EP3714330A1 - Porous graphitic pellicle - Google Patents
Porous graphitic pellicleInfo
- Publication number
- EP3714330A1 EP3714330A1 EP18796955.5A EP18796955A EP3714330A1 EP 3714330 A1 EP3714330 A1 EP 3714330A1 EP 18796955 A EP18796955 A EP 18796955A EP 3714330 A1 EP3714330 A1 EP 3714330A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pellicle
- zeolite
- dimensional template
- around
- radiation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 claims abstract description 48
- 238000004519 manufacturing process Methods 0.000 claims abstract description 20
- 239000010457 zeolite Substances 0.000 claims description 58
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 57
- 229910021536 Zeolite Inorganic materials 0.000 claims description 51
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 50
- 229910052799 carbon Inorganic materials 0.000 claims description 24
- 239000000463 material Substances 0.000 claims description 21
- HSFWRNGVRCDJHI-UHFFFAOYSA-N Acetylene Chemical compound C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 claims description 13
- 239000011148 porous material Substances 0.000 claims description 13
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 12
- 229910052710 silicon Inorganic materials 0.000 claims description 12
- 239000010703 silicon Substances 0.000 claims description 12
- 238000010438 heat treatment Methods 0.000 claims description 7
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 6
- 229910052746 lanthanum Inorganic materials 0.000 claims description 6
- 229930195733 hydrocarbon Natural products 0.000 claims description 5
- 150000002430 hydrocarbons Chemical class 0.000 claims description 5
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 claims description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 4
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 claims description 4
- QQONPFPTGQHPMA-UHFFFAOYSA-N Propene Chemical compound CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 claims description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 4
- KDKYADYSIPSCCQ-UHFFFAOYSA-N but-1-yne Chemical compound CCC#C KDKYADYSIPSCCQ-UHFFFAOYSA-N 0.000 claims description 4
- 229910052791 calcium Inorganic materials 0.000 claims description 4
- 239000011575 calcium Substances 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 239000011651 chromium Substances 0.000 claims description 4
- 229910052735 hafnium Inorganic materials 0.000 claims description 4
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 claims description 4
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 239000011733 molybdenum Substances 0.000 claims description 4
- 229910052758 niobium Inorganic materials 0.000 claims description 4
- 239000010955 niobium Substances 0.000 claims description 4
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 4
- 229910052715 tantalum Inorganic materials 0.000 claims description 4
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 239000010936 titanium Substances 0.000 claims description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 239000010937 tungsten Substances 0.000 claims description 4
- 229910052720 vanadium Inorganic materials 0.000 claims description 4
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 4
- 229910052727 yttrium Inorganic materials 0.000 claims description 4
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- 239000011701 zinc Substances 0.000 claims description 4
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 claims description 3
- 238000005342 ion exchange Methods 0.000 claims description 3
- -1 preferably Chemical compound 0.000 claims description 3
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 claims description 2
- 239000004215 Carbon black (E152) Substances 0.000 claims description 2
- 239000002253 acid Substances 0.000 claims description 2
- IYABWNGZIDDRAK-UHFFFAOYSA-N allene Chemical compound C=C=C IYABWNGZIDDRAK-UHFFFAOYSA-N 0.000 claims description 2
- 239000003637 basic solution Substances 0.000 claims description 2
- 239000001273 butane Substances 0.000 claims description 2
- WHVXVDDUYCELKP-UHFFFAOYSA-N butatriene Chemical compound C=C=C=C WHVXVDDUYCELKP-UHFFFAOYSA-N 0.000 claims description 2
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 claims description 2
- UNYSKUBLZGJSLV-UHFFFAOYSA-L calcium;1,3,5,2,4,6$l^{2}-trioxadisilaluminane 2,4-dioxide;dihydroxide;hexahydrate Chemical compound O.O.O.O.O.O.[OH-].[OH-].[Ca+2].O=[Si]1O[Al]O[Si](=O)O1.O=[Si]1O[Al]O[Si](=O)O1 UNYSKUBLZGJSLV-UHFFFAOYSA-L 0.000 claims description 2
- 229910052676 chabazite Inorganic materials 0.000 claims description 2
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims description 2
