-isopropyl-5-(4-neopentylpiperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (432); 6-(5-(4-ethylpiperazin-1-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (433); 6-(4-fluoro-3-isopropyl-5-(6-(2,2,2-trifluoroethyl)-2,6-diazaspiro[3.3]heptan-2-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (434); 1-(6-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)-2,6-diazaspiro[3.3]heptan-2-yl)-2-(dimethylamino)ethan-1-one (435); (R)-6-(5-(2,4-dimethylpiperazin-1-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (436); (R)-6-(4-fluoro-3-isopropyl-5-(2-methyl-4-propylpiperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (437); (R)-1-(4-(4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-3-methylpiperazin-1-yl)-2-morpholinoethan-1-one (438); (R)-2-(dimethylamino)-1-(4-(4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-3-methylpiperazin-1-yl)ethan-1-one (439); (R)-6-(4-fluoro-3-isopropyl-5-(2-methyl-4-(oxetan-3-yl)piperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (440); (R)-6-(5-(4-(cyclopropylmethyl)-2-methylpiperazin-1-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (441); (R)-6-(5-(4-(cyclopropylmethyl)-2-methylpiperazin-1-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (442); (R)-6-(4-fluoro-3-isopropyl-5-(4-isopropyl-2-methylpiperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (443); (R)-6-(4-fluoro-3-isopropyl-5-(4-(2-methoxyethyl)-2-methylpiperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (444); (R)-2-(4-(4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-3-methylpiperazin-1-yl)-N-methylacetamide (445); (R)-2-(4-(4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-3-methylpiperazin-1-yl)-N,N-dimethylacetamide (446); (R)-2-(4-(4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-3-methylpiperazin-1-yl)acetamide (447); (R)-2-(4-(4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-pyrrolo[2,3-c]pyridin-5-yl)-3-methylpiperazin-1-yl)-1-morpholinoethan-1-one (448); (R)-6-(4-fluoro-3-isopropyl-5-(2-methyl-4-(2,2,2-trifluoroethyl)piperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (449); (R)-6-(4-fluoro-3-isopropyl-5-(2-methyl-4-(2-(methylsulfonyl)ethyl)piperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (450); (R)-6-(4-fluoro-3-isopropyl-5-(4-(1-isopropylpiperidin-4-yl)-2-methylpiperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (451); (R)-6-(4-fluoro-3-isopropyl-5-(2-methyl-4-(tetrahydro-2H-pyran-4-yl)piperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (452); (R)-6-(4-fluoro-5-(4-isobutyl-2-methylpiperazin-1-yl)-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (453); (R)-6-(5-(2,4-dimethylpiperazin-1-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (454); (R)-6-(4-fluoro-3-isopropyl-5-(2-methyl-4-propylpiperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (455); (R)-6-(4-fluoro-3-isopropyl-5-(2-methyl-4-(tetrahydro-2H-pyran-4-yl)piperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (456); (R)-6-(4-fluoro-3-isopropyl-5-(2-methyl-4-(oxetan-3-yl)piperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (457); (R)-6-(5-(4-cyclobutyl-2-methylpiperazin-1-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (458); (R)-6-(5-(4-(cyclopropylmethyl)-2-methylpiperazin-1-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (459); (R)-6-(4-fluoro-5-(4-isobutyl-2-methylpiperazin-1-yl)-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (460); (R)-6-(4-fluoro-3-isopropyl-5-(4-isopropyl-2-methylpiperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (461); (R)-6-(4-fluoro-3-isopropyl-5-(4-(1-isopropylpiperidin-4-yl)-2-methylpiperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (462); (R)-6-(4-fluoro-3-isopropyl-5-(2-methyl-4-(2-(methylsulfonyl)ethyl)piperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (463); (R)-2-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)-3-methylpiperazin-1-yl)acetamide (464); (R)-2-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)-3-methylpiperazin-1-yl)-N-methylacetamide (465); (R)-2-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)-3-methylpiperazin-1-yl)-N,N-dimethylacetamide (466); (R)-2-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)-3-methylpiperazin-1-yl)acetonitrile (467); (R)-6-(4-fluoro-3-isopropyl-5-(2-methyl-4-(2,2,2-trifluoroethyl)piperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (468); (R)-2-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)-3-methylpiperazin-1-yl)-1-morpholinoethan-1-one (469); (R)-1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)-3-methylpiperazin-1-yl)-2-(dimethylamino)ethan-1-one (470); (R)-1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-fluoro-3-isopropyl-1H-pyrrolo[2,3-c]pyridin-5-yl)-3-methylpiperazin-1-yl)-2-morpholinoethan-1-one (471); or (R)-6-(4-fluoro-3-isopropyl-5-(4-(2-methoxyethyl)-2-methylpiperazin-1-yl)-1H-pyrrolo[2,3-c]pyridin-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (472).
