[go: up one dir, main page]

EP3717147B1 - Low velocity and low frequency aluminium casting method - Google Patents

Low velocity and low frequency aluminium casting method Download PDF

Info

Publication number
EP3717147B1
EP3717147B1 EP18819532.5A EP18819532A EP3717147B1 EP 3717147 B1 EP3717147 B1 EP 3717147B1 EP 18819532 A EP18819532 A EP 18819532A EP 3717147 B1 EP3717147 B1 EP 3717147B1
Authority
EP
European Patent Office
Prior art keywords
angle
lorentz force
inclination
alloy
ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18819532.5A
Other languages
German (de)
French (fr)
Other versions
EP3717147A1 (en
Inventor
Mircea CABLEA
Philippe Jarry
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Constellium Issoire SAS
Original Assignee
Constellium Issoire SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Constellium Issoire SAS filed Critical Constellium Issoire SAS
Publication of EP3717147A1 publication Critical patent/EP3717147A1/en
Application granted granted Critical
Publication of EP3717147B1 publication Critical patent/EP3717147B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • B22D11/003Aluminium alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/14Plants for continuous casting
    • B22D11/141Plants for continuous casting for vertical casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/18Controlling or regulating processes or operations for pouring

Definitions

  • the technical field of the invention is the manufacture of ingots following casting of a liquid alloy.
  • a macrosegregation well known to those skilled in the art is negative central macrosegregation, resulting from a depletion of eutectic alloying elements, along a central vertical axis of the ingot. These macrosegregations have been described in the work of John Wiley et al "Direct-Chill Casting of light alloys", Wiley Editor, September 2013, pp 158 -172 .
  • V-shaped bands are alternately enriched and depleted in eutectic and peritectic alloying elements. These bands are observable by performing X-ray radiographs of vertical slices of ingots, typically in the L/TC plane at mid-width, when the segregated elements absorb the X-rays in a differentiated manner from the atoms of the metal making up the ingot.
  • the directions L, TC and TL are defined with respect to the directions of the parallelepiped-shaped ingot.
  • the direction L corresponds to the direction of casting
  • the direction TC corresponds to the direction parallel to the smallest dimension of the ingot, also called thickness
  • the direction TL being the third direction, also called transverse direction.
  • Other means make it possible to visualize this phenomenon, for example echography or observation with the naked eye of anodized vertical slices, due to the difference in optical reflectivity between the zones enriched or depleted in alloying elements.
  • the intermittent macrosegregation is most marked in the vicinity of the T/2.5 region, and typically between T/2.3 and T/3.3, the T/2 region corresponding to the central axis of the ingot.
  • T/n denotes a region located at a distance T/n from an edge of the ingot, where T denotes a thickness of the ingot.
  • Periodic intermittent macrosegregations appear very soon after the start of casting, as soon as an inclined front is formed between a solid zone and a liquid zone. They are observed in all the cases of casting of aluminum alloys filled typically according to formats with a thickness greater than 300 mm, this thickness threshold itself depending on the casting speed.
  • the documents EP 2 682 201 A1 and US 2015/283606 A1 relate to the continuous and semi-continuous casting of metal, in particular aluminium. These devices comprise a crystallizer which is open at both ends in the casting direction, means for introducing a molten mass into the crystallizer, as well as electromagnetic inductors.
  • the inventors have considered that the methods described above do not make it possible to effectively reduce the appearance of intermittent macrosegregations. They propose a process making it possible to limit the formation of such segregations, or even to eliminate them, so as to better control the mechanical properties of the products resulting from casting.
  • a first object of the invention is a process for forming an aluminum alloy ingot in a mold as described in appended claim 1.
  • Mean Lorentz force during a period means a Lorentz force determined according to a time interval corresponding to the inverse of the frequency.
  • a single sliding magnetic field whose amplitude is varied periodically according to a frequency is applied. That is to say that during several successive periods, a single sliding magnetic is applied, the amplitude of which is varied periodically according to a single frequency.
  • the method makes it possible to obtain a significant reduction in intermittent macro-segregations in the middle zone.
  • the angle of inclination of the forehead is between 0° and 90°. The lower it is, the more the front is oriented parallel to the vertical axis. It is the same for the angle of the Lorentz force.
  • An angle value of 0° corresponds to a vertical orientation.
  • the angle of inclination of the average Lorentz force is less, by at least 4°, than the angle of inclination of the forehead, so that the average Lorentz force is more inclined, towards the vertical or vertical axis (Z), as the front.
  • the frequency is less than 2 Hz or less than 1 Hz.
  • the casting speed is less than 45 mm/minute or 40 mm/minute.
  • the casting speed and the frequency are adapted such that in the middle zone of the swamp, in an interface layer between the liquid alloy and the front, the angle of inclination of the force average Lorentz is strictly less than the angle of inclination of the front, the interface layer having a thickness, in a direction perpendicular to the front, less than 2 cm or 1 cm or 5 mm.
  • the magnetic field is modulated, at the frequency, between a minimum value and a maximum value.
  • the minimum and maximum value are constant for several successive periods.
  • the average Lorentz force is constant during several successive periods, for example during at least 10 successive periods.
  • the aluminum alloy can in particular be chosen from alloys of the 2XXX, 6XXX or 7XXX type.
  • the thickness of the mold is greater than 300 mm.
  • the thickness of the ingot is greater than 300 mm.
  • the method comprises, prior to casting, a modeling of the Lorentz force applied to at least one point of the front, so as to define, taking into account the thickness of the mold, a frequency value and/or a value of casting speed allowing obtaining an average Lorentz force, whose angle of inclination with respect to the vertical, is less than the angle, at the said point, formed by the face with respect to the vertical .
  • this modeling is carried out at different points, along the forehead, along the transverse axis.
  • the modeling can make it possible to define a value of frequency and/or a value of casting speed making it possible to obtain an average Lorentz force whose angle of inclination, with respect to the vertical, is less than 4° to the angle of inclination formed by the forehead with respect to the vertical.
  • a second object, not claimed, of the invention is an ingot, in particular an aluminum alloy ingot, obtained by a process according to the first object of the invention.
  • the figures 1A and 1B illustrate a mold allowing an implementation of the invention.
  • an aluminum alloy 1 flows into a mold 2, through an opening 2i. Casting takes place along a vertical Z axis, through the mold.
  • the ingot mold is delimited by a peripheral enclosure whose section, in a horizontal plane XY, is parallelepipedic.
  • the mold defines a frame, parallel to a longitudinal axis Y, along a width W, and, parallel to a transverse axis X, defining a thickness T.
  • the width W is greater than the thickness T.
  • the thickness T corresponds to a distance between two vertical walls 2p delimiting the mold 2.
  • the casting forms a parallelepipedic ingot.
  • the thickness T is preferably between 300 mm and 750 mm. It has been found that intermittent macrosegregations appear markedly when the thickness T exceeds 300 mm. In the examples or simulations mentioned in this description, we considered a thickness T equal to 525 mm.
  • the width W is equal to 1650 mm.
  • the length, along the vertical axis, can reach several meters, for example between 3 and 10 meters.
  • a false bottom 4 is translated so as to move away from the opening 2i during casting. The translation speed of the false bottom corresponds to a so-called casting speed V.
  • a zone of solid alloy 1s is formed, close to the cooled enclosure, around a zone of liquid alloy 1l, designated by the term “swamp”.
  • the interface between the marsh 1l and the solid zone 1s forms a front 10.
  • the ingot also designated by the term “product”, is formed.
  • the front 10 has a slope, with respect to the vertical, which varies according to the thickness.
  • the angle of the front is called an angle ⁇ between the tangent to the front, at a point, and the vertical, i.e. the Z axis.
  • the lower the angle of the front ⁇ the greater the tangent to the forehead is oriented vertically.
  • the angle of the front is ⁇ represented on the figure 2 .
  • the angle of the forehead varies along the transverse axis X.
  • the front 10 is stationary: it remains substantially in the same position, while the material moves vertically, at the casting speed.
  • intermittent macro-segregations 11 form in the ingot, and in particular in a range of thickness between T/2.3 and T/3.3 on either side of the median plane m.
  • the alloy is an aluminum alloy of the 1XXX, 2XXX, 3XXX, 4XXX, 5XXX, 6XXX, 7XXX or 8XXX series.
  • the alloys whose mass fraction of alloying elements is greater than 1%, or even greater than 3% or even 5% are particularly suitable for a process according to the invention, because the more this mass fraction of these alloying elements is important, the more the intermittent segregations are marked.
  • the invention is particularly advantageous for alloy products of the 2XXX, 5XXX, 6XXX or 7XXX type.
  • a magnetic field generator 5 has been shown, capable of generating a magnetic field B intended to be applied to the liquid alloy 1l.
  • a generator can be a mobile permanent magnet or an electromagnetic inductor, the latter generating a magnetic field when it is traversed by an electric current, called induction current.
  • the magnetic field B applied to the liquid alloy 1l is an alternating field, of amplitude B 0 and of frequency f .
  • the effect of this magnetic field is to apply swamp mixing, under the effect of Lorentz forces acting on the liquid alloy 1l.
  • the application of a magnetic field B generates, in the alloy, the formation of an electric current J resulting, within the liquid alloy 1l, subjected to the magnetic field, in the appearance of a Lorentz force F such that F ⁇ J ⁇ B where ⁇ denotes the vector product operator, and ⁇ denotes a proportionality relation.
  • the Lorentz force exhibits an oscillating component at a frequency twice the frequency f of the magnetic field.
  • the frequency f is chosen so as to allow sufficient penetration of the magnetic field B into the swamp, so as to obtain effective mixing of the liquid.
  • the frequency f is all the lower as the thickness of the product is high.
  • the frequency is preferably less than 5 Hz, and even more advantageously less than 2 Hz or 1 Hz.
  • the generator 5 is able to generate a sliding magnetic field.
  • the term sliding magnetic field designates an alternating magnetic field, whose amplitude B 0 is not constant, and varies between a minimum value and a maximum amplitude B 0 max , the maximum amplitude B 0 max propagating along a propagation axis ⁇ , preferably rectilinear and oriented along the vertical axis Z.
  • amplitude is meant the maximum value taken by a periodic quantity.
  • the application of a sliding magnetic field results, at a point in the marsh, in a periodic variation of its amplitude.
  • the amplitude of the magnetic field at a point in the marsh varies as a function of time, between a minimum amplitude B 0 min and a maximum amplitude B 0 max .
  • the sliding magnetic field generator 5 may consist of several electromagnetic inductors arranged around the peripheral enclosure. On the figure 1B , three pairs 5 1 , 5 2 and 5 3 of electromagnetic inductors have been shown. The upper part 5s of the inductors is positioned at the level of the free surface 1 sup of the liquid alloy. Each inductor has a phase shift of 90° between the upper part 5s and the lower part 5i.
  • a device was used as described in the application WO2014/155357 , and more precisely according to the configuration described in connection with FIGS. 19 and 20A, in which three inductors, oriented along the vertical axis Z, are arranged opposite each large face of the ingot.
  • each inductor comprises one or more coils.
  • each coil is placed at a distance of 185 mm of the mold.
  • the distance between a coil of an inductor and the mold can be between 130 mm and 200 mm.
  • the sliding magnetic field can also be generated from one or more permanent magnets arranged at the periphery of the mold and set in motion relative to the latter. For example, it is possible to generate a sliding magnetic field by rotating a permanent magnet.
  • the distance ⁇ separating two amplitude maxima of the magnetic field is the wavelength of the sliding magnetic field.
  • the figure 1C represents an example of the distribution of the amplitude B 0 of a magnetic field sliding along a propagation axis ⁇ at a time t (solid line), and at a time t+ ⁇ t (dotted line). On the axis of propagation, a coordinate r corresponding to the position of a point of the marsh has been represented.
  • the figure 1D illustrates a temporal evolution of a sliding alternating magnetic field at this point. This evolution is periodic, and takes place according to a period P. The application of a sliding magnetic field results, at a point in the marsh, in a periodic variation of its amplitude.
  • the amplitude of the magnetic field at a point in the marsh varies as a function of time, between a minimum amplitude B 0 min and a maximum amplitude B 0 max .
  • the Lorentz force at a point of coordinates r in the marsh, comprises an oscillating component, modulated according to a frequency 2 f double the frequency of the magnetic field.
  • the amplitude of the Lorentz force at a point r in the marsh depends on the square of the amplitude of the magnetic field applied at this point.
  • the inventors have observed that the appearance of intermittent macro-segregations 11 can be limited by adjusting the electromagnetic stirring when the mean Lorentz force applied to the liquid alloy 1l flowing at the front 10 has a certain orientation, and this in a median zone of the marsh, extending symmetrically on either side of the median plane M, between T/2 - T/4 and T/2 + T/4.
  • the thickness of the middle zone M corresponds to half the thickness of the ingot.
  • average Lorentz force is meant an average of the Lorentz force during a period P of the magnetic field.
  • the period P of the magnetic field corresponds to the time interval separating two successive maxima or minima of the magnetic field, as represented on the figure 1D .
  • the period P corresponds inverse to the frequency f .
  • the inventors have observed that in the middle zone, at the interface of the marsh 1l, and the solid alloy 1s, at the level of the front 10, the angle ⁇ formed by the average Lorentz force F , with respect to the vertical, must advantageously be less than the angle ⁇ of the front, previously mentioned, corresponding to the angle between the tangent to the front and the vertical, the angles ⁇ and ⁇ being oriented in the same direction. That is, it is advantageous that the direction of the average Lorentz force F is more vertical than the direction of the tangent to the front.
  • the average Lorentz force F is oriented towards the solid 1s alloy, and not towards the liquid 1l alloy.
  • This condition is illustrated in the picture 2 .
  • This figure shows a section of a casting along an XZ plane. The position of the median plane M corresponds to the thickness T/2.
  • the plating effect of the liquid alloy 1l, against the front 10 is obtained at the interface between the liquid alloy and the front 10.
  • this effect is obtained in a layer, called interface layer, adjacent of the forehead, whose thickness is less than 2cm, or 1 cm or 5 mm.
  • the thickness is defined along a direction perpendicular to the front. It is indeed in such a layer that the liquid alloy, in contact with the cold isotherm formed by the front, becomes locally denser.
  • a fluidic layer is then formed along the front, in which the flow of the liquid alloy is accelerated, and can move away from the front, leading to the appearance of eddies. It is mainly in this layer that it is necessary to apply a Lorentz force pressing the liquid alloy against the front, in order to maintain the liquid alloy against the front, so as to limit the formation of intermittent macro-segregations. .
  • the Lorentz force F tends to press the liquid alloy 1l of the marsh against the front 10, which limits the formation of intermittent macro-segregations.
  • the Lorentz force is said to be plating. It allows the formation of a convective laminar flow along all or part of the front 10, limiting the appearance of intermittent macro-segregations.
  • a single sliding magnetic field whose amplitude is varied at a frequency f is applied to obtain the effect of pressing the liquid alloy 11 of the marsh against the front 10.
  • the phenomenon of plating of the liquid alloy by the Lorentz force against the front 10 is all the more marked as the casting speed V and the frequency f are low.
  • a person skilled in the art knows how to model the orientation of an average Lorentz force F , exercising over a period, in the swamp.
  • Calculation codes for example the AC/DC module of the COMSOL code, allow such modeling, based in particular on the characteristics of the inductors (dimensions, number of ampere-turns, pole pitch, positioning relative to the mold), the geometry of the mold and operational parameters such as speed flow or the frequency of the magnetic field.
  • the simulations make it possible to model the electromagnetic mixing of the liquid alloy and to estimate a temporal evolution of the Lorentz force F , at any point in the marsh, during a period.
  • evolution we mean both the evolution of the intensity and the evolution of the direction. It is then possible to determine the orientation and the intensity of the average Lorentz force applying at a point in the marsh, during a period P of the magnetic field.
  • the figures 3A, 3B, 3C and 3D show the orientation of the mean Lorentz force, obtained by simulation, at different points of a front 10.
  • the abscissa axis represents a position along the transverse axis X and the ordinate axis represents a position along the vertical axis Z.
  • the frequencies considered are respectively equal to 5Hz ( Figure 3A ), 1Hz, 0.5Hz and 0.2Hz ( 3d figure ), the casting speed being 55 mm/min.
  • the Lorentz force is tight when the angle ⁇ of the average Lorentz force F is less than the angle ⁇ of the front.
  • the technical effect of minimizing intermittent macro-segregations appears in this range of thickness ⁇ x, and it is preferable that it be as wide as possible, preferably encompassing the range of thickness T/2.3 - T/ 3.3, the latter being generally conducive to the formation of intermittent macro-segregations.
  • the figures 3E, 3F, 3G and 3H show respectively the average orientation of the Lorentz force, obtained by simulation, at different points of a front 10, the frequencies being respectively equal to 5 Hz, 1 Hz, 0.5 Hz and 0.2 Hz.
  • the figures 4A and 4B show the evolution of the differential angle ⁇ as a function of a position x on the front 10, along the transverse axis X.
  • the abscissa axis represents the position x, expressed in meters, on the front along of the transverse axis.
  • the coordinate x 0.26 corresponding to the wall 2p of the mold.
  • the figures 4A and 4B were obtained by considering respectively a casting speed of 55 mm/min and 35 mm/min. On each figure, the simulations of the orientation of the mean Lorentz force F were carried out by successively considering several frequencies f , between 5 Hz and 0.2 Hz.
  • abacus represented on the Fig. 4C , making it possible to define an operating range for which the Lorentz force is considered to be sufficiently tight, that is to say when the differential angle ⁇ is greater than or equal to 4°.
  • This abacus is the subject of the Fig. 4C .
  • the abscissa and ordinate axes of the chart correspond respectively to the casting speed V and to the thickness T of the ingot. The thickness being determined, the chart makes it possible to define the casting speed and the maximum frequency making it possible to place oneself in the conditions of implementation of the invention.
  • crosses show the experimental test conditions described below, in connection with Table 1.
  • This chart depends on the number and characteristics of the inductors, their positioning relative to the mold, the dimensions of the latter and the operational parameters of the installation, in particular relating to the applied magnetic field.
  • the person skilled in the art knowing the characteristics of the installation, can carry out simulations aimed at obtaining the orientation of the mean Lorentz force F at different points along the front 10, along the transverse axis X. He can then determine a frequency range and a casting speed range for which ⁇ 0°, or advantageously ⁇ 4°, is obtained, so as to implement the invention and obtain the desired technical effect, that is to say a limitation of intermittent macro-segregation between T/2 and T/4, and more particularly between T/2.3 and T/ 3.3.
  • Table 1 summarizes the experimental test conditions, five of which implement the invention. Tests 1 to 3 were carried out from a 7010 alloy, while tests 4 to 6 were carried out from a 7035 alloy. The parameters of each test are the frequency f and the casting speed V. During each test, a 1650 mm ⁇ 525 mm format ingot was produced.
  • the Ref 7010 and Ref 7035 tests are reference tests, carried out without electromagnetic stirring. ⁇ u>Table 1 ⁇ /u> Test Alloy V f ⁇ C meso Fourier ⁇ C meso Fourier (mm/min) (Hz) (W/4) (W/4) (W/2) (W/2) Ref 7010 7010 45 0.82 0.012 0.71 1 7010 40 0.475 0.44 0.005 2 7010 40 0.850 0.50 0.005 3 7010 45 0.250 0.56 0.006 Ref 7035 7035 35 0.59 0.012 0.75 0.014 4 7035 35 0.475 0.32 0.005 0.41 0.006 5 7035 35 0.270 0.46 0.007 6 7035 55 0.475 0.59 0.013 0.51 0.008
  • the ingots formed were characterized by analyzing horizontal profiles (along the TC axis) of a radiograph taken at mid-width along a vertical plane L/TC, these profiles being calibrated for obtain the spatial distribution of heavy alloy elements such as Zn and/or Cu.
  • the alloying elements considered are Zn and Cu.
  • the alloying element considered is Zn.
  • L and TC known to those skilled in the art, correspond to the dimension of the ingot along the vertical axis and along the so-called “short cross” axis.
  • Intermittent macro-segregation can be characterized by a maximum difference in mass of an alloy element in the zone most marked by intermittent macro-segregations, i.e. between T/2.3 or T/ 3.3.
  • T/n denotes a distance relative to an edge of the ingot, along a horizontal axis, T/2 corresponding to the center of the ingot.
  • the concentration profiles were processed as illustrated in the figure 5A .
  • the profile obtained with a resolution of 0.1 mm is the raw profile referenced profile A, and represented in dotted lines on the figure 5A .
  • a first smoothing is carried out, according to a sliding average over 2 mm, the smoothed profile obtained being referenced profile B, represented by a solid line on the figure 5A . This smoothing makes it possible to attenuate the effect of micro-segregations, which correspond to local fluctuations in concentrations.
  • a second smoothing of the raw profile is carried out, according to a sliding average of 50 mm, to overcome intermittent macro-segregations, and to obtain a central continuous segregation profile, or base profile, referenced profile C.
  • This profile is represented in dashes on the figure 5A .
  • the basic profile C is subtracted from the smoothed profile B to obtain a so-called corrected profile D, representative of the intermittent macro-segregation.
  • the latter is represented on the figure 5B .
  • the corrected profile D is mainly representative of intermittent macro-segregation, and is not or only slightly affected by central continuous macro-segregation and by micro-segregations.
  • the concentration difference ⁇ C meso was measured at W/4 and/or at W/2, that is to say according to planes perpendicular to the median plane, parallel to the transverse axis X and whose coordinate, according to the longitudinal axis Y, is respectively equal to W/4 and W/2.
  • the corrected profile D has been normalized by the nominal concentration of the alloy element considered (Zn and Cu for the 7010 alloy, Zn for the 7035 alloy).
  • the profile thus normalized was analyzed by Fourier transform, so as to identify the spatial period characterizing the intermittent macrosegregation.
  • intermittent macrosegregation is severe, one or more amplitude peaks in the range 8 mm - 25 mm are generally observed.
  • An adimensional spectral intensity criterion ⁇ is determined which corresponds to the maximum amplitude of the Fourier components in a spatial period range between 8 and 25 mm.
  • the products obtained by the process according to the invention preferably have a criterion ⁇ of less than 0.01, preferably less than 0.007 and preferably less than 0.005.
  • the ⁇ criterion was measured at W/4 and/or at W/2.
  • the figure 5C and 5D show respectively an example of a distribution of spatial periods between 0 and 30 mm for examples 4 and 6, on several profiles.
  • the ordinate axis represents the spectral intensity
  • the abscissa axis represents the spatial period, expressed in mm.
  • the ⁇ criterion is greater than 0.01, with typical values of 0.012 at W/4 or 0.014 at W/2.
  • the spectral intensity criterion ⁇ in the spatial period range between 8 and 25 mm is systematically less than 0.001.
  • the spectral intensity criterion ⁇ in the spatial period range between 8 and 25 mm is less than 0.001.
  • Test 6 being outside the invention, does not make it possible to obtain a reduction in intermittent macrosegregations.
  • the values obtained are comparable to the reference values.
  • the invention may be implemented for the production of ingots intended for components for which the requirements in terms of quality are high, for example components linked to applications in the aeronautical field.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