- 229910052680 mordenite Inorganic materials 0.000 claims description 2
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 claims description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 claims description 2
- 239000001294 propane Substances 0.000 claims description 2
- MWWATHDPGQKSAR-UHFFFAOYSA-N propyne Chemical compound CC#C MWWATHDPGQKSAR-UHFFFAOYSA-N 0.000 claims description 2
- 229920006395 saturated elastomer Polymers 0.000 claims description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims 1
- 238000001900 extreme ultraviolet lithography Methods 0.000 abstract description 5
- 230000005855 radiation Effects 0.000 description 77
- 239000000758 substrate Substances 0.000 description 20
- 238000000059 patterning Methods 0.000 description 16
- 229910021389 graphene Inorganic materials 0.000 description 14
- 239000002041 carbon nanotube Substances 0.000 description 10
- 229910021393 carbon nanotube Inorganic materials 0.000 description 10
- 238000005286 illumination Methods 0.000 description 10
- 230000003595 spectral effect Effects 0.000 description 9
- 238000001459 lithography Methods 0.000 description 7
- 235000012431 wafers Nutrition 0.000 description 7
- 239000007789 gas Substances 0.000 description 6
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000000446 fuel Substances 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 230000002411 adverse Effects 0.000 description 3
- 238000003763 carbonization Methods 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 230000005670 electromagnetic radiation Effects 0.000 description 3
- 210000001747 pupil Anatomy 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 229910001415 sodium ion Inorganic materials 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F1/00—Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
- G03F1/62—Pellicles, e.g. pellicle assemblies, e.g. having membrane on support frame; Preparation thereof
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70058—Mask illumination systems
- G03F7/70191—Optical correction elements, filters or phase plates for controlling intensity, wavelength, polarisation, phase or the like
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/7055—Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
- G03F7/70575—Wavelength control, e.g. control of bandwidth, multiple wavelength, selection of wavelength or matching of optical components to wavelength
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/708—Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
- G03F7/70983—Optical system protection, e.g. pellicles or removable covers for protection of mask
Definitions
- the lithographic apparatus in which the pellicle is used may be flushed with a gas. Also, during exposure the pellicle will undergo a substantial heat load from the EUV radiation. Stress variations of the pellicle induced by such factors can result in damage to the pellicle if it is not sufficiently strong. The pellicle may break and contaminate various parts of the lithographic apparatus, which is undesirable.
- Another type of carbonaceous pellicle is based on carbon nanotubes.
- Such pellicles do not have the same dense, parallel layer structure as multi-layer graphene pellicles, but are rather formed of a network of carbon nanotubes in a mesh.
- the boundaries of carbon nanotube-based pellicles are less defined than the boundaries of multi-layer graphene pellicles and the carbon nanotubes can alter the uniformity of the radiation beam passing through the pellicle, for example due to scattering. This is undesirable as the variance in the uniformity of the radiation beam can be reflected in the final product.
- Given the extremely high precision required by a lithography machine even small differences in the uniformity of the radiation beam can result in decreased exposure performance.
- a benefit of pellicles based on carbon nanotubes is that they are strong and so they can meet the strength requirements for use in a lithographic apparatus.
- EUV sources such as those which generate EUV radiation using a plasma
- EUV sources do not only emit desired‘in-band’ EUV radiation, but also undesirable (out-of-band) radiation.
- This out-of- band radiation is most notably in the deep UV (DUV) radiation range (from 100 to 400 nm).
- the radiation emitted from the laser for example at 10.6 microns, may be a source of out-of-band radiation (e.g. IR radiation).
- spectral purity may be desired for several reasons.
- resist is sensitive to out of -band wavelengths of radiation, and thus the image quality of exposure patterns applied to the resist may be deteriorated if the resist is exposed to such out-of-band radiation.
