EP3701572B1 - Honeycomb structure comprising an integrity monitoring device and method for monitoring such a structure - Google Patents
Honeycomb structure comprising an integrity monitoring device and method for monitoring such a structure Download PDFInfo
- Publication number
- EP3701572B1 EP3701572B1 EP18772821.7A EP18772821A EP3701572B1 EP 3701572 B1 EP3701572 B1 EP 3701572B1 EP 18772821 A EP18772821 A EP 18772821A EP 3701572 B1 EP3701572 B1 EP 3701572B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cell
- honeycomb structure
- transducers
- elastic wave
- transducer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 10
- 238000012544 monitoring process Methods 0.000 title description 6
- 238000012806 monitoring device Methods 0.000 title description 4
- 238000012545 processing Methods 0.000 claims description 23
- 238000009529 body temperature measurement Methods 0.000 claims description 4
- 230000000644 propagated effect Effects 0.000 claims description 4
- 210000004027 cell Anatomy 0.000 description 70
- 241000264877 Hippospongia communis Species 0.000 description 29
- 230000005540 biological transmission Effects 0.000 description 17
- 239000002131 composite material Substances 0.000 description 16
- 230000007547 defect Effects 0.000 description 15
- 238000004364 calculation method Methods 0.000 description 10
- 238000004891 communication Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 210000003850 cellular structure Anatomy 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000002648 laminated material Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000009659 non-destructive testing Methods 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
- JPJZHBHNQJPGSG-UHFFFAOYSA-N titanium;zirconium;tetrahydrate Chemical compound O.O.O.O.[Ti].[Zr] JPJZHBHNQJPGSG-UHFFFAOYSA-N 0.000 description 1
- 238000003325 tomography Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/04—Analysing solids
- G01N29/043—Analysing solids in the interior, e.g. by shear waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
- G01N29/24—Probes
- G01N29/2475—Embedded probes, i.e. probes incorporated in objects to be inspected
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/30—Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
- H10N30/302—Sensors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/023—Solids
- G01N2291/0231—Composite or layered materials
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/025—Change of phase or condition
- G01N2291/0258—Structural degradation, e.g. fatigue of composites, ageing of oils
Definitions
- the invention lies in the field of structural integrity monitoring, also called “health monitoring”, in English SHM for Structural Health Monitoring.
- the invention is particularly aimed at honeycomb structures or more broadly at alveolar structures.
- the invention relates more precisely to control by elastic waves, and advantageously to guided elastic waves, that is to say elastic waves whose propagation is guided by the structure to be controlled. These waves can propagate over a relatively long distance and can be transmitted and received using one or more transducers placed at one or more locations.
- Structural Health Monitoring consists of integrating sensors into a structure in order to monitor its state of health (defect detection).
- One of the advantages compared to “conventional” non-destructive testing methods is that, since the sensors are embedded, there is no longer any need to dismantle components to access the structure to be tested. This avoids possible embrittlement in the event of disassembly/reassembly and saves time during maintenance operations which are moreover very constrained. This reduces the downtime of the structure to be checked.
- honeycomb sandwich structures 1 comprising a honeycomb core 10 sandwiched between a first surface (or skin) 11 and a second surface (or skin) 12, as represented in Figure 1A .
- a “honeycomb” structure will be understood more broadly as a structure comprising several cells, each cell being a cavity delimited by a wall.
- the wall has a generally hexagonal or more broadly polygonal section. It can therefore comprise a certain number of faces (six faces in the case of a hexagonal section, several faces more widely in the case of polygonal sections).
- the wall may have a curved section (for example of elliptical section), or even other more random shapes as illustrated in figure 1B : for example, the cells 10 can have less regular sections, they can be closed or open, or have sections of the sinusoidal type.
- the alveolar core provides the structure with greater resistance to bending, greater deformation capacity (depending on the type of core used), as well as a void ratio of around 95% allowing a lightness of the structure.
- the skin or skins are often made of a laminated material, by superimposing several layers of sheets.
- epoxy resin an epoxy polymer resin matrix
- such a structure may be referred to as “honeycomb sandwich structure” or “honeycomb sandwich structure”.
- Such structures are, for example, regularly used, in particular in the aeronautical environment, for their excellent mass/mechanical performance ratio.
- the part called IFS inner fixed structure
- the nacelle cover which surrounds the engine of an airplane
- honeycomb structure can comprise a honeycomb structure.
- transducer will mean “piezoelectric transducer” in the remainder of this description.
- piezoelectric transducers are used as transmitters and/or receivers of guided elastic waves.
- a first transducer 20a is in transmission mode (we can speak hereafter of transmitting transducer)
- a second and a third transducers 20b are in reception mode (we can speak hereafter of receiving transducer).
- the emitted elastic wave 30a propagates while being guided by the structure 1. It encounters a defect D which modifies its characteristics and diffracts it.
- a diffracted elastic wave 30b originating from the emitted elastic wave 30a and whose characteristics are modified is received by the second and/or the third transducer 30b. But it could also be received in return by the first transducer 20a, and the latter should in this case be switched to reception mode in order to receive the return elastic wave.
- the diffraction of elastic waves on a defect thus provides a specific signature that it is possible to analyze in order to detect the presence of this defect, to locate it and to size it.
- the patent application US2016/0313286 discloses a method and device for detecting damage in turbine engine components.
- the components include a honeycomb core sandwiched between two composite skins.
- One of the composite skins can be coupled with an acoustic structure to reduce noise and/or a thermal protection structure to protect the skin from high temperatures.
- Several fastening systems make it possible to couple the composite skin to the acoustic and/or thermal structure, for example in the form of a post passing through the acoustic and/or thermal structure and connected to the skin, the post cooperating with a cap making it possible to maintain the structure against the skin.
- a transmission device can be coupled to a first attachment, and a receiving device may be coupled to a second attachment.
- the transmission device can transmit a signal, for example generated by an ultrasonic wave, through the first binding, along the composite skin, then through the second binding and up to the receiving device.
- the receiving device can thus receive the signal.
- the signal can be used and analyzed to identify damage in the composite. Thus, damage can be detected in the composite without removing the acoustic structure or the thermal structure.
- the transmit/receive devices are piezoelectric transducers.
- the arrangement of the piezoelectric transducers is restricted to the positions of the attachments (which are in a reduced number), which limits the number of sensors which can be on board and therefore the quantity of information which can be retrieved on the structure. and consequently the quality of the diagnosis.
- the invention aims to overcome the aforementioned drawbacks of the prior art.
- control device by elastic wave which makes it possible to carry out the control of a cellular structure, this, without having to dismantle the part in which said structure is integrated, by limiting the intrusiveness and especially the risk of embrittlement of said structure or of the control device, and presenting a better resistance of the transducers to external attacks.
- the invention aims to allow the elastic wave to travel a maximum distance for a given power of the elastic wave emitted.
- At least one cell comprises several piezoelectric transducers, thus forming a block of transducers.
- the honeycomb structure according to the invention makes it possible to have a control device offering great advantages both in terms of the power of the signal emitted and in terms of reduced intrusiveness: better resistance of the transducers to external attacks and less risk of create weaknesses in the composite skin with respect to devices placed on a skin of a sandwich alveolar structure.
- the transducer being integrated in the alveolar part, it is protected from external attacks. It can be kept permanently in the structure.
- the invention makes it possible to avoid having to dismantle the part in which the structure is integrated. It also avoids having to dismantle the structure itself.
- the transducers used in the control of structures exploit high acoustic frequencies and ultrasonic frequencies (from about ten kHz to a few hundred kHz).
- the transducers are relatively small in size and therefore light, which allows them to be positioned on a wall of a cell without risking deforming the latter and therefore the structure.
- the invention therefore makes it possible to have a lightweight control device, presenting a very minimal risk of weakening the structure.
- the width of a transducer is defined as being its greatest dimension in the direction of the tangent of the cell at the level of the point of contact between the transducer and the wall of the cell and that the thickness d 'a transducer is defined as its largest dimension in the direction perpendicular to said tangent.
- the fact of having a block of transducers in at least one cell makes it possible to cover the structure as widely as possible and to increase the total power emitted if the transducers are transmitters.
- the transducers are regularly distributed in the cell and if they operate in emission, this makes it possible to emit elastic waves as axisymmetrically as possible around the block. If the transducers are evenly distributed in the cell and if they operate in reception, this makes it possible to more reliably receive elastic waves from the elastic waves emitted.
- having a block of transducers in at least one cell makes it possible to multiply the ultrasound transmitters and receivers embedded in the structure, which multiplies the amount of information that can be obtained on the structure. , which therefore improves the quality of the analysis. In particular, this makes it possible to obtain a more reliable diagnosis of the state of health of the structure.
- the wiring required for the transducers can run between the cells in recesses provided for this purpose or already existing therein, for example between each cell and one of the composite skins, then along said skin.
