EP3671955B1 - Monopole wire-plate antenna for differential connection - Google Patents
Monopole wire-plate antenna for differential connection Download PDFInfo
- Publication number
- EP3671955B1 EP3671955B1 EP19219115.3A EP19219115A EP3671955B1 EP 3671955 B1 EP3671955 B1 EP 3671955B1 EP 19219115 A EP19219115 A EP 19219115A EP 3671955 B1 EP3671955 B1 EP 3671955B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- antenna
- supply loop
- power supply
- loop
- longitudinal ends
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005404 monopole Effects 0.000 title description 2
- 239000004020 conductor Substances 0.000 claims description 21
- 230000005284 excitation Effects 0.000 claims description 20
- 230000006978 adaptation Effects 0.000 description 13
- 239000000523 sample Substances 0.000 description 13
- 239000000758 substrate Substances 0.000 description 10
- 230000008901 benefit Effects 0.000 description 7
- 239000003989 dielectric material Substances 0.000 description 7
- 230000005672 electromagnetic field Effects 0.000 description 6
- 230000005855 radiation Effects 0.000 description 6
- 241001080024 Telles Species 0.000 description 5
- 230000010354 integration Effects 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 101100536354 Drosophila melanogaster tant gene Proteins 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- KJLLKLRVCJAFRY-UHFFFAOYSA-N mebutizide Chemical compound ClC1=C(S(N)(=O)=O)C=C2S(=O)(=O)NC(C(C)C(C)CC)NC2=C1 KJLLKLRVCJAFRY-UHFFFAOYSA-N 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- YFXPPSKYMBTNAV-UHFFFAOYSA-N bensultap Chemical compound C=1C=CC=CC=1S(=O)(=O)SCC(N(C)C)CSS(=O)(=O)C1=CC=CC=C1 YFXPPSKYMBTNAV-UHFFFAOYSA-N 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- ORQBXQOJMQIAOY-UHFFFAOYSA-N nobelium Chemical compound [No] ORQBXQOJMQIAOY-UHFFFAOYSA-N 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000000700 radioactive tracer Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/30—Resonant antennas with feed to end of elongated active element, e.g. unipole
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
- H01Q9/045—Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q19/00—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
- H01Q19/10—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
- H01Q19/12—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
- H01Q19/13—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source being a single radiating element, e.g. a dipole, a slot, a waveguide termination
- H01Q19/138—Parallel-plate feeds, e.g. pill-box, cheese aerials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
- H01Q9/0421—Substantially flat resonant element parallel to ground plane, e.g. patch antenna with a shorting wall or a shorting pin at one end of the element
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
- H01Q9/045—Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
- H01Q9/0457—Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means electromagnetically coupled to the feed line
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/16—Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
Definitions
- the technical field of the invention relates to monopolar wire-plate antennas. More particularly, the invention relates to a monopolar wire-plate antenna comprising a ground plane, a roof arranged at a distance from the ground plane, and at least one electrically conductive element electrically connecting the ground plane to the roof.
- a monopolar wire-plate antenna 100 of the type in this article by Ch. Delumbled et al., comprises a ground plane 101, a planar electrically conductive element 102, called roof, one or more electrically conductive elements 103a, 103b, called ground wire(s), connecting the roof 102 to the ground plane 101 and optionally a dielectric substrate 104 on which the roof 102 can be printed.
- the antenna 100 comprises a coaxial feed probe 105 having a central core 106a passing through the ground plane 101, without electrical contact with it. ci, and extending to the roof 102 so as to establish an electrical connection therewith.
- the core 106a is also successively surrounded by a sheath 106b of dielectric material 106b, then a metal tube 106c electrically connected to the ground plane, the sheath 106b of dielectric material ensuring electrical insulation between the core 106a and the metal tube 106c.
- Such a coaxial feed probe 105 forms a coaxial waveguide in which a quasi-transverse electric magnetic (TEM) mode is established to guide and propagate the wave in the waveguide.
- This type of antenna 100 makes it possible to emit an electromagnetic field, also called an electromagnetic wave, with high efficiency for frequencies located below the TM nm cavity resonance modes (for “Transverse Magnetic” of indices n and m) classic for this antenna geometry.
- resonance of classical cavity we mean the particular distribution of an electromagnetic field resulting from the resolution of Maxwell's equations with the boundary conditions imposed by the topology of the antenna.
- this monopolar wire-plate antenna can be fed asymmetrically from a suitable radio frequency transmitter having an asymmetrical connection (for example a microstrip line or a coaxial connector).
- Such an antenna 100 has the advantage of having a small footprint, it is therefore particularly suitable for being associated with components from microelectronics, particularly within a mobile device.
- a disadvantage linked to this type of antenna is that its technological integration in a small volume may imply that the radio frequency transmitter connected to the antenna has a differential connection instead of being asymmetrical.
- the differential connection transmitter makes it possible to generate two signals of equal amplitude and in phase opposition: the transmitter then forms a so-called “balanced” power source for the antenna.
- balun also called balun
- BALanced for balanced, or balanced, in French
- UNbalanced for unbalanced, or not balanced, in French
- a disadvantage of this adaptation of the differential connection is that it increases the bulk of the radio frequency front ends, implying the addition of additional components to be assembled which are generally not integrable on a chip, this results in radio frequency losses.
- there is a need to develop a solution making it possible to power an antenna with a roof, in particular capacitive, and with a ground plane electrically connected to each other without having to resort to the use of a balun when the antenna is intended to be connected to a transmitter with differential connection.
- a monopolar wire-plate antenna comprising a ground plane, a first radiating element in the form of a capacitive roof, and a second radiating element in the form of a conductive wire connecting the capacitive roof to the ground plane.
- This antenna also includes a cable, or coaxial feed probe, whose central core is connected to the capacitive roof.
- the power source for the coaxial power probe is a differentially connected radio frequency transmitter, this again requires the use of a balun.
- the aim of the invention is to enable power supply of a monopolar wire-plate antenna without requiring the presence of a balun.
- the invention relates to a monopolar wire-plate antenna, operating at a wavelength denoted ⁇ g, and comprising a ground plane, a roof arranged at a distance from the ground plane, and having strictly smaller dimensions at ⁇ g/4, at least one electrically conductive element electrically connecting the ground plane to the roof, this antenna comprising a feed loop arranged substantially orthogonal to the ground plane, said feed loop being open in such a way that it comprises two opposite longitudinal ends arranged so as to be connected to a differential connection.
- the antenna With such a power loop, it is possible to connect the antenna to a transmitter with differential connection without having to carry out an adaptation of the differential connection via a balun between the transmitter and the power loop.
- the power loop allows, during operation of the monopolar wire-plate antenna powered by the transmitter with differential connection when transmitting a signal or by an electromagnetic wave propagating in the environment of the antenna when of reception of a signal, to impose a distribution of the electromagnetic field in an appropriate manner between the ground plane and the roof to allow the monopolar wire-plate antenna to present a desired impedance and, where appropriate, to emit a satisfactory electromagnetic wave.
- the power supply/excitation of the antenna by the power loop makes it possible to obtain a symmetrical system which results in the reduction of the propagation of electric currents on the ground plane of the antenna, thus limiting the influence of the close context of the antenna, such as for example the influence of a person's hand holding a device equipped with the antenna.
- the invention also relates to a radio frequency device comprising a monopolar wire-plate antenna as described and a radio frequency transmitter with differential connection connected to the power supply loop.
- the differential connection of the radio frequency transmitter comprises first and second connection terminals
- the antenna comprises a balanced waveguide, the balanced waveguide comprising first and second electrical conductors
- the first electrical conductor is connected, on the one hand, to one of the longitudinal ends of the power loop and, on the other hand, to the first connection terminal
- the second electrical conductor is connected, on the one hand, to the other of the longitudinal ends of the power loop and, on the other hand, to the second connection terminal.
- the operating frequency of the monopolar wire-plate antenna corresponds to the frequency at which the monopolar wire-plate antenna emits, or receives, an electromagnetic wave, in particular a radio wave, also called where appropriate a transmitted signal. or signal received/captured. More generally, to talk about this electromagnetic wave, reference is made to the electromagnetic wave to be processed (whether in reception or transmission) at the operating frequency of the monopolar wire-plate antenna.
- the monopolar wire-plate antenna is configured to transmit and/or receive a corresponding electromagnetic wave.
- an operating wavelength of the antenna corresponds to the spatial period of the electromagnetic wave to be processed by the antenna propagating in a vacuum or in the air when the monopolar wire-plate antenna includes such a propagation medium.
- ⁇ 0 is associated with the propagation of the electromagnetic wave in a vacuum or in air.
- the propagation medium of the monopolar wire-plate antenna corresponds to an emission and/or reception medium of the electromagnetic wave to be treated.