- out-of-band radiation for example infrared radiation in some laser produced plasma sources, leads to unwanted and unnecessary heating of the patterning device, substrate, and optics within the lithographic apparatus. Such heating may lead to damage of these elements, degradation in their lifetime, and/or defects or distortions in patterns projected onto and applied to a resist-coated substrate.
- a spectral purity filter may be used as a pellicle, and vice versa. Therefore, reference in the present application to a‘pellicle’ is also reference to a‘spectral purity filter. Although reference is primarily made to pellicles in the present application, all of the features could equally be applied to spectral purity filters.
- a lithographic apparatus and/or method it is desirable to minimise the losses in intensity of radiation which is being used to apply a pattern to a resist coated substrate.
- One reason for this is that, ideally, as much radiation as possible should be available for applying a pattern to a substrate, for instance to reduce the exposure time and increase throughput.
- a pellicle used in a lithographic method or apparatus has an adequate lifetime, and does not degrade rapidly over time as a consequence of the high heat load to which the pellicle may be exposed, and/or the hydrogen (or the like, such as free radical species including H* and HO*) to which the pellicle may be exposed. It is therefore desirable to provide an improved (or alternative) pellicle, and for example a pellicle suitable for use in a lithographic apparatus and/or method.
- the zeolite may be any suitable zeolite.
- the zeolite may be Zeolite A, Zeolite Beta, mordenite, Zeolite Y, or chabazite. These are the most commonly used and most readily available zeolites, although it will be appreciated that other zeolites are also considered to be suitable for the present invention.
- the zeolite may be a modified zeolite.
- the modified zeolite may comprise zeolite which has been doped with a suitable material. Suitable materials include one or more of lanthanum, zinc, molybdenum, yttrium, calcium, tungsten, vanadium, titanium, niobium, chromium, tantalum, and hafnium. It has been surprisingly found that by doping the zeolite with one or more of these elements decreases the temperature at which carbonization is able to occur within the pores of the zeolite.
- the doping can be carried out by any suitable means, such as ion exchange. For example, sodium ions in the zeolite may be exchanged with lanthanum ions.
- the carbon source may be a saturated or unsaturated Cl to C4 hydrocarbon. It is possible to use hydrocarbons having more than four carbon atoms, but the absorption process is slower since these are liquid at ambient temperatures. Of course, if the absorption into the three dimensional template took place at temperatures above ambient, longer chain hydrocarbons may be used.
- the hydrocarbons are preferably linear.
- suitable carbon sources include methane, ethane, ethane, ethyne, propane, propene, propadiene, propyne, butane, butene, butadiene, butatriene, and butyne. Since the carbon source is intended to be primarily for the provision of carbon, it is preferable to use unsaturated hydrocarbons as these have advantageous carbon to hydrogen ratios and are more reactive that saturated hydrocarbons. For example, a preferred carbon source is ethyne as it is most reactive and is also small, so is able to diffuse into the three dimensional template easily.
- the method may comprise heating the three dimensional template material up to a first temperature to carbonise the carbon source. Once the carbon source has been passed into the internal pores of the three dimensional template, heating the material causes it to carbonise.
- the carbonization process is enhanced by the aforementioned doping of the three dimensional material with metal ions.
- the metal ions are selected as they form strong carbide bonds. Without the doping, the temperature required to carbonise the carbon source is much greater and results in carbon only forming on the surface of the three dimensional template and does not form a carbonaceous network which substantially corresponds to the internal pore structure of the three dimensional material in which the carbon source is contained.
- the carbonaceous pellicle is retrieved by dissolving the three dimensional template.
- the zeolite may be dissolved by exposure to a strong acid, such as hydrochloric acid or hydrofluoric acid, and may subsequently be exposed to a hot basic solution, such as sodium hydroxide.
- a strong acid such as hydrochloric acid or hydrofluoric acid
- a hot basic solution such as sodium hydroxide.