- routing and protection of the wiring can be facilitated by the very fact of the honeycomb structure.
- the electronics of the transducers can advantageously be integrated into a cell in order to minimize wiring.
- the control device is easily integrated into a honeycomb structure, the cells of which are empty, and can be easily integrated into a process for manufacturing said honeycomb structure.
- control device is very easily modular, adaptable according to the structure. Indeed, it is possible to have several diagrams of implantation of the transducers in a cell and/or in several cells. It is possible to use different types and/or different sizes of piezoelectric acoustic transducers. It is also possible to combine them with other types of sensors.
- a piezoelectric transducer able to emit an elastic wave and a piezoelectric transducer able to receive an elastic wave can be a single piezoelectric transducer able to emit and receive an elastic wave.
- a transducer can operate in pulse-echo mode: the elastic wave emitted, when it encounters a defect, sends a diffracted elastic wave back to the transducer, the signal of which bears the imprint of said defect.
- switching means making it possible to switch said transducer from a transmission mode to a reception mode; then switch it back to transmission mode, and repeat these operations. This switching must be fast enough for the transducer to have time to receive the elastic wave diffracted by the defect, typically less than a microsecond.
- the honeycomb structure comprises at least a first transmitter piezoelectric transducer (able to emit an elastic wave) positioned on a first cell and at least a second receiver piezoelectric transducer (able to receive an elastic wave) positioned on a second cell.
- the two transducers are arranged within two separate cells far enough apart to be able to detect a defect in the structure as efficiently and reliably as possible.
- the honeycomb structure comprises at least two transducers in phase opposition.
- phase opposition is meant the fact that two transducers emit elastic waves of the same frequency but out of phase with respect to each other by half a period.
- a first and a second transducer may for example be powered by electric currents in phase opposition.
- the electrodes of the first transducer can be reversed with respect to those of the second transducer.
- the elastic wave is an ultrasonic wave.
- the walls delimiting the cells of the honeycomb structure each have a polygonal section, preferably hexagonal.
- a wall has several lateral faces (called “faces” hereafter), for example six faces in the case of a hexagon.
- a block comprises transducers distributed over one or more faces of a cell. This configuration is possible in the case where the walls of the cells have polygonal sections.
- a block comprises transducers distributed over adjacent faces of the cell. This configuration makes it possible to emit elastic waves in a privileged field (or according to a given solid angle).
- the block comprises transducers regularly distributed over the faces of the cell. This configuration makes it possible to emit elastic waves as axisymmetrically as possible around the block.
- the block comprises transducers distributed over each of the faces of the cell. This configuration makes it possible to reinforce the axisymmetric aspect of the elastic waves emitted.
- At least a first cell comprises a transmitter block comprising transmitter transducers and at least a second cell comprises at least one receiver transducer.
- At least at least a first cell comprises a transmitter unit comprising transmitter transducers and at least one second cell comprises a receiver block comprising receiver transducers.
- the integrity monitoring device further comprises means for processing the signal of the elastic wave received, able to determine the level of integrity of said structure.
- the transducers must be connected to the processing means. This makes it possible to create a complete system ranging from the creation of signals generated by the elastic waves to the processing of said signals, so as to be able to detect a fault or conclude that there is no fault.
- the integrity check device further comprises means for controlling the at least one transducer.
- control means comprise switching means capable of switching at least one transducer from transmission mode to reception mode and vice versa.
- the processing means comprise means for subtracting the signal from the elastic wave received and a reference signal corresponding to a healthy alveolar structure.
- the reference signal can be obtained by modeling or experimentally.
- the integrity monitoring device further comprises a temperature sensor, the processing means being configured to use a temperature measurement acquired by said sensor. This makes it possible to normalize the signals of the elastic waves (in amplitude or in phase shift).
- At least one cell comprises several piezoelectric transducers, thus forming a block of transducers.
- control method comprises a step of switching a piezoelectric transducer from transmission mode to reception mode.
- control method comprises a step of switching a piezoelectric transducer from reception mode to transmission mode.
- At least a first piezoelectric transducer operates in transmit mode, and at least a second piezoelectric transducer operates in receive mode.
- the processing step comprises a step of subtracting the received elastic wave signal from a reference signal.
- control method further comprises a temperature measurement step at the level of the structure alveolar, the processing step using a temperature measurement acquired by said sensor.
- Another object of the invention is an airplane part comprising a honeycomb structure according to the invention.
- the cells 10 have a hexagonal section: we speak of a honeycomb. Alternatively, they may have less regular sections, they may be closed or open, cells may have sinusoidal sections, as illustrated in figure 1B .
- Piezoelectric transducers are used as transmitters and/or receivers of guided elastic waves.
- the diffraction of elastic waves on one or more defects provides a specific signature, and it is this signature which is analyzed by the processing means to detect, locate and dimension one or more defects in the structure.
- the processing means can comprise simple calculation means or more complex algorithms or models capable of detecting, locating and dimensioning one or more defects of the structure.
- the calculation means may consist of a subtraction of the received elastic wave signal ( Fig. 3B ) with respect to a reference elastic wave signal ( Fig. 3A ) in order to directly obtain the signal diffracted by the defect ( Fig. 3C ).
- This mode of calculation is suitable when there is not a large network of transducers.
- Other comparison strategies between the received signal and a reference signal than simple subtraction can be implemented in order to obtain the signal diffracted by the defect in a more robust manner, and can take into account environmental variations (in particular temperature changes).
- the calculation means can be based on the fusion of information coming from different sensors, for example by using an imaging algorithm such as tomography, as described in the patent FR3014200 .
- This calculation mode is suitable when there is a large number of transducers. And it makes it possible to avoid making the calculation by subtraction, which can be a source of false alarms, in particular in the event of significant environmental variations between the two measurements.
- the figure 4 illustrates a first embodiment of the invention, in which several cells 10 comprise a single transducer 20.
- the transducer 20 may have a significant thickness "e", within the limit of the internal dimensions of the cell 10.
- the cells with transducer are distributed in a clever way within the structure 1 so as to cover said structure as widely as possible.
- At least one first transducer 20a operates in transmission (we can speak of transmitting transducer) and is positioned on the wall of a first cell 10a and at least one second transducer 20b operates in reception (we can speak of transmitting transducer) and is positioned on the wall of a second cell 10b.
- the elastic wave field emitted is sometimes preferable to make the elastic wave field emitted as axisymmetric as possible.
- the figure 5 illustrates a second embodiment of the invention in which certain cells 10 comprise a single transducer 20 operating in transmission or in reception, and other cells 10 comprise a block 2 of three transducers 20 operating in transmission or in reception, and by example regularly distributed on the wall of the cell (here on three of the six faces of a hexagonal cell).
- the transducers 20a operating in transmission and the transducers 20b operating in reception are distributed in a clever way so as to cover the structure 1 as widely as possible.
- at least a cell 10a comprises a block 2a of three transmitter transducers 20a
- at least three cells 10 each comprise a single receiver transducer 20b.
- the figures 6A to 6C illustrate several particular embodiments which correspond to several arrangements of transducers 20 in a cell 10, in other words several arrangements of blocks 2.
- the Figure 6A illustrates a block 2 comprising three transducers 20 evenly distributed over three of the six faces of a hexagonal cell 10. If the three transducers 20 operate in transmission, this makes it possible to have an elastic wave field emitted axisymmetrically. If the three transducers 20 operate in reception, this makes it possible to more reliably receive elastic waves from the elastic waves emitted.
- the figure 6B illustrates a block comprising three transducers distributed over three adjacent faces of a hexagonal cell. If the three transducers 20 operate in transmission, this makes it possible to have an elastic wave field emitted at a given solid angle.
- the Fig. 6C illustrates a block comprising six transducers distributed over the six faces of a hexagonal cell. If the three transducers 20 operate in emission, this makes it possible to have an elastic wave field emitted even more axisymmetrically while limiting the near field to the transducer (zone in which the interpretation of the signals is more delicate) compared to the configuration of the Figure 6A . If the six transducers 20 operate in reception, this makes it possible to receive elastic waves even more reliably from the elastic waves emitted.
- the transducers 20 are connected in order to transmit in phase. This makes it possible to increase the total power emitted.
- the figure 7 illustrates a particular embodiment in which certain transducers 20 are in phase opposition. This makes it possible to reinforce certain wave propagation modes or certain preferred directions of propagation.
- the piezoelectric elements of the transducers can for example be in the form of crystals, ceramics or ceramic polymers.
- They may be PZT elements (Lead Titanium-Zirconate).
- PVDF polymers which are of interest when it is necessary to bond the transducer to a surface of complex geometry.
- transducers arranged on the wall of a cell with transducers positioned on one or more skin(s) of a sandwich alveolar structure.
- the figures 8A to 8C illustrate three deformation modes generated by an emitting transducer 20a positioned on a wall of a cell 10.
