[go: up one dir, main page]

EP3664917A1 - Method and facility for purifying a feed gas stream comprising at least 90% co2 - Google Patents

Method and facility for purifying a feed gas stream comprising at least 90% co2

Info

Publication number
EP3664917A1
EP3664917A1 EP18773788.7A EP18773788A EP3664917A1 EP 3664917 A1 EP3664917 A1 EP 3664917A1 EP 18773788 A EP18773788 A EP 18773788A EP 3664917 A1 EP3664917 A1 EP 3664917A1
Authority
EP
European Patent Office
Prior art keywords
gas stream
catalytic oxidation
acid
resistant
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP18773788.7A
Other languages
German (de)
French (fr)
Inventor
Guillaume Rodrigues
Philippe Arpentinier
Aurélien FRANCO
Rémi JABES
François LAGOUTTE
Laurent Perru
Etienne Werlen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP3664917A1 publication Critical patent/EP3664917A1/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8678Removing components of undefined structure
    • B01D53/8687Organic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/002Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8659Removing halogens or halogen compounds
    • B01D53/8662Organic halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8678Removing components of undefined structure
    • B01D53/8681Acidic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/22Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/204Inorganic halogen compounds
    • B01D2257/2045Hydrochloric acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/204Inorganic halogen compounds
    • B01D2257/2047Hydrofluoric acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/416Further details for adsorption processes and devices involving cryogenic temperature treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]

Definitions

  • the present invention relates to a method and a plant for purifying a feed gas stream comprising at least 90% CO 2, preferably 95% CO 2.
  • Carbon dioxide is used in various applications, for example for the food market, which requires that CO2 contain very low levels of impurities.
  • the International Society of Beverage Technologists (ISBT) requires the following composition:
  • Oxygen 30 ppm v / v max.
  • Carbon monoxide 10 ppm v / v max.
  • Non-volatile residue 10 ppm w / w max.
  • Nonvolatile organic residue 5 ppm w / w max.
  • Total volatile hydrocarbons (such as methane) 50 ppm v / v max. with 20 ppm v / v max. for total non-methane hydrocarbons
  • Acetaldehyde 0.2 ppm v / v max.
  • the CO2-rich feed stream can come from a variety of sources, such as ammonia plants, natural wells, bio-fermentation, syngas production units, and the like. ... containing various traces of impurities, including hydrocarbons, sulfur compounds, nitrous compounds, chlorinated compounds and many other impurities which must be efficiently and economically removed.
  • Catox catalytic oxidation
  • the wet separator is a common solution that can be adapted to high levels of impurities. It consists of passing the feed gas through a medium promoting fluidic contact, for example a structured or random packaging, inside a container. Water is sprayed or dispensed onto the top of the container. If this solution seems effective in removing water-soluble hydrocarbon-containing hydrocarbons such as, for example, ethanol and methanol from feed streams, it is not effective in removing hydrocarbons that are not soluble in water. water, whose solubility in water is very low. Another disadvantage is that water must be introduced into the system. For the food-grade CO2 production area, this water must consume drinking water. Such water may not be available or at a high cost in an industrial plant.
  • the basic anions of the hydroxyl group, carbonate or bicarbonate are introduced in a solid (milled) or liquid form into the feed gas.
  • Basic anions react with acid gases to form salts.
  • the salts are then filtered in a bag filter or separated in a container.
  • the disadvantage of this solution is that it is not referenced for high efficiency removal. Its classic application is the treatment of flue gases, in order to comply with environmental standards. These standards are much less demanding than those applied for food C0 2 .
  • this solution involves the addition of an external component.
  • Handling chemical reagent such as sodium hydroxide requires special care and additional equipment (storage, dosing system).
  • storage, dosing system For example, the use of sodium bicarbonate entails strong constraints. Indeed, this solution must be used at a temperature between 140 ° C and 300 ° C.
  • Adsorption beds may be based on physical adsorption.
  • the low adsorption force implies easy regeneration, but also fairly low or moderate adsorption capacities.
  • it allows a regenerative process, having a long life, on the other hand, it may require high amounts of adsorbents detrimental to the cost or very fast cycle times (time including adsorption then the regeneration steps) implying that large amounts of regeneration gas are available.
  • a problem is to provide an improved and economical method of purifying a feed gas stream comprising at least 90% CO 2.
  • a solution of the present invention is a process for purifying a feed gas stream comprising at least 90% CO2, preferably at least 95% CO 2, at least 20% relative humidity and at least one impurity selected from chlorinated, sulfur-containing, nitrated or fluorinated compounds comprising the following successive steps:
  • step c) a step of removing at least a portion of the acid impurities by contacting the gas stream from step b) in contact with at least one corrosion-resistant heat exchanger so as to condense the acidic compounds while regulating the temperature of the gas stream leaving under the dew point of the water;
  • step d) a step of separating the acidic compounds of the gas stream from step c) by means of a corrosion-resistant separator so as to produce a gas stream enriched with CO2.
  • Step b) avoids any creation of acidic liquid which corrodes the piping and other standard materials. It will be ensured never to pass below the critical dew point via suitable operating conditions but also thanks to a thermal insulation or even an external temperature maintenance system (electric or steam) preventing the creation of cold spots (temperature locally below the critical dew point) on the equipment.
  • step c) if the composition of the feed gas of the catalytic process varies, it will be possible to regulate the outlet temperature of the indirect contact condenser of the plate or tube / calender type via the liquid / gas flow of cooling the supply or via the temperature of it.
  • the method according to the invention may have one or more of the following characteristics:
  • step d said process comprises, after step d), the following successive steps:
  • the drying is generally carried out via a reversible adsorption unit making it possible to reach water contents compatible with the cryogenic temperature in question ( ⁇ 10 ppmv and preferably ⁇ 1 ppmv).
  • the heat exchanger and the separator are made of materials selected from austenitic steel, glass or a composite resistant to nitric acid, sulfuric or hydrochloric acid.
  • the catalytic oxidation is carried out by means of a catalytic oxidation unit whose catalyst is tolerant of sulfur and chlorine.
  • the feed gas stream subjected to the catalytic oxidation is at a temperature of at least 300 ° C., preferably at least 425 ° C.
  • the feed gas stream subjected to catalytic oxidation is at a pressure greater than 1 bar absolute
  • the feed gas stream can come from various sources such as the monoethylene glycol production units or bio-fermentors
  • step c) water or a water / glycol mixture is preferably used as a refrigerant within the heat exchanger.
  • the water heated in the heat exchanger by the gas stream is in a closed circuit and is cooled in a second ammonia / water heat exchanger.
  • the present invention also relates to an installation for purifying a feed gas stream comprising at least 95% CO 2, at least 20% relative humidity and at least one impurity selected from chlorinated compounds, sulfur, nitrated or fluorinated, comprising in the flow direction of the gaseous flow:
  • a catalytic oxidation unit for subjecting the gas stream to catalytic oxidation so as to produce a gas stream comprising at least one acidic impurity selected from HCl, NOx and SOx;
  • step d) a corrosion resistant separator for separating the acidic compounds from the gas stream so as to produce a gas stream enriched with CO2.
  • a corrosion resistant drum separator will be used.
  • the separator is equipped with an automatic draining system.
  • the installation according to the invention may have one or more of the following characteristics:
  • said plant comprises downstream of the separator and in the direction of flow of the gas stream enriched in CO2:
  • the heat exchanger and the separator are made of materials selected from austenitic steel, glass or a composite resistant to nitric acid, sulfuric or hydrochloric acid.
  • materials selected from austenitic steel, glass or a composite resistant to nitric acid, sulfuric or hydrochloric acid.
  • 254SMO and 904L steels nickel-based alloys or titanium.
  • the heat exchanger is made of 254 SMO stainless steel for the parts in contact with the process gas, the rest being SS 316L steel, specially designed for strong corrosion created by the Hcl.
  • the catalytic oxidation is carried out by means of a sulfur and chlorine-resistant catalytic oxidation unit.
  • the stream is contacted with a catalyst bed containing a first layer of platinum catalyst and a second layer of palladium catalyst, making it possible to convert most of the hydrocarbons into water and carbon dioxide.
  • a catalyst bed containing a first layer of platinum catalyst and a second layer of palladium catalyst, making it possible to convert most of the hydrocarbons into water and carbon dioxide.
  • the gaseous flow at a temperature above 300 ° C. and containing HCl is cooled to a temperature above the dew point of the water (43 ° C.), in order to prevent condensation.
  • the fluid at a temperature of 55 ° C., will then be fed into a skid comprising a heat exchanger made of a material resistant to chloridic acid, such as steel grade 254SMO.
  • the cold will be brought into the exchanger through a coolant such as water, at a temperature below 43 ° C, preferably below 10 ° C to minimize the size of the exchanger. Cooling water supplying the exchanger
  • the separation of the liquid droplets containing the acid molecules will be ensured by a separator pot (installed directly downstream of the exchanger) in a material resistant to corrosion by chlorine such as steel grade 254 SMO or more simply by a material made of polymer resin.
  • the process gas leaving the separator pot and the condensed liquid, purged at the bottom of the separator pot will have the following compositions:
  • AcetAldehyde 0.000000 0.000000

