EP3724359B1 - Hochfestes, warmgewalztes stahlflachprodukt mit hohem kantenrisswiderstand und gleichzeitig hohem bake-hardening potential und verfahren zur herstellung eines solchen stahlflachprodukts - Google Patents
Hochfestes, warmgewalztes stahlflachprodukt mit hohem kantenrisswiderstand und gleichzeitig hohem bake-hardening potential und verfahren zur herstellung eines solchen stahlflachprodukts Download PDFInfo
- Publication number
- EP3724359B1 EP3724359B1 EP18825919.6A EP18825919A EP3724359B1 EP 3724359 B1 EP3724359 B1 EP 3724359B1 EP 18825919 A EP18825919 A EP 18825919A EP 3724359 B1 EP3724359 B1 EP 3724359B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- hot
- flat steel
- steel product
- max
- slab
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0273—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/022—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
- C23C2/0224—Two or more thermal pretreatments
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/024—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/009—Pearlite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12785—Group IIB metal-base component
- Y10T428/12792—Zn-base component
- Y10T428/12799—Next to Fe-base component [e.g., galvanized]
Definitions
- the invention relates to a high-strength, hot-rolled flat steel product with high edge crack resistance and, at the same time, high bake hardening potential.
- the invention also relates to a method for producing such a flat steel product.
- the invention relates to flat steel products made of steels with a multiphase structure, which usually contains tempered bainite, and with a yield strength Rp0.2 in the range from 660 to 820 MPa, in particular for the production of components for automobile construction, which in addition to a high tensile strength of at least 760 MPa and an elongation at break A80 of at least 10% must have a high hole expansion capacity with a hole expansion ratio of more than 30% and a high bake hardening potential with a BH2 value of more than 30 MPa.
- a bake hardening effect is understood to be a controlled aging process which is due to the carbon and / or nitrogen present in the steel in solution and which is associated with an increase in the yield point.
- the bake hardening effect can be described with a BH2 value, which is defined as the increase in the yield point after a plastic pre-elongation of 2% and a subsequent heat treatment.
- the dent resistance of a component can be increased by applying a suitable heat treatment after it has been formed into the component.
- bainitic steels are steels that are characterized by a comparatively high yield point and tensile strength with a sufficiently high elongation for cold forming processes.
- the structure typically consists of bainite with a proportion of ferrite.
- the structure can occasionally contain small proportions of other phases, such as martensite and retained austenite.
- Such a steel is used, for example, in the Offenlegungsschrift, among others DE 10 2012 002 079 A1 or WO2017012958 A1 disclosed.
- the disadvantage here is that the hole expansion capacity is not yet sufficiently high.
- the weight of the vehicles can be reduced by simultaneously improving the deformation behavior of the steels used and the component behavior during production and operation.
- High-strength to ultra-high-strength steels must therefore meet comparatively high requirements with regard to their strength, ductility and energy absorption, especially when processing them, such as stamping, hot and cold forming, thermal quenching and tempering (e.g. air hardening, press hardening), welding and / or surface treatment , e.g. a metallic refinement, organic coating or painting.
- stamping hot and cold forming
- thermal quenching and tempering e.g. air hardening, press hardening
- welding and / or surface treatment e.g. a metallic refinement, organic coating or painting.
- a high-strength to ultra-high-strength steel with a single or multi-phase structure must therefore be used in order to ensure sufficient strength of the motor vehicle components and to meet the high forming and component requirements in terms of toughness, edge crack insensitivity, improved bending angle and bending radius, energy absorption and strengthening capacity and the like Bake hardening effect is sufficient.
- the hole expansion capacity is a material property that describes the resistance of the material to crack initiation and crack propagation during forming operations in areas close to edges, such as when pulling collars.
- the hole expansion test is regulated in ISO 16630, for example. Then holes punched in a sheet metal are widened by means of a mandrel.
- the measured variable is the change in the hole diameter related to the initial diameter at which the first crack through the sheet occurs at the edge of the hole.
- Improved edge crack insensitivity means an increased deformability of the sheet metal edges and can be described by an increased hole expansion capacity. This fact is known under the synonyms “Low Edge Crack” (LEC) or under “High Hole Expansion” (HHE) and xpand®.
- the present invention is based on the object of creating a high-strength, hot-rolled flat steel product with good forming properties, in particular with high edge crack resistance and a high bake hardening potential, as well as a method for producing such a flat steel product which, based on the steel, is good Offer a combination of strength and forming properties.
- the flat steel product according to the invention is also preferably characterized by a high hole expansion ratio of over 30% with a high tensile strength of 760 to 960 MPa and a high bake hardening potential BH2 of over 30 MPa.
- the flat steel product contains the following alloy composition in% by weight in order to achieve particularly favorable combinations of properties: C: 0.04 to 0.08, Si: 0.03 to 0.4, Mn: 1.4 to 2.0 , P: max. 0.08, S: max. 0.01, N: max. 0.01, AI: up to 0.1, Ni + Mo: up to 0.5, Nb: up to 0.08, Ti: up to 0.2, Nb + Ti: at least 0.03 and particularly advantageous: C: 0.04 to 0.08, Si: 0.03 to 0.4, Mn: 1.4 up to 2.0, P: max. 0.08, S: max. 0.01, N: max. 0.01, AI: up to 0.1, Ni + Mo: up to 0.5, Nb: up to to 0.05, Ti: up to 0.15 and Nb + Ti: min.0.03.
- the second main constituent which is comparatively richer in carbon, is advantageously embedded in the form of an island in the comparatively lower carbon, first main constituent which forms the matrix.
- the island size is about 1 ⁇ m in diameter, but in any case ⁇ 2 ⁇ m is comparatively small and the islands are advantageously evenly distributed over the strip thickness.
- the small size of the islands and the homogeneous distribution of the second main component contribute significantly to achieving the high hole expansion ratio.
- the carbon-rich second main component embedded in the matrix in the form of an island Due to the proportion of the carbon-rich second main component embedded in the matrix in the form of an island, firstly the yield point in the area mentioned and secondly the bake hardening potential is set.
- the metallurgical mechanism is that with the formation of the metastable structural components martensite, retained austenite and bainite, a large number of dislocations are generated, which cause a low yield strength.
- dissolved carbon diffuses from the metastable structural components martensite, retained austenite and bainite into the previously created dislocations and causes the well-known increase in strength. Since no dissolved carbon is available in the pearlite, the carbon-rich component embedded in the matrix in the form of an island contains at least one of the metastable structural components martensite, retained austenite and bainite.
- the hot-rolled flat steel product according to the invention can be provided with a metallic or non-metallic coating and is particularly suitable for the production of components for vehicle construction in the automotive industry, but applications in shipbuilding, plant construction, infrastructure construction, in aerospace and household appliance technology are also conceivable.
- the steel advantageously has a tensile strength Rm of 760 to 960 MPa, a yield strength Rp0.2 of 660 to 820 MPa, an elongation at break A80 of more than 10%, preferably more than 12%, a hole expansion ratio of more than 30% along the rolling direction. and a BH2 value of over 30 MPa.
- Manganese Mn Stabilizes austenite, increases strength and toughness, and increases the temperature window for hot rolling below the recrystallization stop temperature. Higher contents of> 2.5% by weight Mn increase the risk of center segregation, which significantly affects the ductility and thus the product quality to decrease. Lower contents ⁇ 1.0% by weight do not allow the required strength and toughness to be achieved with the aim of moderate analysis costs. An Mn content in the range between 1.4% by weight and 2.0% by weight is advantageous.
- Aluminum AI Used for deoxidation in the steel mill process. The amount of AI used depends on the process. Therefore, no minimum AI content is given. An Al content of greater than 0.1% by weight significantly worsens the casting behavior in continuous casting. This results in a higher effort when potting.
- Silicon Si One of the elements that enable the strength of steel to be increased in a cost-effective manner through solid solution strengthening.
- Si reduces the surface quality of the hot strip by promoting firmly adhering scale on the reheated slab, which, with high Si contents, can only be removed with great effort or only inadequately. This is a particular disadvantage when it comes to subsequent galvanizing.
- the Si content is therefore limited to a maximum of 0.8%, advantageously to 0.4%. If Si is largely dispensed with due to the surface issue, a lower limit of 0.03 is to be considered sensible, since comparatively high process costs arise in the steelworks if the Si content is further reduced.