- the figure 8A illustrates the longitudinal mode, the figure 8B the shear mode and the Fig. 8C normal mode. These different deformation modes make it possible to favour, depending on the integration configuration of the sensors and the frequency, the emission of one guided mode or another in the structure.
- the figures 9A to 9D show how an elastic wave emitted by a transducer propagates when it encounters a fault D.
- the integrity monitoring device comprises a transmitter unit 2a comprising three transducers 20a in transmission mode and a receiver unit 2b comprising three transducers 20b in reception mode.
- the three transducers of block 2a produce a field of elastic waves 30a emitted in all directions around block 2a.
- the figures 9A and 9B illustrate the progression of elastic wave emission.
- the emitted elastic wave 30a reaches the defect D and creates a diffraction of the wave. A diffracted elastic wave 30b is thus generated. She is received by the receiver block 2b.
- the receiver unit 2b could be replaced by a single transducer 20b in reception mode.
- the transducers 20 are positioned on the wall of certain cells of the structure. They can for example be glued or welded.
- the figure 10 illustrates an example of a control device which can be combined with any one of the modes of the invention and which includes processing means 40 and control means 50 associated with the transducers 20.
- the figure 10 illustrates transducers 20 but it can be blocks 2 of transducers.
- the signal acquisition means 41 generally comprise digitization means. They can also include signal conditioning and/or filtering means.
- the calculation means 42 can contain algorithms for detecting, locating and sizing the faults of the structure 1.
- the processing means 40 can also comprise signal storage means 43 and display means 44.
- connection wires or cables 3 are provided to connect the transducers 20 to the processing means 40 of the transducers.
- the acquisition means 41 are arranged in a unit close to the transducer 20. They include means for digitization of the signals so that the wired communication carries a digital signal to the calculation means 42.
- the acquisition means 41 can be moved to a unit further away from the transducer.
- the wired communication between the transducer 20 and the acquisition means 41 carries an analog signal.
- the connecting wires or cables 3 can run between the cells in recesses provided for this purpose or already existing therein.
- the connecting wires or cables 3 can run between each cell and one of the composite skins, then along said skin.
- All or part of the means 40 for processing the transducers can advantageously be integrated into a cell in order to minimize wiring.
- the acquisition means 41 can be arranged in or on a cell, or on the surface of a plate, for example glued to said surface.
- the transmission of the transducers 20 to all or part of the processing means 40 can advantageously be carried out with wireless communication 4.
- All or part of the processing means 40 can be common to several transducers if a multiplexer function is added to the processing means 40.
- the calculation means 42 are generally not on board. In this field of application of aeronautics, they can be brought when the plane is on the ground.
- the invention can find applications in the field of aeronautics, for example in a part of an airplane, such as the part called IFS (Inner Fixed Structure) which is part of the nacelle and which can comprise a honeycomb structure .
- IFS Inner Fixed Structure
- the invention can also find applications in other fields, for example in the fields of nautical, space, land transport (railway, automobile), wind energy.
- the invention indeed makes it possible to follow the evolution of the state of health of parts, and this, in particular in order to prevent potential ruptures.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Acoustics & Sound (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Description
L'invention se situe dans le domaine du contrôle d'intégrité de structures, également nommé « contrôle santé », en anglais SHM pour Structural Health Monitoring. L'invention vise particulièrement les structures en nid d'abeille ou plus largement les structures alvéolaires.The invention lies in the field of structural integrity monitoring, also called “health monitoring”, in English SHM for Structural Health Monitoring. The invention is particularly aimed at honeycomb structures or more broadly at alveolar structures.
L'invention concerne plus précisément le contrôle par des ondes élastiques, et avantageusement des ondes élastiques guidées, c'est-à-dire des ondes élastiques dont la propagation est guidée par la structure à contrôler. Ces ondes peuvent se propager sur une distance relativement longue et peuvent être émises et reçues à l'aide d'un ou de plusieurs transducteurs placés à un seul ou à plusieurs endroits.The invention relates more precisely to control by elastic waves, and advantageously to guided elastic waves, that is to say elastic waves whose propagation is guided by the structure to be controlled. These waves can propagate over a relatively long distance and can be transmitted and received using one or more transducers placed at one or more locations.
Le Structural Health Monitoring (SHM) consiste à intégrer des capteurs dans une structure afin de suivre son état de santé (détection de défauts). Un des avantages par rapport aux méthodes de contrôle non destructif « classiques » est que, les capteurs étant embarqués, il n'y a plus besoin de démonter des composants pour accéder à la structure à contrôler. On évite ainsi des fragilisations éventuelles en cas de démontage/remontage et on économise du temps lors des opérations de maintenance qui sont par ailleurs très contraintes. Cela permet de réduire le temps d'immobilisation de la structure à contrôler.Structural Health Monitoring (SHM) consists of integrating sensors into a structure in order to monitor its state of health (defect detection). One of the advantages compared to “conventional” non-destructive testing methods is that, since the sensors are embedded, there is no longer any need to dismantle components to access the structure to be tested. This avoids possible embrittlement in the event of disassembly/reassembly and saves time during maintenance operations which are moreover very constrained. This reduces the downtime of the structure to be checked.
Une des applications du SHM est le contrôle de structures 1 sandwich en nid d'abeille comprenant une âme en nid d'abeille 10 prise en sandwich entre une première surface (ou peau) 11 et une seconde surface (ou peau) 12, comme représenté en
Dans la présente description, une structure « en nid d'abeille » sera comprise plus largement comme une structure comprenant plusieurs alvéoles, chaque alvéole étant une cavité délimitée par une paroi. La paroi présente une section généralement hexagonale ou plus largement polygonale. Elle peut donc comprendre un certain nombre de faces (six faces dans le cas d'une section hexagonale, plusieurs faces plus largement dans les cas des sections polygonales).In the present description, a “honeycomb” structure will be understood more broadly as a structure comprising several cells, each cell being a cavity delimited by a wall. The wall has a generally hexagonal or more broadly polygonal section. It can therefore comprise a certain number of faces (six faces in the case of a hexagonal section, several faces more widely in the case of polygonal sections).
Alternativement la paroi peut présenter une section courbe (par exemple de section elliptique), ou encore d'autres formes plus aléatoires comme illustré en
L'âme alvéolaire procure à la structure une résistance en flexion plus importante, une plus grande capacité de déformation (selon le type d'âme utilisé), ainsi qu'un taux de vide avoisinant les 95 % permettant une légèreté de la structure.The alveolar core provides the structure with greater resistance to bending, greater deformation capacity (depending on the type of core used), as well as a void ratio of around 95% allowing a lightness of the structure.
La ou les peaux sont souvent réalisées en un matériau stratifié, par superposition de plusieurs couches de feuilles.The skin or skins are often made of a laminated material, by superimposing several layers of sheets.
On parle de matériau stratifié composite lorsque les feuilles comportent au moins deux matériaux différents. En général il s'agit de fibres de carbones ou de verre noyées dans une matrice en résine en polymères époxyde (dite « résine époxyde »).We speak of composite laminated material when the sheets comprise at least two different materials. In general, these are carbon or glass fibers embedded in an epoxy polymer resin matrix (known as “epoxy resin”).
Dans la suite du présent document, une telle structure pourra être désignée par « structure sandwich en nid d'abeille » ou « structure sandwich alvéolaire ».In the remainder of this document, such a structure may be referred to as “honeycomb sandwich structure” or “honeycomb sandwich structure”.
Elle peut ne pas comprendre de peaux. C'est pourquoi, on parlera plus généralement dans la présente description de « structure » ou « structure alvéolaire », par souci de simplicité.It may not include skins. This is why, in the present description, we will speak more generally of “structure” or “cellular structure”, for the sake of simplicity.
De telles structures sont par exemple régulièrement employées notamment dans le milieu aéronautique pour leur excellent ratio masse/performances mécaniques. A titre d'exemple, dans un avion, la pièce appelée IFS (inner fixed structure) qui est une partie de la nacelle (capot qui entoure le réacteur d'un avion) peut comprendre une structure en nid d'abeille.Such structures are, for example, regularly used, in particular in the aeronautical environment, for their excellent mass/mechanical performance ratio. By way of example, in an airplane, the part called IFS (inner fixed structure) which is part of the nacelle (cover which surrounds the engine of an airplane) can comprise a honeycomb structure.
Toutefois, sous l'effet d'impacts, de vieillissement par exemple thermo-mécanique, ou sous l'influence de l'environnement dans lequel la structure évolue, des dommages tels que des délaminages des peaux composites ou des décollements entre une peau composite et le nid d'abeille peuvent apparaitre ou des dommages sur des alvéoles. Il est donc essentiel dans le domaine de l'aéronautique ou dans d'autres domaines tels que le nautique, le spatial, le transport terrestre (ferroviaire, automobile), l'énergie éolienne de suivre l'évolution de l'état de santé de telles structures et ce, afin de prévenir de potentielles ruptures.However, under the effect of impacts, of aging for example thermo-mechanical, or under the influence of the environment in which the structure evolves, damage such as delamination of the composite skins or separations between a composite skin and the honeycomb may appear or damage to the cells. It is therefore essential in the field of aeronautics or in other fields such as nautical, space, land transport (railway, automobile), wind energy to follow the evolution of the state of health of such structures and this , in order to prevent potential ruptures.