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Drying Of Gases (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

A method for purifying a feed gas stream comprising at least 90% CO2 on a dry basis, at least 20% relative humidity and at least one impurity chosen from the chlorinated, nitrated, fluorinated or sulfur compounds, comprising the following successive steps: a) a step of subjecting the feed gas stream to a catalytic oxidation in such a way as to produce a gas stream comprising at least one acid impurity chosen from among HCl, NOx, SOx or hydrofluoric acid; b) a step of maintaining the temperature of the gas stream coming from step a) above the highest value between the dew point of water and the dew point of the acid or acids contained in the gas downstream of the catalytic process; c) a step of removing at least a part of the acid impurities by placing the gas stream coming from step b) in contact with at least one corrosion-resistant heat exchanger in such a way as to condense the acid compounds while regulating the temperature of the gas stream exiting below the dew point of water; and d) a step of separating the acid condensates of the gas stream coming from step c) by means of a corrosion-resistant separator in such a way as to produce a CO2 enriched gas stream.

Description

Procédé et Installation de purification d'un flux gazeux d'alimentation comprenant au moins 90% de C02  Process and plant for purifying a feed gas stream comprising at least 90% C02
La présente invention est relative à un procédé et une installation de purification d'un flux gazeux d'alimentation comprenant au moins 90% de C02, de préférence 95% de C02. The present invention relates to a method and a plant for purifying a feed gas stream comprising at least 90% CO 2, preferably 95% CO 2.
Le dioxyde de carbone est utilisé dans diverses applications, par exemple pour le marché alimentaire, ce qui nécessite que le C02 contienne de très faibles niveaux d'impuretés. A titre d'exemple, la norme ISBT (International Society of Beverage Technologists) impose de respecter la composition ci-dessous:  Carbon dioxide is used in various applications, for example for the food market, which requires that CO2 contain very low levels of impurities. For example, the International Society of Beverage Technologists (ISBT) requires the following composition:
Pureté : 99,9 % v/v min.  Purity: 99.9% v / v min.
Humidité : 20 ppm v/v max.  Humidity: 20 ppm v / v max.
Oxygène : 30 ppm v/v max.  Oxygen: 30 ppm v / v max.
Monoxyde de carbone : 10 ppm v/v max.  Carbon monoxide: 10 ppm v / v max.
Ammoniac : 2,5 ppm v/v max.  Ammonia: 2.5 ppm v / v max.
Oxyde nitrique/Dioxyde d'azote : 2,5 ppm v/v max. (chacun)  Nitric Oxide / Nitrogen Dioxide: 2.5 ppm v / v max. (each)
Résidu non-volatil : 10 ppm w/w max.  Non-volatile residue: 10 ppm w / w max.
Résidu organique non-volatil : 5 ppm w/w max.  Nonvolatile organic residue: 5 ppm w / w max.
Phosphine : 0,3 ppm v/v max.  Phosphine: 0.3 ppm v / v max.
Hydrocarbures volatils totaux : (comme le méthane) 50 ppm v/v max. avec 20 ppm v/v max. pour les hydrocarbures non méthaniques totaux  Total volatile hydrocarbons: (such as methane) 50 ppm v / v max. with 20 ppm v / v max. for total non-methane hydrocarbons
Acétaldéhyde : 0,2 ppm v/v max.  Acetaldehyde: 0.2 ppm v / v max.
Contenu en hydrocarbures aromatiques : 20 ppm v/v max.  Content in aromatic hydrocarbons: 20 ppm v / v max.
Contenu total en soufre* (S) : (*Total des impuretés contenant du soufre, à l'exception du dioxyde de soufre) 0,1 ppm v/v max.  Total sulfur content * (S): (* Total impurities containing sulfur with the exception of sulfur dioxide) 0.1 ppm v / v max.
Dioxyde de soufre : 1 ppm v/v max  Sulfur dioxide: 1 ppm v / v max
Le flux d'alimentation riche en C02 peut provenir de différentes sources, comme les plantes ammoniacales, les puits naturels, la bio-fermentation, les unités de production de gaz de synthèse, etc. ... contenant diverses traces d'impuretés, y compris les hydrocarbures, les composés soufrés, les composés nitreux, les chlorés et bien d'autres impuretés qui doivent être efficacement éliminé de manière économique. The CO2-rich feed stream can come from a variety of sources, such as ammonia plants, natural wells, bio-fermentation, syngas production units, and the like. ... containing various traces of impurities, including hydrocarbons, sulfur compounds, nitrous compounds, chlorinated compounds and many other impurities which must be efficiently and economically removed.
Actuellement, diverses technologies sont utilisées seules ou en combinaison afin d'éliminer ces impuretés du flux d'alimentation riche en C02 :  Currently, various technologies are used alone or in combination to remove these impurities from the C02 rich feed stream:
- l'absorption: lavage à l'eau, lavage au C02 (absorption physique) ou autres types d'épurateurs à base de réactions chimiques (absorption chimique) - absorption: washing with water, C02 washing (physical absorption) or other types of chemical reaction-based scrubbers (chemical absorption)
- l'adsorption : systèmes régénératifs tels que le PSA (adsorption Swing de pression = adsorption avec variation de pression), le TSA (adsorption de Swing de température = adsorption avec variation de température), ou une combinaison d'un PSA et d'un TSA ; ou des systèmes non- régénérables tels que le charbon actif imprégné,  adsorption: regenerative systems such as PSA (pressure swing adsorption = adsorption with pressure variation), TSA (temperature swing adsorption = adsorption with temperature variation), or a combination of a PSA and an ASD; or non-regenerable systems such as impregnated activated carbon,
- l'oxydation catalytique (Catox): tolérante au soufre ou non, les hydrocarbures et autres espèces en présence d'excès d'air sont complètement oxydées à une température supérieure à 350 ° C grâce à des catalyseurs sélectionnés,  catalytic oxidation (Catox): tolerant to sulfur or not, hydrocarbons and other species in the presence of excess air are completely oxidized at a temperature above 350 ° C thanks to selected catalysts,