- Chromium Cr Improves strength and reduces the rate of corrosion, delays the formation of ferrite and pearlite and forms carbides.
- the maximum content is set at less than 0.6% by weight, since higher contents result in a deterioration in ductility.
- Molybdenum Mo Increases hardenability or reduces the critical cooling rate and thus promotes the formation of fine, bainitic structures. In addition, even the use of small amounts of Mo delays the coarsening of fine precipitates, which should be made as fine as possible in order to increase the strength of microalloyed structures.
- Nickel Ni The use of even small amounts of Ni promotes ductility while maintaining the same strength. Because of the comparatively high costs, the content of Ni + Mo is limited to 0.5% by weight.
- Phosphorus P is a trace element from iron ore and is dissolved in the iron lattice as a substitution atom. Phosphorus increases hardness through solid solution strengthening and improves hardenability. As a rule, however, attempts are made to reduce the phosphorus content as much as possible, since it is, among other things, highly susceptible to segregation and to a great extent reduces the toughness. The accumulation of phosphorus at the grain boundaries can cause cracks to appear along the grain boundaries during hot rolling. In addition, phosphorus increases the transition temperature from tough to brittle behavior by up to 300 ° C. However, through targeted measures that are precisely controlled on the process side, the use of small amounts of P can also be used to increase the strength in a cost-effective manner. For the reasons mentioned above, the phosphorus content is limited to less than 0.08% by weight.
- Sulfur S Like phosphorus, it is bound as a trace element in iron ore. It is generally undesirable in steel, since it leads to undesirable inclusions of MnS, as a result of which the elongation and toughness properties are impaired. Attempts are therefore made to achieve the lowest possible amounts of sulfur in the melt and, if necessary, to convert the elongated inclusions into a more favorable geometric shape by means of a so-called Ca treatment. For the reasons mentioned above, the sulfur content is limited to less than 0.01% by weight.
- Nitrogen N Is also an accompanying element from steel production. Steels with free nitrogen tend to have a strong aging effect. Even at low temperatures, nitrogen diffuses at dislocations and blocks them. It thus causes an increase in strength combined with a rapid loss of toughness. A setting of the nitrogen in the form of nitrides is possible, for example, by adding aluminum, niobium or titanium. As a result, however, the alloying elements mentioned are no longer available in the later process for the formation of new small precipitates that are very efficient in terms of strength. For the reasons mentioned above, the nitrogen content is limited to less than 0.01% by weight.
- Micro-alloy elements are usually only added in very small amounts ( ⁇ 0.2% by weight per element). In contrast to the alloying elements, they work mainly through the formation of precipitates, but can also influence the properties in a dissolved state. Despite the small additions, micro-alloying elements influence the effective ones Manufacturing conditions as well as the processing and final properties of the product are strong.
- Typical micro-alloy elements are, for example, niobium and titanium. These elements can be dissolved in the iron lattice and form carbides, nitrides and carbonitrides with carbon and nitrogen.
- Nb and Ti depends in particular on the process control during hot rolling and the subsequent cooling process. With the addition of micro-alloy elements, the aim is to achieve grain refinement in the course of the process and to generate precipitates in the size range of nanometers. A minimum Nb + Ti content of 0.03% by weight is therefore a prerequisite for achieving the desired strength and elongation properties.
- Niobium Nb The addition of niobium has a grain-refining effect due to the formation of carbides, which at the same time improves strength, toughness and elongation properties. At contents of more than 0.08% by weight, saturation behavior occurs, which is why a maximum content of less than or equal to 0.08% by weight is provided.
- Titan Ti Has a grain-refining effect as a carbide former, which at the same time improves strength, toughness and elongation properties. Ti contents of more than 0.2% by weight deteriorate the ductility and the hole expansion capacity due to the formation of very coarse, primary TiN precipitates, which is why a maximum content of 0.2% by weight is specified.
- ferritic-bainitic, microalloyed hot strip essentially retains its mechanical properties, although it is annealed - not as usual - at temperatures below Ac1 but at Ac1 ⁇ T ⁇ Ac1 + 100 ° C.
- the temperature Ac1 describes the beginning of the transformation of the structure into austenite with slow heating according to the relevant standards. Ac1 is usually determined by dilatometric measurements.
- both a high level of the hole expansion ratio of> 30% and a BH2 value of> 30 MPa are achieved in combination can.
- a coiling temperature HT of less than 650 ° C, advantageously in the range of 450 ° C to 600 ° C, has an advantageous effect on the steel according to the invention, since the predominantly bainitic structure thus set has a high number of nucleation sites for the conversion to austenite at T> Ac1 provides and so the island diameter of the embedded second phase allows an average value of ⁇ 1 ⁇ m.
- Below 450 ° C a comparatively high proportion of martensite is to be expected, which is disadvantageous after the heat treatment in terms of ductility and hole expansion capacity due to the internal structure.
- the hot rolling end temperature for this steel is between 950 ° C. and Ar1 + 50 K, Ar1 describing the beginning of the conversion of austenite into ferrite during cooling.
- Usual thickness ranges for slabs and thin slabs are between 35 mm and 450 mm. It is provided that the slab or thin slab is hot-rolled to form a hot strip with a thickness of 1.5 mm to 8 mm, preferably 1.8 mm to 4.5 mm.
- the hot strip is coiled at a coiling temperature of preferably 450.degree. C. to 600.degree.
- a coiling temperature preferably 450.degree. C. to 600.degree.
- the hot-rolled Flat steel product is subjected to a heat treatment according to the invention in the temperature range Ac1 ⁇ T ⁇ Ac1 + 100 ° C. and is generally kept in this temperature range for 10 seconds to 10 minutes, possibly up to 48 hours, with higher temperatures being associated with shorter treatment times and vice versa.
- the annealing is usually carried out in a continuous annealing (shorter annealing times), but can also take place, for example, in a hood annealing (longer annealing times).
- the flat steel product is preferably hot-dip galvanized or electrolytically galvanized or coated with a metallic, inorganic or organic coating.
- the annealing is preferably carried out in a continuous annealing plant upstream of the hot dip coating plant.
- a hot-rolled flat steel product produced by the method according to the invention has a tensile strength Rm of the flat steel product of 760 to 960 MPa and an elongation at break A80 of more than 10%, preferably more than 12%. High strengths and thin sheet metal tend to be associated with lower elongation at break and vice versa.
- Table 2 shows the results for an annealing of the hot strip according to the invention at Ac1 ⁇ T ⁇ Ac1 + 100 ° C. (invention) compared to annealing below an Ac1 annealing temperature (comparison) in a radiant tube furnace (RTF).
- RTF radiant tube furnace
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Description
- Hochfestes, warmgewalztes Stahlflachprodukt mit hohem Kantenrisswiderstand und gleichzeitig hohem Bake-Hardening Potential, ein Verfahren zur Herstellung eines solchen Stahlflachprodukts
- Die Erfindung betrifft ein hochfestes, warmgewalztes Stahlflachprodukt mit hohem Kantenrisswiderstand und gleichzeitig hohem Bake-Hardening Potential. Des Weiteren betrifft die Erfindung ein Verfahren zur Herstellung eines solchen Stahlflachprodukts.
- Insbesondere betrifft die Erfindung Stahlflachprodukte aus Stählen mit einem mehrphasigen Gefüge, das in der Regel angelassenen Bainit enthält, und mit einer Dehngrenze Rp0,2 im Bereich von 660 bis 820 MPa, insbesondere zur Herstellung von Bauteilen für den Automobilbau, die neben einer hohen Zugfestigkeit von mindestens 760 MPa und einer Bruchdehnung A80 von mindestens 10% ein hohes Lochaufweitungsvermögen mit einem Lochaufweitungsverhältnis von über 30% sowie ein hohes Bake-Hardening-Potential mit einem BH2-Wert von über 30 MPa aufweisen müssen.