- the exact method for dissolving the zeolite is not restricted to the examples given, and any suitable method which dissolves the zeolite whilst leaving the carbonaceous pellicle may be used.
- the three dimensional material may be prepared from a silicon wafer by known means.
- the silicon wafer is single crystal silicon. The preparation from a silicon wafer allows the exact thickness and nature of the zeolite to be controlled.
- different zeolites can be prepared depending on the exact nature of the pellicle required, with some having larger pores and others having smaller pores.
- a portion of the surface of the silicon wafer may be converted to a zeolite material, or a zeolite material may be prepared on the surface of a silicon wafer. Both techniques are known in the art.
- the thickness of the zeolite may be from around 50 to around 150 nm, from around 80 nm to around 120 nm, and preferably around 100 nm. If the zeolite is too thin, the resulting pellicle may not be thick enough to have the necessary strength to be used in an EUV lithography apparatus. On the other hand, if the zeolite is too thick, the resulting pellicle may be too thick and have undesirably low EUV transmissivity, such as, for example, less than 90%. The exact thickness of the pellicle can be achieved by removing material from a pellicle until the desired thickness is met.
- the three-dimensional template may be any zeolite described in relation to the first aspect of the present invention.
- the pellicle is a carbonaceous pellicle.
- a pellicle for a lithographic apparatus obtained or obtainable by the method according to the first aspect of the present invention.
- a pellicle manufactured according to a method of the first aspect of the present invention, or according to the fourth or fifth aspects of the present invention in a lithographic apparatus is provided.
- the methods of the present invention allow for the manufacture of a pellicle, in particular a carbonaceous pellicle, which is suitable for use in an EUV lithographic apparatus. It has not been previously possible to manufacture such a pellicle.
- the pellicles manufactured according to the methods of the present invention are able to resist the high temperatures achieved when the pellicle is in use and also withstand mechanical forces on the pellicle during use of the lithographic apparatus which would damage known pellicles.
- having a pellicle with a regular three-dimensional structure means that the uniformity of the radiation beam is not adversely affected when passing through the pellicle. It is believe that the three dimensional structure which substantially corresponds to the internal pore structure of a zeolite provides the pellicle with sufficient strength to be used in a lithographic apparatus, but also enough flexibility to withstand any temperature and/or pressure changes during use.
- the present invention will now be described with reference to a carbonaceous pellicle which is formed within the pore structure of a zeolite.
- the present invention is not limited to pellicles and is equally applicable to spectral purity filters.
- charge storage devices such as batteries or capacitors.
- the methods, uses, and products are described in the context of pellicles and lithography, it will be appreciated that such methods, uses, and products could also be used in the manufacture of components for batteries and capacitors.
- FIG. 1 shows a lithographic system including a pellicle 15 according to the fourth and fifth aspects of the present invention or manufactured according to the methods of the first aspect of the present invention according to one embodiment of the invention.
- the lithographic system comprises a radiation source SO and a lithographic apparatus LA.
- the radiation source SO is configured to generate an extreme ultraviolet (EUV) radiation beam B.
- the lithographic apparatus LA comprises an illumination system IL, a support structure MT configured to support a patterning device MA (e.g. a mask), a projection system PS and a substrate table WT configured to support a substrate W.
- the illumination system IL is configured to condition the radiation beam B before it is incident upon the patterning device MA.
- the projection system is configured to project the radiation beam B (now patterned by the mask MA) onto the substrate W.
- the substrate W may include previously formed patterns. Where this is the case, the lithographic apparatus aligns the patterned radiation beam B with a pattern previously formed on the substrate W.
- the pellicle 15 is depicted in the path of the radiation and protecting the patterning device MA. It will be appreciated that the pellicle 15 may be located in any required position and may be used to protect any of the mirrors in the lithographic apparatus.
- the radiation source SO, illumination system IL, and projection system PS may all be constructed and arranged such that they can be isolated from the external environment.