Il est connu d'intégrer des transducteurs piézoélectriques à la surface des peaux composites.It is known to integrate piezoelectric transducers on the surface of composite skins.
Par souci de simplification, le terme « transducteur » signifiera « transducteur piézoélectrique » dans la suite de la présente description.For the sake of simplification, the term “transducer” will mean “piezoelectric transducer” in the remainder of this description.
Comme illustré en
La diffraction des ondes élastiques sur un défaut fournit ainsi une signature spécifique qu'il est possible d'analyser afin de détecter la présence de ce défaut, de le localiser et de le dimensionner.The diffraction of elastic waves on a defect thus provides a specific signature that it is possible to analyze in order to detect the presence of this defect, to locate it and to size it.
Par exemple, la demande de brevet
Les dispositifs de transmission/réception sont des transducteurs piézoélectriques.The transmit/receive devices are piezoelectric transducers.
L'inconvénient majeur de ce positionnement des transducteurs piézoélectriques est qu'ils sont exposés aux agressions extérieures (risques d'impacts, agressions dues à l'environnement ou à la présence de produits chimiques) ce qui limite leur durée de vie. Ainsi cela peut conduire par exemple à la rupture ou au décollement du transducteur.The major drawback of this positioning of the piezoelectric transducers is that they are exposed to external attack (risk of impact, attack due to the environment or the presence of chemicals) which limits their lifespan. Thus this can lead, for example, to the rupture or detachment of the transducer.
Par ailleurs, la disposition des transducteurs piézoélectriques est restreinte aux positions des attaches (qui sont en un nombre réduit), ce qui limite le nombre de capteurs qui peuvent être embarqués et donc la quantité d'informations que l'on peut récupérer sur la structure et en conséquence la qualité du diagnostic. L'article de
L'invention vise à surmonter les inconvénients précités de l'art antérieur.The invention aims to overcome the aforementioned drawbacks of the prior art.
Plus particulièrement elle vise à disposer d'un dispositif de contrôle par onde élastique qui permette de réaliser le contrôle d'une structure alvéolaire, ce, sans avoir à démonter la pièce dans laquelle ladite structure est intégrée, en limitant l'intrusivité et surtout le risque de fragilisation de ladite structure ou du dispositif de contrôle, et présentant une meilleure résistance des transducteurs aux agressions extérieures.More particularly, it aims to have a control device by elastic wave which makes it possible to carry out the control of a cellular structure, this, without having to dismantle the part in which said structure is integrated, by limiting the intrusiveness and especially the risk of embrittlement of said structure or of the control device, and presenting a better resistance of the transducers to external attacks.
En outre l'invention vise à permettre à l'onde élastique de parcourir une distance maximale pour une puissance donnée de l'onde élastique émise.Furthermore, the invention aims to allow the elastic wave to travel a maximum distance for a given power of the elastic wave emitted.
Un objet de l'invention permettant d'atteindre ce but est une structure alvéolaire comprenant plusieurs alvéoles, chaque alvéole étant délimitée par une paroi, ladite structure alvéolaire comportant un dispositif de contrôle d'intégrité comprenant :
- au moins un transducteur piézoélectrique apte à émettre une onde élastique de manière à ce que ladite onde émise se propage sur une distance donnée dans la structure, et positionné sur la paroi d'une alvéole de ladite structure de manière à présenter au moins un point de contact avec ladite alvéole ;
- au moins un transducteur piézoélectrique apte à recevoir, depuis l'onde élastique émise, une onde élastique s'étant propagée sur une distance donnée dans la structure, et positionné sur la paroi d'une alvéole de ladite structure de manière à présenter au moins un point de contact avec ladite alvéole.
- at least one piezoelectric transducer able to emit an elastic wave so that said emitted wave propagates over a given distance in the structure, and positioned on the wall of a cell of said structure so as to present at least one point of contact with said cell;
- at least one piezoelectric transducer capable of receiving, from the elastic wave emitted, an elastic wave having propagated over a given distance in the structure, and positioned on the wall of a cell of said structure so as to present at least one point of contact with said cell.
Selon l'invention, au moins une alvéole comprend plusieurs transducteurs piézoélectriques, formant ainsi un bloc de transducteurs.According to the invention, at least one cell comprises several piezoelectric transducers, thus forming a block of transducers.
La structure alvéolaire selon l'invention permet de disposer d'un dispositif de contrôle offrant de grands avantages aussi bien en termes de puissance du signal émis qu'en termes d'intrusivité réduite : meilleure résistance des transducteurs aux agressions extérieures et moins de risque de créer des fragilités de la peau composite par rapport à des dispositifs disposés sur une peau d'une structure alvéolaire sandwich. Le transducteur étant intégré dans la partie alvéolaire, il est protégé des agressions externes. Il peut être maintenu à demeure dans la structure. L'invention permet d'éviter d'avoir à démonter la pièce dans laquelle la structure est intégrée. Elle permet également d'éviter d'avoir à démonter la structure elle-même.The honeycomb structure according to the invention makes it possible to have a control device offering great advantages both in terms of the power of the signal emitted and in terms of reduced intrusiveness: better resistance of the transducers to external attacks and less risk of create weaknesses in the composite skin with respect to devices placed on a skin of a sandwich alveolar structure. The transducer being integrated in the alveolar part, it is protected from external attacks. It can be kept permanently in the structure. The invention makes it possible to avoid having to dismantle the part in which the structure is integrated. It also avoids having to dismantle the structure itself.
Les transducteurs utilisés dans le contrôle des structures exploitent des hautes fréquences acoustiques et des fréquences d'ultrasons (d'une dizaine kHz à quelques centaines de kHz). Les transducteurs sont de taille relativement petite et par conséquent légers, ce qui leur permet d'être positionnés sur une paroi d'une alvéole sans risquer de déformer celle-ci et donc la structure.The transducers used in the control of structures exploit high acoustic frequencies and ultrasonic frequencies (from about ten kHz to a few hundred kHz). The transducers are relatively small in size and therefore light, which allows them to be positioned on a wall of a cell without risking deforming the latter and therefore the structure.
En outre, il n'est pas nécessaire de rajouter un élément à l'intérieur de l'alvéole pour maintenir un transducteur, puisque la paroi de l'alvéole suffit. L'invention permet donc de disposer d'un dispositif de contrôle léger, présentant un risque très minime de fragiliser la structure.Furthermore, it is not necessary to add an element inside the cell to maintain a transducer, since the wall of the cell is sufficient. The invention therefore makes it possible to have a lightweight control device, presenting a very minimal risk of weakening the structure.
Il est précisé que la largeur d'un transducteur est définie comme étant sa plus grande dimension dans la direction de la tangente de l'alvéole au niveau du point de contact entre le transducteur et la paroi de l'alvéole et que l'épaisseur d'un transducteur est définie comme étant sa plus grande dimension dans la direction perpendiculaire à ladite tangente.It is specified that the width of a transducer is defined as being its greatest dimension in the direction of the tangent of the cell at the level of the point of contact between the transducer and the wall of the cell and that the thickness d 'a transducer is defined as its largest dimension in the direction perpendicular to said tangent.
En utilisant des transducteurs moins larges, elle permet d'augmenter l'épaisseur de ceux-ci afin d'augmenter la puissance des ondes émises.By using less wide transducers, it makes it possible to increase their thickness in order to increase the power of the waves emitted.
Cela peut permettre en outre de limiter le nombre de transducteurs à disposer sur la surface de la structure, et de limiter la quantité de câblage.This can also make it possible to limit the number of transducers to be arranged on the surface of the structure, and to limit the amount of wiring.
Alternativement, comme l'intrusivité de la solution est limitée, il est possible de disposer une densité de transducteurs plus importante sur une surface donnée, et ce, afin de multiplier la qualité et la fiabilité d'information qu'un transducteur seul est possible de récupérer.Alternatively, as the intrusiveness of the solution is limited, it is possible to arrange a greater density of transducers on a given surface, and this, in order to multiply the quality and the reliability of information that a single transducer is possible to retrieve.