- Allgemein versteht man unter einem Bake-Hardening-Effekt (BH) einen kontrollierten Alterungsprozess, der auf den im Stahl in Lösung vorhandenen Kohlen-und/oder Stickstoff zurückzuführen ist und mit einer Erhöhung der Streckgrenze einhergeht. Der Bake-Hardening-Effekt kann mit einem BH2-Wert beschrieben werden, der als die Erhöhung der Streckgrenze nach einer plastischen Vordehnung von 2% und einer darauffolgenden Wärmebehandlung definiert ist. Mit dem Bake-Hardening-Effekt kann beispielsweise die Zunahme der Beulfestigkeit eines Bauteils erreicht werden, indem nach der Formung zum Bauteil eine geeignete Wärmebehandlung erfolgt. Bainitische Stähle sind nach EN 10346 Stähle, die sich durch eine vergleichsweise hohe Streckgrenze und Zugfestigkeit bei einer ausreichend hohen Dehnung für Kaltumformprozesse auszeichnen. Aufgrund der chemischen Zusammensetzung ist eine gute Schweißbarkeit gegeben. Das Gefüge besteht typischerweise aus Bainit mit Anteilen von Ferrit. Es können im Gefüge vereinzelt geringe Anteile anderer Phasen, wie z.B. Martensit und Restaustenit, enthalten sein. Ein solcher Stahl wird neben anderen beispielsweise in der Offenlegungsschrift
DE 10 2012 002 079 A1 oderWO2017012958 A1 offenbart. - Nachteilig ist hierbei allerdings ein noch nicht ausreichend hohes Lochaufweitevermögen.
- Der stark umkämpfte Automobilmarkt zwingt die Hersteller, stetig Lösungen zur Senkung des Flottenverbrauches und CO2-Abgasausstoßes unter Beibehaltung eines größtmöglichen Komforts und Insassenschutzes zu finden. Dabei spielt einerseits die Gewichtsreduktion aller Fahrzeugkomponenten eine entscheidende Rolle, andererseits aber auch ein möglichst günstiges Verhalten der einzelnen Bauteile bei hoher statischer und dynamischer Beanspruchung sowohl während der Nutzung eines Automobils als auch im Crashfall.
- Durch die Bereitstellung hochfester bis höchstfester Stähle mit Festigkeiten von bis zu 1200 MPa oder darüber und die Verringerung der Blechdicke, kann das Gewicht der Fahrzeuge durch gleichzeitig verbessertes Umformverhalten der eingesetzten Stähle sowie das Bauteilverhalten bei der Fertigung und im Betrieb reduziert werden.
- Hoch- bis höchstfeste Stähle müssen daher vergleichsweise hohe Anforderungen hinsichtlich ihrer Festigkeit, Duktilität und Energieaufnahme erfüllen, insbesondere bei ihrer Verarbeitung, wie beispielsweise beim Stanzen, Warm- und Kaltumformen, beim thermischen Vergüten (z.B. Lufthärten, Presshärten), Schweißen und/oder einer Oberflächenbehandlung, z.B. einer metallischen Veredelung, organischen Beschichtung oder Lackierung.
- Neu entwickelte Stähle müssen sich daher neben der verlangten Gewichtsreduzierung durch verringerte Blechdicken den zunehmenden Materialanforderungen an Dehngrenze, Zugfestigkeit, Verfestigungsverhalten und Bruchdehnung bei guten Verarbeitungseigenschaften, wie Umformbarkeit und Schweißbarkeit, stellen.
- Für eine solche Blechdickenverringerung muss daher ein hoch- bis höchstfester Stahl mit ein- oder mehrphasigem Gefüge verwendet werden, um ausreichende Festigkeit der Kraftfahrzeugbauteile sicherzustellen und um den hohen Umform- und Bauteilanforderungen hinsichtlich Zähigkeit, Kantenrissunempfindlichkeit, verbessertem Biegewinkel und Biegeradius, Energieabsorption sowie Verfestigungsvermögen und dem Bake-Hardening-Effekt zu genügen.
- Auch wird zunehmend eine verbesserte Fügeeignung in Form von besserer allgemeiner Schweißbarkeit, wie einem größeren nutzbaren Schweißbereich beim Widerstandspunktschweißen und ein verbessertes Versagensverhalten der Schweißnaht (Bruchbild) unter mechanischer Beanspruchung sowie eine ausreichende Resistenz gegenüber verzögerter Rissbildung durch Wasserstoffversprödung gefordert.
- Das Lochaufweitevermögen ist eine Materialeigenschaft, welche die Beständigkeit des Materials gegen Risseinleitung und Rissausbreitung bei Umformoperationen in kantennahen Bereichen, wie zum Beispiel beim Kragenziehen, beschreibt.
- Der Lochaufweiteversuch ist beispielsweise in der ISO 16630 normativ geregelt. Danach werden in ein Blech gestanzte Löcher mittels eines Dorns aufgeweitet. Die Messgröße ist die auf den Ausgangsdurchmesser bezogene Änderung des Lochdurchmessers bei der am Rand des Lochs der erste Riss durch das Blech auftritt.
- Eine verbesserte Kantenrissunempfindlichkeit bedeutet ein erhöhtes Umformvermögen der Blechkanten und kann durch ein erhöhtes Lochaufweitevermögen beschrieben werden. Dieser Sachverhalt ist unter den Synonymen "Low Edge Crack" (LEC) bzw. unter "High Hole Expansion" (HHE) sowie xpand® bekannt.
- Hiervon ausgehend liegt der vorliegenden Erfindung die Aufgabe zu Grunde, ein hochfestes, warmgewalztes Stahlflachprodukt mit guten Umformeigenschaften, insbesondere mit hohem Kantenrisswiderstand und einem hohen Bake-Hardening-Potential sowie ein Verfahren zur Herstellung eines solchen Stahlflachproduktes zu schaffen, die bezogen auf den Stahl eine gute Kombination von Festigkeits- und Umformeigenschaften bieten.
- Diese Aufgabe wird durch ein hochfestes, warmgewalztes Stahlflachprodukt mit den Merkmalen des Anspruchs 1 und ein Verfahren zur Herstellung eines Stahlflachprodukts mit den Merkmalen des Anspruchs 9 gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.
- Erfindungsgemäß bietet ein hochfestes, warmgewalztes Stahlflachprodukt mit hohem Kantenrisswiderstand, aus einem Stahl mit einer Dehngrenze Rp0,2 von 660 bis 820 MPa, einem BH2-Wert von über 30 MPa und einem Lochaufweitungsverhältnis von über 30% sowie einem Gefüge, bestehend aus zwei Hauptbestandteilen, wobei ein erster Hauptbestandteil des Gefüges einen Anteil von mindestens 50% aufweist, bestehend aus einem oder mehreren Einzelbestandteilen von Ferrit, angelassenem Bainit und angelassenem Martensit mit jeweils weniger als 5% Karbiden, und wobei ein zweiter Hauptbestandteil des Gefüges einen Anteil aus 5% bis höchstens 50% aufweist, bestehend aus einem oder mehreren Einzelbestandteilen von Martensit, Restaustenit, Bainit oder Perlit, mit folgender chemischer Zusammensetzung des Stahls (in Gewichts-%):
- C: 0,04 bis 0,12
- Si: 0,03 bis 0,8
- Mn: 1 bis 2,5
- P: max. 0,08
- S: max. 0,01
- N: max. 0,01
- AI: bis zu 0,1
- Ni+Mo: bis zu 0,5
- Nb: bis zu 0,08
- Ti: bis zu 0,2
- Nb+Ti: min. 0,03
- Cr: bis zu 0,6
- Rest Eisen einschließlich unvermeidbarer stahlbegleitender Elemente, eine gute Kombination von Festigkeits-, Dehnungs- und Umformeigenschaften. Außerdem ist die Herstellung dieses erfindungsgemäßen Stahlflachproduktes auf der Basis der Legierungselemente C, Si, Mn, Nb und/oder Ti vergleichsweise kostengünstig.
- Das erfindungsgemäße Stahlflachprodukt zeichnet sich vorzugsweise außerdem durch ein hohes Lochaufweitungsverhältnis von über 30% bei gleichzeitig hoher Zugfestigkeit von 760 bis 960 MPa und hohem Bake-Hardening-Potential BH2 von über 30 MPa aus.