- the propagation medium is, where applicable, the medium from which the antenna picks up the electromagnetic wave to be processed or to which the antenna transmits the electromagnetic wave to be processed.
- the wave electromagnetic to be treated propagates in a propagation medium of the monopolar wire-plate antenna (for example air, vacuum, a dielectric material, etc.) in contact with one or more radiating parts of the antenna, and the operating wavelength of the antenna (i.e. the wavelength associated with the propagation of the electromagnetic wave to be processed at the operating frequency of the antenna) is then denoted ⁇ g : we also speak of guided wavelength.
- the monopolar wire-plate antenna is said to be powered/excited, it is at the operating wavelength of the antenna.
- the monopolar wire-plate antenna is said to be impedance matched when it has a reflection coefficient strictly lower than a given level (typically -9.54 dB for communication terminals, and -15 dB for example for base stations ).
- the invention relates to a monopolar wire-plate antenna 100, also simply called antenna 100, comprising a ground plane 101 (in particular planar), a roof 102 (in particular planar) arranged at a distance from the ground plane 101, and at minus one electrically conductive element 103a, 103b electrically connecting the ground plane 101 to the roof 102.
- a monopolar wire-plate antenna 100 also simply called antenna 100, comprising a ground plane 101 (in particular planar), a roof 102 (in particular planar) arranged at a distance from the ground plane 101, and at minus one electrically conductive element 103a, 103b electrically connecting the ground plane 101 to the roof 102.
- two electrically conductive elements 103a, 103b are shown as an example: the number of these electrically conductive elements 103a, 103b can be higher.
- Each electrically conductive element 103a, 103b electrically connecting the ground plane 101 to the roof 102 is also called a short-circuit element between the roof 102 and the ground plane 101, or ground wire.
- Each electrically conductive element 103a, 103b forms in particular a radiating part of the antenna 100.
- the roof 102 is electrically conductive, and is also called a planar element, or plate, electrically conductive.
- the ground plane 101 is electrically conductive and preferably adopts a planar shape.
- the ground plane 101, the roof 102 and each electrically conductive element 103a, 103b can each be, in a non-limiting manner, made of copper, aluminum or steel.
- this antenna 100 includes a feed loop 107, in particular called “antenna 100 feed loop”.
- the power loop 107 is open so that it has two opposite longitudinal ends 108, 109 arranged so as to be connected to a differential connection.
- the differential connection is in particular that of a radio frequency transmitter 200 ( Figure 6 ).
- the power supply loop 107 is arranged substantially orthogonal to the ground plane 101. Thanks to this power loop 107, there is no longer any need to use a balun or other circuit carrying out an asymmetric line transformation in symmetrical line (or vice versa) between the radio frequency transmitter and the antenna 100.
- two opposite longitudinal ends 108, 109 of the power supply loop 107 and arranged so as to be connected to a differential connection we mean preferentially that the power supply loop 107 can be directly connected to terminals 201, 202 of the transmitter 200 ( Figure 6 ), or via a differential waveguide 110 as will be described subsequently.
- the electromagnetic wave generated by the radio frequency transmitter can power the antenna 100 via this power loop 107 arranged under the roof 102 in order to emit this electromagnetic wave as signal.
- the antenna 100 When the antenna 100 is used to receive a signal, the antenna 100 picks up the signal (the electromagnetic wave) from free space, this signal feeding the feed loop 107 of the antenna 100 in a manner adapted to transmit this signal to the radio frequency transmitter.
- the signal the electromagnetic wave
- the feed loop 107 can be arranged between the roof 102 and the ground plane 101, this has the advantage of satisfactory integration, and the advantage of reducing the overall size of the antenna 100 by integrating the loop power supply 107 in a separation space between the roof 102 and the ground plane 101.
- substantially orthogonal is understood in particular to be orthogonal or orthogonal to plus or minus ten degrees.
- substantially orthogonal can be replaced by “orthogonal”.
- substantially parallel it is understood in particular parallel or parallel to plus or minus ten degrees.
- substantially parallel can be replaced by “parallel”.
- power supply loop 107 arranged substantially orthogonally relative to the ground plane 101
- the power loop 107 extends along a profile included, or capable of being projected orthogonally, in a plane substantially orthogonal to the ground plane 101.
- the profile of the power supply loop 107 can travel, according to the length of the power loop 107, within a plane substantially orthogonal to the ground plane 101.
- the profile of the supply loop 107 is rectangular in a plane substantially orthogonal to the ground plane 101 and in particular to the roof 102.
- the supply loop 107 can be placed in a plane substantially orthogonal to the plane mass 101.
- the invention also relates to a radio frequency device 1000, in particular as illustrated by way of example in Figure 6 , comprising the antenna 100 as described and the radio frequency transmitter 200 with differential connection connected to the power loop 107, in particular to the power loop 107 of the antenna of the type figures 2 And 3 (as shown in Figure 6 ) or the antenna of the type illustrated in figures 4 and 5 .
- the radio frequency transmitter 200 is an electronic transmission-reception component whose coupling to the antenna 100 (that is to say the connection to the power loop 107) makes it possible to transmit or receive the electromagnetic wave corresponding, or signal, by the antenna 100.
- the radio frequency transmitter can in particular power the antenna through a discrete port, for example 50 ohms over its entire operating band.
- the radio frequency transmitter 200 comprises two terminals 201, 202 from which the electromagnetic wave, making it possible to supply the antenna 100 in intended to transmit the signal is transmitted in a balanced mode.
- the radio frequency transmitter 200 can send to its two terminals 201, 202 respectively two signals of equal amplitude and in phase opposition.
- the radio frequency transmitter 200 of the Figure 6 and more particularly the differential connection, comprises a first connection terminal 201 denoted “+”, and a second connection terminal 202 denoted “-”.
- the electric field is oriented according to the Z axis, that is to say substantially orthogonal to the ground plane 101.
- the power supply loop 107 is orthogonal to the ground plane 101.
- the power loop 107 has parts substantially orthogonal to the ground plane 101 in which currents can propagate.
- the supply loop 107 preferably comprises two regions Z1, Z2 (represented dotted figures 3, 5 And 6 ) excitation of the antenna 100 formed by parts of the supply loop 107 substantially orthogonal to the ground plane 101.
- the currents must be in phase, that is to say say oriented in the same direction, in particular substantially parallel to the Z axis, and these currents are of close amplitudes, when the antenna 100 is powered by the radio frequency transmitter 200 or by the signal that it picks up.
- the supply loop 107 is notably configured so that it presents, during the operation of the antenna 100 (that is to say when the antenna 100 transmits or receives a signal), two regions Z1, Z2 for excitation of the antenna 100 in which the currents are in phase and flow substantially orthogonal to the ground plane 101.
- the currents which flow in the feed loop 107, and in particular in parts of the feed loop 107 extending substantially orthogonal to each other. to the ground plane 101 are in phase and preferably of close amplitudes when this antenna 100 transmits or picks up a signal.
- the power supply loop 107 advantageously comprises two parts substantially orthogonal to the ground plane 101: this allowing the power supply loop 107 to take advantage of the currents substantially orthogonal to the ground plane 101 and in phase to excite the antenna 100 in a suitable manner during its operation.
- the power supply loop 107 comprises (see in particular the figures 2 to 5 ) a first part 1071 distal to the ground plane 101, a second part 1072 proximal to the ground plane 101, a third part 1073 connecting the first and second parts 1071, 1072 (in particular connecting two longitudinal ends of the first and second parts 1071, 1072 ).
- the opposite longitudinal ends 108, 109 of the supply loop 107 are then arranged opposite the third part 1073, that is to say on one side of the supply loop 107 opposite the third part 1073.
- Such a power supply loop 107 is particularly suitable for obtaining the vertical currents in phase sought to properly excite the electromagnetic field under the roof 102 of the antenna 100 and in particular between the roof 102 and the ground plane 101 when the antenna 100 transmits or receives a signal.
- the first and second parts 1071, 1072 extend along their length substantially parallel to the ground plane 101
- the third part 1073 extends along its length substantially orthogonal to the ground plane 101.
- the power loop 107 may include a fourth part 1074 ( figures 2 to 5 ) connected to at least one of the first and second parts 1071, 1072, this fourth part 1074 being located on the side of the supply loop 107 where its longitudinal ends 108, 109 are arranged.
- the first, third, second and fourth parts 1071, 1073, 1072, 1074 are arranged successively so as to delimit the contour of the supply loop 107.
- the currents substantially orthogonal to the ground plane 101 referred to above circulate in particular in the third and fourth parts 1073, 1074.
- the fourth part 1074 is, in particular along its length, substantially orthogonal to the ground plane 101.