- A pharmaceutical composition comprising a compound according to any one of claims 1-4, N-oxide, stereoisomers, tautomers, solvates or a pharmaceutically-acceptable salt thereof; and a pharmaceutically acceptable carrier.
- A compound according to any one of claims 1-4, N-oxide, stereoisomers, tautomers, solvates or a pharmaceutically-acceptable salt thereof, for use in therapy.
- A compound according to any one of claims 1-4, N-oxide, stereoisomers, tautomers, solvates or a pharmaceutically-acceptable salt thereof, for use in treating autoimmune disease or chronic inflammatory disease.
- The compound, N-oxide, stereoisomers, tautomers, solvates or a pharmaceutically-acceptable salt thereof for use according to claim 7, wherein said autoimmune disease or chronic inflammatory disease is selected from systemic lupus erythematosus (SLE), rheumatoid arthritis, multiple sclerosis (MS), and Sjögren's syndrome.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762607507P | 2017-12-19 | 2017-12-19 | |
PCT/US2018/066107 WO2019126082A1 (en) | 2017-12-19 | 2018-12-18 | 6-azaindole compounds |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3728253A1 EP3728253A1 (en) | 2020-10-28 |
EP3728253B1 true EP3728253B1 (en) | 2024-03-27 |
Family
ID=65003572
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18830673.2A Active EP3728253B1 (en) | 2017-12-19 | 2018-12-18 | 6-azaindole compounds |
Country Status (14)
Country | Link |
---|---|
US (2) | US11427580B2 (en) |
EP (1) | EP3728253B1 (en) |
JP (1) | JP7304352B2 (en) |
KR (1) | KR102742181B1 (en) |
CN (1) | CN111699185B (en) |
AU (1) | AU2018390543A1 (en) |
BR (1) | BR112020011788A2 (en) |
CA (1) | CA3085761A1 (en) |
EA (1) | EA202091508A1 (en) |
ES (1) | ES2977657T3 (en) |
IL (1) | IL275365A (en) |
MX (1) | MX2020005873A (en) |
SG (1) | SG11202005704RA (en) |
WO (1) | WO2019126082A1 (en) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10071079B2 (en) | 2016-06-29 | 2018-09-11 | Bristol-Myers Squibb Company | [1,2,4]triazolo[1,5-a]pyridinyl substituted indole compounds |
MX2020006014A (en) * | 2017-12-20 | 2020-08-17 | Bristol Myers Squibb Co | Diazaindole compounds. |
AU2018393003A1 (en) * | 2017-12-20 | 2020-08-06 | Bristol-Myers Squibb Company | Aryl and heteroaryl substituted indole compounds |
WO2019126242A1 (en) * | 2017-12-20 | 2019-06-27 | Bristol-Myers Squibb Company | Amino indole compounds useful as tlr inhibitors |
JP7328977B2 (en) | 2018-02-12 | 2023-08-17 | エフ. ホフマン-ラ ロシュ アーゲー | Novel sulfone compounds and derivatives for the treatment and prevention of viral infections |
BR112020024782A2 (en) | 2018-06-05 | 2021-03-02 | F. Hoffmann-La Roche Ag | tetrahydro-1h-pyrazine [2,1-a] isoindolylquinoline compounds for the treatment of autoimmune disease |
EP3807270B1 (en) | 2018-06-12 | 2023-09-13 | F. Hoffmann-La Roche AG | Novel heteroaryl heterocyclyl compounds for the treatment of autoimmune disease |
WO2020020800A1 (en) | 2018-07-23 | 2020-01-30 | F. Hoffmann-La Roche Ag | Novel piperazine compounds for the treatment of autoimmune disease |
CN112638908A (en) | 2018-09-04 | 2021-04-09 | 豪夫迈·罗氏有限公司 | Benzothiazoles for treatment of autoimmune diseases |
US12252484B2 (en) | 2018-09-06 | 2025-03-18 | Hoffmann-La Roche Inc. | Pyrazolopyridine compounds for the treatment of autoimmune disease |
WO2020048595A1 (en) | 2018-09-06 | 2020-03-12 | F. Hoffmann-La Roche Ag | Novel cyclic amidine compounds for the treatment of autoimmune disease |
GB201913752D0 (en) | 2019-09-24 | 2019-11-06 | Syngenta Crop Protection Ag | Herbicidal compounds |
GB201914277D0 (en) | 2019-10-03 | 2019-11-20 | Syngenta Crop Protection Ag | Herbicidal compounds |
GB201917898D0 (en) | 2019-12-06 | 2020-01-22 | Syngenta Crop Protection Ag | Herbicidal compounds |
EP4148894A4 (en) | 2020-08-13 | 2024-06-12 | LG Energy Solution, Ltd. | BATTERY MODULE WITH IMPROVED ELECTRODE LEAD CONNECTION STRUCTURE AS WELL AS BATTERY PACK AND VEHICLE THEREOF |
CA3189816A1 (en) * | 2020-08-19 | 2022-02-24 | Chunjian Liu | Substituted heteroaryl compounds useful as inhibitors of tlr9 |