- In einer vorteilhaften Weiterbildung der Erfindung enthält das Stahlflachprodukt zur Erreichung besonders günstiger Eigenschaftskombinationen folgende Legierungszusammensetzung in Gewichts-%: C: 0,04 bis 0,08, Si: 0,03 bis 0,4, Mn: 1,4 bis 2,0, P: max. 0,08, S: max. 0,01, N: max. 0,01, AI: bis zu 0,1, Ni+Mo: bis zu 0,5, Nb: bis zu 0,08, Ti: bis zu 0,2, Nb+Ti: min. 0,03 und besonders vorteilhaft: C: 0,04 bis 0,08, Si: 0,03 bis 0,4, Mn: 1,4 bis 2,0, P: max. 0,08, S: max. 0,01, N: max. 0,01, AI: bis zu 0,1, Ni+Mo: bis zu 0,5, Nb: bis zu 0,05, Ti: bis zu 0,15 und Nb+Ti: min. 0,03.
- Die Verwendung des Begriffs "bis" in der Definition der Gehaltsbereiche, wie beispielsweise 0,01 bis 1 Gew.-%, bedeutet, dass die Eckwerte - im Beispiel 0,01 und 1 - miteingeschlossen sind. Das Gefüge besteht aus zwei Hauptbestandteilen, wobei ein erster Hauptbestandteil einen Anteil von >= 50% ausmacht mit einem oder mehreren Gefügebestandteilen Ferrit und angelassenem Bainit und angelassenem Martensit und mit jeweils < 5% Karbiden und der zweite Hauptbestandteil einen Anteil aus 5%-50% ausmacht und aus einem oder mehreren Gefügebestandteilen Martensit, Restaustenit, Bainit oder Perlit besteht und vorzugsweise im Mittel einen vergleichsweise höheren Kohlenstoffgehalt aufweist als der erste Hauptbestandteil.
- Der vergleichsweise kohlenstoffreichere zweite Hauptbestandteil ist vorteilhaft inselförmig in den vergleichsweise kohlenstoffärmeren, die Matrix bildenden ersten Hauptbestandteil, eingebettet. Die Inselgröße ist mit ca. 1 µm Durchmesser, in jedem Falle aber < 2 µm vergleichsweise klein und die Inseln sind vorteilhaft gleichmäßig über die Banddicke verteilt. Die geringe Größe der Inseln und die homogene Verteilung des zweiten Hauptbestandteils tragen dabei zur Erreichung des hohen Lochaufweiteverhältnisses maßgeblich bei.
- Durch den Anteil des inselförmig in der Matrix eingebetteten kohlenstoffreicheren zweiten Hauptbestandteils wird erstens die Streckgrenze in dem genannten Bereich und zweitens das Bake-Hardening-Potential eingestellt. Der metallkundliche Mechanismus besteht darin, dass mit der Bildung der metastabilen Gefügebestandteile Martensit, Restaustenit und Bainit eine Vielzahl von Versetzungen erzeugt werden, die eine niedrige Dehngrenze hervorrufen. Bei dem Bake-Hardening-Prozess diffundiert gelöster Kohlenstoff aus den metastabilen Gefügebestandteilen Martensit, Restaustenit und Bainit in die zuvor entstandenen Versetzungen und ruft die bekannte Festigkeitssteigerung hervor. Da im Perlit kein gelöster Kohlenstoff zur Verfügung steht, enthält der inselförmig in der Matrix eingebettete kohlenstoffreiche Bestandteil zumindest einen der metastabilen Gefügebestandteile Martensit, Restaustenit und Bainit.
- Das erfindungsgemäße warmgewalzte Stahlflachprodukt kann mit einem metallischen oder nichtmetallischen Überzug versehen werden und eignet sich insbesondere zur Erzeugung von Bauteilen für den Fahrzeugbau in der Automobilindustrie aber es sind auch Anwendungen im Bereich Schiffsbau, Anlagenbau, Infrastrukturbau, in der Luft- und Raumfahrt und Hausgerätetechnik denkbar.
- In vorteilhafter Weise weist der Stahl längs zur Walzrichtung eine Zugfestigkeit Rm von 760 bis 960 MPa, eine Dehngrenze Rp0,2 von 660 bis 820 MPa, eine Bruchdehnung A80 von mehr als 10%, vorzugsweise mehr als 12%, ein Lochaufweitungsverhältnis von über 30% sowie einen BH2-Wert von über 30 MPa auf.
- Legierungselemente werden dem Stahl in der Regel zugegeben, um gezielt bestimmte Eigenschaften zu beeinflussen. Dabei kann ein Legierungselement in verschiedenen Stählen unterschiedliche Eigenschaften beeinflussen. Die Wirkung und Wechselwirkung hängt im Allgemeinen stark von der Menge, der Anwesenheit weiterer Legierungselemente und dem Lösungszustand im Werkstoff ab. Die Zusammenhänge sind vielseitig und komplex. Im Folgenden soll auf die Wirkung der Legierungselemente in der erfindungsgemäßen Legierung näher eingegangen werden. Nachfolgend werden die positiven Effekte der erfindungsgemäß verwendeten Legierungselemente beschrieben:
- Kohlenstoff C: Wird benötigt zur Bildung von Karbiden, insbesondere im Zusammenhang mit den sogenannten Mikrolegierungselementen Nb, V und Ti, fördert die Bildung von Martensit und Bainit, stabilisiert den Austenit und erhöht im Allgemeinen die Festigkeit. Höhere Gehalte an C verschlechtern die Schweißeigenschaften und führen zur Verschlechterung der Dehnungs- und Zähigkeitseigenschaften, weshalb ein maximaler Gehalt von weniger als 0,12 Gew.-%, vorteilhafter Weise von weniger als 0,08 Gew.-% festgelegt wird. Um eine ausreichende Festigkeit des Werkstoffs zu erreichen, ist eine Mindestzugabe von 0,04 Gew.-% erforderlich.
- Mangan Mn: Stabilisiert den Austenit, erhöht die Festigkeit und die Zähigkeit und erhöht das Temperaturfenster für das Warmwalzen unterhalb der Rekristallisationsstopptemperatur. Höhere Gehalte von > 2,5 Gew.-% Mn erhöhen das Risiko von Mittenseigerungen, die die Duktilität und somit die Produktqualität signifikant verringern. Geringere Gehalte < 1,0 Gew.-% erlauben nicht die Erreichung der erforderlichen Festigkeit und Zähigkeit bei angestrebten moderaten Analysekosten. Vorteilhaft ist ein Gehalt an Mn im Bereich zwischen 1,4 Gew.-% und 2,0 Gew.-%.
- Aluminium AI: Wird für die Desoxidation im Stahlwerksprozess eingesetzt. Die Menge des eingesetzten AI ist prozessabhängig. Daher ist kein minimaler AI-Gehalt angegeben. Ein AI-Gehalt von größer 0,1 Gew.-% verschlechtert das Gießverhalten im Strangguss deutlich. Hierdurch entsteht ein höherer Aufwand beim Vergießen.
- Silizium Si: Gehört zu den Elementen, die die Festigkeitssteigerung von Stahl durch Mischkristallverfestigung auf kostengünstige Art und Weise ermöglichen. Allerdings verringert Si die Oberflächenqualität des Warmbandes durch die Förderung von festanhaftendem Zunder auf den wiedererwärmten Brammen, der bei hohen Si-Gehalten nur mit hohem Aufwand oder nur unzureichend entfernt werden kann. Das ist insbesondere beim anschließenden Verzinken von Nachteil. Daher ist der Si-Gehalt auf max. 0,8% begrenzt, vorteilhaft auf 0,4%. Wird auf Si aufgrund der Oberflächenthematik weitgehend verzichtet, ist eine Untergrenze von 0,03 als sinnvoll anzusehen, da bei weitergehender Reduzierung des Si-Gehaltes stahlwerksseitig vergleichsweise hohe Prozesskosten eintreten.
- Chrom Cr: Verbessert die Festigkeit und verringert die Korrosionsrate, verzögert die Ferrit- und Perlitbildung und bildet Karbide. Der maximale Gehalt wird mit kleiner 0,6 Gew.-% festgelegt, da höhere Gehalte eine Verschlechterung der Duktilität zur Folge haben.
- Molybdän Mo: Erhöht die Härtbarkeit bzw. verringert die kritische Abkühlrate und fördert so die Bildung von feinen, bainitischen Gefügen. Darüber hinaus verzögert bereits der Einsatz von geringen Mengen von Mo die Vergröberung von feinen Ausscheidungen, die zur Festigkeitssteigerung von mikrolegierten Gefügen möglichst fein ausgebildet sein sollen.