DOMAINE TECHNIQUETECHNICAL AREA

Le domaine technique de l'invention est la fabrication de lingots suite à une coulée d'un alliage liquide.The technical field of the invention is the manufacture of ingots following casting of a liquid alloy.

ART ANTERIEURPRIOR ART

Au cours d'une coulée verticale, visant à former un lingot, la solidification d'un métal ou d'un alliage métallique est affectée par des phénomènes dits de ségrégations macroscopiques. Lors du refroidissement du métal, des courants de convection se forment, engendrant des vortex de recirculation, ces derniers étant à l'origine de ségrégations macroscopiques lorsque leur durée de vie est du même ordre de grandeur que les durées caractéristiques de solidification. Ces phénomènes conduisent, dans le lingot solidifié, à un appauvrissement local ou à un enrichissement local en espèces chimiques. Ces ségrégations macroscopiques, ou macroségrégations, sont à l'origine d'hétérogénéités dans la composition du lingot.During vertical casting, aimed at forming an ingot, the solidification of a metal or a metal alloy is affected by so-called macroscopic segregation phenomena. When the metal cools, convection currents are formed, generating recirculation vortices, the latter being the cause of macroscopic segregations when their lifetime is of the same order of magnitude as the characteristic solidification times. These phenomena lead, in the solidified ingot, to local depletion or local enrichment of chemical species. These macroscopic segregations, or macrosegregations, are at the origin of heterogeneities in the composition of the ingot.

Une macroségrégation bien connue de l'homme du métier est la macroségrégation centrale négative, résultant d'un appauvrissement en éléments d'alliage eutectiques, le long d'un axe central vertical du lingot. Ces macroségrégations ont été décrites dans l'ouvrage de John Wiley et al « Direct-Chill Casting of light alloys », Editeur Wiley, septembre 2013, pp 158 -172 .A macrosegregation well known to those skilled in the art is negative central macrosegregation, resulting from a depletion of eutectic alloying elements, along a central vertical axis of the ingot. These macrosegregations have been described in the work of John Wiley et al "Direct-Chill Casting of light alloys", Wiley Editor, September 2013, pp 158 -172 .

Les principaux mécanismes à l'origine de la macroségrégation centrale décrits dans cet ouvrage sont

  • La convection thermosolutale dans le marais causée par les gradients de température et de concentration, et la pénétration de ces écoulements convectifs dans la zone pâteuse ;
  • Le transport de grains dans la zone en surfusion sous l'effet de la gravité, de la force d'Archimède et de la convection naturelle ou forcée ;
  • L'écoulement dans la zone pâteuse suscité par le retrait volumétrique à solidification, qui peut être assisté par la pression métallostatique ;
  • L'écoulement du liquide dans la zone pâteuse causé par des déformations mécaniques ;
  • Les écoulements forcés qui peuvent résulter de la verse, de l'injection ou d'un dégagement de gaz, d'un brassage, d'une vibration, etc. qui pénètrent dans la zone en surfusion et dans la zone pâteuse et modifient la direction des mouvements de convection.
The main mechanisms underlying central macrosegregation described in this book are
  • Thermosolutal convection in the marsh caused by temperature and concentration gradients, and the penetration of these convective flows into the pasty zone;
  • The transport of grains in the supercooled zone under the effect of gravity, Archimedes' force and natural or forced convection;
  • Flow in the mushy zone induced by volumetric shrinkage at solidification, which may be assisted by metallostatic pressure;
  • The flow of the liquid in the pasty zone caused by mechanical deformations;
  • Forced flows which may result from pouring, injection or release of gas, mixing, vibration, etc. which penetrate into the supercooled zone and into the pasty zone and modify the direction of the convection movements.