KR20230053646A (en) * | 2020-08-19 | 2023-04-21 | 브리스톨-마이어스 스큅 컴퍼니 | 1H-pyrrolo[3,2-C]pyridine and 1H-pyrrolo[2,3-C]pyridine derivatives as TLR9 inhibitors for the treatment of fibrosis |
EP4225742A4 (en) | 2020-10-05 | 2024-11-06 | Enliven Inc. | 5- and 6-azaindole compounds for inhibition of bcr-abl tyrosine kinases |
AU2022257039A1 (en) | 2021-04-16 | 2023-10-05 | Gilead Sciences, Inc. | Thienopyrrole compounds |
TW202440078A (en) | 2021-09-10 | 2024-10-16 | 美商基利科學股份有限公司 | Thienopyrrole compounds |
CN114591339B (en) * | 2022-05-10 | 2022-08-02 | 上海维申医药有限公司 | Toll-like receptor inhibitor and preparation and application thereof |
Family Cites Families (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5468757A (en) * | 1994-01-31 | 1995-11-21 | Eli Lilly And Company | 6-azaindole thromboxane synthase inhibitors |
US6187777B1 (en) | 1998-02-06 | 2001-02-13 | Amgen Inc. | Compounds and methods which modulate feeding behavior and related diseases |
JP2002532479A (en) | 1998-12-18 | 2002-10-02 | アクシス・ファーマシューティカルズ・インコーポレイテッド | Protease inhibitor |
AU3127900A (en) * | 1998-12-23 | 2000-07-31 | Du Pont Pharmaceuticals Company | Thrombin or factor xa inhibitors |
CA2387351C (en) | 1999-10-19 | 2009-09-08 | Merck & Co., Inc. | Indole derivatives as tyrosine kinase inhibitors |
KR100980163B1 (en) | 2002-01-07 | 2010-09-03 | 에자이 알앤드디 매니지먼트 가부시키가이샤 | Deazapurine and its uses |
KR20060016817A (en) | 2003-06-20 | 2006-02-22 | 콜리 파마슈티칼 게엠베하 | Small molecule toll-like receptor (TLL) antagonists |
WO2007115306A2 (en) | 2006-04-04 | 2007-10-11 | Myriad Genetics, Inc. | Compounds for diseases and disorders |
US20060235037A1 (en) | 2005-04-15 | 2006-10-19 | Purandare Ashok V | Heterocyclic inhibitors of protein arginine methyl transferases |
DE102006033109A1 (en) | 2006-07-18 | 2008-01-31 | Grünenthal GmbH | Substituted heteroaryl derivatives |
US8027888B2 (en) | 2006-08-31 | 2011-09-27 | Experian Interactive Innovation Center, Llc | Online credit card prescreen systems and methods |
EP2086540B8 (en) | 2006-12-01 | 2011-03-02 | Galapagos N.V. | Triazolopyridine compounds useful for the treatment of degenerative & inflammatory diseases |
WO2008152471A1 (en) | 2007-06-12 | 2008-12-18 | Coley Pharmaceutical Group, Inc. | Quinazoline derivative useful as toll-like receptor antagonist |
WO2009030996A1 (en) | 2007-09-05 | 2009-03-12 | Coley Pharmaceutical Group, Inc. | Triazole compounds as toll-like receptor (tlr) agonists |
WO2009042092A1 (en) | 2007-09-25 | 2009-04-02 | Merck & Co., Inc. | 2-aryl or heteroaryl indole derivatives |
FR2930249B1 (en) | 2008-04-21 | 2010-05-14 | Sanofi Aventis | NOVEL 3-AMINOALKYL-1,3-DIHYDRO-2H-INDOL-2-ONE DERIVATIVES, THEIR PREPARATION AND THERAPEUTIC USE THEREOF |
US8354400B2 (en) | 2008-09-26 | 2013-01-15 | Eisai R&D Co., Ltd. | Benzoxazole compounds and methods of use |
WO2010042337A1 (en) | 2008-10-07 | 2010-04-15 | Merck Sharp & Dohme Corp. | Novel 6-azaindole aminopyrimidine derivatives having nik inhibitory activity |
JP5529876B2 (en) | 2008-10-17 | 2014-06-25 | ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング | Heteroaryl-substituted indole compounds useful as MMP-13 inhibitors |
TWI462920B (en) | 2009-06-26 | 2014-12-01 | 葛萊伯格有限公司 | Novel compound useful for the treatment of degenerative and inflammatory diseases |
CA2768236C (en) | 2009-07-16 | 2018-05-22 | Mallinckrodt Llc | (+)-morphinans as antagonists of toll-like receptor 9 and therapeutic uses thereof |
BR112012006630A2 (en) | 2009-09-24 | 2016-05-03 | Hoffmann La Roche | indole derivatives as calcium channel activated calcium channel modulators (crac) |
AU2010310449A1 (en) | 2009-10-22 | 2012-05-03 | Vertex Pharmaceuticals Incorporated | Compositions for treatment of cystic fibrosis and other chronic diseases |
WO2012054862A2 (en) | 2010-10-21 | 2012-04-26 | The Brigham And Women's Hospital, Inc. | Agents, compositions, and methods for treating pruritis and related skin conditions |