- the arrangement of the opposite longitudinal ends 108, 109 of the supply loop 107 opposite its third part 1073 makes it possible to promote, during the operation of the antenna 100, the obtaining of currents circulating in phase along the Z axis, that is to say in the third and fourth parts 1073, 1074 substantially orthogonal to the ground plane 101 .
- the power supply loop 107 can be such that it comprises the fourth part 1074 comprising a first portion 1074a extending from the first part 1071 of the power loop 107 in particular towards the second part 1072 of the power loop 107.
- the first portion 1074a comprises one of the longitudinal ends 108 of the supply loop 107.
- the fourth part 1074 of the supply loop 107 comprises a second portion 1074b extending from the second part 1072 of the supply loop 107 in particular towards the first part 1071 of the supply loop 107, this second portion 1074b comprising the other of the longitudinal ends 109 of the supply loop 107 ( figures 2 to 5 ).
- the first and second portions 1074a, 1074b can have identical dimensions so that the excitation of the power loop 107 by the transmitter 200 can be done in the middle of the fourth part 1074, or alternatively dimensions different.
- the power supply loop 107 has horizontal symmetry favoring the balance of the currents over the entire perimeter of the power loop 107 and therefore in the third and fourth parts 1073, 1074 substantially orthogonal to the ground plane 101, this being advantageous for proper operation of the antenna 100.
- the fourth part 1074 extends from the first part 1071 of the supply loop 107 in particular towards the second part 1072 of the supply loop 107, and the fourth part 1074 comprises one of the longitudinal ends 108 of the loop supply loop 107.
- the second part 1072 of the supply loop 107 comprises the other of the longitudinal ends 109 of the supply loop 107.
- the fourth part 1074 extends from the second part 1072 in particular towards the first part 1071, and the fourth part 1074 comprises one of the longitudinal ends 109 of the supply loop 107.
- the first part 1071 comprises the other of the longitudinal ends 108 of the supply loop 107.
- the second and third cases are functional alternatives to the first case which is preferred.
- the excitation regions Z1, Z2 of the antenna 100 are two in number and are advantageously formed by the third and fourth parts 1073, 1074.
- the roof 102 is in particular a so-called “capacitive” roof considered to be small in relation to the operating wavelength of the antenna 100, that is to say that the dimensions of the roof 102 are in particular strictly less than ⁇ g /4.
- the radio frequency transmitter 200 can be connected directly to the power loop 107, or can be connected to the power loop via a balanced waveguide 110, also called differential waveguide.
- This balanced waveguide 110 belongs to the antenna 100.
- the waveguide 110 is shown comprising first and second electrical conductors 111, 112, for example adopting the form of electrically conductive tracks.
- the first electrical conductor 111 is connected to one of the longitudinal ends 108 of the power loop 107 and the second electrical conductor 112 is connected to the other of the longitudinal ends 109 of the power loop 107.
- the guide waves is called "balanced" because it allows, thanks to its electrical conductors 111, 112, where appropriate, the propagation of the electromagnetic wave supplying the supply loop 107 generated by the radiofrequency transmitter 200 up to the feed loop 107 or the propagation of the electromagnetic wave captured (that is to say the signal picked up) by the antenna 100 from the feed loop 107 to the radio frequency transmitter 200.
- This has the advantage to be able to adapt the distance between the antenna 100 and the radio frequency transmitter 200.
- These first and second electrical conductors 111, 112 make it possible to respectively propagate two signals of equal amplitude and in phase opposition from which, where appropriate, results the propagation of the electromagnetic wave feeding the antenna 100 from the radio frequency transmitter 200 or the electromagnetic wave captured by the antenna 100.
- the first electrical conductor 111 is also connected to the first connection terminal 201, and the second electrical conductor 112 is also connected to the second connection terminal 202.
- the balanced waveguide 110 adopts a symmetrical geometry to ensure the proper propagation of the electromagnetic supply wave.
- the balanced waveguide 110 can take the form of coplanar microstrip lines, twin lines, or a bifilar line.
- the waveguide 110 is not necessary if the power supply loop 107 can be directly connected to the radio frequency transmitter 200.
- the two opposite longitudinal ends 108, 109 of the loop power supply 107 can be connected to a differential connection of a differential waveguiding device, this differential device which may be the balanced waveguide 110 or the connection terminals 201, 202 of the radio frequency transmitter 200.
- part of the supply loop 107 can be formed by a portion of the roof 102, this is particularly illustrated in Figure 9 where the third and fourth parts 1073, 1074 are in direct contact with the roof 102 which delimits the first part of the supply loop 107.
- the supply loop 107 can be in contact with the roof 102 ( figures 3, 5 , 7 And 8 ) or can be located at a distance from the roof 102 ( Figure 10 ).
- a part, in particular the first part 1071 described above, is formed by a portion of the roof 102, or is in contact with the roof 102, makes it possible to limit the bulk of the antenna 100 along the Z axis.
- An additional advantage of the power loop 107, part of which is delimited by the roof 102, is that this reduces the complexity of the manufacturing process of the antenna 100 since there will be one less level of metallization to deposit.
- the perimeter, also called length, of the feed loop 107 has an impact on the impedance matching of the antenna 100.
- the opposite longitudinal ends 108, 109 of the feed loop 107 are located equidistant, for example at 0.25 mm, from the middle of the fourth part 1074 mentioned above along the Z axis.
- the reflection coefficient (in dB) of the antenna 100 is a function of the frequency, normalized to 50 ⁇ , for these three cases of study of the antenna 100, it is possible to note that the frequency of operation of the antenna 100 for which the best impedance adaptation of the antenna 100 is obtained decreases with the increase in the perimeter P of the feed loop 107.
- the adaptation of the The antenna 100 operates when the perimeter of the loop is of optimal dimension close to ⁇ 0 /3.6, where ⁇ 0 is the operating wavelength of the antenna 100. With the lengthening of the loop power supply 107, the phasing of the currents in the excitation regions Z1, Z2 can thus take place at lower frequencies.
- the feed loop 107 preferably has a length, between its two opposite longitudinal ends 108, 109, between ⁇ g /3.7 and ⁇ g /3.5 with ⁇ g the operating wavelength of the antenna 100 in the medium of propagation of the antenna 100.
- the propagation medium of the antenna 100 is the medium in contact with each radiating element of the antenna 100, for example the medium in contact with each electrically conductive element 103a, 103b. This propagation medium can be air or a dielectric material.
- the matching of the antenna 100 becomes operates as soon as the perimeter of the feed loop 107 is of optimal dimension close to ⁇ 0 /2, where ⁇ 0 is the operating wavelength of the antenna 100 when the propagation medium of the antenna is the air. Furthermore, the balance of the excitation of the antenna 100, in the excitation regions Z1, Z2, in amplitude and in phase on the current density is lost when the supply loop 107 has too large a perimeter. or too small compared to its optimal dimension. Thus, at 6.5 GHz, for the antenna 100 having a loop with a perimeter P equal to 16.5 mm, the currents in the excitation regions Z1, Z2 of the antenna 100 are out of phase.
- the currents are in phase and of the same amplitude in the regions Z1, Z2 excitation of the antenna 100.
- the antenna 100 having a feed loop 107 of perimeter P equal to 16.5 mm and with the increase in the operating frequency of the antenna 100 it is found that the phasing of the currents improves in the excitation regions Z1, Z2.
- the antenna 100 comprising a feed loop 107 of perimeter P equal to 18.5 mm the balance in the excitation regions Z1, Z2 of the antenna 100 is lost in amplitude and in phase on current density with increasing frequency.
- the feed loop 107 preferably has a length, between its two opposite longitudinal ends 108, 109, between ⁇ g /3 and ⁇ g/ 1.6 with ⁇ g the operating wavelength of the antenna 100, particularly in the propagation medium of the antenna 100.
- the width of the feed loop 107 in particular measured along the Y axis, can also be adapted according to the desired characteristics of the antenna 100.
- the length of the feed loop 107 for the narrow band antenna 100 described, by setting the length of the feed loop 107 to 15 mm while varying its width between 0.8 mm and 1.4 mm in a step of 0.2 mm, it has been noted that increasing the width of the feed loop 107 results in an adaptation of the antenna 100 for lower operating frequencies. This is synonymous with an elongation of the loop equivalent to the supply loop 107 linked to the increase in its width.
- a width of the feed loop 107 of approximately 0.5 mm is optimal for good adaptation (strictly less than -10 dB) according to a normalization impedance of 100 ohms for an antenna operating frequency between 6.3 GHz and 9 GHz.
- Such a monopolar wire-plate antenna has an industrial application in the field of telecommunications where such an antenna can be manufactured and arranged within a radio frequency device as described above.
- the radio frequency device described can be integrated into any type of object communicating.