Il s'agit d'une macroségrégation continue, ce terme désignant le fait que la macroségrégation a lieu de façon continue sur tout ou partie de la hauteur du lingot, en d'autres termes qu'elle est essentiellement uniforme selon l'axe de coulée.This is a continuous macrosegregation, this term designating the fact that the macrosegregation takes place continuously over all or part of the height of the ingot, in other words that it is essentially uniform along the casting axis .

Le phénomène de macroségrégation intermittente a été moins souvent décrit dans la littérature et se traduit par la formation de bandes en forme de V de part et d'autre de la macroségrégation centrale négative. Ces bandes en forme de V sont alternativement enrichies et appauvries en éléments d'alliage eutectique et péritectique. Ces bandes sont observables en effectuant des radiographies aux rayons X de tranches verticales de lingots, typiquement dans le plan L/TC à mi-largeur, lorsque les éléments ségrégés absorbent les rayons X de manière différenciée des atomes du métal composant le lingot. Les directions L, TC et TL sont définies par rapport aux directions du lingot de forme parallélépipédique. La direction L correspond à la direction de coulée, la direction TC correspond à la direction parallèle à la plus petite dimension du lingot, aussi appelée épaisseur et la direction TL étant la troisième direction, aussi appelée direction transverse. D'autres moyens permettent de visualiser ce phénomène, par exemple l'échographie ou l'observation à l'œil nu de tranches verticales anodisées, du fait de la différence de réflectivité optique entre les zones enrichies ou appauvries en éléments d'alliage. Généralement, la macroségrégation intermittente est la plus marquée au voisinage de la région T/2.5, et typiquement entre T/2.3 et T/3.3, la région T/2 correspondant à l'axe central du lingot. Selon une nomenclature connue de l'homme du métier, le terme T/n, ou n est un nombre positif, désigne une région située à une distance T/n d'un bord du lingot, où T désigne une épaisseur du lingot.The phenomenon of intermittent macrosegregation has been described less often in the literature and results in the formation of V-shaped bands on either side of the central negative macrosegregation. These V-shaped bands are alternately enriched and depleted in eutectic and peritectic alloying elements. These bands are observable by performing X-ray radiographs of vertical slices of ingots, typically in the L/TC plane at mid-width, when the segregated elements absorb the X-rays in a differentiated manner from the atoms of the metal making up the ingot. The directions L, TC and TL are defined with respect to the directions of the parallelepiped-shaped ingot. The direction L corresponds to the direction of casting, the direction TC corresponds to the direction parallel to the smallest dimension of the ingot, also called thickness and the direction TL being the third direction, also called transverse direction. Other means make it possible to visualize this phenomenon, for example echography or observation with the naked eye of anodized vertical slices, due to the difference in optical reflectivity between the zones enriched or depleted in alloying elements. Generally, the intermittent macrosegregation is most marked in the vicinity of the T/2.5 region, and typically between T/2.3 and T/3.3, the T/2 region corresponding to the central axis of the ingot. According to a nomenclature known to those skilled in the art, the term T/n, where n is a positive number, denotes a region located at a distance T/n from an edge of the ingot, where T denotes a thickness of the ingot.

Les macroségrégations intermittentes périodiques apparaissent très tôt après le démarrage de coulée, dès qu'un front incliné est formé entre une zone solide et une zone liquide. Elles sont observées dans tous les cas de coulée d'alliages d'aluminium chargés typiquement selon des formats d'épaisseur supérieure à 300mm, ce seuil d'épaisseur dépendant lui-même de la vitesse de coulée.Periodic intermittent macrosegregations appear very soon after the start of casting, as soon as an inclined front is formed between a solid zone and a liquid zone. They are observed in all the cases of casting of aluminum alloys filled typically according to formats with a thickness greater than 300 mm, this thickness threshold itself depending on the casting speed.

Les documents EP 2 682 201 A1 et US 2015/283606 A1 concernent la coulée continue et semi-continue de métal, notamment d'aluminium. Ces appareils comprennent un cristallisoir qui est ouvert à ses deux extrémités dans la direction de coulée, des moyens pour introduire une masse fondue dans le cristallisoir, ainsi que des inducteurs électromagnétiques.The documents EP 2 682 201 A1 and US 2015/283606 A1 relate to the continuous and semi-continuous casting of metal, in particular aluminium. These devices comprise a crystallizer which is open at both ends in the casting direction, means for introducing a molten mass into the crystallizer, as well as electromagnetic inductors.

La publication R.C Dorward et al. « Banded segregation patterns in DC cast AIZnMgCu alloy ingots and their effect on plate properties » Aluminium, 1996, 72. Jahrgang, 4, p.251-259 décrit la formation de bandes de ségrégations intermittentes dans un alliage 7000. Selon ces auteurs, ce phénomène est dû à des avalanches de grains déclenchées périodiquement par des oscillations convectives du marais, c'est-à-dire la phase liquide du métal, en lien avec un mécanisme d'émission de tourbillons. Cet article montre notamment que la macroségrégation intermittente peut être à l'origine de variations des propriétés mécaniques, par exemple de la ténacité, sur les tôles obtenues à partir des produits bruts de coulée. Il est donc avantageux de trouver un procédé de coulée qui supprimerait ces macroségrégations intermittentes.The publication RC Dorward et al. “Banded segregation patterns in DC cast AIZnMgCu alloy ingots and their effect on plate properties” Aluminium, 1996, 72. Jahrgang, 4, p.251-259 describes the formation of bands of intermittent segregations in a 7000 alloy. According to these authors, this phenomenon is due to avalanches of grains triggered periodically by convective oscillations of the marsh, that is to say the liquid phase of the metal, in connection with a vortex emission mechanism. This article shows in particular that intermittent macrosegregation can be the cause of variations in mechanical properties, for example toughness, on sheets obtained from as-cast products. It is therefore advantageous to find a casting process which would eliminate these intermittent macrosegregations.

La réduction ou la suppression des macroségrégations continues, par exemple la macroségrégation centrale, a déjà été décrite. En particulier on a montré que l'application d'un champ magnétique, à des fins de brassage ou de freinage des écoulements, permettait de limiter l'apparition de macroségrégations continues. Le document US5375647 décrit par exemple un procédé de réduction de macroségrégation centrale survenant lors de la coulée d'un lingot d'alliage métallique. Ce procédé comprend l'application, lors du refroidissement, d'un champ magnétique statique généré par au moins une bobine parcourue par un courant continu.The reduction or elimination of continuous macrosegregations, for example central macrosegregation, has already been described. In particular, it has been shown that the application of a magnetic field, for mixing or flow braking purposes, makes it possible to limit the appearance of continuous macrosegregations. The document US5375647 describes, for example, a process for reducing central macrosegregation occurring during the casting of a metal alloy ingot. This method comprises the application, during cooling, of a static magnetic field generated by at least one coil through which a direct current passes.

Les inventeurs ont considéré que les procédés précédemment décrits ne permettent pas de réduire efficacement l'apparition de macroségrégations intermittentes. Ils proposent un procédé permettant de limiter la formation de telles ségrégations, voire à les éliminer, de façon à mieux maîtriser les propriétés mécaniques des produits issus de la coulée.The inventors have considered that the methods described above do not make it possible to effectively reduce the appearance of intermittent macrosegregations. They propose a process making it possible to limit the formation of such segregations, or even to eliminate them, so as to better control the mechanical properties of the products resulting from casting.

EXPOSE DE L'INVENTIONDISCLOSURE OF THE INVENTION

Un premier objet de l'invention est un procédé pour former un lingot d'alliage d'aluminium dans une lingotière comme décrit dans la revendication 1 en appendice.A first object of the invention is a process for forming an aluminum alloy ingot in a mold as described in appended claim 1.

Autrement dit, si T/2 désigne la moitié de l'épaisseur du lingot, l'effet technique de plaquage est obtenu entre T/2 - T/4 et T/2 + T/4.In other words, if T/2 denotes half the thickness of the ingot, the technical plating effect is obtained between T/2 - T/4 and T/2 + T/4.

Par force de Lorentz moyenne durant une période, on entend une force de Lorentz déterminée selon un intervalle temporel correspondant à l'inverse de la fréquence.Mean Lorentz force during a period means a Lorentz force determined according to a time interval corresponding to the inverse of the frequency.

De manière préférée, un seul champ magnétique glissant dont l'amplitude est variée périodiquement selon une fréquence est appliqué. C'est-à-dire que pendant plusieurs périodes successives, un seul magnétique glissant est appliqué dont l'amplitude est variée périodiquement selon une seule fréquence.Preferably, a single sliding magnetic field whose amplitude is varied periodically according to a frequency is applied. That is to say that during several successive periods, a single sliding magnetic is applied, the amplitude of which is varied periodically according to a single frequency.

Le procédé permet d'obtenir une réduction significative des macro-ségrégations intermittentes dans la zone médiane.The method makes it possible to obtain a significant reduction in intermittent macro-segregations in the middle zone.

Dans la zone médiane, l'angle d'inclinaison du front est compris entre 0° et 90°. Plus il est faible, plus le front est orienté parallèlement à l'axe vertical. Il en est de même de l'angle de la force de Lorentz. Une valeur d'angle de 0° correspond à une orientation verticale.In the middle zone, the angle of inclination of the forehead is between 0° and 90°. The lower it is, the more the front is oriented parallel to the vertical axis. It is the same for the angle of the Lorentz force. An angle value of 0° corresponds to a vertical orientation.

De préférence, l'angle d'inclinaison de la force de Lorentz moyenne est inférieur, d'au moins 4°, à l'angle d'inclinaison du front, de telle sorte que la force de Lorentz moyenne est plus inclinée, vers la verticale ou axe vertical (Z), que le front.Preferably, the angle of inclination of the average Lorentz force is less, by at least 4°, than the angle of inclination of the forehead, so that the average Lorentz force is more inclined, towards the vertical or vertical axis (Z), as the front.

De préférence, la fréquence est inférieure à 2 Hz ou inférieure à 1 Hz. De préférence, la vitesse de coulée est inférieure à 45 mm/minute ou à 40 mm/minute.Preferably, the frequency is less than 2 Hz or less than 1 Hz. Preferably, the casting speed is less than 45 mm/minute or 40 mm/minute.

Selon un mode de réalisation, la vitesse de coulée et la fréquence sont adaptées de telle sorte que dans la zone médiane du marais, dans une couche d'interface entre l'alliage liquide et le front, l'angle d'inclinaison de la force de Lorentz moyenne est strictement inférieur à l'angle d'inclinaison du front, la couche d'interface présentant une épaisseur, selon une direction perpendiculaire au front, inférieure à 2cm ou à 1 cm ou à 5 mm.According to one embodiment, the casting speed and the frequency are adapted such that in the middle zone of the swamp, in an interface layer between the liquid alloy and the front, the angle of inclination of the force average Lorentz is strictly less than the angle of inclination of the front, the interface layer having a thickness, in a direction perpendicular to the front, less than 2 cm or 1 cm or 5 mm.

De préférence, le champ magnétique est modulé, à la fréquence, entre une valeur minimale et une valeur maximale. De préférence, la valeur minimale et maximale sont constantes pendant plusieurs périodes successives. Ainsi, la force de Lorentz moyenne est constante durant plusieurs périodes successives, par exemple durant au moins 10 périodes successives.Preferably, the magnetic field is modulated, at the frequency, between a minimum value and a maximum value. Preferably, the minimum and maximum value are constant for several successive periods. Thus, the average Lorentz force is constant during several successive periods, for example during at least 10 successive periods.

L'alliage d'aluminium peut notamment être choisi parmi les alliages de type 2XXX, 6XXX ou 7XXX. Avantageusement, l'épaisseur de la lingotière est supérieure à 300 mm. Avantageusement, l'épaisseur du lingot est supérieure à 300 mm.The aluminum alloy can in particular be chosen from alloys of the 2XXX, 6XXX or 7XXX type. Advantageously, the thickness of the mold is greater than 300 mm. Advantageously, the thickness of the ingot is greater than 300 mm.

Le procédé comporte, préalablement à la coulée, une modélisation de la force de Lorentz s'appliquant en au moins un point du front, de manière à définir, compte tenu de l'épaisseur de la lingotière, une valeur de fréquence et/ou une valeur de vitesse de coulée permettant l'obtention d'une force de Lorentz moyenne, dont l'angle d'inclinaison par rapport à la verticale, est inférieur à l'angle, au dit point, formé par le front par rapport à la verticale. De préférence, cette modélisation est effectuée en différents points, le long du front, selon l'axe transversal. La modélisation peut permettre de définir une valeur de fréquence et/ou une valeur de vitesse de coulée permettant l'obtention d'une force de Lorentz moyenne dont l'angle d'inclinaison, par rapport à la verticale, est inférieur de 4° à l'angle d'inclinaison formé par le front par rapport à la verticale.The method comprises, prior to casting, a modeling of the Lorentz force applied to at least one point of the front, so as to define, taking into account the thickness of the mold, a frequency value and/or a value of casting speed allowing obtaining an average Lorentz force, whose angle of inclination with respect to the vertical, is less than the angle, at the said point, formed by the face with respect to the vertical . Preferably, this modeling is carried out at different points, along the forehead, along the transverse axis. The modeling can make it possible to define a value of frequency and/or a value of casting speed making it possible to obtain an average Lorentz force whose angle of inclination, with respect to the vertical, is less than 4° to the angle of inclination formed by the forehead with respect to the vertical.

Un deuxième objet, non revendiqué, de l'invention est un lingot, notamment un lingot en alliage d'aluminium, obtenu par un procédé selon le premier objet de l'invention.A second object, not claimed, of the invention is an ingot, in particular an aluminum alloy ingot, obtained by a process according to the first object of the invention.