DK2663550T3 (en) | 2011-01-12 | 2017-03-27 | Ventirx Pharmaceuticals Inc | SUBSTITUTED BENZOAZEPINS AS MODULATORS OF TOLL-LIKE RECEPTORS |
CA2824786A1 (en) | 2011-01-12 | 2012-07-19 | Ventirx Pharmaceuticals, Inc. | Substituted benzoazepines as toll-like receptor modulators |
AU2012262021B2 (en) | 2011-06-01 | 2016-07-28 | Janus Biotherapeutics, Inc. | Novel immune system modulators |
CN103717070A (en) | 2011-06-01 | 2014-04-09 | 贾纳斯生物治疗有限公司 | Novel immune system modulators |
US9181214B2 (en) | 2011-06-09 | 2015-11-10 | Rhizen Pharmaceuticals Sa | Bicyclic compounds as modulators of GPR-119 |
CA2841102C (en) | 2011-07-15 | 2019-08-13 | Janssen Pharmaceuticals, Inc. | Novel substituted indole derivatives as gamma secretase modulators |
DE102011111400A1 (en) * | 2011-08-23 | 2013-02-28 | Merck Patent Gmbh | Bicyclic heteroaromatic compounds |
JP2014528449A (en) | 2011-10-04 | 2014-10-27 | ジャナス バイオセラピューティクス,インク. | Novel imidazole quinoline immune system modulator |
WO2013172479A1 (en) | 2012-05-18 | 2013-11-21 | Dainippon Sumitomo Pharma Co., Ltd. | Carboxylic acid compounds |
JO3407B1 (en) | 2012-05-31 | 2019-10-20 | Eisai R&D Man Co Ltd | Tetrahydropyrazolopyrimidines |
EP2738172A1 (en) * | 2012-11-28 | 2014-06-04 | Almirall, S.A. | New bicyclic compounds as crac channel modulators |
SG10202103278TA (en) | 2013-10-14 | 2021-04-29 | Eisai R&D Man Co Ltd | Selectively substituted quinoline compounds |
JP2016540013A (en) | 2013-12-13 | 2016-12-22 | 武田薬品工業株式会社 | Pyrrolo [3,2-C] pyridine derivatives as TLR inhibitors |
PT3190113T (en) | 2014-08-15 | 2021-06-17 | Chai Tai Tianqing Pharmaceutical Group Co Ltd | Pyrrolopyrimidine compounds used as tlr7 agonist |
CN107108629A (en) | 2014-08-22 | 2017-08-29 | 贾纳斯生物治疗有限公司 | Novel N2, N4, N7, the 6 quaternary triamines of pteridine 2,4,7 and 2,4,6,7 quaternary pteridine compounds and its synthesis and application method |
US10071079B2 (en) | 2016-06-29 | 2018-09-11 | Bristol-Myers Squibb Company | [1,2,4]triazolo[1,5-a]pyridinyl substituted indole compounds |
CA3031675A1 (en) * | 2016-07-30 | 2018-02-08 | Bristol-Myers Squibb Company | Dimethoxyphenyl substituted indole compounds as tlr7, tlr8 or tlr9 inhibitors |
KR102519535B1 (en) | 2016-09-09 | 2023-04-06 | 브리스톨-마이어스 스큅 컴퍼니 | Pyridyl substituted indole compounds |
MX2020005462A (en) * | 2017-12-19 | 2020-09-07 | Bristol Myers Squibb Co | Substituted indole compounds useful as tlr inhibitors. |
-
2018
- 2018-12-18 CA CA3085761A patent/CA3085761A1/en active Pending
- 2018-12-18 SG SG11202005704RA patent/SG11202005704RA/en unknown
- 2018-12-18 AU AU2018390543A patent/AU2018390543A1/en not_active Abandoned
- 2018-12-18 US US16/955,089 patent/US11427580B2/en active Active
- 2018-12-18 EP EP18830673.2A patent/EP3728253B1/en active Active
- 2018-12-18 WO PCT/US2018/066107 patent/WO2019126082A1/en unknown
- 2018-12-18 JP JP2020534474A patent/JP7304352B2/en active Active
- 2018-12-18 EA EA202091508A patent/EA202091508A1/en unknown
- 2018-12-18 MX MX2020005873A patent/MX2020005873A/en unknown
- 2018-12-18 ES ES18830673T patent/ES2977657T3/en active Active
- 2018-12-18 CN CN201880089130.3A patent/CN111699185B/en active Active
- 2018-12-18 KR KR1020207020877A patent/KR102742181B1/en active Active
- 2018-12-18 BR BR112020011788-9A patent/BR112020011788A2/en not_active Application Discontinuation
-
2020
- 2020-06-14 IL IL275365A patent/IL275365A/en unknown
-
2022
- 2022-06-30 US US17/854,089 patent/US11912703B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
WO2019126082A1 (en) | 2019-06-27 |
EA202091508A1 (en) | 2020-09-14 |
BR112020011788A2 (en) | 2020-11-24 |
ES2977657T3 (en) | 2024-08-28 |
SG11202005704RA (en) | 2020-07-29 |
EP3728253A1 (en) | 2020-10-28 |
CA3085761A1 (en) | 2019-06-27 |
MX2020005873A (en) | 2020-08-13 |
KR20200101956A (en) | 2020-08-28 |
JP2021507912A (en) | 2021-02-25 |
KR102742181B1 (en) | 2024-12-11 |
IL275365A (en) | 2020-07-30 |
AU2018390543A1 (en) | 2020-08-06 |
US20200385382A1 (en) | 2020-12-10 |
US11427580B2 (en) | 2022-08-30 |
JP7304352B2 (en) | 2023-07-06 |
US11912703B2 (en) | 2024-02-27 |
US20220348576A1 (en) | 2022-11-03 |