Parmi les technologies d'absorption, le séparateur humide est une solution fréquente qui peut être adaptée aux teneurs élevées en impuretés. Il consiste à faire passer le gaz d'alimentation à travers un milieu favorisant le contact fluidique, par exemple un emballage structuré ou aléatoire, à l'intérieur d'un récipient. L'eau est pulvérisée ou distribuée sur le dessus du récipient. Si cette solution semble efficace pour éliminer les composés oxygénés hydrocarbures solubles dans l'eau tels que, par exemple, l'éthanol et le méthanol des flux d'alimentation, il n'est pas efficace pour éliminer les hydrocarbures qui ne sont pas solubles dans l'eau, dont la solubilité dans l'eau est très faible. Un autre inconvénient est que l'eau doit être introduite dans le système. Pour le domaine de production de C02 de qualité alimentaire, cette eau doit consommer de l'eau potable. Une telle eau peut ne pas être disponible ou à un coût élevé dans une usine industrielle. Alternativement, les anions basiques du groupe hydroxyle, du carbonate ou du bicarbonate sont introduits sous une forme solide (broyée) ou liquide dans le gaz d'alimentation. Les anions basiques réagissent avec les gaz acides pour former des sels. Les sels sont ensuite filtrés dans un filtre à sac ou séparés dans un récipient. L'inconvénient de cette solution est qu'il n'est pas référencé pour le retrait à haute efficacité. Son application classique est le traitement des gaz de combustion, afin de respecter les normes environnementales. Ces normes sont bien moins exigeantes que celles appliquées pour le C02 alimentaire. Comme pour l'épurateur d'eau, cette solution implique l'addition d'un composant externe. Among the absorption technologies, the wet separator is a common solution that can be adapted to high levels of impurities. It consists of passing the feed gas through a medium promoting fluidic contact, for example a structured or random packaging, inside a container. Water is sprayed or dispensed onto the top of the container. If this solution seems effective in removing water-soluble hydrocarbon-containing hydrocarbons such as, for example, ethanol and methanol from feed streams, it is not effective in removing hydrocarbons that are not soluble in water. water, whose solubility in water is very low. Another disadvantage is that water must be introduced into the system. For the food-grade CO2 production area, this water must consume drinking water. Such water may not be available or at a high cost in an industrial plant. Alternatively, the basic anions of the hydroxyl group, carbonate or bicarbonate are introduced in a solid (milled) or liquid form into the feed gas. Basic anions react with acid gases to form salts. The salts are then filtered in a bag filter or separated in a container. The disadvantage of this solution is that it is not referenced for high efficiency removal. Its classic application is the treatment of flue gases, in order to comply with environmental standards. These standards are much less demanding than those applied for food C0 2 . As for the water purifier, this solution involves the addition of an external component.
La manipulation du réactif chimique comme l'hydroxyde de sodium nécessite des soins spéciaux et des équipements supplémentaires (stockage, système de dosage). Par exemple, l'utilisation de bicarbonate de sodium entraîne de fortes contraintes. En effet, cette solution doit être utilisée à une température comprise entre 140 " C et 300 ° C.  Handling chemical reagent such as sodium hydroxide requires special care and additional equipment (storage, dosing system). For example, the use of sodium bicarbonate entails strong constraints. Indeed, this solution must be used at a temperature between 140 ° C and 300 ° C.
Les lits d'adsorption peuvent être basés sur l'adsorption physique. La faible force d'adsorption implique une régénération facile, mais aussi des capacités d'adsorption assez faibles ou modérées. Ainsi, d'une part, il permet un processus régénératif, présentant une longue durée de vie, d'autre part, il peut nécessiter des quantités élevées d'adsorbants préjudiciables au coût ou des temps de cycle très rapides (temps comprenant l'adsorption puis les étapes de régénération) impliquant que des quantités importantes de gaz de régénération soit disponibles.  Adsorption beds may be based on physical adsorption. The low adsorption force implies easy regeneration, but also fairly low or moderate adsorption capacities. Thus, on the one hand, it allows a regenerative process, having a long life, on the other hand, it may require high amounts of adsorbents detrimental to the cost or very fast cycle times (time including adsorption then the regeneration steps) implying that large amounts of regeneration gas are available.
Pour la gestion des impuretés considérées, l'adsorption physique est souvent associée à l'adsorption chimique. Il consiste à utiliser des charges «mortes» d'adsorbants imprégnés qui réagissent chimiquement avec des impuretés. Comme la régénération de ces adsorbants n'est souvent pas économique sur le site, lorsque le lit est saturé d'impuretés, la charge est remplacée par une nouvelle. À titre d'exemple, des composés soufrés contenant du C02 peuvent être mis en contact avec un matériau de support (charbon actif, alumine ...) imprégné d'oxydes métalliques (FeO, ZnO, CuO ...). Ensuite, les oxydes métalliques réagissent avec des composés soufrés et créent des sulfures métalliques et de la vapeur d'eau. For the management of impurities considered, physical adsorption is often associated with chemical adsorption. It consists in using "dead" charges of impregnated adsorbents which react chemically with impurities. As the regeneration of these adsorbents is often not economical on the site, when the bed is saturated with impurities, the load is replaced by a new one. By way of example, sulfur compounds containing CO 2 can be brought into contact with a support material (activated carbon, alumina, etc.) impregnated with metal oxides (FeO, ZnO, CuO, etc.). Then the metal oxides react with sulfur compounds and create metal sulphides and water vapor.