Le lingot obtenu par un procédé selon le premier objet de l'invention est caractérisé par un critère d'intensité spectrale (ζ) inférieur à 0.01, de préférence inférieur à 0.007 et de manière préférée inférieur à 0.005. Ledit critère d'intensité spectrale étant calculé en :

  • Déterminant une amplitude maximale d'une transformée de Fourier d'un profil représentatif d'une macroségrégation intermittente d'un élément dont la teneur en poids est supérieure à 0.5% ou la somme de plusieurs éléments de l'alliage dont la teneur individuelle est supérieure à 0.5%, le profil étant établi selon ladite direction TC, ladite amplitude maximale étant déterminée dans une plage de périodes spatiales comprise entre 8 et 25 mm,
  • normalisant ladite amplitude maximale par une concentration nominale C0 dudit élément ou par la somme des concentrations nominales des différents éléments considérés.
The ingot obtained by a method according to the first object of the invention is characterized by a spectral intensity criterion (ζ) of less than 0.01, preferably less than 0.007 and preferably less than 0.005. Said spectral intensity criterion being calculated by:
  • Determining a maximum amplitude of a Fourier transform of a profile representative of an intermittent macrosegregation of an element whose content by weight is greater than 0.5% or the sum of several elements of the alloy whose individual content is greater at 0.5%, the profile being established in said direction TC, said maximum amplitude being determined in a range of spatial periods comprised between 8 and 25 mm,
  • normalizing said maximum amplitude by a nominal concentration C 0 of said element or by the sum of the nominal concentrations of the various elements considered.

D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre de modes particuliers de réalisation de l'invention, donnés à titre d'exemples non limitatifs, et représentés sur les figures listées ci-dessous.Other advantages and characteristics will emerge more clearly from the following description of particular embodiments of the invention, given by way of non-limiting examples, and represented in the figures listed below.

FIGURESFIGURES

  • Les figures 1A à 1D illustrent un exemple de dispositif permettant une mise en œuvre d'un procédé selon l'invention. Les figures 1A et 1B présentent les principaux composants du dispositif. Les figures 1C et 1D représentent respectivement une distribution spatiale et temporelle de l'amplitude d'un champ magnétique glissant, selon un exemple de réalisation.The figures 1A to 1D illustrate an example of a device allowing implementation of a method according to the invention. The figures 1A and 1B present the main components of the device. The figures 1C and 1D respectively represent a spatial and temporal distribution of the amplitude of a sliding magnetic field, according to an exemplary embodiment.
  • La figure 2 illustre une force de Lorentz moyenne, s'appliquant sur une partie du marais d'une coulée, mettant en œuvre l'invention.The figure 2 illustrates an average Lorentz force, applied to part of the marsh of a flow, implementing the invention.
  • Les figures 3A, 3B, 3C et 3D montrent des résultats de simulations permettant d'obtenir l'orientation d'une force de Lorentz moyenne dans le marais, au niveau du front, respectivement à différentes fréquences, pour une vitesse de coulée de 55 mm par minute.The figures 3A, 3B, 3C and 3D show results of simulations making it possible to obtain the orientation of an average Lorentz force in the marsh, at the level of the front, respectively at different frequencies, for a casting speed of 55 mm per minute.
  • Les figures 3E, 3F, 3G et 3H montrent des résultats de simulations permettant d'obtenir l'orientation d'une force de Lorentz moyenne dans le marais, au niveau du front, respectivement à différentes fréquences, pour une vitesse de coulée de 35 mm par minute.The figures 3E, 3F, 3G and 3H show results of simulations making it possible to obtain the orientation of an average Lorentz force in the marsh, at the level of the front, respectively at different frequencies, for a casting speed of 35 mm per minute.
  • Les figures 4A et 4B sont des courbes établies en considérant respectivement différentes fréquences, et représentant une évolution d'un angle, dit angle différentiel, le long du front, l'angle différentiel représentant une différence entre les angles, par rapport à la verticale, respectivement formés par la force de Lorentz moyenne et le front. Sur la figure 4A, on a considéré une vitesse de coulée de 55 mm par minute. Sur la figure 4B, on a considéré une vitesse de coulée de 35 mm par minute.The figures 4A and 4B are curves established by considering different frequencies respectively, and representing an evolution of an angle, called differential angle, along the front, the differential angle representing a difference between the angles, with respect to the vertical, respectively formed by the force of Lorentz mean and the front. On the figure 4A , a casting rate of 55 mm per minute was considered. On the figure 4B , a casting rate of 35 mm per minute was considered.
  • La figure 4C montre un abaque permettant de définir un domaine de fonctionnement en fonction de la vitesse de coulée (axe des abscisses) et de l'épaisseur de la coulée (axe des ordonnées), pour obtenir une orientation de la force de Lorentz selon l'invention, dans une zone médiane s'étendant entre T/2 ± T/4.The Fig. 4C shows an abacus making it possible to define an operating range as a function of the casting speed (axis of abscissas) and the thickness of the casting (axis of ordinates), to obtain an orientation of the Lorentz force according to the invention, in a middle zone extending between T/2±T/4.
  • La figure 5A représente un profil horizontal, parallèlement à un axe définissant l'épaisseur d'un lingot, représentatif d'une concentration en un élément d'alliage dans un lingot, ainsi que des profils lissé, obtenu par différents lissages du profil horizontal.The figure 5A represents a horizontal profile, parallel to an axis defining the thickness of an ingot, representative of a concentration of an alloying element in an ingot, as well as smoothed profiles, obtained by different smoothings of the horizontal profile.
  • La figure 5B montre un profil représentatif de la macro-ségrégation intermittente affectant un lingot obtenu par une coulée.The figure 5B shows a profile representative of the intermittent macro-segregation affecting an ingot obtained by casting.
  • Les figures 5C et 5D sont des profils représentatifs de la macro-ségrégation intermittente, représentés dans un espace de Fourier. L'axe des abscisses correspond à la période spatiale, exprimée en mm. Les profils ont été obtenus à partir de lingots respectivement formés avec et sans mise en œuvre de l'invention.The Figures 5C and 5D are representative profiles of intermittent macro-segregation, represented in a Fourier space. The abscissa axis corresponds to the spatial period, expressed in mm. The profiles were obtained from ingots respectively formed with and without implementation of the invention.
EXPOSE DE MODES DE REALISATION PARTICULIERSDESCRIPTION OF PARTICULAR EMBODIMENTS

Les figures 1A et 1B illustrent une lingotière permettant une mise en œuvre de l'invention. Dans cet exemple, un alliage d'aluminium 1 s'écoule dans une lingotière 2, à travers une ouverture 2i. La coulée s'effectue selon un axe Z vertical, à travers la lingotière. La lingotière est délimitée par une enceinte périphérique dont la section, dans un plan horizontal XY, est parallélépipédique. La lingotière définit un cadre, parallèlement à un axe longitudinal Y, selon une largeur W, et, parallèlement à un axe transversal X, en définissant une épaisseur T. La largeur W est supérieure à l'épaisseur T. L'épaisseur T correspond à une distance entre deux parois verticales 2p délimitant la lingotière 2. La coulée forme un lingot parallélépipédique. Un plan, dit plan médian M, s'étend à mi-épaisseur (T/2), parallèlement à l'axe vertical Z et à l'axe longitudinal Y du lingot. L'épaisseur T est de préférence comprise entre 300 mm et 750 mm. On a constaté que les macroségrégations intermittentes apparaissent de façon marquée lorsque l'épaisseur T dépasse 300 mm. Dans les exemples ou simulations évoqués dans cette description, on a considéré une épaisseur T égale à 525 mm. La largeur W est égale à 1650 mm. La longueur, selon l'axe vertical, peut atteindre plusieurs mètres, par exemple entre 3 et 10 mètres.The figures 1A and 1B illustrate a mold allowing an implementation of the invention. In this example, an aluminum alloy 1 flows into a mold 2, through an opening 2i. Casting takes place along a vertical Z axis, through the mold. The ingot mold is delimited by a peripheral enclosure whose section, in a horizontal plane XY, is parallelepipedic. The mold defines a frame, parallel to a longitudinal axis Y, along a width W, and, parallel to a transverse axis X, defining a thickness T. The width W is greater than the thickness T. The thickness T corresponds to a distance between two vertical walls 2p delimiting the mold 2. The casting forms a parallelepipedic ingot. A plane, called median plane M, extends at mid-thickness (T/2), parallel to the vertical axis Z and to the longitudinal axis Y of the ingot. The thickness T is preferably between 300 mm and 750 mm. It has been found that intermittent macrosegregations appear markedly when the thickness T exceeds 300 mm. In the examples or simulations mentioned in this description, we considered a thickness T equal to 525 mm. The width W is equal to 1650 mm. The length, along the vertical axis, can reach several meters, for example between 3 and 10 meters.

Un fluide de refroidissement 3, par exemple de l'eau, s'écoule contre la paroi du lingot solidifié. Ce procédé est connu en tant que coulée semi-continue par refroidissement direct (« Direct-Chill Casting »). Un faux-fond 4 est translaté de façon à s'éloigner de l'ouverture 2i au cours de la coulée. La vitesse de translation du faux-fond correspond à une vitesse dite de coulée V.A cooling fluid 3, for example water, flows against the wall of the solidified ingot. This process is known as semi-continuous direct-chill casting. A false bottom 4 is translated so as to move away from the opening 2i during casting. The translation speed of the false bottom corresponds to a so-called casting speed V.

Sous l'effet du refroidissement, une zone d'alliage solide 1s se forme, à proximité de l'enceinte refroidie, autour d'une zone d'alliage liquide 1ℓ, désignée par le terme « marais ». L'interface entre le marais 1ℓ et la zone solide 1s forme un front 10. A l'issue du refroidissement, le lingot, également désigné par le terme « produit », est formé. Le front 10 présente une pente, par rapport à la verticale, variable en fonction de l'épaisseur. On appelle l'angle du front un angle α entre la tangente au front, en un point, et la verticale, c'est-à-dire l'axe Z. Plus l'angle du front α est faible, plus la tangente au front est orientée verticalement. L'angle du front est α représenté sur la figure 2. L'angle du front varie selon l'axe transversal X.Under the effect of cooling, a zone of solid alloy 1s is formed, close to the cooled enclosure, around a zone of liquid alloy 1ℓ, designated by the term “swamp”. The interface between the marsh 1ℓ and the solid zone 1s forms a front 10. After cooling, the ingot, also designated by the term “product”, is formed. The front 10 has a slope, with respect to the vertical, which varies according to the thickness. The angle of the front is called an angle α between the tangent to the front, at a point, and the vertical, i.e. the Z axis. The lower the angle of the front α, the greater the tangent to the forehead is oriented vertically. The angle of the front is α represented on the figure 2 . The angle of the forehead varies along the transverse axis X.

Sur l'exemple représenté sur la figure 1A, le front 10 est stationnaire : il reste sensiblement à la même position, tandis que la matière se déplace verticalement, à la vitesse de coulée.On the example shown in the Figure 1A , the front 10 is stationary: it remains substantially in the same position, while the material moves vertically, at the casting speed.

Dans les procédés selon l'art antérieur, des macro-ségrégations intermittentes 11 se forment dans le lingot, et en particulier dans une plage d'épaisseur comprise entre T/2,3 et T/3,3 de part et d'autre du plan médian M.In the processes according to the prior art, intermittent macro-segregations 11 form in the ingot, and in particular in a range of thickness between T/2.3 and T/3.3 on either side of the median plane m.

L'alliage est un alliage d'aluminium de la série 1XXX, 2XXX, 3XXX, 4XXX, 5XXX, 6XXX, 7XXX ou 8XXX. Les alliages dont la fraction massique en éléments d'alliage est supérieure à 1%, voire supérieure à 3% ou encore à 5% sont particulièrement adaptés à un procédé selon l'invention, car plus cette fraction massique de ces éléments d'alliages est importante, plus les ségrégations intermittentes sont marquées. L'invention est particulièrement avantageuse pour les produits en alliage de type 2XXX, 5XXX, 6XXX ou 7XXX.The alloy is an aluminum alloy of the 1XXX, 2XXX, 3XXX, 4XXX, 5XXX, 6XXX, 7XXX or 8XXX series. The alloys whose mass fraction of alloying elements is greater than 1%, or even greater than 3% or even 5% are particularly suitable for a process according to the invention, because the more this mass fraction of these alloying elements is important, the more the intermittent segregations are marked. The invention is particularly advantageous for alloy products of the 2XXX, 5XXX, 6XXX or 7XXX type.

On a représenté un générateur de champ magnétique 5, apte à générer un champ magnétique B destiné à être appliqué à l'alliage liquide 1ℓ. Un tel générateur peut être un aimant permanent mobile ou un inducteur électromagnétique, ce dernier générant un champ magnétique lorsqu'il est parcouru par un courant électrique, dit courant d'induction.A magnetic field generator 5 has been shown, capable of generating a magnetic field B intended to be applied to the liquid alloy 1ℓ. Such a generator can be a mobile permanent magnet or an electromagnetic inductor, the latter generating a magnetic field when it is traversed by an electric current, called induction current.