- the radio frequency device can be integrated into a smartphone worn on a person's belt to transmit via the antenna 100 a video stream to interactive glasses using an ultra-wideband link between 7 GHz and 9 GHz.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Details Of Aerials (AREA)
- Support Of Aerials (AREA)
Description
Le domaine technique de l'invention concerne les antennes fil-plaque monopolaires. Plus particulièrement, l'invention est relative à une antenne fil-plaque monopolaire comportant un plan de masse, un toit agencé à distance du plan de masse, et au moins un élément électriquement conducteur reliant électriquement le plan de masse au toit.The technical field of the invention relates to monopolar wire-plate antennas. More particularly, the invention relates to a monopolar wire-plate antenna comprising a ground plane, a roof arranged at a distance from the ground plane, and at least one electrically conductive element electrically connecting the ground plane to the roof.
L'article
Une telle antenne 100 présente l'avantage d'avoir un faible encombrement, elle est donc tout particulièrement adaptée à être associé à des composants issus de la microélectronique, notamment au sein d'un appareil mobile. Un inconvénient lié à ce type d'antenne est que son intégration technologique dans un petit volume peut impliquer que le transmetteur radiofréquence connecté à l'antenne soit à connexion différentielle au lieu d'être asymétrique. Le transmetteur à connexion différentielle permet de générer deux signaux d'amplitude égale et en opposition de phase : le transmetteur forme alors une source d'alimentation dite « équilibrée » de l'antenne. Or, du fait de l'utilisation de la sonde d'alimentation coaxiale 105, il est nécessaire de transformer l'alimentation équilibrée en une alimentation non-équilibrée pour alimenter l'antenne fil-plaque monopolaire en utilisant cette sonde d'alimentation coaxiale 105. En ce sens, il est classique d'associer le transmetteur à connexion différentielle à un balun, aussi appelé symétriseur, pour réaliser la transition entre une structure de guide d'ondes symétrique connecté au transmetteur radiofréquence et une topologie asymétrique qu'est la sonde coaxiale 105. Autrement dit, le balun permet d'adapter la connexion différentielle du transmetteur radiofréquence pour qu'elle soit compatible avec la sonde coaxiale d'alimentation. Le balun, bien connu de l'homme du métier vient des mots anglais BALanced (pour équilibré, ou balancé, en langue française) et UNbalanced (pour déséquilibré, ou non balancé, en langue française). Un inconvénient de cette adaptation de la connexion différentielle est qu'elle augmente l'encombrement des frontaux radiofréquences, impliquant l'ajout de composants supplémentaires à assembler généralement non intégrables sur une puce, il en résulte des pertes radiofréquences. En ce sens, il existe un besoin de développer une solution permettant d'alimenter une antenne à toit, notamment capacitif, et à plan de masse reliés électriquement entre eux sans avoir recours à l'utilisation d'un balun lorsque l'antenne est destinée à être reliée à un transmetteur à connexion différentielle.Such an
Il est connu de la demande de brevet
Le document
Le document
Les documents
L'invention a pour but de permettre une alimentation d'une antenne fil-plaque monopolaire ne nécessitant pas la présence d'un balun.The aim of the invention is to enable power supply of a monopolar wire-plate antenna without requiring the presence of a balun.
A cet effet, l'invention est relative à une antenne fil-plaque monopolaire, fonctionnant à une longueur d'onde notée λg, et comportant un plan de masse, un toit agencé à distance du plan de masse, et présentant des dimensions strictement inférieures à λg/4, au moins un élément électriquement conducteur reliant électriquement le plan de masse au toit, cette antenne comprenant une boucle d'alimentation agencée de manière sensiblement orthogonale par rapport au plan de masse, ladite boucle d'alimentation étant ouverte de telle sorte qu'elle comporte deux extrémités longitudinales opposées agencées de sorte à être reliées à une connexion différentielle.For this purpose, the invention relates to a monopolar wire-plate antenna, operating at a wavelength denoted λg, and comprising a ground plane, a roof arranged at a distance from the ground plane, and having strictly smaller dimensions at λg/4, at least one electrically conductive element electrically connecting the ground plane to the roof, this antenna comprising a feed loop arranged substantially orthogonal to the ground plane, said feed loop being open in such a way that it comprises two opposite longitudinal ends arranged so as to be connected to a differential connection.
Ainsi, avec une telle boucle d'alimentation, il est possible de relier l'antenne à un transmetteur à connexion différentielle sans avoir à réaliser une adaptation de la connexion différentielle via un balun entre le transmetteur et la boucle d'alimentation. La boucle d'alimentation permet, lors du fonctionnement de l'antenne fil-plaque monopolaire alimentée par le transmetteur à connexion différentielle lors de l'émission d'un signal ou par une onde électromagnétique se propageant dans l'environnement de l'antenne lors de la réception d'un signal, d'imposer une répartition du champ électromagnétique de manière adaptée entre le plan de masse et le toit pour permettre à l'antenne fil-plaque monopolaire de présenter une impédance souhaitée et, le cas échéant, d'émettre une onde électromagnétique satisfaisante. Par ailleurs, l'alimentation/excitation de l'antenne par la boucle d'alimentation permet l'obtention d'un système symétrique d'où il résulte la réduction de la propagation des courants électriques sur le plan de masse de l'antenne, limitant ainsi l'influence du proche contexte de l'antenne, comme par exemple l'influence d'une main d'une personne tenant un appareil équipé de l'antenne.Thus, with such a power loop, it is possible to connect the antenna to a transmitter with differential connection without having to carry out an adaptation of the differential connection via a balun between the transmitter and the power loop. The power loop allows, during operation of the monopolar wire-plate antenna powered by the transmitter with differential connection when transmitting a signal or by an electromagnetic wave propagating in the environment of the antenna when of reception of a signal, to impose a distribution of the electromagnetic field in an appropriate manner between the ground plane and the roof to allow the monopolar wire-plate antenna to present a desired impedance and, where appropriate, to emit a satisfactory electromagnetic wave. Furthermore, the power supply/excitation of the antenna by the power loop makes it possible to obtain a symmetrical system which results in the reduction of the propagation of electric currents on the ground plane of the antenna, thus limiting the influence of the close context of the antenna, such as for example the influence of a person's hand holding a device equipped with the antenna.
L'antenne fil-plaque monopolaire peut comporter une ou plusieurs des caractéristiques suivantes :
- l'antenne comporte un guide d'ondes équilibré, le guide d'ondes équilibré comportant un premier conducteur électrique et un deuxième conducteur électrique, le premier conducteur électrique étant connecté à l'une des extrémités longitudinales de la boucle d'alimentation et le deuxième conducteur électrique étant connecté à l'autre des extrémités longitudinales de la boucle d'alimentation ;
- la boucle d'alimentation comporte une première partie distale du plan de masse, une deuxième partie proximale du plan de masse, une troisième partie reliant les première et deuxième parties, les extrémités longitudinales étant agencées à l'opposé de la troisième partie ;
- la boucle d'alimentation comporte une quatrième partie comportant : une première portion s'étendant depuis la première partie de la boucle d'alimentation, cette première portion comportant l'une des extrémités longitudinales de la boucle d'alimentation ; et une deuxième portion s'étendant depuis la deuxième partie de la boucle d'alimentation, cette deuxième portion comportant l'autre des extrémités longitudinales de la boucle d'alimentation ;
- la boucle d'alimentation comporte une quatrième partie s'étendant depuis la première partie et comportant l'une des extrémités longitudinales de la boucle d'alimentation, la deuxième partie comportant l'autre des extrémités longitudinales de la boucle d'alimentation ;
- la boucle d'alimentation comporte une quatrième partie s'étendant depuis la deuxième partie et comportant l'une des extrémités longitudinales de la boucle d'alimentation, la première partie comportant l'autre des extrémités longitudinales de la boucle d'alimentation ;
- une partie de la boucle d'alimentation est formée par une portion du toit, ou la boucle d'alimentation est située à distance du toit, ou la boucle d'alimentation est en contact avec le toit ;
- ladite boucle d'alimentation présente, lors du fonctionnement de l'antenne, deux régions d'excitation de l'antenne dans lesquelles les courants sont en phase et circulent sensiblement orthogonalement par rapport au plan de masse ;
- ladite antenne est une antenne à large bande passante pour laquelle la boucle d'alimentation présente une longueur, entre ses deux extrémités longitudinales opposées, comprise entre λg/3 et λg/1,6 avec λg la longueur d'onde de fonctionnement de l'antenne ;
- ladite antenne est une antenne à bande étroite pour laquelle la boucle d'alimentation présente une longueur, entre ses deux extrémités longitudinales opposées, comprise entre λg/3,7 et λg/3,5 avec λg la longueur d'onde de fonctionnement de l'antenne.