Partant de là, un problème qui se pose est de fournir un procédé amélioré et économique de purification d'un flux gazeux d'alimentation comprenant au moins 90% de C02.  From this, a problem is to provide an improved and economical method of purifying a feed gas stream comprising at least 90% CO 2.
Une solution de la présente invention est un procédé de purification d'un flux gazeux d'alimentation comprenant au moins 90% de C02 de préférence au moins 95% de C02, au moins 20% d'humidité relative et au moins une impureté choisie parmi les composés chlorés, soufrés, nitrés ou fluorés comprenant les étapes successives suivantes :  A solution of the present invention is a process for purifying a feed gas stream comprising at least 90% CO2, preferably at least 95% CO 2, at least 20% relative humidity and at least one impurity selected from chlorinated, sulfur-containing, nitrated or fluorinated compounds comprising the following successive steps:
a) une étape de soumission du flux gazeux d'alimentation à une oxydation catalytique de manière à produire un flux gazeux comprenant au moins une impureté acide choisie parmi HCI, HN03 , NOx, SOx, H2SO4, H F; b) une étape de maintien de la température du flux gazeux issu de l'étape a) au dessus de la plus grande valeur entre le point de rosée de l'eau et le point de rosée du/des acide(s) contenus dans le gaz en aval du procédé catalytique ; (on parlera de point de rosée critique) a) a step of subjecting the feed gas stream to catalytic oxidation so as to produce a gas stream comprising at least one acidic impurity selected from HCl, HNO 3 , NOx, SOx, H 2 SO 4, HF; b) a step of maintaining the temperature of the gas stream from step a) above the highest value between the dew point of the water and the dew point of the acid (s) contained in the gas downstream of the catalytic process; (we will talk about critical dew point)
c) une étape d'élimination d'au moins une partie des impuretés acides en mettant en contact le flux gazeux issu de l'étape b) en contact avec au moins un échangeur de chaleur résistant à la corrosion de manière à condenser les composés acides tout en régulant la température du flux gazeux sortant sous le point de rosée de l'eau ; et c) a step of removing at least a portion of the acid impurities by contacting the gas stream from step b) in contact with at least one corrosion-resistant heat exchanger so as to condense the acidic compounds while regulating the temperature of the gas stream leaving under the dew point of the water; and
d) une étape de séparation des composés acides du flux gazeux issu de l'étape c) au moyen d'un séparateur résistant à la corrosion de manière à produire un flux gazeux enrichi en C02. d) a step of separating the acidic compounds of the gas stream from step c) by means of a corrosion-resistant separator so as to produce a gas stream enriched with CO2.
L'étape b) permet d'éviter toute création de liquide acide qui corroderait la tuyauterie et autres matériaux standards. On s'assurera de ne jamais passer en dessous du point de rosée critique via des conditions opératoires adaptées mais aussi grâce à une isolation thermique voire un système de maintien en température externe (électrique ou à la vapeur) empêchant la création de points froids (température localement en dessous du point de rosée critique) sur l'équipement. Step b) avoids any creation of acidic liquid which corrodes the piping and other standard materials. It will be ensured never to pass below the critical dew point via suitable operating conditions but also thanks to a thermal insulation or even an external temperature maintenance system (electric or steam) preventing the creation of cold spots (temperature locally below the critical dew point) on the equipment.
A l'étape c), si la composition du gaz d'alimentation du procédé catalytique varie on régulera éventuellement la température de sortie de l'échangeur de condensation à contact indirect de type plaque ou tube/calandre via le débit de liquide/gas de refroidissement l'alimentant ou via la température de celui-ci.  In step c), if the composition of the feed gas of the catalytic process varies, it will be possible to regulate the outlet temperature of the indirect contact condenser of the plate or tube / calender type via the liquid / gas flow of cooling the supply or via the temperature of it.
Selon le cas, le procédé selon l'invention peut présenter une ou plusieurs des caractéristiques suivantes :  Depending on the case, the method according to the invention may have one or more of the following characteristics:
- ledit procédé comprend après l'étape d) les étapes successives suivantes :  said process comprises, after step d), the following successive steps:
e) une étape de liquéfaction du flux gazeux enrichi en C02, e) a liquefaction step of the gas stream enriched with CO 2,
f) une étape de séchage du flux liquéfié, et f) a step of drying the liquefied flow, and
g) une étape d'envoi du flux séché dans une unité cryogénique. g) a step of sending the dried stream to a cryogenic unit.
Le séchage est généralement effectué via une unité d'adsorption réversible permettant d'atteindre des teneurs en eau compatible avec la température cryogénique concernée (<10 ppmv et préférentiellement <1 ppmv).  The drying is generally carried out via a reversible adsorption unit making it possible to reach water contents compatible with the cryogenic temperature in question (<10 ppmv and preferably <1 ppmv).
- l'échangeur de chaleur et le séparateur sont constitués de matériaux choisis parmi l'acier austénitique, le verre ou un composite résistant à l'acide nitrique, sulfurique ou chlorhydrique. - l'oxydation catalytique est réalisée au moyen d'une unité d'oxydation catalytique dont le catalyseur est tolérant au soufre et au chlore. - The heat exchanger and the separator are made of materials selected from austenitic steel, glass or a composite resistant to nitric acid, sulfuric or hydrochloric acid. the catalytic oxidation is carried out by means of a catalytic oxidation unit whose catalyst is tolerant of sulfur and chlorine.
- le flux gazeux d'alimentation soumis à l'oxydation catalytique est à une température d'au moins 300°C, de préférence d'au moins 425°C.  the feed gas stream subjected to the catalytic oxidation is at a temperature of at least 300 ° C., preferably at least 425 ° C.