Le champ magnétique B appliqué à l'alliage liquide 1ℓ, est un champ alternatif, d'amplitude B 0 et de fréquence f. L'effet de ce champ magnétique est d'appliquer un brassage du marais, sous l'effet de forces de Lorentz s'appliquant sur l'alliage liquide 1ℓ. En effet, l'application d'un champ magnétique B engendre, dans l'alliage, la formation d'un courant électrique J résultant, au sein de l'alliage liquide 1ℓ, soumis au champ magnétique, en l'apparition d'une force de Lorentz F telle que FJ × B où × désigne l'opérateur produit vectoriel, et ∝ désigne une relation de proportionnalité. La force de Lorentz présente une composante oscillante à une fréquence double de la fréquence f du champ magnétique.The magnetic field B applied to the liquid alloy 1ℓ, is an alternating field, of amplitude B 0 and of frequency f . The effect of this magnetic field is to apply swamp mixing, under the effect of Lorentz forces acting on the liquid alloy 1ℓ. Indeed, the application of a magnetic field B generates, in the alloy, the formation of an electric current J resulting, within the liquid alloy 1ℓ, subjected to the magnetic field, in the appearance of a Lorentz force F such that FJ × B where × denotes the vector product operator, and ∝ denotes a proportionality relation. The Lorentz force exhibits an oscillating component at a frequency twice the frequency f of the magnetic field.

Du fait de l'épaisseur de la lingotière, la fréquence f est choisie de manière à permettre une pénétration suffisante du champ magnétique B dans le marais, de façon à obtenir un brassage efficace du liquide. La fréquence f est d'autant plus faible que l'épaisseur du produit est élevée. Dans le cas d'un alliage d'aluminium d'épaisseur supérieure à 300 mm, la fréquence est de préférence inférieure à 5 Hz, et de façon encore plus avantageuse inférieure à 2 Hz ou à 1Hz.Due to the thickness of the mold, the frequency f is chosen so as to allow sufficient penetration of the magnetic field B into the swamp, so as to obtain effective mixing of the liquid. The frequency f is all the lower as the thickness of the product is high. In the case of an aluminum alloy with a thickness greater than 300 mm, the frequency is preferably less than 5 Hz, and even more advantageously less than 2 Hz or 1 Hz.

Le générateur 5 est apte à générer un champ magnétique glissant. Le terme champ magnétique glissant désigne un champ magnétique alternatif, dont l'amplitude B 0 n'est pas constante, et varie entre une valeur minimale et une amplitude maximale B 0 max

Figure imgb0001
, l'amplitude maximale B 0 max
Figure imgb0002
se propageant selon un axe de propagation Δ, de préférence rectiligne et orienté selon l'axe vertical Z. Par amplitude, on entend la valeur maximale que prend une grandeur périodique. L'application d'un champ magnétique glissant se traduit, en un point du marais, par une variation périodique de son amplitude. Ainsi, l'amplitude du champ magnétique en un point du marais varie en fonction du temps, entre une amplitude minimale B 0 min
Figure imgb0003
et une amplitude maximale B 0 max
Figure imgb0004
.The generator 5 is able to generate a sliding magnetic field. The term sliding magnetic field designates an alternating magnetic field, whose amplitude B 0 is not constant, and varies between a minimum value and a maximum amplitude B 0 max
Figure imgb0001
, the maximum amplitude B 0 max
Figure imgb0002
propagating along a propagation axis Δ, preferably rectilinear and oriented along the vertical axis Z. By amplitude is meant the maximum value taken by a periodic quantity. The application of a sliding magnetic field results, at a point in the marsh, in a periodic variation of its amplitude. Thus, the amplitude of the magnetic field at a point in the marsh varies as a function of time, between a minimum amplitude B 0 min
Figure imgb0003
and a maximum amplitude B 0 max
Figure imgb0004
.

Le générateur de champ magnétique glissant 5 peut être constitué par plusieurs inducteurs électromagnétiques disposés autour de l'enceinte périphérique. Sur la figure 1B, on a représenté trois paires 51, 52 et 53 d'inducteurs électromagnétiques. La partie supérieure 5s des inducteurs est positionnée au niveau de la surface libre 1sup de l'alliage liquide. Chaque inducteur présente un déphasage de 90° entre la partie supérieure 5s et la partie inférieure 5i. Dans les exemples décrits ci-après, on a utilisé un dispositif tel que décrit dans la demande WO2014/155357 , et plus précisément selon la configuration décrite en lien avec les figures 19 et 20A, dans laquelle trois inducteurs, orientés selon l'axe vertical Z, sont disposés face à chaque grande face du lingot. Par grande face d'un lingot, il est entendu une face s'étendant selon l'axe longitudinal Y et l'axe vertical Z. Chaque inducteur comporte une ou plusieurs bobines.Dans cet exemple, chaque bobine est disposée à une distance de 185 mm de la lingotière. D'une façon générale, la distance entre une bobine d'un inducteur et la lingotière peut être comprise entre 130 mm et 200 mm.The sliding magnetic field generator 5 may consist of several electromagnetic inductors arranged around the peripheral enclosure. On the figure 1B , three pairs 5 1 , 5 2 and 5 3 of electromagnetic inductors have been shown. The upper part 5s of the inductors is positioned at the level of the free surface 1 sup of the liquid alloy. Each inductor has a phase shift of 90° between the upper part 5s and the lower part 5i. In the examples described below, a device was used as described in the application WO2014/155357 , and more precisely according to the configuration described in connection with FIGS. 19 and 20A, in which three inductors, oriented along the vertical axis Z, are arranged opposite each large face of the ingot. By large face of an ingot is meant a face extending along the longitudinal axis Y and the vertical axis Z. Each inductor comprises one or more coils. In this example, each coil is placed at a distance of 185 mm of the mold. In a way Generally, the distance between a coil of an inductor and the mold can be between 130 mm and 200 mm.

Le champ magnétique glissant peut également être généré à partir d'un ou plusieurs aimants permanents disposés à la périphérie de la lingotière et mis en mouvement par rapport à cette dernière. Par exemple, il est possible de générer un champ magnétique glissant en faisant tourner un aimant permanent.The sliding magnetic field can also be generated from one or more permanent magnets arranged at the periphery of the mold and set in motion relative to the latter. For example, it is possible to generate a sliding magnetic field by rotating a permanent magnet.

La distance λ séparant deux maximas d'amplitude du champ magnétique est la longueur d'onde du champ magnétique glissant. La figure 1C représente un exemple de distribution de l'amplitude B 0 d'un champ magnétique glissant le long d'un axe de propagation Δ à un instant t (trait continu), et à un instant t + Δt (trait pointillé). Sur l'axe de propagation, on a représenté une coordonnée r correspondant à la position d'un point du marais. La figure 1D illustre une évolution temporelle d'un champ magnétique alternatif glissant en ce point. Cette évolution est périodique, et s'effectue selon une période P. L'application d'un champ magnétique glissant se traduit, en un point du marais, par une variation périodique de son amplitude. Ainsi, l'amplitude du champ magnétique en un point du marais varie en fonction du temps, entre une amplitude minimale B 0 min

Figure imgb0005
et une amplitude maximale B 0 max
Figure imgb0006
.The distance λ separating two amplitude maxima of the magnetic field is the wavelength of the sliding magnetic field. The figure 1C represents an example of the distribution of the amplitude B 0 of a magnetic field sliding along a propagation axis Δ at a time t (solid line), and at a time t+Δt (dotted line). On the axis of propagation, a coordinate r corresponding to the position of a point of the marsh has been represented. The figure 1D illustrates a temporal evolution of a sliding alternating magnetic field at this point. This evolution is periodic, and takes place according to a period P. The application of a sliding magnetic field results, at a point in the marsh, in a periodic variation of its amplitude. Thus, the amplitude of the magnetic field at a point in the marsh varies as a function of time, between a minimum amplitude B 0 min
Figure imgb0005
and a maximum amplitude B 0 max
Figure imgb0006
.

La force de Lorentz, en un point de coordonnées r du marais, comporte une composante oscillante, modulée selon une fréquence 2f double de la fréquence du champ magnétique. L'amplitude F 0 de la densité de force de Lorentz oscillante peut être explicitée selon l'expression: F 0 r = 1 2 σfλB 0 2 r

Figure imgb0007
σ désigne la conductivité électrique.The Lorentz force, at a point of coordinates r in the marsh, comprises an oscillating component, modulated according to a frequency 2 f double the frequency of the magnetic field. The amplitude F 0 of the oscillating Lorentz force density can be explained according to the expression: F 0 r = 1 2 σfλB 0 2 r
Figure imgb0007
where σ denotes the electrical conductivity.

L'amplitude de la force de Lorentz, en un point r du marais dépend du carré de l'amplitude du champ magnétique appliqué en ce point.The amplitude of the Lorentz force at a point r in the marsh depends on the square of the amplitude of the magnetic field applied at this point.

Les inventeurs ont constaté qu'on peut limiter l'apparition de macro-ségrégations intermittentes 11 en ajustant le brassage électromagnétique lorsque la force de Lorentz moyenne s'appliquant sur l'alliage liquide 1ℓ s'écoulant au niveau du front 10, présente une certaine orientation, et cela dans une zone médiane du marais, s'étendant symétriquement de part et d'autre du plan médian M, entre T/2 - T/4 et T/2 + T/4. L'épaisseur de la zone médiane M correspond à la moitié de l'épaisseur du lingot. Par force de Lorentz moyenne, on entend une moyenne de la force de Lorentz durant une période P du champ magnétique. La période P du champ magnétique correspond à l'intervalle de temps séparant deux maxima ou minima successifs du champ magnétique, comme représenté sur la figure 1D. La période P correspond à l'inverse de la fréquence f. Les inventeurs ont observé que dans la zone médiane, à l'interface du marais 1ℓ, et de l'alliage solide 1s, au niveau du front 10, l'angle β formé par la force de Lorentz moyenne F , par rapport à la verticale, doit être avantageusement inférieur à l'angle α du front, précédemment évoqué, correspondant à l'angle entre la tangente au front et la verticale, les angles α et β étant orientés dans le même sens. Autrement dit, il est avantageux que la direction de la force de Lorentz moyenne F soit plus verticale que la direction de la tangente au front. Ainsi, dans la zone médiane, à l'interface entre le marais et le front, la force de Lorentz moyenne F est orientée vers l'alliage solide 1s, et non vers l'alliage liquide 1ℓ. Cette condition est illustrée sur la figure 2. Sur cette figure, on a représenté une coupe d'une coulée selon un plan XZ. La position du plan médian M correspond à l'épaisseur T/2.The inventors have observed that the appearance of intermittent macro-segregations 11 can be limited by adjusting the electromagnetic stirring when the mean Lorentz force applied to the liquid alloy 1ℓ flowing at the front 10 has a certain orientation, and this in a median zone of the marsh, extending symmetrically on either side of the median plane M, between T/2 - T/4 and T/2 + T/4. The thickness of the middle zone M corresponds to half the thickness of the ingot. By average Lorentz force is meant an average of the Lorentz force during a period P of the magnetic field. The period P of the magnetic field corresponds to the time interval separating two successive maxima or minima of the magnetic field, as represented on the figure 1D . The period P corresponds inverse to the frequency f . The inventors have observed that in the middle zone, at the interface of the marsh 1ℓ, and the solid alloy 1s, at the level of the front 10, the angle β formed by the average Lorentz force F , with respect to the vertical, must advantageously be less than the angle α of the front, previously mentioned, corresponding to the angle between the tangent to the front and the vertical, the angles α and β being oriented in the same direction. That is, it is advantageous that the direction of the average Lorentz force F is more vertical than the direction of the tangent to the front. Thus, in the middle zone, at the interface between the swamp and the front, the average Lorentz force F is oriented towards the solid 1s alloy, and not towards the liquid 1ℓ alloy. This condition is illustrated in the picture 2 . This figure shows a section of a casting along an XZ plane. The position of the median plane M corresponds to the thickness T/2.

L'effet de plaquage de l'alliage liquide 1ℓ, contre le front 10 est obtenu à l'interface entre l'alliage liquide et le front 10. De préférence, cet effet est obtenu dans une couche, dite couche d'interface, adjacente du front, dont l'épaisseur est inférieure à 2cm, ou à 1 cm ou à 5 mm. L'épaisseur est définie selon une direction perpendiculaire au front. C'est en effet dans une telle couche que l'alliage liquide, au contact de l'isotherme froide formée par le front, devient localement plus dense. Il se forme alors une couche fluidique le long du front, dans laquelle l'écoulement de l'alliage liquide est accéléré, et peut s'éloigner du front, conduisant à l'apparition de tourbillons. C'est principalement dans cette couche qu'il est nécessaire d'appliquer une force de Lorentz plaquant l'alliage liquide contre le front, afin de maintenir l'alliage liquide contre le front, de façon à limiter la formation de macro-ségrégations intermittentes.The plating effect of the liquid alloy 1ℓ, against the front 10 is obtained at the interface between the liquid alloy and the front 10. Preferably, this effect is obtained in a layer, called interface layer, adjacent of the forehead, whose thickness is less than 2cm, or 1 cm or 5 mm. The thickness is defined along a direction perpendicular to the front. It is indeed in such a layer that the liquid alloy, in contact with the cold isotherm formed by the front, becomes locally denser. A fluidic layer is then formed along the front, in which the flow of the liquid alloy is accelerated, and can move away from the front, leading to the appearance of eddies. It is mainly in this layer that it is necessary to apply a Lorentz force pressing the liquid alloy against the front, in order to maintain the liquid alloy against the front, so as to limit the formation of intermittent macro-segregations. .