CN111699185A (en) | 2020-09-22 |
CN111699185B (en) | 2023-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3728253B1 (en) | 6-azaindole compounds | |
EP3728188B1 (en) | Aryl and heteroaryl substituted indole compounds | |
EP3728252B1 (en) | 4-azaindole compounds | |
EP3728221B1 (en) | Amide substituted indole compounds useful as tlr inhibitors | |
EP3728218B1 (en) | Amino indole compounds useful as tlr inhibitors | |
EP3728264B1 (en) | Diazaindole compounds | |
EP3661934B1 (en) | [1,2,4]triazolo[4,3-a]pyridinyl substituted indole compounds | |
EP3724183B1 (en) | Substituted indole ether compounds | |
EP4038059B1 (en) | Substituted carbazole compounds | |
WO2020086503A1 (en) | Substituted indole and indazole compounds | |
EP3965888B1 (en) | Substituted benzimidazolone compounds | |
EP3870589B1 (en) | Substituted indole dimer compounds | |
EP4041730A1 (en) | Substituted bicyclic heteroaryl compounds |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20200702 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20220126 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20231031 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20240312 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602018067257 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240327 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240628 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240627 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240327 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240627 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240627 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240327 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240327 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240628 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240327 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240327 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20240327 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2977657 Country of ref document: ES Kind code of ref document: T3 Effective date: 20240828 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240327 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240327 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240327 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1669819 Country of ref document: AT Kind code of ref document: T Effective date: 20240327 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240327 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240727 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240327 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240729 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240327 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240327 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240327 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240327 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240327 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240327 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240327 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240327 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240729 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240327 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240727 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240327 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240327 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240327 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602018067257 Country of ref document: DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20241029 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240327 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20241104 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20241111 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20241112 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240327 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20250103 |