Le fait d'avoir un bloc de transducteurs dans au moins une alvéole permet de couvrir la structure le plus largement possible et d'augmenter la puissance totale émise si les transducteurs sont émetteurs. En particulier, si les transducteurs sont répartis régulièrement dans l'alvéole et s'ils fonctionnent en émission, cela permet d'émettre des ondes élastiques le plus axisymétriquement possible autour du bloc. Si les transducteurs sont répartis régulièrement dans l'alvéole et s'ils fonctionnent en réception, cela permet de recevoir plus sûrement des ondes élastiques depuis les ondes élastiques émises.The fact of having a block of transducers in at least one cell makes it possible to cover the structure as widely as possible and to increase the total power emitted if the transducers are transmitters. In particular, if the transducers are regularly distributed in the cell and if they operate in emission, this makes it possible to emit elastic waves as axisymmetrically as possible around the block. If the transducers are evenly distributed in the cell and if they operate in reception, this makes it possible to more reliably receive elastic waves from the elastic waves emitted.
D'une manière générale, le fait d'avoir un bloc de transducteurs dans au moins une alvéole permet multiplier les émetteur et les récepteurs d'ultrasons embarqués dans la structure, ce qui multiplie la quantité d'informations qui peut être obtenue sur la structure, et ce qui renforce donc la qualité de l'analyse. Cela permet notamment d'obtenir un diagnostic plus fiable sur l'état de santé de la structure.In general, having a block of transducers in at least one cell makes it possible to multiply the ultrasound transmitters and receivers embedded in the structure, which multiplies the amount of information that can be obtained on the structure. , which therefore improves the quality of the analysis. In particular, this makes it possible to obtain a more reliable diagnosis of the state of health of the structure.
En outre, lorsque l'on a un bloc de plusieurs transducteurs dans une alvéole, il est possible de mettre en œuvre la technique dite de « Embedded Ultrasonic Structural Radar » qui consiste à scanner circulairement la structure dans le plan, sur le principe d'un radar tournant, pour produire une image de la structure.In addition, when there is a block of several transducers in a cell, it is possible to implement the so-called “Embedded Ultrasonic Structural Radar” technique which consists of circularly scanning the structure in the plane, on the principle of a rotating radar, to produce an image of the structure.
Le câblage nécessaire aux transducteurs peut cheminer entre les alvéoles dans des évidements prévus à cet effet ou déjà existants dans celles-ci, par exemple entre chaque alvéole et une des peaux composites, puis le long de ladite peau. Ainsi, le cheminement et la protection du câblage peut être facilité du fait même de la structure alvéolaire.The wiring required for the transducers can run between the cells in recesses provided for this purpose or already existing therein, for example between each cell and one of the composite skins, then along said skin. Thus, routing and protection of the wiring can be facilitated by the very fact of the honeycomb structure.
L'électronique des transducteurs (ou au moins de quelques-uns) peut avantageusement être intégrée dans une alvéole afin de minimiser le câblage.The electronics of the transducers (or at least some of them) can advantageously be integrated into a cell in order to minimize wiring.
Le dispositif de contrôle s'intègre aisément à une structure alvéolaire, dont les alvéoles sont vides, et peut être aisément intégré dans un procédé de fabrication de ladite structure alvéolaire.The control device is easily integrated into a honeycomb structure, the cells of which are empty, and can be easily integrated into a process for manufacturing said honeycomb structure.
En outre, le dispositif de contrôle est très aisément modulable, adaptable en fonction de la structure. En effet, il est possible d'avoir plusieurs schémas d'implantation des transducteurs dans une alvéole et/ou dans plusieurs alvéoles. Il est possible d'utiliser différents types et/ou différentes dimensions de transducteurs acoustiques piézoélectriques. Il est également possible de les associer avec d'autres types de capteurs.In addition, the control device is very easily modular, adaptable according to the structure. Indeed, it is possible to have several diagrams of implantation of the transducers in a cell and/or in several cells. It is possible to use different types and/or different sizes of piezoelectric acoustic transducers. It is also possible to combine them with other types of sensors.
Selon un mode de réalisation, un transducteur piézoélectrique apte à émettre une onde élastique et un transducteur piézoélectrique apte à recevoir une onde élastique peut être un seul transducteur piézoélectrique apte à émettre et à recevoir une onde élastique. Un transducteur peut fonctionner en mode pulse-echo : l'onde élastique émise, lorsqu'elle rencontre un défaut, renvoie vers le transducteur une onde élastique diffractée dont le signal porte l'empreinte dudit défaut. Dans ce cas, il est nécessaire de disposer de moyens de commutation permettant de basculer ledit transducteur d'un mode émission à un mode réception ; puis de le basculer à nouveau en mode émission, et de répéter ces opérations. Ce basculement soit être suffisamment rapide pour que le transducteur ait le temps de recevoir l'onde élastique diffractée par le défaut, typiquement inférieur à la microseconde.According to one embodiment, a piezoelectric transducer able to emit an elastic wave and a piezoelectric transducer able to receive an elastic wave can be a single piezoelectric transducer able to emit and receive an elastic wave. A transducer can operate in pulse-echo mode: the elastic wave emitted, when it encounters a defect, sends a diffracted elastic wave back to the transducer, the signal of which bears the imprint of said defect. In this case, it is necessary to have switching means making it possible to switch said transducer from a transmission mode to a reception mode; then switch it back to transmission mode, and repeat these operations. This switching must be fast enough for the transducer to have time to receive the elastic wave diffracted by the defect, typically less than a microsecond.
Selon un mode de réalisation alternatif, la structure alvéolaire comprend au moins un premier transducteur piézoélectrique émetteur (apte à émettre une onde élastique) positionné sur une première alvéole et au moins un deuxième transducteur piézoélectrique récepteur (apte à recevoir une onde élastique) positionné sur une seconde alvéole. Les deux transducteurs sont disposés au sein de deux alvéoles distinctes et suffisamment éloignées pour pouvoir détecter un défaut dans la structure le plus efficacement et sûrement possible.According to an alternative embodiment, the honeycomb structure comprises at least a first transmitter piezoelectric transducer (able to emit an elastic wave) positioned on a first cell and at least a second receiver piezoelectric transducer (able to receive an elastic wave) positioned on a second cell. The two transducers are arranged within two separate cells far enough apart to be able to detect a defect in the structure as efficiently and reliably as possible.
Il est encore plus avantageux de disposer d'un réseau de transducteurs astucieusement répartis dans la structure, afin de détecter encore plus sûrement tout défaut dans la structure.It is even more advantageous to have a network of transducers cleverly distributed in the structure, in order to detect any fault in the structure even more reliably.
Selon un mode de réalisation particulier, la structure alvéolaire comprend au moins deux transducteurs en opposition de phase.According to a particular embodiment, the honeycomb structure comprises at least two transducers in phase opposition.
On entend par « opposition de phase » le fait que deux transducteurs émettent des ondes élastiques de même fréquence mais déphasées l'une par rapport à l'autre d'une demie période. Pour être en opposition de phase, un premier et un deuxième transducteurs peuvent être par exemple alimentés par des courants électriques en opposition de phase. Alternativement et préférentiellement, les électrodes du premier transducteur peuvent être inversées par rapport à celles du deuxième transducteur.By “phase opposition” is meant the fact that two transducers emit elastic waves of the same frequency but out of phase with respect to each other by half a period. To be in phase opposition, a first and a second transducer may for example be powered by electric currents in phase opposition. Alternatively and preferably, the electrodes of the first transducer can be reversed with respect to those of the second transducer.
Selon un mode de réalisation préféré, l'onde élastique est une onde ultrasonore.According to a preferred embodiment, the elastic wave is an ultrasonic wave.
Selon un mode de réalisation préféré, les parois délimitant les alvéoles de la structure alvéolaire présentent chacune une section polygonale, de préférence hexagonale. Ainsi une paroi présente plusieurs faces latérales (nommées « faces » par la suite), par exemple six faces dans le cas d'un hexagone.According to a preferred embodiment, the walls delimiting the cells of the honeycomb structure each have a polygonal section, preferably hexagonal. Thus a wall has several lateral faces (called “faces” hereafter), for example six faces in the case of a hexagon.
Selon un mode de réalisation particulier, un bloc comprend des transducteurs répartis sur une ou plusieurs faces d'une alvéole. Cette configuration est possible dans le cas où les parois des alvéoles présentent des sections polygonales.According to a particular embodiment, a block comprises transducers distributed over one or more faces of a cell. This configuration is possible in the case where the walls of the cells have polygonal sections.
Selon un mode de réalisation particulier, un bloc comprend des transducteurs répartis sur des faces adjacentes de l'alvéole. Cette configuration permet d'émettre des ondes élastiques dans un champ privilégié (ou selon un angle solide donné).According to a particular embodiment, a block comprises transducers distributed over adjacent faces of the cell. This configuration makes it possible to emit elastic waves in a privileged field (or according to a given solid angle).
Selon un mode de réalisation, le bloc comprend des transducteurs régulièrement répartis sur les faces de l'alvéole. Cette configuration permet d'émettre des ondes élastiques le plus axisymétriquement possible autour du bloc.According to one embodiment, the block comprises transducers regularly distributed over the faces of the cell. This configuration makes it possible to emit elastic waves as axisymmetrically as possible around the block.