Dans ces conditions particulières, la force de Lorentz F tend à plaquer l'alliage liquide 1ℓ du marais contre le front 10, ce qui limite la formation de macro-ségrégations intermittentes. La force de Lorentz est dite plaquante. Elle permet la formation d'un flux laminaire convectif le long de tout ou partie du front 10, limitant l'apparition de macro-ségrégations intermittentes.Under these particular conditions, the Lorentz force F tends to press the liquid alloy 1ℓ of the marsh against the front 10, which limits the formation of intermittent macro-segregations. The Lorentz force is said to be plating. It allows the formation of a convective laminar flow along all or part of the front 10, limiting the appearance of intermittent macro-segregations.

De préférence, un seul champ magnétique glissant dont l'amplitude est variée à une fréquence f est appliqué pour obtenir l'effet de plaquer l'alliage liquide 1l du marais contre le front 10.Preferably, a single sliding magnetic field whose amplitude is varied at a frequency f is applied to obtain the effect of pressing the liquid alloy 11 of the marsh against the front 10.

Comme décrit par la suite, le phénomène de plaquage de l'alliage liquide par la force de Lorentz contre le front 10 est d'autant plus marqué que la vitesse de coulée V et la fréquence f sont faibles.As described below, the phenomenon of plating of the liquid alloy by the Lorentz force against the front 10 is all the more marked as the casting speed V and the frequency f are low.

L'homme du métier sait modéliser l'orientation d'une force de Lorentz moyenne F , s'exerçant au cours d'une période, dans le marais. Des codes de calculs, par exemple le module AC/DC du code COMSOL, permettent une telle modélisation, en se basant notamment sur les caractéristiques des inducteurs (dimensions, nombre d'ampères-tours, pas polaire, positionnement par rapport à la lingotière), la géométrie de la lingotière et des paramètres opérationnels comme la vitesse de coulée ou la fréquence du champ magnétique. Les simulations permettent de modéliser le brassage électromagnétique de l'alliage liquide et d'estimer une évolution temporelle de la force de Lorentz F, en tout point du marais, durant une période. Par évolution, on entend aussi bien l'évolution de l'intensité que l'évolution de la direction. Il est alors possible de déterminer l'orientation et l'intensité de la force de Lorentz moyenne s'appliquant en un point du marais, durant une période P du champ magnétique.A person skilled in the art knows how to model the orientation of an average Lorentz force F , exercising over a period, in the swamp. Calculation codes, for example the AC/DC module of the COMSOL code, allow such modeling, based in particular on the characteristics of the inductors (dimensions, number of ampere-turns, pole pitch, positioning relative to the mold), the geometry of the mold and operational parameters such as speed flow or the frequency of the magnetic field. The simulations make it possible to model the electromagnetic mixing of the liquid alloy and to estimate a temporal evolution of the Lorentz force F , at any point in the marsh, during a period. By evolution, we mean both the evolution of the intensity and the evolution of the direction. It is then possible to determine the orientation and the intensity of the average Lorentz force applying at a point in the marsh, during a period P of the magnetic field.

Les figures 3A, 3B, 3C et 3D montrent l'orientation de la force moyenne de Lorentz, obtenue par simulation, en différents points d'un front 10. Sur ces figures, on a représenté une partie d'un front 10, selon un plan XZ, s'étendant entre le plan médian M (abscisse x = 0) et une paroi de la lingotière (abscisse x = 0,26). L'axe des abscisses représente une position selon l'axe transversal X et l'axe des ordonnées représente une position selon l'axe vertical Z. Les fréquences considérées sont respectivement égales à 5Hz (figure 3A), 1 Hz, 0.5 Hz et 0.2 Hz (figure 3D), la vitesse de coulée étant de 55 mm/min. On observe qu'en considérant une même position sur le front 10, plus la fréquence f est faible, plus l'angle β de la force de Lorentz moyenne F est faible. Ainsi, en une même position sur le front, la force de Lorentz moyenne F tend à s'incliner verticalement au fur et à mesure que la fréquence diminue.The figures 3A, 3B, 3C and 3D show the orientation of the mean Lorentz force, obtained by simulation, at different points of a front 10. In these figures, a part of a front 10 has been shown, along a plane XZ, extending between the plane median M (abscissa x=0) and a wall of the ingot mold (abscissa x=0.26). The abscissa axis represents a position along the transverse axis X and the ordinate axis represents a position along the vertical axis Z. The frequencies considered are respectively equal to 5Hz ( Figure 3A ), 1Hz, 0.5Hz and 0.2Hz ( 3d figure ), the casting speed being 55 mm/min. It is observed that by considering the same position on the front 10, the lower the frequency f , the greater the angle β of the average Lorentz force F is weak. Thus, in the same position on the front, the average Lorentz force F tends to tilt vertically as the frequency decreases.

Par ailleurs, comme précédemment décrit la force de Lorentz est plaquante lorsque l'angle β de la force de Lorentz moyenne F est inférieur à l'angle α du front. On a représenté, sur chaque figure, une plage d'épaisseur Δx, s'étendant à partir du plan médian M, dans laquelle l'effet de force plaquante est obtenu. Cette plage de largeur est matérialisée par une double flèche. On observe que plus la fréquence diminue, plus la plage d'épaisseur Δx s'étend, à partir du plan médian M (x = 0), correspondant à l'épaisseur T/2, vers la paroi de la lingotière. L'effet technique de minimisation des macro-ségrégations intermittentes apparaît dans cette plage d'épaisseur Δx, et il est préférable qu'elle soit la plus large possible, en englobant de préférence la plage d'épaisseur T/2,3 - T/3,3, cette dernière étant généralement propice à la formation de macro-ségrégations intermittentes. Sur ces figures, la plage d'épaisseur T/2,3 - T/3,3 correspond à l'intervalle entre x = 0,03 m et 0,1 m. La coordonnée T/4 correspond à x = 0,13 m.Moreover, as previously described, the Lorentz force is tight when the angle β of the average Lorentz force F is less than the angle α of the front. There is shown in each figure, a range of thickness Δx, extending from the median plane M, in which the pressing force effect is obtained. This width range is materialized by a double arrow. It is observed that the more the frequency decreases, the more the range of thickness Δx extends, from the median plane M (x=0), corresponding to the thickness T/2, towards the wall of the mold. The technical effect of minimizing intermittent macro-segregations appears in this range of thickness Δx, and it is preferable that it be as wide as possible, preferably encompassing the range of thickness T/2.3 - T/ 3.3, the latter being generally conducive to the formation of intermittent macro-segregations. In these figures, the thickness range T/2.3 - T/3.3 corresponds to the interval between x=0.03 m and 0.1 m. The T/4 coordinate corresponds to x = 0.13 m.

Les figures 3E, 3F, 3G et 3H montrent respectivement l'orientation moyenne de la force de Lorentz, obtenue par simulation, en différents points d'un front 10, les fréquences étant respectivement égales à 5Hz, 1 Hz, 0.5 Hz et 0.2 Hz.The figures 3E, 3F, 3G and 3H show respectively the average orientation of the Lorentz force, obtained by simulation, at different points of a front 10, the frequencies being respectively equal to 5 Hz, 1 Hz, 0.5 Hz and 0.2 Hz.

Sur les figures 3A à 3H, on a représenté des forces dites normalisées, chaque force étant normalisée par son intensité, de façon à mieux faire apparaître l'évolution de l'orientation de la force moyenne de Lorentz sur le front 10, en fonction de la position le long du front.On the figures 3A to 3H , so-called normalized forces have been represented, each force being normalized by its intensity, so as to better show the evolution of the orientation of the mean Lorentz force on the front 10, as a function of the position along the front .

La comparaison des figures 3A à 3H montre que plus la fréquence est faible, plus la plage d'épaisseur Δx selon laquelle la force de Lorentz devient plaquante est importante. La plage d'épaisseur Δx s'étend à partir du plan médian M vers la paroi de la lingotière, selon l'axe transversal X. Elle s'élargit au fur et à mesure que la fréquence diminue. Par ailleurs, à une même fréquence, plus la vitesse de coulée est faible, plus la plage d'épaisseur selon laquelle la force de Lorentz est plaquante est importante. On a donc intérêt à privilégier à la fois une fréquence f faible, de préférence inférieure à 2 Hz, voire à 1 Hz, et une vitesse de coulée faible, de préférence inférieure à 45 mm/min, voire à 40 mm/min.The comparison of figures 3A to 3H shows that the lower the frequency, the greater the range of thickness Δx according to which the Lorentz force becomes tight. The range of thickness Δx extends from the median plane M towards the wall of the mold, along the transverse axis X. It widens as the frequency decreases. Moreover, at the same frequency, the lower the casting speed, the greater the range of thickness in which the Lorentz force is binding. It is therefore advantageous to favor both a low frequency f , preferably less than 2 Hz, or even 1 Hz, and a low casting speed, preferably less than 45 mm/min, or even 40 mm/min.

Sur la base de simulations telles qu'illustrées sur les figures 3A à 3H, les inventeurs ont déterminé une évolution, selon l'axe transversal X, d'un angle θ, dit angle différentiel, représentant une différence entre, en un même point, l'angle du front α et l'angle de la force de Lorentz β, soit θ = α - β. On rappelle que les angles α et β sont orientés dans le même sens. Lorsque θ > 0, α > β : la force de Lorentz est davantage inclinée que la tangente au front. Elle est donc plaquante.Based on simulations as shown in the figures 3A to 3H , the inventors have determined an evolution, along the transverse axis X, of an angle θ, called differential angle, representing a difference between, at the same point, the angle of the front α and the angle of the Lorentz force β, i.e. θ = α - β. It is recalled that the angles α and β are oriented in the same direction. When θ > 0, α > β: the Lorentz force is more inclined than the tangent to the front. So she's cheeky.

Les figures 4A et 4B montrent l'évolution de l'angle différentiel θ en fonction d'une position x sur le front 10, le long de l'axe transversal X. L'axe des abscisses représente la position x, exprimée en mètre, sur le front le long de l'axe transversal. De même que sur les figures 3A à 3H, la coordonnée x=0 correspond à la position T/2, la coordonnée x = 0.26 correspondant à la paroi 2p de la lingotière. Les figures 4A et 4B ont été obtenues en considérant respectivement une vitesse de coulée de 55 mm/min et de 35 mm/min. Sur chaque figure, les simulations de l'orientation de la force de Lorentz moyenne F ont été réalisées en considérant successivement plusieurs fréquences f, comprises entre 5 Hz et 0,2 Hz. Sur chaque figure, on a représenté, en traits horizontaux mixtes, des droites correspondant aux valeurs θ = 0° et θ = 4° lorsque la fréquence est égale à 1 Hz. La force de Lorentz est plaquante lorsque θ > 0, mais les inventeurs considèrent qu'il est avantageux que θ ≥ 4°. On peut ainsi définir, sur chaque configuration, une plage d'épaisseur, dans laquelle la force de Lorentz est plaquante, à partir du plan médian M (épaisseur T/2).The figures 4A and 4B show the evolution of the differential angle θ as a function of a position x on the front 10, along the transverse axis X. The abscissa axis represents the position x, expressed in meters, on the front along of the transverse axis. Just as on the figures 3A to 3H , the coordinate x=0 corresponds to the position T/2, the coordinate x=0.26 corresponding to the wall 2p of the mold. The figures 4A and 4B were obtained by considering respectively a casting speed of 55 mm/min and 35 mm/min. On each figure, the simulations of the orientation of the mean Lorentz force F were carried out by successively considering several frequencies f , between 5 Hz and 0.2 Hz. In each figure, straight lines corresponding to the values θ = 0° and θ = 4° when the frequency is equal to 1 Hz. The Lorentz force is flattening when θ > 0, but the inventors consider that it is advantageous for θ ≥ 4°. It is thus possible to define, on each configuration, a range of thickness, in which the Lorentz force is binding, from the median plane M (thickness T/2).

On a représenté, sur les figures 4A et 4B, les plages d'épaisseur Δx (θ = 0°) et Δx (θ = 4°) pour f = 1 Hz. De façon similaire aux figures 3A à 3H, on observe que les plages d'épaisseurs sont d'autant plus importantes que la fréquence est faible et que la vitesse de coulée est faible. Les résultats optimaux sont obtenus pour f ≤ 2 Hz, voire f ≤ 1 Hz, et lorsque la vitesse de coulée est de 35 mm. Plus la fréquence est faible, plus l'intensité de la force de Lorentz s'appliquant sur l'alliage liquide limitrophe du front, dans la plage d'épaisseur T/2 - T/4, est importante. Cela renforce l'intensité de la force de Lorentz et augmente l'effet technique recherché. Autrement dit, pour obtenir une réduction significative des macro-ségrégations intermittentes, une orientation de la force de Lorentz telle que précédemment décrite est nécessaire. Toutefois, son intensité doit être suffisante pour obtenir un plaquage de l'alliage liquide 1ℓ, contre le front 10. C'est pourquoi il est préférable de moduler le champ magnétique selon une fréquence f relativement faible.We have represented, on the figures 4A and 4B , the thickness ranges Δx (θ = 0°) and Δx (θ = 4°) for f = 1 Hz. figures 3A to 3H , it is observed that the thickness ranges are all the more important as the frequency is low and the casting speed is low. Optimal results are obtained for f ≤ 2 Hz, or even f ≤ 1 Hz, and when the casting speed is 35 mm. The lower the frequency, the greater the intensity of the Lorentz force applied to the liquid alloy bordering the front, in the thickness range T/2 - T/4. This reinforces the intensity of the Lorentz force and increases the technical effect sought. In other words, to obtain a significant reduction in intermittent macro-segregations, an orientation of the Lorentz force as previously described is necessary. However, its intensity must be sufficient to obtain a plating of the liquid alloy 1ℓ, against the front 10. This is why it is preferable to modulate the magnetic field according to a relatively low frequency f .