- Nickel Ni: Der Einsatz von bereits geringen Mengen von Ni fördert die Duktilität bei gleichbleibender Festigkeit. Aufgrund der vergleichsweise hohen Kosten wird der Gehalt von Ni + Mo auf 0,5 Gew.-% begrenzt.
- Phosphor P: Ist ein Spurenelement aus dem Eisenerz und wird im Eisengitter als Substitutionsatom gelöst. Phosphor steigert durch Mischkristallverfestigung die Härte und verbessert die Härtbarkeit. Es wird allerdings in der Regel versucht, den Phosphorgehalt soweit wie möglich abzusenken, da er unter anderem stark seigerungsanfällig ist und im hohen Maße die Zähigkeit vermindert. Durch die Anlagerung von Phosphor an den Korngrenzen können Risse entlang der Korngrenzen beim Warmwalzen auftreten. Zudem setzt Phosphor die Übergangstemperatur von zähem zu sprödem Verhalten um bis zu 300 °C herauf. Allerdings kann durch gezielte, prozessseitig präzise gesteuerte Maßnahmen der Einsatz von geringen Mengen an P auch die kostengünstige Erhöhung der Festigkeit realisiert werden. Aus vorgenannten Gründen ist der Phosphorgehalt auf kleiner 0,08 Gew.-% begrenzt.
- Schwefel S: Ist wie Phosphor als Spurenelement im Eisenerz gebunden. Er ist im Stahl im Allgemeinen unerwünscht, da er zu unerwünschten Einschlüssen von MnS führt, wodurch die Dehnungs- und Zähigkeitseigenschaften verschlechtert werden. Es wird daher versucht, möglichst geringe Mengen an Schwefel in der Schmelze zu erreichen und ggf. die langgestreckten Einschlüsse durch eine sogenannte Ca-Behandlung in eine günstigere geometrische Form zu überführen. Aus vorgenannten Gründen ist der Schwefelgehalt auf kleiner 0,01 Gew.-% begrenzt.
- Stickstoff N: Ist ebenfalls ein Begleitelement aus der Stahlherstellung. Stähle mit freiem Stickstoff neigen zu einem starken Alterungseffekt. Der Stickstoff diffundiert schon bei geringen Temperaturen an Versetzungen und blockiert diese. Er bewirkt damit einen Festigkeitsanstieg verbunden mit einem rapiden Zähigkeitsverlust. Ein Abbinden des Stickstoffes in Form von Nitriden ist beispielsweise durch Zulegieren von Aluminium, Niob oder Titan möglich. In der Folge stehen die genannten Legierungselemente aber nicht mehr zur Neubildung von kleinen, hinsichtlich der Festigkeit sehr effizienten Ausscheidungen, im späteren Prozess zur Verfügung. Aus vorgenannten Gründen ist der Stickstoffgehalt auf kleiner 0,01 Gew.-% begrenzt.
- Mikrolegierungselemente werden in der Regel nur in sehr geringen Mengen zugegeben (< 0,2 Gew.-% pro Element). Sie wirken im Gegensatz zu den Legierungselementen hauptsächlich durch Ausscheidungsbildung können aber auch in gelöstem Zustand die Eigenschaften beeinflussen. Trotz der geringen Mengenzugaben beeinflussen Mikrolegierungselemente die zielführenden Herstellungsbedingungen sowie die Verarbeitungs- und Endeigenschaften des Produkts stark.
- Typische Mikrolegierungselemente sind zum Beispiel Niob und Titan. Diese Elemente können im Eisengitter gelöst werden und bilden mit Kohlenstoff und Stickstoff Carbide, Nitride und Carbonitride.
- Die Wirkung von Nb und Ti hängt insbesondere von der Prozessführung beim Warmwalzen und anschließenden Abkühlvorgang ab. Mit der Zugabe von Mikrolegierungselementen wird angestrebt, im Laufe des Prozesses eine Kornfeinung zu erreichen und Ausscheidungen im Größenbereich von Nanometern zu erzeugen. Daher ist ein Mindestgehalt Nb+Ti von 0,03 Gew.-% Voraussetzung zum Erreichen der angestrebten Festigkeit und Dehnungseigenschaften.
- Niob Nb: Die Zulegierung von Niob wirkt insbesondere durch die Bildung von Karbiden kornfeinend, wodurch gleichzeitig die Festigkeit, Zähigkeit und Dehnungseigenschaften verbessert werden. Bei Gehalten von über 0,08 Gew.-% stellt sich ein Sättigungsverhalten ein, weshalb ein Maximalgehalt von kleiner gleich 0,08 Gew.-% vorgesehen ist.
- Titan Ti: Wirkt als Karbidbildner kornfeinend, wodurch gleichzeitig die Festigkeit, Zähigkeit und Dehnungseigenschaften verbessert werden. Gehalte an Ti von über 0,2 Gew.-% verschlechtern die Duktilität und das Lochaufweitevermögen durch die Bildung sehr grober, primärer TiN Ausscheidungen, weshalb ein Maximalgehalt von 0,2 Gew.-% festgelegt wird.
- Ein erfindungsgemäßes Verfahren zur Herstellung des vorbeschriebenen, erfindungsgemäßen warmgewalzten Stahlflachprodukts, umfasst die Schritte:
- Erschmelzen einer Stahlschmelze enthaltend (in Gewichts-%):
- C: 0,04 bis 0,12
- Si: 0,03 bis 0,8
- Mn: 1 bis 2,5
- P: max. 0,08
- S: max. 0,01
- N: max. 0,01
- Al: bis zu 0,1
- Ni+Mo: bis zu 0,5
- Nb: bis zu 0,08
- Ti: bis zu 0,2
- Nb+Ti: min. 0,03
- Cr: bis zu 0,6
- Rest Eisen einschließlich unvermeidbarer stahlbegleitender Elemente,
- Vergießen der Stahlschmelze zu einer Bramme oder Dünnbramme mittels eines horizontalen oder vertikalen Brammen- oder Dünnbrammengießverfahrens,
- Wiedererwärmen der Bramme oder Dünnbramme auf 1050 °C bis 1270 °C und anschließendes Warmwalzen der Bramme oder Dünnbramme zu einem Warmband mit optionalem Zwischenerwärmen zwischen einzelnen Walzstichen des Warmwalzens,
- Walzen im letzten Walzstich bei einer Endwalztemperatur von kleiner 950 °C und größer Ar1 +50K, bevorzugt bei kleiner 950 °C und größer Ar3, wobei Ar3 bei der Abkühlung den Beginn der Umwandlung und Ar1 den Abschluss der Umwandlung von Austenit in den Ferrit beschreibt,
- Aufhaspeln des Warmbandes bei einer Haspeltemperatur in einem Temperaturbereich von 450°C bis 600°C,
- Glühen des Warmbandes oberhalb Ac1 und unterhalb Ac1+100°C mit einer Glühdauer von mindestens 1 s, bevorzugt 5 s - 40 s und einer mittleren Abkühlrate zwischen Glühtemperatur und 500°C von 0,1 K/min bis 150 K/s, bevorzugt 5K/s bis 20 K/s,
- optionales Schmelztauchbeschichten des erwärmten Warmbandes nach dem Glühen und Abkühlen auf ≤ 500°C.
- Als wesentlich wurde im Rahmen der vorliegenden Untersuchungen gefunden, dass das ferritisch-bainitische, mikrolegierte Warmband im Wesentlichen die mechanischen Eigenschaften behält, obwohl es - nicht wie üblich - bei Temperaturen unterhalb Ac1 sondern bei Ac1< T< Ac1+100°C geglüht wird.
- Dabei beschreibt die Temperatur Ac1 den Beginn der Umwandlung des Gefüges in den Austenit bei langsamer Erwärmung gemäß einschlägiger Normen. Ac1 wird in der Regel durch dilatometrische Messungen bestimmt.
- Erfindungsgemäß wurde erkannt, dass bei einer Glühung von T < Ac1 zwar die Homogenität des ferritisch-bainitischen Gefüges weitgehend erhalten bleibt und so insbesondere das bei hauptsächlich bainitischen Gefügen vergleichsweise hohe Niveau des Lochaufweitungsverhältnisses gehalten wird. Allerdings ist bei einer Glühung unterhalb Ac1 ein BH2-Wert von > 30% nicht zu erreichen und es bildet sich eine ausgeprägte obere Streckgrenze von ReH > 820 MPa aus, die für den Anwender oft als problematisch angesehen wird. Ursache ist die Blockierung von Versetzungen durch Diffusion von atomar gelöstem Kohlenstoff bei der Glühung bei T < Ac1 bzw. Verzinkung bei T > 400°C.