Selon un mode de réalisation particulier, le bloc comprend des transducteurs répartis sur chacune des faces de l'alvéole. Cette configuration permet de renforcer l'aspect axisymétrique des ondes élastiques émises.According to a particular embodiment, the block comprises transducers distributed over each of the faces of the cell. This configuration makes it possible to reinforce the axisymmetric aspect of the elastic waves emitted.
Selon un mode de réalisation, au moins une première alvéole comporte un bloc émetteur comprenant des transducteurs émetteurs et au moins une seconde alvéole comporte au moins un transducteur récepteur.According to one embodiment, at least a first cell comprises a transmitter block comprising transmitter transducers and at least a second cell comprises at least one receiver transducer.
Selon un mode de réalisation, au moins au moins une première alvéole comporte un bloc émetteur comprenant des transducteurs émetteurs et au moins une seconde alvéole comporte un bloc récepteur comprenant des transducteurs récepteurs.According to one embodiment, at least at least a first cell comprises a transmitter unit comprising transmitter transducers and at least one second cell comprises a receiver block comprising receiver transducers.
Selon un mode de réalisation, le dispositif de contrôle d'intégrité comprend en outre des moyens de traitement du signal de l'onde élastique reçue, aptes à déterminer le niveau d'intégrité de ladite structure. Dans ce cas, les transducteurs doivent être reliés aux moyens de traitement. Cela permet de créer un système complet allant de la création de signaux générés par les ondes élastiques jusqu'au traitement desdits signaux, de manière à pouvoir détecter un défaut ou de conclure à une absence de défaut.According to one embodiment, the integrity monitoring device further comprises means for processing the signal of the elastic wave received, able to determine the level of integrity of said structure. In this case, the transducers must be connected to the processing means. This makes it possible to create a complete system ranging from the creation of signals generated by the elastic waves to the processing of said signals, so as to be able to detect a fault or conclude that there is no fault.
Selon un mode de réalisation, le dispositif de contrôle d'intégrité comprend en outre des moyens de commande du au moins un transducteur.According to one embodiment, the integrity check device further comprises means for controlling the at least one transducer.
Selon un mode de réalisation particulier, les moyens de commande comprennent des moyens de commutation aptes à basculer au moins un transducteur du mode émission à un mode réception et inversement.According to a particular embodiment, the control means comprise switching means capable of switching at least one transducer from transmission mode to reception mode and vice versa.
Selon un mode de réalisation, les moyens de traitement comprennent des moyens de soustraction du signal de l'onde élastique reçue et d'un signal de référence correspondant à une structure alvéolaire saine. Le signal de référence peut être obtenu par modélisation ou expérimentalement.According to one embodiment, the processing means comprise means for subtracting the signal from the elastic wave received and a reference signal corresponding to a healthy alveolar structure. The reference signal can be obtained by modeling or experimentally.
Selon un mode de réalisation, le dispositif de contrôle d'intégrité comprend en outre un capteur de température, les moyens de traitement étant configurés pour utiliser une mesure de température acquise par ledit capteur. Ceci permet de normaliser les signaux des ondes élastiques (en amplitude ou en déphasage).According to one embodiment, the integrity monitoring device further comprises a temperature sensor, the processing means being configured to use a temperature measurement acquired by said sensor. This makes it possible to normalize the signals of the elastic waves (in amplitude or in phase shift).
Un autre objet de l'invention est un procédé de contrôle d'intégrité d'une structure composite alvéolaire comprenant les étapes suivantes :
- l'émission d'une onde élastique au moyen d'un transducteur piézoélectrique de manière à ce que ladite onde émise se propage sur une distance donnée dans la structure alvéolaire ;
- la réception par un transducteur piézoélectrique, depuis l'onde élastique émise, d'une onde élastique s'étant propagée sur une distance donnée dans la structure alvéolaire ;
- le traitement du signal de l'onde élastique reçue de manière à déterminer le niveau d'intégrité de ladite structure alvéolaire ; chaque transducteur piézoélectrique étant positionné sur la paroi d'une alvéole de la structure alvéolaire de manière à présenter au moins un point de contact avec ladite alvéole.
- the emission of an elastic wave by means of a piezoelectric transducer so that said emitted wave propagates over a given distance in the honeycomb structure;
- the reception by a piezoelectric transducer, from the emitted elastic wave, of an elastic wave having propagated over a given distance in the alveolar structure;
- signal processing of the elastic wave received so as to determine the level of integrity of said alveolar structure; each piezoelectric transducer being positioned on the wall of a cell of the honeycomb structure so as to have at least one point of contact with said cell.
Selon l'invention, au moins une alvéole comprend plusieurs transducteurs piézoélectriques, formant ainsi un bloc de transducteurs.According to the invention, at least one cell comprises several piezoelectric transducers, thus forming a block of transducers.
Selon un mode de réalisation, le procédé de contrôle comprend une étape de commutation d'un transducteur piézoélectrique du mode émission au mode réception.According to one embodiment, the control method comprises a step of switching a piezoelectric transducer from transmission mode to reception mode.
Selon un mode de réalisation, le procédé de contrôle comprend une étape de commutation d'un transducteur piézoélectrique du mode réception au mode émission.According to one embodiment, the control method comprises a step of switching a piezoelectric transducer from reception mode to transmission mode.
Selon un mode de réalisation, au moins un premier transducteur piézoélectrique fonctionne en mode émission, et au moins deuxième transducteur piézoélectrique fonctionne en mode réception.According to one embodiment, at least a first piezoelectric transducer operates in transmit mode, and at least a second piezoelectric transducer operates in receive mode.
Selon un mode de réalisation, l'étape de traitement comprend une étape de soustraction du signal de l'onde élastique reçue et d'un signal de référence.According to one embodiment, the processing step comprises a step of subtracting the received elastic wave signal from a reference signal.
Selon un mode de réalisation, le procédé de contrôle comprend en outre une étape de mesure de température au niveau de la structure alvéolaire, l'étape de traitement utilisant une mesure de température acquise par ledit capteur.According to one embodiment, the control method further comprises a temperature measurement step at the level of the structure alveolar, the processing step using a temperature measurement acquired by said sensor.
Un autre objet de l'invention est une pièce d'avion comportant une structure alvéolaire selon l'invention.Another object of the invention is an airplane part comprising a honeycomb structure according to the invention.
D'autres caractéristiques et avantages de l'invention apparaîtront à l'aide de la description qui suit donnée à titre illustratif et non limitatif, faite en regard des figures annexées parmi lesquelles
- les
figures 1A et 1B illustrent une structure composite alvéolaire connue, avec différentes formes d'alvéoles ; - la
figure 2 illustre le principe du contrôle santé d'une structure par ondes élastiques guidées émises et détectées par un réseau de transducteurs piézoélectriques ; - les
figures 3A à 3C illustrent un mode d'analyse par soustraction des ondes élastiques pour détecter un défaut ; - la
figure 4 illustre un premier mode de réalisation de l'invention ; - la
figure 5 illustre un second mode de réalisation de l'invention ; - les
figures 6A à 6C illustrent trois modes particuliers de réalisation de l'invention dans lesquels les transducteurs sont disposés selon plusieurs configurations au sein d'une alvéole ; - la
figure 7 illustre un mode particulier de réalisation de l'invention dans lesquels les transducteurs sont en opposition de phase ; - les
figures 8A à 8C illustrent trois types de déformations d'éléments piézoélectriques pouvant être mis en oeuvre dans l'invention; - les
figures 9A à 9D montrent comment une onde émise par un transducteur émetteur se propage lorsqu'elle rencontre un défaut ; - la
figure 10 illustre un exemple de dispositif de contrôle, incluant les moyens de traitement et de commande.
- them
figures 1A and 1B illustrate a known composite honeycomb structure, with different shapes of honeycombs; - the
figure 2 illustrates the principle of the health check of a structure by guided elastic waves emitted and detected by a network of piezoelectric transducers; - them
figures 3A to 3C illustrate a mode of analysis by subtraction of elastic waves to detect a defect; - the
figure 4 illustrates a first embodiment of the invention; - the
figure 5 illustrates a second embodiment of the invention; - them
figures 6A to 6C illustrate three particular embodiments of the invention in which the transducers are arranged in several configurations within a cell; - the
figure 7 illustrates a particular embodiment of the invention in which the transducers are in phase opposition; - them
figures 8A to 8C illustrate three types of deformations of piezoelectric elements that can be implemented in the invention; - them
figures 9A to 9D show how a wave emitted by an emitting transducer propagates when it encounters a fault; - the
figure 10 illustrates an example of a control device, including the processing and control means.