A l'aide de simulations prenant en compte différentes épaisseurs de coulée, les inventeurs ont établi un abaque, représenté sur la figure 4C, permettant de définir une plage de fonctionnement pour laquelle la force de Lorentz est considérée comme suffisamment plaquante, c'est-à-dire lorsque l'angle différentiel θ est supérieur ou égal à 4°. Cet abaque fait l'objet de la figure 4C. L'axe des abscisses et des ordonnées de l'abaque correspond respectivement à la vitesse de coulée V et à l'épaisseur T du lingot. L'épaisseur étant déterminée, l'abaque permet de définir la vitesse de coulée et la fréquence maximale permettant de se placer dans les conditions de mise en œuvre de l'invention. Sur cet abaque, on a matérialisé, par des croix, les conditions d'essais expérimentaux décrits par la suite, en lien avec le tableau 1.Using simulations taking into account different casting thicknesses, the inventors established an abacus, represented on the Fig. 4C , making it possible to define an operating range for which the Lorentz force is considered to be sufficiently tight, that is to say when the differential angle θ is greater than or equal to 4°. This abacus is the subject of the Fig. 4C . The abscissa and ordinate axes of the chart correspond respectively to the casting speed V and to the thickness T of the ingot. The thickness being determined, the chart makes it possible to define the casting speed and the maximum frequency making it possible to place oneself in the conditions of implementation of the invention. On this chart, crosses show the experimental test conditions described below, in connection with Table 1.

Cet abaque dépend du nombre et des caractéristiques des inducteurs, de leur positionnement par rapport à la lingotière, des dimensions de cette dernière et des paramètres opérationnels de l'installation, en particulier relatifs au du champ magnétique appliqué. L'homme du métier, connaissant les caractéristiques de l'installation, peut procéder à des simulations visant à obtenir l'orientation de la force de Lorentz moyenne F en différents points le long du front 10, selon l'axe transversal X. Il peut alors déterminer une plage de fréquence et une plage de vitesse de coulée pour lesquelles on obtient θ ≥ 0°, ou avantageusement θ ≥ 4°, de façon à mettre en œuvre l'invention et obtenir l'effet technique désiré, c'est-à-dire une limitation de la macro-ségrégation intermittente entre T/2 et T/4, et plus particulièrement entre T/2,3 et T/3,3.This chart depends on the number and characteristics of the inductors, their positioning relative to the mold, the dimensions of the latter and the operational parameters of the installation, in particular relating to the applied magnetic field. The person skilled in the art, knowing the characteristics of the installation, can carry out simulations aimed at obtaining the orientation of the mean Lorentz force F at different points along the front 10, along the transverse axis X. He can then determine a frequency range and a casting speed range for which θ≥0°, or advantageously θ≥4°, is obtained, so as to implement the invention and obtain the desired technical effect, that is to say a limitation of intermittent macro-segregation between T/2 and T/4, and more particularly between T/2.3 and T/ 3.3.

Des essais expérimentaux ont été mis en œuvre, en utilisant des alliages de type 7010 et 7035, l'épaisseur T du lingot étant égale à 525 mm. Chaque coulée a été effectuée en utilisant une fréquence fixe. Entre les différentes coulées, on a fait varier la fréquence f entre 0,250 Hz et 0,850 Hz. Chaque coulée a été effectuée en mettant en œuvre une vitesse de coulée fixe. Entre les différentes coulées, la vitesse de coulée a été variée entre 35 mm/min et 55 mm/min.Experimental tests were carried out, using alloys of the 7010 and 7035 type, the thickness T of the ingot being equal to 525 mm. Each pour was made using a fixed frequency. Between the different castings, the frequency f was varied between 0.250 Hz and 0.850 Hz. Each casting was carried out using a fixed casting speed. Between the different castings, the casting speed was varied between 35 mm/min and 55 mm/min.

Le tableau 1 synthétise les conditions expérimentales d'essais, dont cinq mettent en œuvre l'invention. Les essais 1 à 3 ont été effectués à partir d'un alliage 7010, tandis que les essais 4 à 6 ont été effectués à partir d'un alliage 7035. Les paramètres de chaque essai sont la fréquence f et la vitesse de coulée V. Au cours de chaque essai, on a fabriqué un lingot de format 1650 mm × 525 mm.Table 1 summarizes the experimental test conditions, five of which implement the invention. Tests 1 to 3 were carried out from a 7010 alloy, while tests 4 to 6 were carried out from a 7035 alloy. The parameters of each test are the frequency f and the casting speed V. During each test, a 1650 mm × 525 mm format ingot was produced.

Les essais Ref 7010 et Ref 7035 sont des essais de référence, réalisés sans brassage électromagnétique. Tableau 1 Essai Alliage V f ΔCmeso Fourier ΔCmeso Fourier (mm/min) (Hz) (W/4) (W/4) (W/2) (W/2) Ref 7010 7010 45 0.82 0.012 0,71 1 7010 40 0.475 0.44 0.005 2 7010 40 0.850 0.50 0.005 3 7010 45 0.250 0.56 0.006 Ref 7035 7035 35 0,59 0.012 0.75 0.014 4 7035 35 0.475 0.32 0.005 0.41 0.006 5 7035 35 0.270 0.46 0.007 6 7035 55 0.475 0.59 0.013 0.51 0.008 The Ref 7010 and Ref 7035 tests are reference tests, carried out without electromagnetic stirring. <u>Table 1</u> Test Alloy V f ΔC meso Fourier ΔC meso Fourier (mm/min) (Hz) (W/4) (W/4) (W/2) (W/2) Ref 7010 7010 45 0.82 0.012 0.71 1 7010 40 0.475 0.44 0.005 2 7010 40 0.850 0.50 0.005 3 7010 45 0.250 0.56 0.006 Ref 7035 7035 35 0.59 0.012 0.75 0.014 4 7035 35 0.475 0.32 0.005 0.41 0.006 5 7035 35 0.270 0.46 0.007 6 7035 55 0.475 0.59 0.013 0.51 0.008

Chacun de ces essais est représenté par une croix sur l'abaque de la figure 4C. On constate que les essais 1, 2, 3, 4 et 5 sont considérés comme mettant en œuvre l'invention si l'on se réfère à l'abaque représenté sur la figure 4C. Dans ces conditions, on obtient une force de Lorentz plaquante entre T/2 et T/4. L'essai 6 est en dehors de l'invention, car compte tenu de l'épaisseur du lingot et de la vitesse de coulée, l'abaque indique une fréquence maximale de 0.1 Hz, alors que la fréquence utilisée lors de cet essai s'élevait à 0.475 Hz.Each of these tests is represented by a cross on the abacus of the Fig. 4C . It can be seen that tests 1, 2, 3, 4 and 5 are considered to implement the invention if reference is made to the abacus represented on the Fig. 4C . Under these conditions, a Lorentz force is obtained between T/2 and T/4. Test 6 is outside the invention, because taking into account the thickness of the ingot and the casting speed, the chart indicates a maximum frequency of 0.1 Hz, whereas the frequency used during this test is amounted to 0.475 Hz.

Les lingots formés ont été caractérisés en analysant des profils horizontaux (selon l'axe TC) d'une radiographie réalisée à mi-largeur selon un plan vertical L/TC, ces profils étant étalonnés pour obtenir la distribution spatiale d'éléments d'alliage lourds de type Zn et/ou Cu. Pour l'alliage 7010, les éléments d'alliages considérés sont Zn et Cu. Pour l'alliage 7035, l'élément d'alliage considéré est Zn. Les termes L et TC, connus de l'homme du métier, correspondent à la dimension du lingot selon l'axe vertical et selon l'axe dit « travers court ». Une macro-ségrégation intermittente peut être caractérisée par un écart maximal en masse d'un élément d'alliage dans la zone la plus marquée par les macro-ségrégations intermittentes, c'est-à-dire entre T/2,3 ou T/3,3. Comme précédemment indiqué, T/n désigne une distance par rapport à un bord du lingot, selon un axe horizontal, T/2 correspondant au centre du lingot.The ingots formed were characterized by analyzing horizontal profiles (along the TC axis) of a radiograph taken at mid-width along a vertical plane L/TC, these profiles being calibrated for obtain the spatial distribution of heavy alloy elements such as Zn and/or Cu. For the 7010 alloy, the alloying elements considered are Zn and Cu. For the 7035 alloy, the alloying element considered is Zn. The terms L and TC, known to those skilled in the art, correspond to the dimension of the ingot along the vertical axis and along the so-called “short cross” axis. Intermittent macro-segregation can be characterized by a maximum difference in mass of an alloy element in the zone most marked by intermittent macro-segregations, i.e. between T/2.3 or T/ 3.3. As previously indicated, T/n denotes a distance relative to an edge of the ingot, along a horizontal axis, T/2 corresponding to the center of the ingot.

Pour quantifier la macro-ségrégation intermittente, les profils de concentration ont été traités comme illustré sur la figure 5A. Le profil obtenu avec une résolution de 0,1 mm est le profil brut référencé profil A, et représenté en pointillés sur la figure 5A. Un premier lissage est effectué, selon une moyenne glissante sur 2 mm, le profil lissé obtenu étant référencé profil B, représenté par un trait plein sur la figure 5A. Ce lissage permet d'atténuer l'effet de micro-ségrégations, qui correspondent à des fluctuations locales de concentrations.To quantify the intermittent macro-segregation, the concentration profiles were processed as illustrated in the figure 5A . The profile obtained with a resolution of 0.1 mm is the raw profile referenced profile A, and represented in dotted lines on the figure 5A . A first smoothing is carried out, according to a sliding average over 2 mm, the smoothed profile obtained being referenced profile B, represented by a solid line on the figure 5A . This smoothing makes it possible to attenuate the effect of micro-segregations, which correspond to local fluctuations in concentrations.

Un deuxième lissage du profil brut est effectué, selon une moyenne glissante de 50 mm, pour s'affranchir des macro-ségrégations intermittentes, et obtenir un profil de ségrégation continue centrale, ou profil de base, référencé profil C. Ce profil est représenté en tirets sur la figure 5A. Le profil de base C est soustrait du profil lissé B pour obtenir un profil dit corrigé D, représentatif de la macro-ségrégation intermittente. Ce dernier est représenté sur la figure 5B. Comme on peut le voir sur la figure 5B, le profil corrigé D est principalement représentatif de la macro-ségrégation intermittente, et n'est pas ou peu affecté par la macro-ségrégation continue centrale et par les micro-ségrégations. La macro-ségrégation intermittente est caractérisée en déterminant un écart de concentration ΔCmeso = Cmax - Cmin· Cmax et Cmin désignent respectivement les concentrations maximales et minimales mesurées sur le profil corrigé. On considère qu'une valeur de ΔC meso inférieure à 75% d'une valeur de référence, obtenue sur un lingot coulé sans brassage, constitue un résultat satisfaisant, c'est-à-dire une réduction significative de la macro-ségrégation intermittente.A second smoothing of the raw profile is carried out, according to a sliding average of 50 mm, to overcome intermittent macro-segregations, and to obtain a central continuous segregation profile, or base profile, referenced profile C. This profile is represented in dashes on the figure 5A . The basic profile C is subtracted from the smoothed profile B to obtain a so-called corrected profile D, representative of the intermittent macro-segregation. The latter is represented on the figure 5B . As can be seen on the figure 5B , the corrected profile D is mainly representative of intermittent macro-segregation, and is not or only slightly affected by central continuous macro-segregation and by micro-segregations. Intermittent macro-segregation is characterized by determining a concentration difference Δ C meso = C max - C min · C max and C min designate respectively the maximum and minimum concentrations measured on the corrected profile. It is considered that a value of Δ C meso less than 75% of a reference value, obtained on a cast ingot without mixing, constitutes a satisfactory result, that is to say a significant reduction in intermittent macro-segregation .

L'écart de concentration ΔC meso a été mesuré à W/4 et/ou à W/2 c'est-à-dire selon des plans perpendiculaires au plan médian, parallèle à l'axe transversal X et dont la coordonnée, selon l'axe longitudinal Y, est respectivement égale à W/4 et W/2.The concentration difference Δ C meso was measured at W/4 and/or at W/2, that is to say according to planes perpendicular to the median plane, parallel to the transverse axis X and whose coordinate, according to the longitudinal axis Y, is respectively equal to W/4 and W/2.

Le profil corrigé D a été normalisé par la concentration nominale en élément d'alliage considéré (Zn et Cu pour l'alliage 7010, Zn pour l'alliage 7035). Le profil ainsi normalisé a été analysé par transformée de Fourier, de façon à identifier la période spatiale caractérisant la macroségrégation intermittente. Lorsque la macroségrégation intermittente est importante, on observe généralement un ou plusieurs pic d'amplitude dans la plage 8 mm - 25 mm. On détermine un critère adimensionnel d'intensité spectrale ζ qui correspond à l'amplitude maximale des composantes de Fourier dans une plage de période spatiale comprise entre 8 et 25 mm. Les produits obtenus par le procédé selon l'invention ont de préférence un critère ζ inférieur à 0.01, de préférence inférieur à 0.007 et de manière préférée inférieur à 0.005. Le critère ζ a été mesuré à W/4 et/ou à W/2. Les figure 5C et 5D montrent respectivement un exemple d'une distribution de périodes spatiales comprises entre 0 et 30 mm pour les exemples 4 et 6, sur plusieurs profils. Sur ces figures, l'axe des ordonnées représente l'intensité spectrale, tandis que l'axe des abscisses représente la période spatiale, exprimée en mm.The corrected profile D has been normalized by the nominal concentration of the alloy element considered (Zn and Cu for the 7010 alloy, Zn for the 7035 alloy). The profile thus normalized was analyzed by Fourier transform, so as to identify the spatial period characterizing the intermittent macrosegregation. When intermittent macrosegregation is severe, one or more amplitude peaks in the range 8 mm - 25 mm are generally observed. An adimensional spectral intensity criterion ζ is determined which corresponds to the maximum amplitude of the Fourier components in a spatial period range between 8 and 25 mm. The products obtained by the process according to the invention preferably have a criterion ζ of less than 0.01, preferably less than 0.007 and preferably less than 0.005. The ζ criterion was measured at W/4 and/or at W/2. The figure 5C and 5D show respectively an example of a distribution of spatial periods between 0 and 30 mm for examples 4 and 6, on several profiles. In these figures, the ordinate axis represents the spectral intensity, while the abscissa axis represents the spatial period, expressed in mm.