- Im Rahmen der Erfindung wurde überraschend gefunden, dass bei einer Glühung im Temperaturbereich von Ac1< T< Ac1+100°C, sowohl ein hohes Niveau des Lochaufweitungsverhältnisses von > 30%, als auch ein BH2-Wert von > 30 MPa in Kombination erreicht werden kann. Vorteilhaft wirkt sich bei dem erfindungsgemäßen Stahl eine Haspeltemperatur HT von kleiner als 650°C, vorteilhaft im Bereich von 450°C bis 600°C aus, da das so eingestellte überwiegend bainitische Gefüge eine hohe Zahl an Keimstellen für die Umwandlung in Austenit bei T > Ac1 bereitstellt und so die Inseldurchmesser der eingelagerten Zweitphase einen Mittelwert von < 1 µm erlaubt. Unterhalb von 450°C ist mit einem vergleichsweise hohen Anteil von Martensit zu rechnen, der nach der Wärmebehandlung hinsichtlich der Duktilität und des Lochaufweitevermögens aufgrund der inneren Struktur nachteilig ist.
- Die Warmwalzendtemperatur liegt bei diesem Stahl erfindungsgemäß zwischen 950 °C und Ar1 + 50 K, wobei Ar1 den Beginn der Umwandlung von Austenit in den Ferrit bei der Abkühlung beschreibt.
- Übliche Dickenbereiche für Brammen und Dünnbrammen liegen zwischen 35 mm bis 450 mm. Es ist vorgesehen, dass die Bramme oder Dünnbramme zu einem Warmband mit einer Dicke von 1,5 mm bis 8 mm, vorzugsweise 1,8 mm bis 4,5 mm warmgewalzt wird.
- Das Warmband wird nach dem Warmwalzen erfindungsgemäß bei einer Haspeltemperatur von vorzugsweise 450°C bis 600°C aufgehaspelt. Zur Erreichung der geforderten Eigenschaftskombination für das Lochaufweitungsverhältnis, den BH2-Wert und der anderen mechanischen Eigenschaften, wird das warmgewalzte Stahlflachprodukt in einer erfindungsgemäßen Wärmebehandlung im Temperaturbereich Ac1< T< Ac1+100°C unterzogen und in der Regel für 10 Sekunden bis 10 Minuten, möglicherweise bis 48h, in diesem Temperaturbereich gehalten, wobei höhere Temperaturen kürzeren Behandlungszeiten und umgekehrt zugeordnet werden. Die Glühung wird in der Regel in einer Durchlaufglühe (kürzere Glühzeiten), kann aber auch Beispielsweise in einer Haubenglühe (längere Glühzeiten) erfolgen.
- Vorzugsweise wird das Stahlflachprodukt schmelztauch- oder elektrolytisch verzinkt oder metallisch, anorganisch oder organisch überzogen. Bei einer Schmelztauchbeschichtung erfolgt die Glühung vorzugsweise in einer der Schmelztauchbeschichtungsanlage vorgeschalteten Durchlaufglühanlage.
- Ein nach dem erfindungsgemäßen Verfahren hergestelltes warmgewalztes Stahlflachprodukt weist eine Zugfestigkeit Rm des Stahlflachprodukts von 760 bis 960 MPa und eine Bruchdehnung A80 von mehr als 10%, vorzugsweise mehr als 12% auf. Hierbei sind hohen Festigkeiten und geringen Blechdicken tendenziell niedrigeren Bruchdehnungen zuzuordnen und umgekehrt.
- In Bezug auf weitere Vorteile wird auf die vorstehenden Ausführungen zu dem erfindungsgemäßen Stahl verwiesen.
- An einem erfindungsgemäß hergestellten Warmband aus zwei Stählen mit unterschiedlichen Analysen A und B gemäß Tabelle 1, wurden die mechanischen Kennwerte, sowie die Werte für das Bake-Hardening (BH2) und die Verhältnisse für die Lochaufweitung (HER - hole expansion ratio) ermittelt.
Tabelle 1 Stahl C Si Mn P S N Al Mo Ti Nb A 0,08 0,5 1,9 0,01 0,001 0,006 0,08 0,15 0,13 0,05 B 0,06 0,6 1,9 0,01 0,004 0,004 0,06 0,19 0,11 0,04 - Tabelle 2 zeigt die Ergebnisse für eine erfindungsgemäße Glühung des Warmbandes bei Ac1< T< Ac1+100°C (Erfindung) im Vergleich zu einer Glühung unterhalb einer Ac1-Glühtemperatur (Vergleich) in einem Strahlrohrofen (RTF). Bei der erfindungsgemäßen Glühung werden alle geforderten Kennwerte sicher erreicht.
Tabelle 2 Haltezeit 5 s - 40 s, Abkühlrate 5 K/s - 20 K/s Stahl Dicke [mm] T(RTF) [°C] ΔT gegenüber AC1 [°C] ReL [MPa] ReH [MPa] Rp0,2 [MPa] Rm [MPa] A80 [%] BH2 [MPa] HER [%] A 2,2 680 40 842 905 855 874 14,3 16 49 Vergleich A 2,2 710 -10 842 898 858 880 14,2 9 45 Vergleich A 2,2 740 20 776 786 783 926 12,8 90 32 Erfindung A 2,2 770 50 keine keine 667 900 11,0 80 35 Erfindung B 2,2 680 44 829 859 839 883 14,0 13 72 Vergleich B 2,2 710 -14 837 861 839 886 13,6 17 51 Vergleich B 2,2 740 16 791 804 795 893 13,6 44 51 Erfindung B 2,2 770 46 keine keine 703 882 12,9 66 43 Erfindung B 2,2 800 76 656 666 668 828 12,4 82 54 Erfindung B 2,2 839 118 keine keine 565 771 15,3 65 55 Vergleich B 2,2 753 29 keine keine 727 873 12,7 76 65 Erfindung B 2,2 752 28 779 783 753 884 13 74 73 Erfindung B 3,4 680 44 894 929 892 926 14,9 25 53 Vergleich B 3,4 710 -14 883 909 890 924 14,6 34 59 Vergleich B 3,4 770 46 768 772 769 896 13,2 72 49 Erfindung B 3,4 800 76 718 742 719 834 14,1 87 50 Erfindung
Claims (11)
- Hochfestes, warmgewalztes Stahlflachprodukt mit hohem Kantenrisswiderstand, aus einem Stahl mit einer Dehngrenze Rp0,2 von 660 bis 820 MPa, einem BH2-Wert von über 30 MPa und einem Lochaufweitungsverhältnis von über 30% gemessen nach ISO 16630, sowie einem Gefüge bestehend aus zwei Hauptbestandteilen, wobei ein erster Hauptbestandteil des Gefüges einen Anteil von mindestens 50% aufweist, bestehend aus einem oder mehreren Einzelbestandteilen von Ferrit, angelassenem Bainit und angelassenem Martensit mit jeweils weniger als 5% Karbiden, und wobei ein zweiter Hauptbestandteil des Gefüges einen Anteil aus 5% bis 50% aufweist, bestehend aus einem oder mehreren Einzelbestandteilen von Martensit, Restaustenit, Bainit oder Perlit mit folgender chemischer Zusammensetzung des Stahls in Gewichts-%:C: 0,04 bis 0,12Si: 0,03 bis 0,8Mn: 1 bis 2,5P: max. 0,08S: max. 0,01N: max. 0,01Al: bis zu 0,1Ni+Mo: bis zu 0,5Nb: bis zu 0,08Ti: bis zu 0,2Nb+Ti: min. 0,03Cr: bis zu 0,6Rest Eisen einschließlich unvermeidbarer stahlbegleitender Elemente.
- Stahlflachprodukt nach Anspruch 1, dadurch gekennzeichnet, dass der Stahl in Gewichts-% enthält:C: 0,04 bis 0,08Si: 0,03 bis 0,4Mn: 1,4 bis 2,0P: max. 0,08S: max. 0,01N: max. 0,01Al: bis zu 0,1 Ni+Mo: bis zu 0,5Nb: bis zu 0,08Ti: bis zu 0,2Nb+Ti: min. 0,03.