- le flux gazeux d'alimentation soumis à l'oxydation catalytique est à une pression supérieure à 1 bar absolu the feed gas stream subjected to catalytic oxidation is at a pressure greater than 1 bar absolute
- le flux gazeux d'alimentation peut provenir de diverses sources telles que les unités de fabrication de Mono Éthylène glycol ou des bio-fermenteurs  the feed gas stream can come from various sources such as the monoethylene glycol production units or bio-fermentors
- à l'étape c) de l'eau ou un mélange eau/glycol est préférentiellement utilisé comme réfrigérant au sein de l'échangeur de chaleur.  in step c) water or a water / glycol mixture is preferably used as a refrigerant within the heat exchanger.
Afin d'améliorer la surface d'échange tout en restant sur des tailles standards d'échangeur ou afin d'effectuer une condensation à 2 niveaux de température on pourra employer plusieurs échangeurs en parallèle ou en série respectivement avec en aval un pot séparateur commun ou un pot séparateur associé à chacun des échangeurs.  In order to improve the exchange surface while remaining on standard exchanger sizes or in order to carry out condensation at 2 temperature levels, it will be possible to use several exchangers in parallel or in series respectively with downstream a common separator pot or a separator pot associated with each of the exchangers.
De préférence, l'eau chauffée dans l'échangeur de chaleur par le flux gazeux est en circuit fermé et est refroidie dans un deuxième échangeur de chaleur ammoniac/eau. Preferably, the water heated in the heat exchanger by the gas stream is in a closed circuit and is cooled in a second ammonia / water heat exchanger.
La présente invention a également pour objet une installation pour la purification d'un flux gazeux d'alimentation comprenant au moins 95% de C02, au moins 20% d'humidité relative et au moins une impureté choisi parmi les composés chlorés, soufrés, nitrés ou fluorés comprenant dans le sens de circulation du flux gazeux:  The present invention also relates to an installation for purifying a feed gas stream comprising at least 95% CO 2, at least 20% relative humidity and at least one impurity selected from chlorinated compounds, sulfur, nitrated or fluorinated, comprising in the flow direction of the gaseous flow:
a) une unité d'oxydation catalytique permettant de soumettre le flux gazeux à une oxydation catalytique de manière à produire un flux gazeux comprenant au moins une impureté acide choisie parmi HCI, NOx et SOx ; a) a catalytic oxidation unit for subjecting the gas stream to catalytic oxidation so as to produce a gas stream comprising at least one acidic impurity selected from HCl, NOx and SOx;
b) un moyen de maintenir la température du flux gazeux sortant de l'unité d'oxydation catalytique au dessus du point de rosée acide ; b) a means of maintaining the temperature of the gas stream leaving the catalytic oxidation unit above the acidic dew point;
c) un échangeur de chaleur résistant à la corrosion permettant de condenser les composés acides du flux gazeux ; c) a corrosion resistant heat exchanger for condensing the acidic compounds of the gas stream;
d) un séparateur résistant à la corrosion permettant de séparer les composés acides du flux gazeux de manière à produire un flux gazeux enrichi en C02. De préférence à l'étape d) un séparateur à tambour résistant à la corrosion sera utilisé. De préférence à l'étape d), le séparateur est équipé d'un système de vidange automatique. d) a corrosion resistant separator for separating the acidic compounds from the gas stream so as to produce a gas stream enriched with CO2. Preferably in step d) a corrosion resistant drum separator will be used. Preferably in step d), the separator is equipped with an automatic draining system.
Selon le cas, l'installation selon l'invention peut présenter une ou plusieurs des caractéristiques ci-dessous :  Depending on the case, the installation according to the invention may have one or more of the following characteristics:
- ladite installation comprend en aval du séparateur et dans le sens de circulation du flux gazeux enrichi en C02 :  - said plant comprises downstream of the separator and in the direction of flow of the gas stream enriched in CO2:
e) un liquéfacteur permettant de liquéfier le flux gazeux enrichi en C02 ; e) a liquefier for liquefying the gas stream enriched with CO2;
f) un sécheur permettant de sécher le gaz liquéfié ; et f) a dryer for drying liquefied gas; and
g) une unité cryogénique. g) a cryogenic unit.
- l'échangeur de chaleur et le séparateur sont constitués de matériaux choisis parmi l'acier austénitique, le verre ou un composite résistant à l'acide nitrique, sulfurique ou chlorhydrique. On citera à titre d'exemple les aciers 254SMO et 904L, les alliages à base de nickel ou le titane. De préférence, lorsque des composés chlorés sont présents dans le flux d'alimentation, l'échangeur de chaleur est en acier inoxydable 254 SMO pour les partie en contact avec le gaz process, le reste étant en acier SS 316L , spécialement conçu pour forte corrosion créés par le Hcl. - The heat exchanger and the separator are made of materials selected from austenitic steel, glass or a composite resistant to nitric acid, sulfuric or hydrochloric acid. By way of example, mention may be made of 254SMO and 904L steels, nickel-based alloys or titanium. Preferably, when chlorinated compounds are present in the feed stream, the heat exchanger is made of 254 SMO stainless steel for the parts in contact with the process gas, the rest being SS 316L steel, specially designed for strong corrosion created by the Hcl.
- l'oxydation catalytique est réalisée au moyen d'une unité d'oxydation catalytique résistante au soufre et au chlore. the catalytic oxidation is carried out by means of a sulfur and chlorine-resistant catalytic oxidation unit.
Exemple: purification d'un flux contenant des molécules chlorées Example: purification of a stream containing chlorinated molecules
Flux provenant d'une unité de production de monoéthylène glycol contenant 1 ppmv de composés chlorés: Flux from a monoethylene glycol production unit containing 1 ppmv of chlorinated compounds:
Le flux est mis en contact avec un lit catalytique contenant une première couche de catalyseur au platine et une seconde couche de catalyseur au palladium, permettant de convertir l'essentiel des hydrocarbures en eau et en dioxyde de carbone. En sortie de réacteur catalytique, le flux gazeux à une température supérieure à 300°C et contenant du Hcl est refroidi jusqu'à une température supérieure au point de rosée de l'eau (43°C), afin de prévenir une condensation. The stream is contacted with a catalyst bed containing a first layer of platinum catalyst and a second layer of palladium catalyst, making it possible to convert most of the hydrocarbons into water and carbon dioxide. At the outlet of the catalytic reactor, the gaseous flow at a temperature above 300 ° C. and containing HCl is cooled to a temperature above the dew point of the water (43 ° C.), in order to prevent condensation.
De manière pratique, on maintiendra une température minimale de 55°C, soit 12°C au dessus de la température théorique, s'affranchissant ainsi des imprécisions de mesures et des défauts d'isolation des équipements. entrée du skid In practical terms, a minimum temperature of 55 ° C, ie 12 ° C above the theoretical temperature, will be maintained, thus avoiding measuring inaccuracies and equipment insulation faults. skid entrance
Nom  Name
flux molaire N m3/h 4819 molar flow N m3 / h 4819
flux massique kg/h 8999 mass flow kg / h 8999
Température °C 55  Temperature ° C 55
Pression bar a 1,19  Pressure bar at 1.19
Fraction de vapeur 1  Steam fraction 1
fraction molaire de C02 0,910992 molar fraction of CO2 0.910992
fraction molaire d'Oxygène 0,011299 molar fraction of Oxygen 0.011299
fraction molaire d'AcetAldehyde 0,000000 molar fraction of AcetAldehyde 0.000000
fraction molaire de Méthane 0,000036 molar fraction of Methane 0.000036
fraction molaire d'H20 0,077672 molar fraction of H20 0.077672
fraction molaire d'Ethane 0,000000 molar fraction of Ethane 0.000000
fraction molaire d'i-Butane 0,000000 molar fraction of i-Butane 0.000000
fraction molaire de Benzène 0,000000 molar fraction of Benzene 0.000000
fraction molaire d'Ethylene 0,000001 molar fraction of Ethylene 0.000001
fraction molaire de C20xide 0,000000 molar fraction of C20xide 0.000000
fraction molaire de CIC2 0,000000 molar fraction of CIC2 0.000000
fraction molaire de HCI 0,000001 molar fraction of HCl 0.000001
Le fluide, à la température de 55°C, sera acheminé ensuite dans un skid comportant un échangeur de chaleur en matériau résistant à l'acide chloridrique tel que la nuance d'acier 254SMO. Le froid sera apporté dans l'échangeur grâce à un fluide caloporteur tel que l'eau, à une température inférieure à 43°C, préférentiellement inférieure à 10°C afin de minimiser la taille de l'échangeur. Eau de refroidisse i ment alimentant l'échangeur The fluid, at a temperature of 55 ° C., will then be fed into a skid comprising a heat exchanger made of a material resistant to chloridic acid, such as steel grade 254SMO. The cold will be brought into the exchanger through a coolant such as water, at a temperature below 43 ° C, preferably below 10 ° C to minimize the size of the exchanger. Cooling water supplying the exchanger
Nom  Name
flux molaire N m3/h 9953 molar flow N m3 / h 9953
flux massique kg/h 8000 mass flow kg / h 8000
Température °C 7  Temperature ° C 7
Pressure bar a 3,95  Pressure bar at 3.95
fraction de vapeur 0 fraction of steam 0
Dans cet exemple, la seule condensation de l'eau combinée à une su rface d'échange conséquente, assurera l'élimination du Hcl contenu dans la phase gaz en raison de la très grande solubilité de du Hcl dans l'eau (720g/L à 20°C) In this example, the only condensation of the water combined with a consequent exchange surface, will ensure the removal of HCl contained in the gas phase due to the very high solubility of HCl in water (720g / L at 20 ° C)
La séparation des gouttelettes de liquide contenant les molécules acides sera assurée par un pot séparateur (installé directement en aval de l'échangeur) en matériau résistant à la corrosion au chlore tel que la nuance d'acier 254 SMO ou plus simplement par un matériau en résine polymère.  The separation of the liquid droplets containing the acid molecules will be ensured by a separator pot (installed directly downstream of the exchanger) in a material resistant to corrosion by chlorine such as steel grade 254 SMO or more simply by a material made of polymer resin.
Le gas procédé en sortie du pot séparateur et le liquide condensé, purgé en bas du pot séparateur auront les compositions suivantes:  The process gas leaving the separator pot and the condensed liquid, purged at the bottom of the separator pot will have the following compositions:
Sortie gaz pot Sortie liquide pot Outlet gas pot Outlet liquid pot
Nom séparateur séparateur Separator separator name
flux molaire Nm3/h 4688 131 molar flux Nm3 / h 4688 131
flux massique kg/h 8893 106 mass flow kg / h 8893 106
Température °C 35 35  Temperature ° C 35 35
Pression bar a 1,14 1,14  Pressure bar at 1.14 1.14
Fraction de vapeur 1 0  Vapor fraction 1 0
fraction molaire de C02 0,936535 0,000055 molar fraction of CO2 0.936535 0.000055
Fraction molaire d'Oxygen 0,011615 0,000000 Fraction molaire d' Molar fraction of Oxygen 0.011615 0.000000 Molar fraction of
AcetAldehyde) 0,000000 0,000000AcetAldehyde) 0.000000 0.000000
Fraction molaire de Méthane 0,000037 0,000000Molar Fraction of Methane 0.000037 0.000000
Fraction molaire d' H20 0,051811 0,999942Molar fraction of H20 0.051811 0.999942
Fracc (Ethane) 0,000000 0,000000Fracc (Ethane) 0.000000 0.000000
Fraction molaire d'i-Butane) 0,000000 0,000000Molar fraction of i-Butane) 0.000000 0.000000
Fraction molaire de Benzène 0,000000 0,000000Molar fraction of Benzene 0.000000 0.000000
Fraction molaire d'Ethylene) 0,000001 0,000000Molar fraction of Ethylene) 0.000001 0.000000
Fraction molaire de C20xide 0,000000 0,000000Molar fraction of C20xide 0.000000 0.000000
Fraction molaire de CIC2 0,000000 0,000000Molar fraction of CIC2 0.000000 0.000000
Fraction molaire d'HCI 0,000000 0,000003 Molar fraction of HCI 0.000000 0.000003