Sur les lingots coulés sans brassage, correspondant aux mesures de référence, le critère ζ est supérieur à 0.01, avec des valeurs typiques de 0.012 à W/4 ou 0.014 à W/2.On the ingots cast without stirring, corresponding to the reference measurements, the ζ criterion is greater than 0.01, with typical values of 0.012 at W/4 or 0.014 at W/2.

Les essais 1, 2, et 3 ont été obtenus en utilisant un alliage 7010. La vitesse de coulée était égale à 40 mm/min pour les essais 1 et 2 et à 45 mm/min pour l'essai 3. La fréquence f était respectivement égale à 0,475 Hz, 0,850 Hz et 0,250 Hz. Sur chacun de ces essais, on a obtenu un écart de concentration ΔCmeso significativement inférieur aux mesures de références:

  • pour les essais 1 et 2, ΔCmeso à W/2 est respectivement de 0,44 et 0,50, la valeur de référence étant 0,71 ;
  • pour l'essai 3, ΔCmeso à W/4 est de 0,56 la valeur de référence étant 0,82.
Tests 1, 2, and 3 were obtained using a 7010 alloy. The casting speed was equal to 40 mm/min for tests 1 and 2 and 45 mm/min for test 3. The frequency f was respectively equal to 0.475 Hz, 0.850 Hz and 0.250 Hz. On each of these tests, we obtained a difference in concentration Δ C meso significantly lower than the reference measurements:
  • for tests 1 and 2, ΔC meso at W/2 is 0.44 and 0.50 respectively, the reference value being 0.71;
  • for test 3, ΔC meso at W/4 is 0.56, the reference value being 0.82.

Sur chacun de ces essais, le critère d'intensité spectrale ζ dans la plage de période spatiale comprise entre 8 et 25 mm est systématiquement inférieur à 0,001.On each of these tests, the spectral intensity criterion ζ in the spatial period range between 8 and 25 mm is systematically less than 0.001.

Les essais 4, 5, et 6 ont été obtenus en utilisant un alliage 7035. La vitesse de coulée était égale à 35 mm/min pour les essais 4 et 5 et 55 mm/min pour l'essai 6. La fréquence f était respectivement égale à 0,475 Hz, 0,270 Hz et 0,475 Hz. Sur les essais 4 et 5, on a obtenu un écart de concentration ΔCmeso significativement inférieur aux mesures de références :

  • pour les essais 4 et 5, ΔCmeso à W/4 est respectivement de 0,41 et 0,46, la valeur de référence étant 0,75 ;
  • pour l'essai 4, ΔCmeso à W/2 est de 0,32 la valeur de référence étant 0,59.
Tests 4, 5, and 6 were obtained using a 7035 alloy. The casting speed was equal to 35 mm/min for tests 4 and 5 and 55 mm/min for test 6. The frequency f was respectively equal to 0.475 Hz, 0.270 Hz and 0.475 Hz. On tests 4 and 5, we obtained a difference in concentration Δ C meso significantly lower than the reference measurements:
  • for tests 4 and 5, ΔC meso at W/4 is 0.41 and 0.46 respectively, the reference value being 0.75;
  • for test 4, ΔC meso at W/2 is 0.32, the reference value being 0.59.

Pour les essais 4 et 5, le critère d'intensité spectrale ζ dans la plage de période spatiale comprise entre 8 et 25 mm est inférieur à 0,001.For tests 4 and 5, the spectral intensity criterion ζ in the spatial period range between 8 and 25 mm is less than 0.001.

L'essai 6, se situant hors invention, ne permet pas d'obtenir une réduction des macroségrégations intermittentes. Les valeurs obtenues sont comparables aux valeurs de référence.Test 6, being outside the invention, does not make it possible to obtain a reduction in intermittent macrosegregations. The values obtained are comparable to the reference values.

L'invention pourra être mise en œuvre pour la réalisation de lingots destinés à des composants pour lesquels les exigences en termes de qualité sont élevées, par exemple des composants liés à des applications dans le domaine aéronautique.The invention may be implemented for the production of ingots intended for components for which the requirements in terms of quality are high, for example components linked to applications in the aeronautical field.

Claims (7)

  1. Method for forming an aluminium alloy ingot (1) in an ingot mould (2), the ingot mould defining a parallelepiped, such that the ingot formed extends parallel to a longitudinal axis (Y), along a width (W) and parallel to a transverse axis (X), along a thickness (T), the thickness being less than the width, the ingot defining a median plane (M) extending along the mid-thickness (T/2), parallel to the longitudinal axis (Y), the method comprising the following steps of:
    - preparing the liquid aluminium alloy;
    - casting the liquid aluminium alloy in the ingot mould along a vertical axis (Z), the alloy being cooled, during casting, by a surface flow of a cooling liquid (3) so as to form a solid alloy (1s) extending around a liquid alloy (1ℓ), referred to as a sump, said solid alloy forming a front (10) at the interface with the sump (1ℓ), the front being inclined at an angle of inclination (α) to the vertical axis, the angle of inclination of the front varying along the transverse axis (X);
    - displacing the solid alloy (1s), along the vertical axis (Z), at a casting velocity (V);
    - during the casting, applying a travelling magnetic field, the amplitude whereof is varied periodically according to a frequency (f), the magnetic field being generated by at least one magnetic field generator disposed at the periphery of the ingot mould, so as to apply a Lorentz force (F) at various points of the sump, the average Lorentz force (F), during a period (P) of the magnetic field, being inclined relative to the vertical axis (Z) at an angle of inclination (β), referred to as the angle of inclination of the Lorentz force, the latter varying along the transverse axis;
    - the travelling magnetic field propagating along a propagation axis parallel to the vertical axis;
    - the sump comprising a median zone, extending symmetrically on either side of the median plane (M), the thickness (T) whereof corresponds to a half-thickness of the ingot;
    the method being characterised in that:
    - the frequency (f) is less than 5 Hz;
    - and in that the casting velocity (V) and the frequency (f) are such that throughout the median zone of the sump, at the interface between the liquid alloy and the solid alloy, at the front (10), the angle of inclination (β) of the force is strictly less than the angle of inclination (α) of the front; the angles of inclination of the front and of the force being oriented in the same direction, such that in the median zone, the Lorentz force (F) acts on the liquid alloy (1ℓ), at the interface, by pressing it against the front (10), and where, prior to casting, the Lorentz force (F) applying at at least one point of the front (10) is modelled so as to define, taking into account the thickness (T) of the ingot mould, a frequency value (f) and/or a casting velocity value (V) enabling an average Lorentz force (F) to be obtained, the angle of inclination (β) whereof relative to the vertical is less than the angle, at said point, formed by the front (10) relative to the vertical.
  2. Method according to claim 1, wherein the angle of inclination (β) of the average Lorentz force is at least 4° less than the angle of inclination (α) of the front, such that the average Lorentz force ( F ) is more inclined, towards the vertical, than the front (10) and wherein the modelling allows a frequency value and/or a casting velocity value to be defined, which allows an average Lorentz force ( F ) to be obtained, the angle of inclination (β) whereof, relative to the vertical, is 4° less than the angle of inclination (α) formed by the front (10) relative to the vertical.
  3. Method according to any one of the preceding claims, wherein the frequency (f) is less than 2 Hz or less than 1 Hz.
  4. Method according to any one of the preceding claims, wherein the casting velocity (V) is less than 45 mm/minute.
  5. Method according to any one of the preceding claims, wherein the average Lorentz force ( F ) is constant over a plurality of successive periods.
  6. Method according to any one of the preceding claims, wherein the aluminium alloy is selected from alloys of the 2XXX, 6XXX or 7XXX series.
  7. Method according to any one of the preceding claims, wherein the thickness of the ingot formed is greater than 300 mm.
EP18819532.5A 2017-11-27 2018-11-16 Low velocity and low frequency aluminium casting method Active EP3717147B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1761200A FR3074072B1 (en) 2017-11-27 2017-11-27 LOW SPEED, LOW FREQUENCY ALUMINUM CASTING PROCESS
PCT/FR2018/052861 WO2019102111A1 (en) 2017-11-27 2018-11-16 Low-speed and low-frequency aluminium casting process

Publications (2)

Publication Number Publication Date
EP3717147A1 EP3717147A1 (en) 2020-10-07
EP3717147B1 true EP3717147B1 (en) 2022-03-30

Family

ID=61913257

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18819532.5A Active EP3717147B1 (en) 2017-11-27 2018-11-16 Low velocity and low frequency aluminium casting method

Country Status (3)

Country Link
EP (1) EP3717147B1 (en)
FR (1) FR3074072B1 (en)
WO (1) WO2019102111A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5246060A (en) * 1991-11-13 1993-09-21 Aluminum Company Of America Process for ingot casting employing a magnetic field for reducing macrosegregation and associated apparatus and ingot
US5699850A (en) * 1993-01-15 1997-12-23 J. Mulcahy Enterprises Inc. Method and apparatus for control of stirring in continuous casting of metals
RU2457064C1 (en) * 2011-03-03 2012-07-27 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет" (Сфу) Method of continuous and semicontinuous casing of aluminium alloys and device to this end
GB201305822D0 (en) 2013-03-28 2013-05-15 Pavlov Evgeny Improvements in and relating to apparatus and methods
JP5551297B1 (en) * 2013-08-08 2014-07-16 高橋 謙三 Molding device for continuous casting with stirring device
CN105057622B (en) * 2015-08-21 2016-08-31 中南大学 A kind of method suppressing DC Cast aluminium alloy gold macroscopic segregation of cast ingot
FR3051698B1 (en) * 2016-05-30 2020-12-25 Constellium Issoire METHOD OF MANUFACTURING LAMINATION INGOTS BY VERTICAL CASTING OF AN ALUMINUM ALLOY

Also Published As

Publication number Publication date
FR3074072A1 (en) 2019-05-31
EP3717147A1 (en) 2020-10-07
FR3074072B1 (en) 2022-02-11
WO2019102111A1 (en) 2019-05-31

Similar Documents

Publication Publication Date Title
Eskin et al. Structure formation and macrosegregation under different process conditions during DC casting
Guan et al. Insights into fabrication mechanism of pure copper thin wall components by selective infrared laser melting
JP2019513082A (en) Optimization of liquid metal jets in direct chill casting
CA2841291A1 (en) Multi-alloy vertical semi-continuous casting method
EP3717146B1 (en) Aluminium alloy flat product having improved thickness properties
Shabani et al. Solidification of A356 Al alloy: experimental study and modeling
EP3717147B1 (en) Low velocity and low frequency aluminium casting method
EP3463716B1 (en) Method for producing sheet ingots by vertical casting of an aluminium alloy
KR101758034B1 (en) Continuous steel casting method
FR2664515A1 (en) METHOD FOR ADJUSTING OPERATING CONDITIONS IN A PROCESS FOR PRODUCING CONTINUOUS ALLOYS
Chen et al. In situ observation and reduction of hot-cracks in laser additive manufacturing
Aritaka et al. Mechanism for complex morphology due to mechanical vibration
Håkonsen et al. A new DC casting technology for extrusion billets with improved surface quality
Thanabumrungkul et al. Investment casting of semi-solid 6063 aluminum alloy using the GISS process
Konar et al. Tundish open eye formation: Integrated troubleshooting using computational modeling, physical modeling, and plant trials
Kim et al. Studies of interfacial heat transfer resistances and characterization of strip microstructures for Al-Mg alloys cast on a single belt casting simulator
Carlberg et al. On vertical drag defects formation during direct chill (DC) casting of aluminum billets
Liao et al. In situ characterization of porosity evolution in A356 alloy directionally solidified under different solidification velocities
CA1204575A (en) Electromagnetic stirring method and device for molten metals, namely steels, in a continuous casting process
Ditze et al. Strip casting of magnesium with the single‐belt process
Östklint et al. Microstructure and material soundness in liquid and rheocast AZ91: effect of section thickness
Carlberg et al. Surface segregation and surface defect formation during Aluminum billet casting
Deillon et al. In-situ observations of solutal melting using laser scanning confocal microscopy: The Cu/Ni model system
Zhang et al. Interfacial heat transfer in squeeze casting of magnesium alloy AM60 with variation of applied pressures and casting wall-thicknesses
Hong et al. Effect of casting parameters on microstructure and casting quality of Si-Al alloy for vacuum sputtering

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200625

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: CABLEA, MIRCEA

Inventor name: JARRY, PHILIPPE

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210315

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20211108

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1478705

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018033113

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220630

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220630

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220701

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220801

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220730

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018033113

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20230103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20221116

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 1478705

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221116

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20181116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20241127

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20241104

Year of fee payment: 7