- the antenna comprises a balanced waveguide, the balanced waveguide comprising a first electrical conductor and a second electrical conductor, the first electrical conductor being connected to one of the longitudinal ends of the feed loop and the second electrical conductor being connected to the other of the longitudinal ends of the power loop;
- the power loop comprises a first distal part of the ground plane, a second proximal part of the ground plane, a third part connecting the first and second parts, the longitudinal ends being arranged opposite the third part;
- the supply loop comprises a fourth part comprising: a first portion extending from the first part of the supply loop, this first portion comprising one of the longitudinal ends of the supply loop; and a second portion extending from the second part of the supply loop, this second portion comprising the other of the longitudinal ends of the supply loop;
- the supply loop comprises a fourth part extending from the first part and comprising one of the longitudinal ends of the supply loop, the second part comprising the other of the longitudinal ends of the power loop;
- the supply loop comprises a fourth part extending from the second part and comprising one of the longitudinal ends of the supply loop, the first part comprising the other of the longitudinal ends of the supply loop;
- a part of the supply loop is formed by a portion of the roof, or the supply loop is located at a distance from the roof, or the supply loop is in contact with the roof;
- said feed loop presents, during operation of the antenna, two excitation regions of the antenna in which the currents are in phase and flow substantially orthogonal to the ground plane;
- said antenna is a wide bandwidth antenna for which the feed loop has a length, between its two opposite longitudinal ends, between λ g /3 and λ g /1.6 with λ g the operating wavelength of the antenna;
- said antenna is a narrow band antenna for which the feed loop has a length, between its two opposite longitudinal ends, between λ g /3.7 and λ g /3.5 with λ g the wavelength of operation of the antenna.
L'invention est aussi relative à un dispositif radiofréquence comportant une antenne fil-plaque monopolaire telle que décrite et un transmetteur radiofréquence à connexion différentielle reliée à la boucle d'alimentation.The invention also relates to a radio frequency device comprising a monopolar wire-plate antenna as described and a radio frequency transmitter with differential connection connected to the power supply loop.
De préférence, la connexion différentielle du transmetteur radiofréquence comporte des première et deuxième bornes de connexion, l'antenne comporte un guide d'ondes équilibré, le guide d'ondes équilibré comportant des premier et deuxième conducteurs électriques, le premier conducteur électrique est connecté, d'une part, à l'une des extrémités longitudinales de la boucle d'alimentation et, d'autre part, à la première borne de connexion, et le deuxième conducteur électrique est connecté, d'une part, à l'autre des extrémités longitudinales de la boucle d'alimentation et, d'autre part, à la deuxième borne de connexion.Preferably, the differential connection of the radio frequency transmitter comprises first and second connection terminals, the antenna comprises a balanced waveguide, the balanced waveguide comprising first and second electrical conductors, the first electrical conductor is connected, on the one hand, to one of the longitudinal ends of the power loop and, on the other hand, to the first connection terminal, and the second electrical conductor is connected, on the one hand, to the other of the longitudinal ends of the power loop and, on the other hand, to the second connection terminal.
L'invention sera mieux comprise à la lecture de la description détaillée qui va suivre de modes de réalisation particuliers, donnée uniquement à titre d'exemple non limitatif et faite en se référant aux dessins annexés et listés ci-dessous.
- La
figure 1 représente, en coupe, une antenne fil-plaque monopolaire selon l'art antérieur. - La
figure 2 illustre une vue en perspective d'une antenne fil-plaque monopolaire à bande étroite selon un mode de réalisation de l'invention. - La
figure 3 est une vue de côté de l'antenne de lafigure 2 . - La
figure 4 illustre une vue en perspective d'une antenne fil-plaque monopolaire à large bande selon un mode de réalisation de l'invention. - La
figure 5 est une vue de côté de l'antenne de lafigure 4 . - La
figure 6 illustre une vue de côté d'un dispositif radiofréquence comprenant une antenne fil-plaque monopolaire du type de lafigure 2 . - La
figure 7 illustre une vue de côté d'une réalisation particulière d'antenne fil-plaque monopolaire du type de lafigure 2 . - La
figure 8 illustre une vue de côté d'une réalisation particulière d'antenne fil-plaque monopolaire du type de lafigure 2 . - La
figure 9 illustre une vue de côté d'une réalisation particulière d'antenne fil-plaque monopolaire du type de lafigure 2 . - La
figure 10 illustre une vue de côté d'une réalisation particulière d'antenne fil-plaque monopolaire du type de lafigure 2 . - La
figure 11 illustre une vue de côté d'une antenne fil plaque monopolaire à large bande comportant un substrat de support multicouches. - La
figure 12 illustre une vue en perspective de lafigure 11 pour laquelle le substrat de support multicouches a été retiré. - La
figure 13 illustre l'évolution du coefficient de réflexion en dB de l'antenne de lafigure 12 en fonction de la fréquence de l'antenne en GHz. - La
figure 14 montre une courbe C2 de l'évolution du Gain maximum obtenu de l'antenne de lafigure 12 en dBi en fonction de la fréquence de l'antenne en GHz, et une courbe C1 de l'évolution de l'efficacité de rayonnement en % de l'antenne de lafigure 12 en fonction de la fréquence de l'antenne en GHz.
- There
figure 1 represents, in section, a monopolar wire-plate antenna according to the prior art. - There
figure 2 illustrates a perspective view of a narrow-band monopolar wire-plate antenna according to one embodiment of the invention. - There
Figure 3 is a side view of the antenna of thefigure 2 . - There
figure 4 illustrates a perspective view of a broadband monopolar wire-plate antenna according to one embodiment of the invention. - There
Figure 5 is a side view of the antenna of thefigure 4 . - There
Figure 6 illustrates a side view of a radio frequency device comprising a monopolar wire-plate antenna of the typefigure 2 . - There
Figure 7 illustrates a side view of a particular embodiment of a monopolar wire-plate antenna of the typefigure 2 . - There
figure 8 illustrates a side view of a particular embodiment of a monopolar wire-plate antenna of the typefigure 2 . - There
Figure 9 illustrates a side view of a particular embodiment of a monopolar wire-plate antenna of the typefigure 2 . - There
Figure 10 illustrates a side view of a particular embodiment of a monopolar wire-plate antenna of the typefigure 2 . - There
Figure 11 illustrates a side view of a broadband monopolar wire plate antenna having a multi-layer supporting substrate. - There
Figure 12 illustrates a perspective view of theFigure 11 for which the multilayer support substrate has been removed. - There
figure 13 illustrates the evolution of the reflection coefficient in dB of the antenna of theFigure 12 depending on the antenna frequency in GHz. - There
Figure 14 shows a C2 curve of the evolution of the maximum Gain obtained from the antenna of theFigure 12 in dBi depending on the frequency of the antenna in GHz, and a curve C1 of the evolution of the radiation efficiency in % of the antenna of theFigure 12 depending on the antenna frequency in GHz.
Dans ces figures, les mêmes références sont utilisées pour désigner les mêmes éléments.In these figures, the same references are used to designate the same elements.
Par ailleurs, les éléments représentés sur ces figures ne sont pas nécessairement représentés selon une échelle uniforme pour rendre les figures plus lisibles.Furthermore, the elements represented in these figures are not necessarily represented on a uniform scale to make the figures more readable.
Il est définit pour la suite un repère d'axes orthogonaux XYZ représenté en
Par la suite, la fréquence de fonctionnement de l'antenne fil-plaque monopolaire correspond à la fréquence à laquelle l'antenne fil-plaque monopolaire émet, ou reçoit, une onde électromagnétique, notamment une onde radioélectrique, aussi appelée le cas échéant signal émis ou signal reçu/capté. Plus généralement, pour parler de cette onde électromagnétique il est fait référence à l'onde électromagnétique à traiter (que cela soit en réception ou en émission) à la fréquence de fonctionnement de l'antenne fil-plaque monopolaire. Autrement dit, l'antenne fil-plaque monopolaire est configurée pour émettre et/ou recevoir une onde électromagnétique correspondante.Subsequently, the operating frequency of the monopolar wire-plate antenna corresponds to the frequency at which the monopolar wire-plate antenna emits, or receives, an electromagnetic wave, in particular a radio wave, also called where appropriate a transmitted signal. or signal received/captured. More generally, to talk about this electromagnetic wave, reference is made to the electromagnetic wave to be processed (whether in reception or transmission) at the operating frequency of the monopolar wire-plate antenna. In other words, the monopolar wire-plate antenna is configured to transmit and/or receive a corresponding electromagnetic wave.