Les
Dans les figures qui suivent (sauf les
Les transducteurs piézoélectriques sont utilisés comme émetteurs et/ou récepteurs d'ondes élastiques guidées. La diffraction des ondes élastiques sur un ou des défauts fournit une signature spécifique, et c'est cette signature qui est analysée par les moyens de traitement pour détecter, localiser et dimensionner un ou des défauts dans la structure.Piezoelectric transducers are used as transmitters and/or receivers of guided elastic waves. The diffraction of elastic waves on one or more defects provides a specific signature, and it is this signature which is analyzed by the processing means to detect, locate and dimension one or more defects in the structure.
Les moyens de traitement peuvent comprendre des moyens de calcul simples ou des algorithmes ou modèles plus complexes aptes à détecter, localiser et dimensionner un ou des défauts de la structure.The processing means can comprise simple calculation means or more complex algorithms or models capable of detecting, locating and dimensioning one or more defects of the structure.
Comme illustré en
Alternativement, les moyens de calcul peuvent se baser sur la fusion d'informations provenant de différents capteurs, par exemple en utilisant un algorithme d'imagerie tel que la tomographie, comme décrit dans le brevet
La
Afin de favoriser une couverture complète de la structure à contrôler avec un nombre minimal de transducteurs, il est parfois préférable de rendre le champ d'ondes élastiques émis le plus axisymétrique possible.In order to promote complete coverage of the structure to be inspected with a minimum number of transducers, it is sometimes preferable to make the elastic wave field emitted as axisymmetric as possible.
Alternativement ou en complément, on peut aussi vouloir renforcer l'émission des ondes élastiques uniquement selon un angle solide donné.Alternatively or in addition, it may also be desired to reinforce the emission of the elastic waves only according to a given solid angle.
En outre, dans de nombreux cas, il est judicieux d'intégrer plusieurs transducteurs au sein d'une même alvéole.Furthermore, in many cases, it is judicious to integrate several transducers within the same cell.
Ainsi, la
Les
La
La
La
Dans les
La
En multipliant plusieurs combinaisons possibles, il est possible de générer différentes combinaisons d'ondes élastiques qui vont interroger la structure, ce qui augmente les informations quant à son état de santé.By multiplying several possible combinations, it is possible to generate different combinations of elastic waves which will interrogate the structure, which increases the information as to its state of health.
Les éléments piézoélectriques des transducteurs peuvent être par exemple sous forme de cristaux, de céramiques ou de polymères céramiques.The piezoelectric elements of the transducers can for example be in the form of crystals, ceramics or ceramic polymers.
Il peut s'agir d'éléments PZT (Titano-Zirconate de Plomb).They may be PZT elements (Lead Titanium-Zirconate).
Il peut également s'agir de polymères PVDF qui présentent un intérêt lorsqu'il faut coller le transducteur sur une surface de géométrie complexe.They can also be PVDF polymers which are of interest when it is necessary to bond the transducer to a surface of complex geometry.
Différents types d'éléments piézoélectriques peuvent être combinés.Different types of piezoelectric elements can be combined.
Il est également possible de combiner des transducteurs disposés sur la paroi d'une alvéole avec des transducteurs positionnés sur une ou plusieurs peau(x) d'une structure alvéolaire sandwich.It is also possible to combine transducers arranged on the wall of a cell with transducers positioned on one or more skin(s) of a sandwich alveolar structure.
Les
Les
Les transducteurs 20 sont positionnés sur la paroi de certaines alvéoles de la structure. Ils peuvent être par exemple collés ou soudés.The
La
La
Les moyens de traitement 40 comprennent :
- des moyens d'acquisition 41 des signaux ;
- des moyens de calcul 42.
- signal acquisition means 41;
- means of calculation 42.
Les moyens d'acquisition 41 des signaux comprennent en général des moyens de numérisation. Ils peuvent également comprendre des moyens de conditionnement et/ou de filtrage des signaux.The signal acquisition means 41 generally comprise digitization means. They can also include signal conditioning and/or filtering means.
Les moyens de calcul 42 peuvent contenir des algorithmes de détection, de localisation et de dimensionnement des défauts de la structure 1.The calculation means 42 can contain algorithms for detecting, locating and sizing the faults of the
Les moyens de traitement 40 peuvent également comprendre des moyens de stockage des signaux 43 et des moyens d'affichage 44.The processing means 40 can also comprise signal storage means 43 and display means 44.
Dans le cas d'une communication filaire, des fils ou des câbles de connexion 3 sont prévus pour connecter les transducteurs 20 aux moyens de traitement 40 des transducteurs.In the case of wired communication, connection wires or
En général, les moyens d'acquisition 41 sont disposés dans une unité à proximité du transducteur 20. Ils comprennent des moyens de numérisation des signaux de sorte que la communication filaire transporte un signal numérique vers les moyens de calcul 42.In general, the acquisition means 41 are arranged in a unit close to the
Alternativement, les moyens d'acquisition 41 peuvent être déportés dans une unité plus éloignée du transducteur. Dans ce cas, la communication filaire entre le transducteur 20 et les moyens d'acquisition 41 transporte un signal analogique.Alternatively, the acquisition means 41 can be moved to a unit further away from the transducer. In this case, the wired communication between the
Les fils ou câbles de connexion 3 peuvent cheminer entre les alvéoles dans des évidements prévus à cet effet ou déjà existants dans celles-ci. Par exemple pour une structure alvéolaire sandwich, les fils ou câbles de connexion 3 peuvent cheminer entre chaque alvéole et une des peaux composites, puis le long de ladite peau.The connecting wires or
Ainsi, le cheminement et la protection du câblage peut être facilité du fait même de la structure alvéolaire.Thus, routing and protection of the wiring can be facilitated by the very fact of the honeycomb structure.
Tout ou partie des moyens de traitement 40 des transducteurs (ou au moins d'un ou de quelques transducteurs) peut avantageusement être intégrée dans une alvéole afin de minimiser le câblage.All or part of the
Les moyens d'acquisition 41 peuvent être disposés dans ou sur une alvéole, ou sur la surface d'une plaque, par exemple collés à ladite surface.The acquisition means 41 can be arranged in or on a cell, or on the surface of a plate, for example glued to said surface.
La transmission des transducteurs 20 vers tout ou partie des moyens de traitement 40 peut avantageusement être réalisée avec une communication sans fil 4.The transmission of the
Tout ou partie des moyens de traitement 40 peuvent être communs à plusieurs transducteurs si une fonction multiplexeur est ajoutée à des moyens de traitement 40.All or part of the processing means 40 can be common to several transducers if a multiplexer function is added to the processing means 40.
Les moyens de calcul 42 ne sont en général pas embarqués. Dans ce domaine d'application de l'aéronautique, ils peuvent être amenés lorsque l'avion est au sol.The calculation means 42 are generally not on board. In this field of application of aeronautics, they can be brought when the plane is on the ground.
Les différents modes présentés peuvent être combinés entre eux.The different modes presented can be combined with each other.
En outre, la présente invention n'est pas limitée aux modes de réalisation précédemment décrits mais s'étend à tout mode de réalisation entrant dans la portée des revendications.Furthermore, the present invention is not limited to the embodiments described above but extends to any embodiment falling within the scope of the claims.
L'invention peut trouver des applications dans le domaine de l'aéronautique, par exemple dans une pièce d'un avion, telle que la pièce appelée IFS (Inner Fixed Structure) qui est une partie de la nacelle et qui peut comprendre une structure alvéolaire.The invention can find applications in the field of aeronautics, for example in a part of an airplane, such as the part called IFS (Inner Fixed Structure) which is part of the nacelle and which can comprise a honeycomb structure .
L'invention peut également trouver des applications dans d'autres domaines, par exemple dans les domaines du nautique, du spatial, du transport terrestre (ferroviaire, automobile), de l'énergie éolienne.The invention can also find applications in other fields, for example in the fields of nautical, space, land transport (railway, automobile), wind energy.
L'invention permet en effet de suivre l'évolution de l'état de santé de pièces, et ce, notamment afin de prévenir de potentielles ruptures.The invention indeed makes it possible to follow the evolution of the state of health of parts, and this, in particular in order to prevent potential ruptures.
Claims (16)
- A honeycomb structure (1) comprising a plurality of cells (10), with each cell being defined by a wall, said structure comprising an integrity checking device comprising:- at least one piezoelectric transducer (20) that is capable of emitting an elastic wave (30a) so that said emitted wave propagates over a given distance in the structure (1) and that is positioned on the wall of a cell (10) of said structure so as to have at least one point of contact with said cell;- at least one piezoelectric transducer (20) that is capable of receiving, from the emitted elastic wave (30a), an elastic wave (30b) that has propagated over a given distance in the structure (1) and that is positioned on the wall of a cell (10) of said structure so as to have at least one point of contact with said cell;with at least one cell (10) comprising a plurality of piezoelectric transducers (20), thus forming a block (2) of transducers.