Claims

Revendications claims
1. Procédé de purification d'un flux gazeux d'alimentation comprenant au moins 90% de C02 en base sèche, au moins 20% d'humidité relative et au moins une impureté choisie les composés chlorés, soufrés, nitrés ou fluorés comprenant les étapes successives suivantes : 1. A method for purifying a feed gas stream comprising at least 90% of dry base CO 2, at least 20% relative humidity and at least one chosen impurity chlorinated compounds, sulfur, nitro or fluorinated comprising the steps following successive
a) une étape de soumission du flux gazeux d'alimentation à une oxydation catalytique de manière à produire un flux gazeux comprenant au moins une impureté acide choisie parmi HCI, NOx, SOx ou acide fluorhydrique; a) a step of subjecting the feed gas stream to catalytic oxidation so as to produce a gas stream comprising at least one acidic impurity selected from HCl, NOx, SOx or hydrofluoric acid;
b) une étape de maintien de la température du flux gazeux issu de l'étape a) au dessus de la plus grande valeur entre le point de rosée de l'eau et le point de rosée du/des acide(s) contenus dans le gaz en aval du procédé catalytique; b) a step of maintaining the temperature of the gas stream from step a) above the highest value between the dew point of the water and the dew point of the acid (s) contained in the gas downstream of the catalytic process;
c) une étape d'élimination d'au moins une partie des impuretés acides en mettant en contact le flux gazeux issu de l'étape b) en contact avec au moins un échangeur de chaleur résistant à la corrosion de manière à condenser les composés acides tout en régulant la température du flux gazeux sortant sous le point de rosée de l'eau ; et c) a step of removing at least a portion of the acid impurities by contacting the gas stream from step b) in contact with at least one corrosion-resistant heat exchanger so as to condense the acidic compounds while regulating the temperature of the gas stream leaving under the dew point of the water; and
d) une étape de séparation des condensais acides du flux gazeux issu de l'étape c) au moyen d'un séparateur résistant à la corrosion de manière à produire un flux gazeux enrichi en C02. d) a step of separating the acid condensates from the gas stream from step c) by means of a corrosion-resistant separator so as to produce a gas stream enriched with CO2.
2. Procédé selon la revendication 1, caractérisé en ce que ledit procédé comprend après l'étape d) les étapes successives suivantes : 2. Method according to claim 1, characterized in that said method comprises after step d) the following successive steps:
e) une étape de liquéfaction du flux gazeux enrichi en C02, e) a liquefaction step of the gas stream enriched with CO 2,
f) une étape de séchage du flux liquéfié, et f) a step of drying the liquefied flow, and
g) une étape d'envoi du flux séché dans une unité cryogénique. g) a step of sending the dried stream to a cryogenic unit.
3. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que l'échangeur de chaleur et le séparateur sont constitués de matériaux choisis parmi l'acier austénitique, le verre ou un composite résistant à l'acide nitrique, sulfurique ou chlorhydrique. 3. Method according to one of claims 1 or 2, characterized in that the heat exchanger and the separator are made of materials selected from austenitic steel, glass or a composite resistant to nitric acid, sulfuric or hydrochloric.
4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que l'oxydation catalytique est réalisée au moyen d'une unité d'oxydation catalytique résistante au soufre et au chlore. 4. Method according to one of claims 1 to 3, characterized in that the catalytic oxidation is carried out by means of a catalytic oxidation unit resistant to sulfur and chlorine.
5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que le flux gazeux d'alimentation soumis à l'oxydation catalytique est à une température d'au moins 300°C, de préférence d'au moins 425°C. 5. Method according to one of claims 1 to 4, characterized in that the feed gas stream subjected to catalytic oxidation is at a temperature of at least 300 ° C, preferably at least 425 ° C .
6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que le flux gazeux d'alimentation soumis à l'oxydation catalytique est à une pression d'au moins 1 bar absolu 6. Method according to one of claims 1 to 5, characterized in that the feed gas stream subjected to catalytic oxidation is at a pressure of at least 1 bar absolute
7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que le flux gazeux d'alimentation provient d'une unité de monoéthylène glycol, d'un lavage de C02 par absorption, d'une unité de synthèse de Monoéthylène glycol, d'une biofermentation ou tout autre procédé générant un flux riche en C02 7. Method according to one of claims 1 to 6, characterized in that the feed gas stream comes from a monoethylene glycol unit, a C0 2 washing by absorption, a mono-ethylene synthesis unit. glycol, a biofermentation or any other process generating a flow rich in C0 2
8. Procédé selon l'une des revendications 1 à 7, caractérisé en ce qu'à l'étape c) de l'eau est utilisé comme réfrigérant au sein de l'échangeur de chaleur. 8. Method according to one of claims 1 to 7, characterized in that in step c) the water is used as a refrigerant within the heat exchanger.
9. Installation pour la purification d'un flux gazeux d'alimentation comprenant au moins 95% de C02, au moins 20% d'humidité relative et au moins une impureté choisi parmi les composés chlorés, soufrés, nitrés ou fluorés comprenant dans le sens de circulation du flux gazeux: 9. Installation for purifying a feed gas stream comprising at least 95% CO 2, at least 20% relative humidity and at least one impurity chosen from chlorinated compounds, sulfur, nitro or fluorinated including in the sense circulation of the gas flow:
a) une unité d'oxydation catalytique permettant de soumettre le flux gazeux à une oxydation catalytique de manière à produire un flux gazeux comprenant au moins une impureté acide choisie parmi HCI, NOx et SOx ; a) a catalytic oxidation unit for subjecting the gas stream to catalytic oxidation so as to produce a gas stream comprising at least one acidic impurity selected from HCl, NOx and SOx;
b) un moyen de maintenir la température du flux gazeux sortant de l'unité d'oxydation catalytique au dessus du point de rosée acide ; b) a means of maintaining the temperature of the gas stream leaving the catalytic oxidation unit above the acidic dew point;
c) un échangeur de chaleur résistant à la corrosion permettant de condenser les composés acides du flux gazeux ; d) un séparateur résistant à la corrosion permettant de séparer les composés acides du flux gazeux de manière à produire un flux gazeux enrichi en C02. c) a corrosion resistant heat exchanger for condensing the acidic compounds of the gas stream; d) a corrosion resistant separator for separating the acidic compounds from the gas stream so as to produce a gas stream enriched with CO2.
10. Installation selon la revendication 9, caractérisé en ce que ladite installation comprend en aval du séparateur et dans le sens de circulation du flux gazeux enrichi en C02 : 10. Installation according to claim 9, characterized in that said installation comprises downstream of the separator and in the direction of flow of the gas stream enriched in CO2:
e) un liquéfacteur permettant de liquéfier le flux gazeux enrichi en C02 ; e) a liquefier for liquefying the gas stream enriched with CO2;
f) un sécheur permettant de sécher le gaz liquéfier ; et f) a dryer for drying the liquefied gas; and
g) une unité cryogénique. g) a cryogenic unit.
11. Installation selon l'une des revendications 9 ou 10, caractérisée en ce que l'échangeur de chaleur et le séparateur sont constitués de matériaux choisis parmi l'acier austénitique, le verre ou un composite résistant à l'acide nitrique, sulfurique ou chlorhydrique. 11. Installation according to one of claims 9 or 10, characterized in that the heat exchanger and the separator are made of materials selected from austenitic steel, glass or a composite resistant to nitric acid, sulfuric or hydrochloric.
12. Installation selon l'une des revendications 9 à 11, caractérisé en ce que l'oxydation catalytique est réalisée au moyen d'une unité d'oxydation catalytique résistante au soufre et au chlore. 12. Installation according to one of claims 9 to 11, characterized in that the catalytic oxidation is carried out by means of a catalytic oxidation unit resistant to sulfur and chlorine.
EP18773788.7A 2017-08-10 2018-07-13 Method and facility for purifying a feed gas stream comprising at least 90% co2 Pending EP3664917A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1757639A FR3070016B1 (en) 2017-08-10 2017-08-10 METHOD AND APPARATUS FOR PURIFYING A GAS FLOW OF SUPPLY COMPRISING AT LEAST 90% CO2
PCT/FR2018/051788 WO2019030437A1 (en) 2017-08-10 2018-07-13 Method and facility for purifying a feed gas stream comprising at least 90% co2