- Stahlflachprodukt nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Stahl in Gewichts-% enthält:C: 0,04 bis 0,08Si: 0,03 bis 0,4Mn: 1,4 bis 2,0P: max. 0,08S: max. 0,01N: max. 0,01Al: bis zu 0,1Ni+Mo: bis zu 0,5Nb: bis zu 0,05Ti: bis zu 0,15Nb+Ti: min. 0,03.
- Stahlflachprodukt nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der zweite Hauptbestandteil des Gefüges inselförmig in den als Matrix ausgebildeten ersten Hauptbestandteil des Gefüges eingelagert ist.
- Stahlflachprodukt nach Anspruch 4, dadurch gekennzeichnet, dass die inselförmigen Einlagerungen eine Größe von weniger als 2 µm, bevorzugt von weniger als 1 µm, aufweisen.
- Stahlflachprodukt nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Zugfestigkeit Rm des Stahlflachprodukts 760 bis 960 MPa beträgt und die Bruchdehnung A80 des Stahlflachprodukts mehr als 10%, vorzugsweise mehr als 12% beträgt.
- Stahlflachprodukt nach mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass dieses schmelztauch- oder elektrolytisch verzinkt ist oder metallisch, anorganisch oder organisch überzogen ist.
- Stahlflachprodukt nach mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der zweite Hauptbestandteil im Mittel einen vergleichsweise höheren Kohlenstoffgehalt aufweist als der erste Hauptbestandteil.
- Verfahren zur Herstellung eines warmgewalzten Stahlflachprodukts, nach mindestens einem der Ansprüche 1 bis 8 umfassend die Schritte:- Erschmelzen einer Stahlschmelze enthaltend in Gewichts-%:C: 0,04 bis 0,12Si: 0,03 bis 0,8Mn: 1 bis 2,5P: max. 0,08S: max. 0,01N: max. 0,01Al: bis zu 0,1Ni+Mo: bis zu 0,5Nb: bis zu 0,08Ti: bis zu 0,2Nb+Ti: min. 0,03Cr: bis zu 0,6Rest Eisen einschließlich unvermeidbarer stahlbegleitender Elemente,- Vergießen der Stahlschmelze zu einer Bramme oder Dünnbramme mittels eines horizontalen oder vertikalen Brammen- oder Dünnbrammengießverfahrens,- Wiedererwärmen der Bramme oder Dünnbramme auf 1050 °C bis 1250 °C und anschließendes Warmwalzen der Bramme oder Dünnbramme zu einem Warmband mit optionalem Zwischenerwärmen zwischen einzelnen Walzstichen des Warmwalzens,- Walzen im letzten Walzstich bei einer Endwalztemperatur von kleiner 950 °C und größer Ar3,- Aufhaspeln des Warmbandes bei einer Haspeltemperatur im Bereich von 450°C bis 600°C,- Glühen des Warmbandes oberhalb Ac1 und unterhalb Ac1+100°C mit einer Glühdauer von 10 Sekunden bis 10 Minuten und einer mittleren Abkühlrate zwischen Glühtemperatur und 500°C von 1 K/s bis 150 K/s, bevorzugt 5 K/s bis 20 K/s,- optionales Schmelztauchbeschichten des Warmbandes direkt im Anschluss des Abkühlvorgangs auf Kühlstopptemperatur in einer kontinuierlichen Feuerverzinkungsanlage.
- Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass das Warmband mit einer Endwalztemperatur von größer Ar1 +50°C gewalzt wird.
- Verfahren nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass die Bramme zu einem Warmband mit einer Dicke von 1,5 mm bis 8 mm, bevorzugt 1,8 mm bis 4,5 mm warmgewalzt wird.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102017130237.9A DE102017130237A1 (de) | 2017-12-15 | 2017-12-15 | Hochfestes, warmgewalztes Stahlflachprodukt mit hohem Kantenrisswiderstand und gleichzeitig hohem Bake-Hardening Potential, ein Verfahren zur Herstellung eines solchen Stahlflachprodukts |
PCT/EP2018/084406 WO2019115551A1 (de) | 2017-12-15 | 2018-12-11 | Hochfestes, warmgewalztes stahlflachprodukt mit hohem kantenrisswiderstand und gleichzeitig hohem bake-hardening potential, ein verfahren zur herstellung eines solchen stahlflachprodukts |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3724359A1 EP3724359A1 (de) | 2020-10-21 |
EP3724359B1 true EP3724359B1 (de) | 2021-12-01 |
Family
ID=64870429
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18825919.6A Active EP3724359B1 (de) | 2017-12-15 | 2018-12-11 | Hochfestes, warmgewalztes stahlflachprodukt mit hohem kantenrisswiderstand und gleichzeitig hohem bake-hardening potential und verfahren zur herstellung eines solchen stahlflachprodukts |
Country Status (7)
Country | Link |
---|---|
US (1) | US11584971B2 (de) |
EP (1) | EP3724359B1 (de) |
KR (1) | KR102447567B1 (de) |
CN (1) | CN111373060B (de) |
DE (1) | DE102017130237A1 (de) |
RU (1) | RU2743041C1 (de) |
WO (1) | WO2019115551A1 (de) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102021104584A1 (de) * | 2021-02-25 | 2022-08-25 | Salzgitter Flachstahl Gmbh | Hochfestes, warmgewalztes Stahlflachprodukt mit hoher lokaler Kaltumformbarkeit sowie ein Verfahren zur Herstellung eines solchen Stahlflachprodukts |
DE102021108448A1 (de) | 2021-04-01 | 2022-10-06 | Salzgitter Flachstahl Gmbh | Stahlband aus einem hochfesten Mehrphasenstahl und Verfahren zur Herstellung eines derartigen Stahlbandes |
CN113667894B (zh) * | 2021-08-13 | 2022-07-15 | 北京首钢冷轧薄板有限公司 | 一种具有优良扩孔性能800MPa级双相钢及其制备方法 |
DE102022125128A1 (de) | 2022-09-29 | 2024-04-04 | Salzgitter Flachstahl Gmbh | Verfahren zur Herstellung eines Stahlbandes aus einem hochfesten Mehrphasenstahl und entsprechendes Stahlband |
CN118639117B (zh) * | 2024-08-16 | 2024-12-03 | 鞍钢股份有限公司 | 高延伸430MPa级冷冲压用汽车桥壳用钢及生产方法 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5332453A (en) * | 1992-03-06 | 1994-07-26 | Kawasaki Steel Corporation | High tensile steel sheet having excellent stretch flanging formability |
CA2271639C (en) * | 1997-09-11 | 2006-11-14 | Kawasaki Steel Corporation | Hot rolled steel sheet having ultra fine grains with improved formability, and production of hot rolled or cold rolled steel sheet |
EP1443124B1 (de) * | 2000-01-24 | 2008-04-02 | JFE Steel Corporation | Feuerverzinktes Stahlblech und Verfahren zu dessen Herstellung |
JP4062118B2 (ja) * | 2002-03-22 | 2008-03-19 | Jfeスチール株式会社 | 伸び特性および伸びフランジ特性に優れた高張力熱延鋼板とその製造方法 |
FR2849864B1 (fr) | 2003-01-15 | 2005-02-18 | Usinor | Acier lamine a chaud a tres haute resistance et procede de fabrication de bandes |
US7981224B2 (en) * | 2003-12-18 | 2011-07-19 | Nippon Steel Corporation | Multi-phase steel sheet excellent in hole expandability and method of producing the same |
JP4445365B2 (ja) * | 2004-10-06 | 2010-04-07 | 新日本製鐵株式会社 | 伸びと穴拡げ性に優れた高強度薄鋼板の製造方法 |
US8337643B2 (en) * | 2004-11-24 | 2012-12-25 | Nucor Corporation | Hot rolled dual phase steel sheet |
JP5709151B2 (ja) * | 2009-03-10 | 2015-04-30 | Jfeスチール株式会社 | 成形性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 |
JP5333298B2 (ja) * | 2010-03-09 | 2013-11-06 | Jfeスチール株式会社 | 高強度鋼板の製造方法 |
DE102011000089A1 (de) | 2011-01-11 | 2012-07-12 | Thyssenkrupp Steel Europe Ag | Verfahren zum Herstellen eines warmgewalzten Stahlflachprodukts |
EP2524970A1 (de) * | 2011-05-18 | 2012-11-21 | ThyssenKrupp Steel Europe AG | Hochfestes Stahlflachprodukt und Verfahren zu dessen Herstellung |
DE102012002079B4 (de) | 2012-01-30 | 2015-05-13 | Salzgitter Flachstahl Gmbh | Verfahren zur Herstellung eines kalt- oder warmgewalzten Stahlbandes aus einem höchstfesten Mehrphasenstahl |
CN104583424B (zh) * | 2012-06-05 | 2017-03-08 | 蒂森克虏伯钢铁欧洲股份公司 | 钢、扁钢产品和扁钢产品的制造方法 |
DE102014017275A1 (de) | 2014-11-18 | 2016-05-19 | Salzgitter Flachstahl Gmbh | Hochfester lufthärtender Mehrphasenstahl mit hervorragenden Verarbeitungseigenschaften und Verfahren zur Herstellung eines Bandes aus diesem Stahl |
KR102207969B1 (ko) * | 2015-07-17 | 2021-01-26 | 잘쯔기터 플래시슈탈 게엠베하 | Zn-Mg-Al 코팅을 구비한 베이나이트 다중상 강으로 이루어져 있는 열간 스트립을 제조하기 위한 방법 및 상응하는 열간 스트립 |
CN106591696B (zh) * | 2016-10-31 | 2018-03-06 | 首钢总公司 | 一种翻边性能优良的热轧钢及其生产方法 |