Par ailleurs, une longueur d'onde de fonctionnement de l'antenne, notée λ0 à la fréquence de fonctionnement de l'antenne, correspond à la période spatiale de l'onde électromagnétique à traiter par l'antenne se propageant dans le vide ou dans l'air lorsque l'antenne fil-plaque monopolaire comporte un tel milieu de propagation. λ0 est associée à la propagation de l'onde électromagnétique dans le vide ou dans l'air. Le milieu de propagation de l'antenne fil-plaque monopolaire correspond à un milieu d'émission et/ou de réception de l'onde électromagnétique à traiter. Ainsi, le milieu de propagation est, le cas échéant, le milieu depuis lequel l'antenne capte l'onde électromagnétique à traiter ou vers lequel l'antenne émet l'onde électromagnétique à traiter. Plus généralement, on dit que l'onde électromagnétique à traiter se propage dans un milieu de propagation de l'antenne fil-plaque monopolaire (par exemple l'air, le vide, un matériau diélectrique, etc.) en contact avec une ou plusieurs parties rayonnantes de l'antenne, et la longueur d'onde de fonctionnement de l'antenne (c'est-à-dire la longueur d'onde associée à la propagation de l'onde électromagnétique à traiter à la fréquence de fonctionnement de l'antenne) est alors notée λg : on parle aussi de longueur d'onde guidée. Par la suite, lorsque l'antenne fil-plaque monopolaire est dite alimentée/excitée, elle l'est à la longueur d'onde de fonctionnement de l'antenne.Furthermore, an operating wavelength of the antenna, denoted λ 0 at the operating frequency of the antenna, corresponds to the spatial period of the electromagnetic wave to be processed by the antenna propagating in a vacuum or in the air when the monopolar wire-plate antenna includes such a propagation medium. λ 0 is associated with the propagation of the electromagnetic wave in a vacuum or in air. The propagation medium of the monopolar wire-plate antenna corresponds to an emission and/or reception medium of the electromagnetic wave to be treated. Thus, the propagation medium is, where applicable, the medium from which the antenna picks up the electromagnetic wave to be processed or to which the antenna transmits the electromagnetic wave to be processed. More generally, we say that the wave electromagnetic to be treated propagates in a propagation medium of the monopolar wire-plate antenna (for example air, vacuum, a dielectric material, etc.) in contact with one or more radiating parts of the antenna, and the operating wavelength of the antenna (i.e. the wavelength associated with the propagation of the electromagnetic wave to be processed at the operating frequency of the antenna) is then denoted λ g : we also speak of guided wavelength. Subsequently, when the monopolar wire-plate antenna is said to be powered/excited, it is at the operating wavelength of the antenna.
L'antenne fil-plaque monopolaire est dite adaptée en impédance lorsqu'elle présente un coefficient de réflexion strictement inférieur à un niveau donné (typiquement -9,54 dB pour les terminaux de communication, et -15 dB par exemple pour les stations de base).The monopolar wire-plate antenna is said to be impedance matched when it has a reflection coefficient strictly lower than a given level (typically -9.54 dB for communication terminals, and -15 dB for example for base stations ).
Comme illustré selon différentes réalisations en
La boucle d'alimentation 107 est ouverte de telle sorte qu'elle comporte deux extrémités longitudinales 108, 109 opposées agencées de sorte à être reliées à une connexion différentielle. La connexion différentielle est notamment celle d'un transmetteur radiofréquence 200 (
Par « deux extrémités longitudinales 108, 109 opposées de la boucle d'alimentation 107 et agencées de sorte à être reliées à une connexion différentielle », on entend préférentiellement que la boucle d'alimentation 107 peut être directement reliée à des bornes 201, 202 du transmetteur 200 (
Lorsque l'antenne 100 est utilisée pour émettre un signal, l'onde électromagnétique générée par le transmetteur radiofréquence peut alimenter l'antenne 100 via cette boucle d'alimentation 107 agencée sous le toit 102 en vue d'émettre cette onde électromagnétique en tant que signal.When the
Lorsque l'antenne 100 est utilisée pour réceptionner un signal, l'antenne 100 capte le signal (l'onde électromagnétique) de l'espace libre, ce signal alimentant la boucle d'alimentation 107 de l'antenne 100 de manière adaptée pour transmettre ce signal au transmetteur radiofréquence.When the
La boucle d'alimentation 107 peut être agencée entre le toit 102 et le plan de masse 101, ceci présente l'avantage d'une intégration satisfaisante, et l'avantage de diminuer l'encombrement global de l'antenne 100 en intégrant la boucle d'alimentation 107 dans un espace de séparation entre le toit 102 et le plan de masse 101.The
Une telle boucle d'alimentation 107 est notamment agencée de sorte que, lorsque l'antenne 100 est alimentée par le transmetteur radiofréquence 200 ou par le signal capté par l'antenne 100 :
- des courants s'établissent dans la boucle d'alimentation 107 sensiblement orthogonalement au plan de masse 101 et
- ces courants sont majoritaires et en phase dans deux parties opposées de la boucle d'alimentation 107 s'étendant entre le plan de masse 101 et le toit 102, notamment sensiblement orthogonalement au plan de masse 101.
- currents are established in the
supply loop 107 substantially orthogonal to theground plane 101 and - these currents are in the majority and in phase in two opposite parts of the
supply loop 107 extending between theground plane 101 and theroof 102, in particular substantially orthogonal to theground plane 101.
Dans la présente description par « sensiblement orthogonal », il est notamment entendu orthogonal ou orthogonal à plus ou moins dix degrés. De préférence, « sensiblement orthogonal » peut être remplacé par « orthogonal ».In the present description, the term “substantially orthogonal” is understood in particular to be orthogonal or orthogonal to plus or minus ten degrees. Preferably, “substantially orthogonal” can be replaced by “orthogonal”.
Dans la présente description, par sensiblement parallèle, il est notamment entendu parallèle ou parallèle à plus ou moins dix degrés. De préférence, « sensiblement parallèle » peut être remplacé par « parallèle ».In the present description, by substantially parallel, it is understood in particular parallel or parallel to plus or minus ten degrees. Preferably, “substantially parallel” can be replaced by “parallel”.
Par « boucle d'alimentation 107 agencée de manière sensiblement orthogonale par rapport au plan de masse 101 », il est notamment entendu que la boucle d'alimentation 107 s'étend selon un profil inclus, ou pouvant être projeté orthogonalement, dans un plan sensiblement orthogonal au plan de masse 101. Selon une autre formulation, le profil de la boucle d'alimentation 107 peut cheminer, selon la longueur de la boucle d'alimentation 107, au sein d'un plan sensiblement orthogonal au plan de masse 101. Notamment, le profil de la boucle d'alimentation 107 est rectangulaire dans un plan sensiblement orthogonal au plan de masse 101 et notamment au toit 102. Selon encore une autre formulation, la boucle d'alimentation 107 peut être placée dans un plan sensiblement orthogonal au plan de masse 101.By "
L'invention est aussi relative à un dispositif radiofréquence 1000, notamment tel qu'illustré à titre d'exemple en
Afin d'alimenter convenablement l'antenne fil-plaque monopolaire 100, il convient de former un champ électromagnétique conformément au mode qui s'établit sous le toit 102. Notamment, le champ électrique, résultant de ce champ électromagnétique, est orienté selon l'axe Z, c'est-à-dire sensiblement orthogonalement au plan de masse 101. Ceci est permis par le fait que la boucle d'alimentation 107 est orthogonale par rapport au plan de masse 101. En fait, la boucle d'alimentation 107 présente des parties sensiblement orthogonales au plan de masse 101 dans lesquelles des courants peuvent se propager.In order to properly power the monopolar wire-
Par ailleurs, toujours dans le but de permettre aux courants de s'établir convenablement dans la boucle d'alimentation 107 pour faire fonctionner l'antenne fil-plaque monopolaire 100, la boucle d'alimentation 107 comporte préférentiellement deux régions Z1, Z2 (représentées en pointillé en
Par « extrémités longitudinales 108, 109 de la boucle d'alimentation 107 » (
Il est décrit dans le présent paragraphe un exemple d'antenne fil-plaque monopolaire à bande étroite tel qu'illustré en
- selon l'axe Z une dimension de 2,5 mm,
- selon l'axe X une dimension de 5,1 mm,
- la longueur, aussi appelée périmètre, de la boucle d'alimentation 107 est de 15,2 mm nonobstant la distance de séparation entre les deux extrémités longitudinales 108, 109 considérée comme négligeable,
- la largeur de la boucle d'alimentation 107, mesurée selon l'axe Y, peut être de 1,2 mm,
- l'épaisseur de la boucle d'alimentation 107 n'a pas d'influence tant qu'elle reste dans des valeurs technologiques classiques allant de la dizaine à quelques centaines de micromètres.
- along the Z axis a dimension of 2.5 mm,
- along the X axis a dimension of 5.1 mm,
- the length, also called perimeter, of the
power loop 107 is 15.2 mm notwithstanding the separation distance between the two 108, 109 considered negligible,longitudinal ends - the width of the
supply loop 107, measured along the Y axis, can be 1.2 mm, - the thickness of the
power loop 107 has no influence as long as it remains within classic technological values ranging from ten to a few hundreds of micrometers.