- a gas at a pressure below atmospheric pressure e.g. hydrogen
- a vacuum may be provided in illumination system IL and/or the projection system PS.
- a small amount of gas (e.g. hydrogen) at a pressure well below atmospheric pressure may be provided in the illumination system IL and/or the projection system PS.
- the radiation source SO shown in Figure 1 is of a type which may
- a laser 1 which may for example be a CO 2 laser, is arranged to deposit energy via a laser beam 2 into a fuel, such as tin (Sn) which is provided from a fuel emitter 3.
- a fuel such as tin (Sn) which is provided from a fuel emitter 3.
- tin is referred to in the following description, any suitable fuel may be used.
- the fuel may for example be in liquid form, and may for example be a metal or alloy.
- the fuel emitter 3 may comprise a nozzle configured to direct tin, e.g. in the form of droplets, along a trajectory towards a plasma formation region 4.
- the laser beam 2 is incident upon the tin at the plasma formation region 4.
- the deposition of laser energy into the tin creates a plasma 7 at the plasma formation region 4. Radiation, including EUV radiation, is emitted from the plasma 7 during de-excitation and recombination of ions of the plasma.
- the EUV radiation is collected and focused by a near normal incidence radiation collector 5 (sometimes referred to more generally as a normal incidence radiation collector).
- the collector 5 may have a multilayer structure which is arranged to reflect EUV radiation (e.g. EUV radiation having a desired wavelength such as 13.5 nm).
- EUV radiation e.g. EUV radiation having a desired wavelength such as 13.5 nm.
- the collector 5 may have an elliptical configuration, having two ellipse focal points. A first focal point may be at the plasma formation region 4, and a second focal point may be at an intermediate focus 6, as discussed below.
- the laser 1 may be separated from the radiation source SO. Where this is the case, the laser beam 2 may be passed from the laser 1 to the radiation source SO with the aid of a beam delivery system (not shown) comprising, for example, suitable directing mirrors and/or a beam expander, and/or other optics.
- a beam delivery system (not shown) comprising, for example, suitable directing mirrors and/or a beam expander, and/or other optics.
- the laser 1 and the radiation source SO may together be considered to be a radiation system.
- the radiation beam B is focused at point 6 to form an image of the plasma formation region 4, which acts as a virtual radiation source for the illumination system IL.
- the point 6 at which the radiation beam B is focused may be referred to as the intermediate focus.
- the radiation source SO is arranged such that the intermediate focus 6 is located at or near to an opening 8 in an enclosing structure 9 of the radiation source.
- the radiation beam B passes from the radiation source SO into the illumination system IL, which is configured to condition the radiation beam.
- the illumination system IL may include a facetted field mirror device 10 and a facetted pupil mirror device 11.
- the faceted field mirror device 10 and faceted pupil mirror device 11 together provide the radiation beam B with a desired cross-sectional shape and a desired angular distribution.
- the radiation beam B passes from the illumination system IL and is incident upon the patterning device MA held by the support structure MT.
- the patterning device MA reflects and patterns the radiation beam B.
- the illumination system IL may include other mirrors or devices in addition to or instead of the faceted field mirror device 10 and faceted pupil mirror device 11.
- the projection system PS comprises a plurality of mirrors 13, 14 which are configured to project the radiation beam B onto a substrate W held by the substrate table WT.
- the projection system PS may apply a reduction factor to the radiation beam, forming an image with features that are smaller than corresponding features on the patterning device MA. A reduction factor of 4 may for example be applied.
- the projection system PS has two mirrors 13, 14 in Figure 1, the projection system may include any number of mirrors (e.g. six mirrors).
- the radiation sources SO shown in Figure 1 may include components which are not illustrated.
- a spectral filter may be provided in the radiation source.
- the spectral filter may be substantially transmissive for EUV radiation but substantially blocking for other wavelengths of radiation such as infrared radiation.