-
2017
- 2017-12-15 DE DE102017130237.9A patent/DE102017130237A1/de not_active Withdrawn
-
2018
- 2018-12-11 WO PCT/EP2018/084406 patent/WO2019115551A1/de active Application Filing
- 2018-12-11 US US16/772,586 patent/US11584971B2/en active Active
- 2018-12-11 KR KR1020207019429A patent/KR102447567B1/ko active Active
- 2018-12-11 RU RU2020114825A patent/RU2743041C1/ru active
- 2018-12-11 EP EP18825919.6A patent/EP3724359B1/de active Active
- 2018-12-11 CN CN201880075494.6A patent/CN111373060B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
US11584971B2 (en) | 2023-02-21 |
DE102017130237A1 (de) | 2019-06-19 |
US20200399727A1 (en) | 2020-12-24 |
EP3724359A1 (de) | 2020-10-21 |
CN111373060B (zh) | 2022-07-12 |
KR20200096810A (ko) | 2020-08-13 |
CN111373060A (zh) | 2020-07-03 |
WO2019115551A1 (de) | 2019-06-20 |
RU2743041C1 (ru) | 2021-02-12 |
KR102447567B1 (ko) | 2022-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2855717B1 (de) | Stahlflachprodukt und verfahren zur herstellung eines stahlflachprodukts | |
DE60125253T2 (de) | Hochfestes warmgewalztes Stahlblech mit ausgezeichneten Reckalterungseigenschaften | |
EP3724359B1 (de) | Hochfestes, warmgewalztes stahlflachprodukt mit hohem kantenrisswiderstand und gleichzeitig hohem bake-hardening potential und verfahren zur herstellung eines solchen stahlflachprodukts | |
EP2028282B1 (de) | Dualphasenstahl, Flachprodukt aus einem solchen Dualphasenstahl und Verfahren zur Herstellung eines Flachprodukts | |
EP2710158B1 (de) | Hochfestes stahlflachprodukt und verfahren zu dessen herstellung | |
EP3655560B1 (de) | Stahlflachprodukt mit guter alterungsbeständigkeit und verfahren zu seiner herstellung | |
EP2553133B1 (de) | Stahl, stahlflachprodukt, stahlbauteil und verfahren zur herstellung eines stahlbauteils | |
EP3221478B1 (de) | Warm- oder kaltband aus einem hochfesten lufthärtenden mehrphasenstahl mit hervorragenden verarbeitungseigenschaften und verfahren zur herstellung eines warm- oder kaltgewalzten stahlbandes aus dem hohfesten lufthärtenden mehrphasenstahl | |
EP3504349B1 (de) | Verfahren zur herstellung eines höchstfesten stahlbandes mit verbesserten eigenschaften bei der weiterverarbeitung und ein derartiges stahlband | |
EP2905348B1 (de) | Hochfestes Stahlflachprodukt mit bainitisch-martensitischem Gefüge und Verfahren zur Herstellung eines solchen Stahlflachprodukts | |
EP3221484B1 (de) | Verfahren zur herstellung eines hochfesten lufthärtenden mehrphasenstahls mit hervorragenden verarbeitungseigenschaften | |
EP3320120A1 (de) | Höchstfester mehrphasenstahl und verfahren zur herstellung eines kaltgewalzten stahlbandes hieraus | |
EP3221483B1 (de) | Höchstfester lufthärtender mehrphasenstahl mit hervorragenden verarbeitungseigenschaften und verfahren zur herstellung eines bandes aus diesem stahl | |
EP3027784A2 (de) | Siliziumhaltiger, mikrolegierter hochfester mehrphasenstahl mit einer mindestzugfestigkeit von 750 mpa und verbesserten eigenschaften und verfahren zur herstellung eines bandes aus diesem stahl | |
DE102015112889A1 (de) | Hochfester manganhaltiger Stahl, Verwendung des Stahls für flexibel gewalzte Stahlflachprodukte und Herstellverfahren nebst Stahlflachprodukt hierzu | |
EP3692178B1 (de) | Verfahren zur herstellung eines stahlbandes aus höchstfestem mehrphasenstahl | |
EP2836614A1 (de) | Hochfester mehrphasenstahl und verfahren zur herstellung eines bandes aus diesem stahl | |
DE102018132860A1 (de) | Verfahren zur Herstellung von konventionell warmgewalzten, profilierten Warmbanderzeugnissen | |
EP3512968B1 (de) | Verfahren zur herstellung eines stahlflachprodukts aus einem manganhaltigen stahl und ein derartiges stahlflachprodukt | |
DE102018132908A1 (de) | Verfahren zur Herstellung von thermo-mechanisch hergestellten Warmbanderzeugnissen | |
EP3551776B1 (de) | Verfahren zur herstellung eines warm- oder kaltbandes und/oder eines flexibel gewalzten stahlflachprodukts aus einem hochfesten manganhaltigen stahl und stahlflachprodukt hiernach | |
EP3469108B1 (de) | Verfahren zur herstellung eines kaltgewalzten stahlbandes mit trip-eigenschften aus einem hochfesten, manganhaltigen stahl | |
EP3853385A1 (de) | Verfahren zur herstellung ultrahochfester stahlbleche und stahlblech hierfür | |
DE102018132901A1 (de) | Verfahren zur Herstellung von konventionell warmgewalzten Warmbanderzeugnissen | |
DE102018132816A1 (de) | Verfahren zur Herstellung von thermo-mechanisch hergestellten profilierten Warmbanderzeugnissen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20200703 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C21D 8/02 20060101AFI20210709BHEP Ipc: C22C 38/02 20060101ALI20210709BHEP Ipc: C22C 38/04 20060101ALI20210709BHEP Ipc: C22C 38/12 20060101ALI20210709BHEP Ipc: C22C 38/14 20060101ALI20210709BHEP Ipc: C21D 6/00 20060101ALI20210709BHEP Ipc: C23C 2/02 20060101ALI20210709BHEP Ipc: C23C 2/06 20060101ALI20210709BHEP Ipc: C23C 2/40 20060101ALI20210709BHEP |
|
INTG | Intention to grant announced |
Effective date: 20210729 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1451812 Country of ref document: AT Kind code of ref document: T Effective date: 20211215 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502018008079 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20211201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211201 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211201 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211201 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211201 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211201 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220301 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211201 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211201 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211201 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211201 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211201 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220401 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211201 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211201 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211201 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211201 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502018008079 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20211231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220401 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211211 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211211 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211201 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211201 |
|
26N | No opposition filed |
Effective date: 20220902 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211201 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211201 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230513 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20181211 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20221211 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221211 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211201 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20241210 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20241224 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1451812 Country of ref document: AT Kind code of ref document: T Effective date: 20231211 |