Il est décrit dans le présent paragraphe un exemple d'antenne fil-plaque monopolaire 100 à large bande par exemple tel qu'illustré en
- selon l'axe Z une dimension de 3,75 mm,
- selon l'axe X une dimension de 5,5 mm,
- la longueur, aussi appelée périmètre, de la boucle d'alimentation 107 est de 18,5 mm, nonobstant la distance de séparation entre les deux extrémités longitudinales 108, 109 considérée comme négligeable,
- la largeur de la boucle d'alimentation 107, ou largeur du ruban, peut être de 1,2 mm,
- l'épaisseur de la boucle d'alimentation 107 n'a pas d'influence tant qu'elle reste dans des valeurs technologiques classiques allant de la dizaine à quelques centaines de micromètres.
- along the Z axis a dimension of 3.75 mm,
- along the X axis a dimension of 5.5 mm,
- the length, also called perimeter, of the
power loop 107 is 18.5 mm, notwithstanding the separation distance between the two 108, 109 considered negligible,longitudinal ends - the width of the
feed loop 107, or width of the ribbon, can be 1.2 mm, - the thickness of the
power loop 107 has no influence as long as it remains in classic technological values ranging from ten to a few hundred micrometers.
Il a été évoqué ci-dessus que pour un bon fonctionnement de l'antenne 100, les courants qui circulent dans la boucle d'alimentation 107, et en particulier dans des parties de la boucle d'alimentation 107 s'étendant sensiblement orthogonalement par rapport au plan de masse 101 sont en phase et de préférence d'amplitudes proches lorsque cette antenne 100 émet ou capte un signal. À cet effet, la boucle d'alimentation 107 comporte avantageusement deux parties sensiblement orthogonales au plan de masse 101 : ceci permettant à la boucle d'alimentation 107 de tirer parti des courants sensiblement orthogonaux au plan de masse 101 et en phase pour exciter l'antenne 100 de manière adaptée lors de son fonctionnement. De préférence, la boucle d'alimentation 107 comporte (voir notamment les
En particulier, la boucle d'alimentation 107 peut comporter une quatrième partie 1074 (
Le placement des extrémités longitudinales 108, 109 de la boucle d'alimentation 107 à n'importe quel endroit à l'opposé de la troisième partie 1073 de la boucle d'alimentation 107 (
Le toit 102 est notamment un toit dit « capacitif » considéré comme petit par rapport à la longueur d'onde de fonctionnement de l'antenne 100, c'est-à-dire que les dimensions du toit 102 sont notamment strictement inférieure à λg/4.The
Selon le degré d'intégration du dispositif radiofréquence, le transmetteur radiofréquence 200 peut être relié directement à la boucle d'alimentation 107, ou peut être relié à la boucle d'alimentation par l'intermédiaire d'un guide d'ondes 110 équilibré, aussi appelé guide d'ondes différentiel. Ce guide d'ondes 110 équilibré appartient à l'antenne 100. En
Bien entendu, le guide d'ondes 110 n'est pas nécessaire si la boucle d'alimentation 107 peut être directement reliée au transmetteur radiofréquence 200. En ce sens, de manière plus générale, les deux extrémités longitudinales 108, 109 opposées de la boucle d'alimentation 107 peuvent être reliées une connexion différentielle d'un dispositif différentiel de guidage d'onde, ce dispositif différentiel pouvant être le guide d'ondes 110 équilibré ou les bornes de connexion 201, 202 du transmetteur radiofréquence 200.Of course, the
De manière applicable à toutes les réalisations décrites, une partie de la boucle d'alimentation 107 peut être formée par une portion du toit 102, ceci est notamment illustré en
Le périmètre, aussi appelé longueur, de la boucle d'alimentation 107 a un impact sur l'adaptation d'impédance de l'antenne 100.The perimeter, also called length, of the
Pour étudier l'impact de la longueur de la boucle d'alimentation 107 dans le cadre de l'exemple de l'antenne à bande étroite (
Pour étudier l'impact de la longueur de la boucle d'alimentation 107 sur l'antenne 100 à large bande (
La largeur de la boucle d'alimentation 107, notamment mesurée selon l'axe Y peut aussi être adaptée en fonction des caractéristiques recherchées de l'antenne 100.The width of the
Par exemple, pour l'antenne 100 à bande étroite décrite, en fixant la longueur de la boucle d'alimentation 107 à 15 mm tout en faisant varier sa largueur entre 0,8 mm et 1,4 mm selon un pas de 0,2 mm, il a été remarqué que l'augmentation de la largeur de la boucle d'alimentation 107 entraîne une adaptation de l'antenne 100 pour des fréquences de fonctionnement plus basses. Cela est synonyme d'un allongement de la boucle équivalente à la boucle d'alimentation 107 liée à l'augmentation de sa largeur.For example, for the
Par exemple, pour l'antenne 100 à large bande, en fixant la longueur de la boucle d'alimentation 107 à 18,5 mm tout en faisant varier sa largueur entre 0,5 mm et 2 mm selon un pas de 0,5 mm, il a été remarqué que l'augmentation de la largeur de la boucle d'alimentation 107 entraîne une diminution de la partie réelle de l'impédance d'entrée associée à une augmentation de la partie imaginaire de l'impédance d'entrée autour de 8 GHz. Ainsi, pour les dimensions spécifiques de l'antenne 100 fil-plaque monopolaire à large bande, une largeur de la boucle d'alimentation 107 d'environ 0,5 mm est optimale pour une bonne adaptation (strictement inférieure à -10 dB) selon une impédance de normalisation de 100 ohms pour une fréquence de fonctionnement de l'antenne comprise entre 6,3 GHz et 9 GHz.For example, for the
Il est à présent décrit un exemple particulier (illustré en
- le périmètre géométrique de la boucle d'alimentation 107 est fixé à 21,4 mm pour une boucle d'alimentation 107 rectangulaire de côtés 7,5 mm selon l'axe X et 3,2 mm selon l'axe Z (compte tenu du diélectrique dans lequel est placé la boucle d'alimentation 107, la longueur d'onde effectivement guidée est réduite 31 mm, pour laquelle il faudrait aussi prendre en compte l'effet de changement de section du toit 102 de l'antenne 100, on s'approche de la longueur d'onde de 37,5 mm à 8 GHz, qui est le milieu de la bande de fonctionnement) ;
- le guide d'ondes 110 est connecté à la boucle d'alimentation 107 au centre de sa quatrième partie 1074 selon l'axe Z ;
- la largeur de la deuxième partie 1072 de la boucle d'alimentation 107 selon l'axe Y est fixée à 2 mm ;
- les trous métallisés évoqués ci-dessus ont un diamètre, selon l'axe Y, égal à 0,2 mm.
- the geometric perimeter of the
power loop 107 is set at 21.4 mm for arectangular power loop 107 with sides 7.5 mm along the X axis and 3.2 mm along the Z axis (taking into account the dielectric in which thepower loop 107 is placed, the effectively guided wavelength is reduced to 31 mm, for which it would also be necessary to take into account the effect of changing the section of theroof 102 of theantenna 100, we (approaching the wavelength of 37.5 mm at 8 GHz, which is the middle of the operating band); - the
waveguide 110 is connected to thepower loop 107 at the center of itsfourth part 1074 along the Z axis; - the width of the
second part 1072 of thesupply loop 107 along the Y axis is fixed at 2 mm; - the metallized holes mentioned above have a diameter, along the Y axis, equal to 0.2 mm.
Une telle antenne fil-plaque monopolaire présente une application industrielle dans le domaine des télécommunications où une telle antenne peut être fabriquée et agencée au sein d'un dispositif radiofréquence tel que décrit ci-avant. Le dispositif radiofréquence décrit peut être intégré dans tout type d'objet communicant. Par exemple, le dispositif radiofréquence peut être intégré dans un téléphone intelligent porté à la ceinture d'une personne pour transmettre via l'antenne 100 un flux vidéo à des lunettes interactives en utilisant une liaison ultra large bande comprise entre 7 GHz et 9 GHz.Such a monopolar wire-plate antenna has an industrial application in the field of telecommunications where such an antenna can be manufactured and arranged within a radio frequency device as described above. The radio frequency device described can be integrated into any type of object communicating. For example, the radio frequency device can be integrated into a smartphone worn on a person's belt to transmit via the antenna 100 a video stream to interactive glasses using an ultra-wideband link between 7 GHz and 9 GHz.
Claims (10)
- Monopolar wire-plate antenna (100), operating at a wavelength denoted λg, and comprising:- a ground plane (101),- a roof (102), arranged at a distance from the ground plane (101), and having dimensions strictly less than λg/4,- at least one electrically conductive element (103a, 103b) electrically linking the ground plane (101) to the roof (102),the antenna comprising a power supply loop (107) arranged substantially orthogonally with respect to the ground plane (101), said power supply loop (107) being open such that it comprises two opposite longitudinal ends (108, 109) arranged so as to be linked to a differential connection (201, 202).