- The honeycomb structure (1) according to claim 1, wherein at least one piezoelectric transducer (20) capable of emitting an elastic wave and at least one piezoelectric transducer (20) capable of receiving an elastic wave is a single piezoelectric transducer (20) capable of emitting and receiving an elastic wave.
- The honeycomb structure (1) according to claim 1, comprising at least one first emitter piezoelectric transducer (20a) positioned on a first cell (10a) and at least one second receiver piezoelectric transducer (20b) positioned on a second cell (10b).
- The honeycomb structure (1) according to claim 3, wherein at least two transducers (20) are in phase opposition.
- The honeycomb structure (1) according to any of claims 1 to 4, wherein the walls defining the cells (10) of said honeycomb structure each have a polygonal, preferably hexagonal, section.
- The honeycomb structure (1) according to claim 5, a block (2) comprising transducers (20) distributed over one or more faces of a cell (10), preferably over adjacent faces of a cell (10).
- The honeycomb structure (1) according to claim 6, a block (2) comprising transducers (20) evenly distributed over the faces of a cell (10).
- The honeycomb structure (1) according to any of claims 1 to 7, at least one first cell (10a) comprising an emitter block (2a) comprising emitter transducers (20a) and at least one second cell (10b) comprising at least one receiver transducer (20b).
- The honeycomb structure (1) according to any of claims 1 to 8, at least one first cell (10a) comprising an emitter block (2a) comprising emitter transducers (20a) and at least one second cell (10b) comprising a receiver block (2b) comprising receiver transducers (20b).
- The honeycomb structure (1) according to any of the preceding claims, wherein the integrity checking device further comprises means (40) for processing the signal of the received elastic wave, said means being capable of determining the level of integrity of said structure.
- The honeycomb structure (1) according to any of the preceding claims, wherein the integrity checking device further comprises means (50) for controlling the at least one transducer (20).
- The honeycomb structure (1) according to claim 11, wherein the control means (50) comprise switching means capable of switching at least one transducer (20) from the emission mode to a reception mode and vice versa.
- The honeycomb structure (1) according to any of the preceding claims, wherein the processing means (40) comprise means for subtracting the signal from the received elastic wave (30b) and from a reference signal corresponding to a sound honeycomb structure.
- The honeycomb structure (1) according to any of the preceding claims, wherein the integrity-checking device also comprises a temperature sensor, with the processing means (40) also being configured to use a temperature measurement acquired by said sensor.
- A method for checking the integrity of a honeycomb structure (1) comprising the following steps:- emitting an elastic wave by means of a piezoelectric transducer (20) so that said emitted wave propagates over a given distance in the honeycomb structure (1);- a piezoelectric transducer (20) receiving, from the emitted elastic wave, an elastic wave that has propagated over a given distance in the honeycomb structure (1);- processing the signal of the received elastic wave so as to determine the level of integrity of said honeycomb structure;with each piezoelectric transducer (20) being positioned on the wall of a cell (10) of the honeycomb structure (1) so as to have at least one point of contact with said cell;
with at least one cell (10) comprising multiple piezoelectric transducers (20), thus forming a block (2) of transducers. - A part of an aeroplane comprising a honeycomb structure according to any of claims 1 to 14.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1758995A FR3071666B1 (en) | 2017-09-28 | 2017-09-28 | CELLULAR STRUCTURE COMPRISING AN INTEGRITY MONITORING DEVICE AND METHOD FOR MONITORING SUCH A STRUCTURE |
PCT/EP2018/076061 WO2019063588A1 (en) | 2017-09-28 | 2018-09-26 | Honeycomb structure comprising an integrity monitoring device and method for monitoring such a structure |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3701572A1 EP3701572A1 (en) | 2020-09-02 |
EP3701572B1 true EP3701572B1 (en) | 2022-07-13 |
Family
ID=61003094
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18772821.7A Active EP3701572B1 (en) | 2017-09-28 | 2018-09-26 | Honeycomb structure comprising an integrity monitoring device and method for monitoring such a structure |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3701572B1 (en) |
FR (1) | FR3071666B1 (en) |
WO (1) | WO2019063588A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110361448B (en) * | 2019-07-16 | 2021-08-06 | 太原理工大学 | An intelligent brick device for monitoring the damage degree of a single wall and a monitoring method thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2917166B1 (en) * | 2007-06-05 | 2012-04-27 | Toulouse Inst Nat Polytech | METHOD AND DEVICE FOR DETECTING WATER IN AN ALVEOLAR STRUCTURE. |
KR20090005999A (en) * | 2007-07-10 | 2009-01-14 | 김형윤 | Damage Prediction System for Structural Health Monitoring and Method |
WO2015068082A1 (en) * | 2013-11-08 | 2015-05-14 | Bombardier Inc. | Health monitoring of composite structures |
FR3014200B1 (en) | 2013-12-02 | 2017-05-26 | Commissariat Energie Atomique | CONTROL OF INDUSTRIAL STRUCTURE |
US9964521B2 (en) | 2014-11-25 | 2018-05-08 | Rohr, Inc. | Detecting damage in a composite panel without removing overlying insulation |
-
2017
- 2017-09-28 FR FR1758995A patent/FR3071666B1/en not_active Expired - Fee Related
-
2018
- 2018-09-26 WO PCT/EP2018/076061 patent/WO2019063588A1/en unknown
- 2018-09-26 EP EP18772821.7A patent/EP3701572B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
FR3071666B1 (en) | 2021-12-24 |
EP3701572A1 (en) | 2020-09-02 |
WO2019063588A1 (en) | 2019-04-04 |
FR3071666A1 (en) | 2019-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3707503B1 (en) | Structural health monitoring for an industrial structure | |
EP3077795B1 (en) | Testing of an industrial structure | |
EP3555585B1 (en) | Method and system for controlling the integrated health of a mechanical structure by diffuse elastic waves | |
CA3108106A1 (en) | Inspection of rail health | |
EP3397883A1 (en) | Connection tip of a hose line, measurement device and associated method | |
FR2999715A1 (en) | DEVICE AND METHOD FOR DETECTING IMPACT ON A COMPOSITE MATERIAL STRUCTURE. | |
CA2690102A1 (en) | Method and device for detecting water in a cellular structure | |
WO2015082835A1 (en) | Torque-measurement device for a turbomachine shaft | |
EP3701572B1 (en) | Honeycomb structure comprising an integrity monitoring device and method for monitoring such a structure | |
EP2406625B1 (en) | Device and method for the nondestructive monitoring of complex structures using ultrasonic waves | |
CA2589879C (en) | System for detecting, quantifying and/or locating water in aircraft sandwich structures and methods for using this system | |
WO2012150394A1 (en) | Monitoring unit and method for detecting structural defects which can occur in an aircraft nacelle during use | |
EP3532832B1 (en) | Method for nondestructive inspection by ultrasound of a bonded assembly | |
EP3446115A1 (en) | System and method for inspecting a structure with coda acoustic waves | |
EP2861977B1 (en) | Non destructive ultrasonic inspection of structures in composite material | |
WO2010012809A2 (en) | Method and device for the air-coupled ultrasonic non-destructive testing of a structure | |
FR2997508A1 (en) | Longitudinal cable for transport of data or electric energy in harness of aircraft, has elementary areas having sensor elements, where each sensor element performs measurement of health parameter of cable in respective elementary area | |
WO2021148759A1 (en) | Selective method and system for the nondestructive testing of a mechanical part | |
FR3087755A1 (en) | METHOD AND SYSTEM FOR FAULT TRACKING OF AN AIRCRAFT STRUCTURE | |
WO2019115971A1 (en) | Device, system and process for imaging defects in a structure by transmitting and receiving mechanical waves through the structure | |
FR3078162A1 (en) | DEVICE AND METHOD FOR DETECTING DEFECTS OF A STRUCTURE | |
FR2973113A1 (en) | METHOD AND DEVICE FOR EVALUATING THE INTEGRITY OF AN ALTERABLE COMPOSITE ENVIRONMENT |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20200717 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602018037909 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: H01L0041040000 Ipc: H01L0041113000 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: G01N 29/24 20060101ALI20211206BHEP Ipc: G01N 29/04 20060101ALI20211206BHEP Ipc: H01L 41/113 20060101AFI20211206BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20220131 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602018037909 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1504726 Country of ref document: AT Kind code of ref document: T Effective date: 20220815 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20220713 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602018037909 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: H01L0041113000 Ipc: H10N0030300000 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220713 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220713 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221114 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221013 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220713 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220713 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220713 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220713 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220713 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1504726 Country of ref document: AT Kind code of ref document: T Effective date: 20220713 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220713 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221113 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220713 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221014 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602018037909 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220713 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220713 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220713 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220713 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220713 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220713 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20220930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220713 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220713 |
|
26N | No opposition filed |
Effective date: 20230414 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220926 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220713 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220930 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220926 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220713 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220713 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220713 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220713 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20180926 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220713 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220713 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240814 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240820 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240917 Year of fee payment: 7 |