- a three dimensional template in the form of a zeolite is provided. This may have been formed based on a silicon wafer or by any other suitable means.
- the exemplary zeolite is Zeolite-Y in which at least a portion of the sodium ions has been exchanged with lanthanum ions via ion exchange.
- a carbon source comprising ethyne gas is passed over the zeolite and the ethyne gas is allowed to diffuse into the internal pores of the zeolite.
- the zeolite is heated to around 650C in order to carbonise the ethyne gas and form a carbon structure inside of the zeolite which substantially corresponds to the internal structure of the zeolite. Following this, the zeolite is heated to around 850C in order to provide a more highly ordered carbonaceous pellicle. The zeolite is then dissolved by dissolution in hydrofluoric acid in order to recover the pellicle.
- the resulting pellicle has EUV transmissivity of greater than 90% and is strong enough for use in a lithographic apparatus.
- EUV radiation may be considered to encompass electromagnetic radiation having a wavelength within the range of 4-20 nm, for example within the range of 13-14 nm. EUV radiation may have a wavelength of less than 10 nm, for example within the range of 4-10 nm such as 6.7 nm or 6.8 nm.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- Preparing Plates And Mask In Photomechanical Process (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17202767 | 2017-11-21 | ||
PCT/EP2018/080415 WO2019101517A1 (en) | 2017-11-21 | 2018-11-07 | Porous graphitic pellicle |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3714330A1 true EP3714330A1 (en) | 2020-09-30 |
Family
ID=60421653
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18796955.5A Pending EP3714330A1 (en) | 2017-11-21 | 2018-11-07 | Porous graphitic pellicle |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP3714330A1 (en) |
JP (1) | JP7252950B2 (en) |
KR (1) | KR20200087774A (en) |
CN (1) | CN111373328B (en) |
NL (2) | NL2021947B9 (en) |
TW (1) | TWI840338B (en) |
WO (1) | WO2019101517A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11314169B2 (en) | 2019-10-30 | 2022-04-26 | Taiwan Semiconductor Manufacturing Co., Ltd. | Robust, high transmission pellicle for extreme ultraviolet lithography systems |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04196117A (en) * | 1990-11-26 | 1992-07-15 | Seiko Epson Corp | Semiconductor manufacturing device |
JP3448670B2 (en) * | 1993-09-02 | 2003-09-22 | 株式会社ニコン | Exposure apparatus and element manufacturing method |
JP4085813B2 (en) * | 2000-12-28 | 2008-05-14 | 株式会社ニコン | Exposure equipment |
JP4296328B2 (en) * | 2001-11-28 | 2009-07-15 | 東レ株式会社 | Hollow nanofiber-containing composition and method for producing hollow nanofiber |
US7504192B2 (en) * | 2003-12-19 | 2009-03-17 | Sematech Inc. | Soft pellicle for 157 and 193 nm and method of making same |
JP5145496B2 (en) * | 2006-06-07 | 2013-02-20 | 住友金属鉱山株式会社 | Method for producing carbon nanostructure |
US7767985B2 (en) * | 2006-12-26 | 2010-08-03 | Globalfoundries Inc. | EUV pellicle and method for fabricating semiconductor dies using same |
JP2009023871A (en) * | 2007-07-19 | 2009-02-05 | Kuraray Co Ltd | Method for producing carbon nanotube |
JP4861963B2 (en) * | 2007-10-18 | 2012-01-25 | 信越化学工業株式会社 | Pellicle and method for manufacturing pellicle |
US8721778B2 (en) * | 2009-09-18 | 2014-05-13 | Koninklijke Philips N.V. | Foil trap device with improved heat resistance |