- Antenna (100) according to Claim 1, characterised in that it comprises a balanced waveguide (110), the balanced waveguide (110) comprising a first electrical conductor (111) and a second electrical conductor (112), the first electrical conductor (111) being connected to one of the longitudinal ends (108) of the power supply loop (107) and the second electrical conductor (112) being connected to the other of the longitudinal ends (109) of the power supply loop (107).
- Antenna (100) according to either one of the preceding claims, characterised in that the power supply loop (107) comprises:• a distal first part (1071) of the ground plane (101),• a proximal second part (1072) of the ground plane (101),• a third part (1073) linking the first and second parts (1071, 1072),• the longitudinal ends (108, 109) being arranged opposite the third part (1073).
- Antenna (100) according to the preceding claim, characterised in that the power supply loop (107) comprises:• a fourth part (1074) comprising:• a first portion (1074a) extending from the first part (1071) of the power supply loop (107), this first portion (1074a) comprising one of the longitudinal ends (108) of the power supply loop (107), and• a second portion (1074b) extending from the second part (1072) of the power supply loop (107), this second portion (1074b) comprising the other of the longitudinal ends (109) of the power supply loop (107), or• a fourth part (1074) extending from the first part (1071) and comprising one of the longitudinal ends (108) of the power supply loop (107), the second part (1072) comprising the other of the longitudinal ends (109) of the power supply loop (107), or• a fourth part (1074) extending from the second part (1072) and comprising one of the longitudinal ends (109) of the power supply loop (107), the first part (1071) comprising the other of the longitudinal ends (108) of the power supply loop (107).
- Antenna (100) according to any one of the preceding claims, characterised in that a part of the power supply loop (107) is formed by a portion of the roof (102), or in that the power supply loop (107) is situated at a distance from the roof (102), or in that the power supply loop (107) is in contact with the roof (102).
- Antenna (100) according to any one of the preceding claims, characterised in that said power supply loop (107) has, when the antenna (100) is operating, two regions (Z1, Z2) of excitation of the antenna (100) in which the currents are in phase and circulate substantially orthogonally with respect to the ground plane (101).
- Antenna (100) according to any one of the preceding claims, characterised in that said antenna (100) is a wide bandwidth antenna for which the power supply loop (107) has a length, between its two opposite longitudinal ends (108, 109), of between λg/3 and λg/1.6.
- Antenna (100) according to any one of Claims 1 to 6, characterised in that said antenna (100) is a narrowband antenna for which the power supply loop (107) has a length, between its two opposite longitudinal ends (108, 109), of between λg/3.7 and λg/3.5.
- Radiofrequency device (1000), characterised in that it comprises a monopolar wire-plate antenna (100) according to any one of the preceding claims, and a radio frequency transmitter (200) with differential connection linked to the power supply loop (107).
- Radiofrequency device (1000) according to the preceding claim, characterised in that:• the differential connection of the radio frequency transmitter (200) comprises first and second connection terminals (201, 202),• the antenna (100) comprises a balanced waveguide (110), the balanced waveguide (110) comprising first and second electrical conductors (111, 112),• the first electrical conductor (111) is connected, on the one hand, to one of the longitudinal ends (108) of the power supply loop (107) and, on the other hand, to the first connection terminal (201), and• the second electrical conductor (112) is connected, on the one hand, to the other of the longitudinal ends (109) of the power supply loop (107) and, on the other hand, to the second connection terminal (202).
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1873957A FR3091045B1 (en) | 2018-12-21 | 2018-12-21 | MONOPOLAR WIRE-PLATE ANTENNA FOR DIFFERENTIAL CONNECTION |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3671955A1 EP3671955A1 (en) | 2020-06-24 |
EP3671955B1 true EP3671955B1 (en) | 2024-02-21 |
Family
ID=66690577
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19219115.3A Active EP3671955B1 (en) | 2018-12-21 | 2019-12-20 | Monopole wire-plate antenna for differential connection |
Country Status (3)
Country | Link |
---|---|
US (1) | US11233330B2 (en) |
EP (1) | EP3671955B1 (en) |
FR (1) | FR3091045B1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10367259B2 (en) * | 2017-01-12 | 2019-07-30 | Arris Enterprises Llc | Antenna with enhanced azimuth gain |
JP7028212B2 (en) * | 2019-03-26 | 2022-03-02 | 株式会社Soken | Antenna device |
US12021319B2 (en) * | 2022-04-19 | 2024-06-25 | Meta Platforms Technologies, Llc | Distributed monopole antenna for enhanced cross-body link |
KR20240016685A (en) * | 2022-07-29 | 2024-02-06 | 삼성전자주식회사 | Antenna structure and electronic apparatus comprising same |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2709878B1 (en) | 1993-09-07 | 1995-11-24 | Univ Limoges | Monopolar wire-plate antenna. |
WO2006135956A1 (en) * | 2005-06-23 | 2006-12-28 | Argus Technologies (Australia) Pty Ltd | A resonant, dual-polarized patch antenna |
-
2018
- 2018-12-21 FR FR1873957A patent/FR3091045B1/en active Active
-
2019
- 2019-12-20 US US16/723,204 patent/US11233330B2/en active Active
- 2019-12-20 EP EP19219115.3A patent/EP3671955B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
FR3091045A1 (en) | 2020-06-26 |
US20200365994A1 (en) | 2020-11-19 |
US11233330B2 (en) | 2022-01-25 |
FR3091045B1 (en) | 2020-12-11 |
EP3671955A1 (en) | 2020-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3671955B1 (en) | Monopole wire-plate antenna for differential connection | |
EP1172885B1 (en) | Short-circuit microstrip antenna and dual-band transmission device including that antenna | |
EP0924797B1 (en) | Multifrequency microstrip antenna and apparatus using the same | |
EP0961344B1 (en) | Device for radiocommunication and a slot loop antenna | |
EP2047558B1 (en) | Isotropic antenna and associated measurement sensor | |
EP1075043A1 (en) | Antenna with stacked resonating structures and multiband radiocommunication device using the same | |
FR2772518A1 (en) | SHORT-CIRCUIT ANTENNA MADE ACCORDING TO MICRO-TAPE TECHNIQUE AND DEVICE INCLUDING THIS ANTENNA | |
EP0954055A1 (en) | Dual-frequency radiocommunication antenna realised according to microstrip technique | |
FR2772519A1 (en) | ANTENNA REALIZED ACCORDING TO MICRO-TAPE TECHNIQUE AND DEVICE INCLUDING THIS ANTENNA | |
FR2709833A1 (en) | Broadband and low band listening instrument for space applications. | |
EP1145378A1 (en) | Dual-band transmission device and antenna therefor | |
EP3235058B1 (en) | Wire-plate antenna having a capacitive roof incorporating a slot between the feed probe and the short-circuit wire | |
EP3136499B1 (en) | Divider/combiner system for a hyperfrequency wave | |
EP1466384B1 (en) | Device for receiving and/or emitting electromagnetic waves with radiation diversity | |
EP1225655A1 (en) | Dual-band planar antenna and apparatus including such an antenna device | |
EP2643886A1 (en) | Planar antenna having a widened bandwidth | |
FR3090220A1 (en) | MONOPOLAR WIRE-PLATE ANTENNA | |
FR2923658A1 (en) | SYSTEM OF TWO ANTENNAS ISOLATED AT A WORKING FREQUENCY | |
WO2012095365A1 (en) | Dielectric resonator antenna | |
EP3692598A1 (en) | Antenna with partially saturated dispersive ferromagnetic substrate | |
FR2871619A1 (en) | BROADBAND ANTENNA WITH OMNIDIRECTIONAL RADIATION | |
EP3942649B1 (en) | Compact directional antenna, device comprising such an antenna | |
EP3537541B1 (en) | Electromagnetic decoupling | |
EP4167378A1 (en) | Insulated radio frequency antenna device | |
EP3975331A1 (en) | Mode-changing transformer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20191220 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20211021 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20231031 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602019046854 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20240221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240621 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240522 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1659931 Country of ref document: AT Kind code of ref document: T Effective date: 20240221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240221 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240521 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240521 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240521 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240221 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240221 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240621 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240221 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240522 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240221 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240221 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240221 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240221 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240621 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240221 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240621 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240221 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240221 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240221 |
|
RAP4 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIESALTERNATIVES |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240221 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240221 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240221 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240221 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240221 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240221 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602019046854 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240221 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240221 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20241227 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20241227 Year of fee payment: 6 |
|
26N | No opposition filed |
Effective date: 20241122 |