JP5552834B2 (en) * | 2010-02-23 | 2014-07-16 | 学校法人 東洋大学 | Method for producing carbon nanotube |
JP5093288B2 (en) * | 2010-04-13 | 2012-12-12 | トヨタ自動車株式会社 | Manufacturing method of fuel cell |
KR102093441B1 (en) * | 2013-03-11 | 2020-03-25 | 삼성전자주식회사 | A method for preparing grapheme |
TWI658321B (en) * | 2013-12-05 | 2019-05-01 | 荷蘭商Asml荷蘭公司 | Apparatus and method for manufacturing a pellicle, and a pellicle |
CN106233202B (en) * | 2014-04-17 | 2020-07-10 | 汉阳大学校产学协力团 | Pellicle for EUV lithography |
US9256123B2 (en) * | 2014-04-23 | 2016-02-09 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method of making an extreme ultraviolet pellicle |
US9604194B2 (en) * | 2014-10-14 | 2017-03-28 | Saudi Arabian Oil Company | Synthesis of ordered microporous carbons by chemical vapor deposition |
JP6520041B2 (en) * | 2014-10-21 | 2019-05-29 | 凸版印刷株式会社 | Pellicle |
CA3206173A1 (en) * | 2014-11-17 | 2016-05-26 | Asml Netherlands B.V. | Mask assembly |
US20190056654A1 (en) * | 2015-10-22 | 2019-02-21 | Asml Netherlands B.V. | Method of manufacturing a pellicle for a lithographic apparatus, a pellicle for a lithographic apparatus, a lithographic apparatus, a device manufacturing method, an apparatus for processing a pellicle, and a method for processing a pellicle |
JP2017083791A (en) * | 2015-10-30 | 2017-05-18 | 三井化学株式会社 | Pellicle, method for producing pellicle and exposure method using the pellicle |
-
2018
- 2018-11-07 KR KR1020207014407A patent/KR20200087774A/en active Pending
- 2018-11-07 NL NL2021947A patent/NL2021947B9/en active
- 2018-11-07 EP EP18796955.5A patent/EP3714330A1/en active Pending
- 2018-11-07 CN CN201880075083.7A patent/CN111373328B/en active Active
- 2018-11-07 WO PCT/EP2018/080415 patent/WO2019101517A1/en unknown
- 2018-11-07 JP JP2020521289A patent/JP7252950B2/en active Active
- 2018-11-19 TW TW107140960A patent/TWI840338B/en active
-
2019
- 2019-08-16 NL NL2023649A patent/NL2023649B1/en active
Also Published As
Publication number | Publication date |
---|---|
NL2023649A (en) | 2019-09-10 |
NL2021947B9 (en) | 2019-09-30 |
CN111373328B (en) | 2023-06-09 |
TWI840338B (en) | 2024-05-01 |
JP7252950B2 (en) | 2023-04-05 |
NL2023649B1 (en) | 2020-05-06 |
WO2019101517A1 (en) | 2019-05-31 |
TW201932988A (en) | 2019-08-16 |
KR20200087774A (en) | 2020-07-21 |
CN111373328A (en) | 2020-07-03 |
NL2021947A (en) | 2019-05-24 |
NL2021947B1 (en) | 2019-09-06 |
JP2021504731A (en) | 2021-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI545406B (en) | Lithographic apparatus and method | |
NL2010777A (en) | Lithographic apparatus. | |
JP6898867B2 (en) | Methods for manufacturing membrane assemblies | |
US9529250B2 (en) | EUV mask with ITO absorber to suppress out of band radiation | |
KR20210022001A (en) | EUV pellicle | |
KR20130105292A (en) | Spectral purity filter | |
WO2020099072A1 (en) | A pellicle for euv lithography | |
NL2021178B1 (en) | Simultaneous Double-Side Coating Of Multilayer Graphene Pellicle By Local Thermal Processing | |
NL2023649B1 (en) | Spectral Purity Filter | |
TWI804135B (en) | Euv pellicles | |
TWI745502B (en) | Lithography mask and methods for manufacturing the same and methods for performing lithography processes | |
US20230324814A1 (en) | Euv lithography apparatus and operating method for mitigating contamination | |
NL2006563A (en) | Lithographic apparatus and method. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20200408 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230414 |