Publications (1)

Publication Number Publication Date
EP3664917A1 true EP3664917A1 (en) 2020-06-17

Family

ID=60182724

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18773788.7A Pending EP3664917A1 (en) 2017-08-10 2018-07-13 Method and facility for purifying a feed gas stream comprising at least 90% co2

Country Status (7)

Country Link
US (1) US11400413B2 (en)
EP (1) EP3664917A1 (en)
CN (1) CN111065445A (en)
FR (1) FR3070016B1 (en)
RU (1) RU2734348C1 (en)
SG (1) SG11202000945VA (en)
WO (1) WO2019030437A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114471097A (en) * 2022-03-10 2022-05-13 新疆大全新能源股份有限公司 A kind of drying system of hydrogen chloride gas

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5321946A (en) * 1991-01-25 1994-06-21 Abdelmalek Fawzy T Method and system for a condensing boiler and flue gas cleaning by cooling and liquefaction
DE4305386A1 (en) 1993-02-22 1994-08-25 Leuna Werke Gmbh Catalyst and process for cleaning carbon dioxide
US6224843B1 (en) * 1999-09-13 2001-05-01 Saudi Basic Industries Corporation Carbon dioxide purification in ethylene glycol plants
FR2829401B1 (en) * 2001-09-13 2003-12-19 Technip Cie PROCESS AND INSTALLATION FOR GAS FRACTIONATION OF HYDROCARBON PYROLYSIS
KR20040086395A (en) * 2002-02-19 2004-10-08 프랙스에어 테크놀로지, 인코포레이티드 Method for removing contaminants from gases
US7416716B2 (en) * 2005-11-28 2008-08-26 Air Products And Chemicals, Inc. Purification of carbon dioxide
DE102006051899A1 (en) * 2006-10-31 2008-05-15 Bayer Technology Services Gmbh Process and apparatus for the catalytic oxidation of SO2-containing gases with oxygen
FR2918578B1 (en) * 2007-07-13 2010-01-01 Air Liquide PROCESS FOR PURIFYING GAS CONTAINING CO2
JP5275064B2 (en) * 2009-02-02 2013-08-28 バブコック日立株式会社 Exhaust gas treatment apparatus and method for oxyfuel coal fired boiler
JP2012519649A (en) * 2009-03-09 2012-08-30 ビーピー オルタネイティブ エナジー インターナショナル リミテッド Separation of carbon dioxide and hydrogen
CN101607708A (en) * 2009-07-27 2009-12-23 申屠晶 The co-production of technical grade and food-class liquid CO 2 and device
US8784757B2 (en) * 2010-03-10 2014-07-22 ADA-ES, Inc. Air treatment process for dilute phase injection of dry alkaline materials
US8282901B2 (en) * 2010-07-08 2012-10-09 Air Products And Chemicals, Inc. Integration of catalytic CO2 oxidation and oxyfuel sour compression
EP2450450A1 (en) 2010-11-09 2012-05-09 Ineos Commercial Services UK Limited Process and apparatus for producing ethylene via preparation of syngas
CN103347591B (en) * 2011-02-08 2016-11-23 株式会社Ihi The exhaust treatment system of oxygen burner
JP6107444B2 (en) * 2013-06-10 2017-04-05 株式会社Ihi Impurity removal system for moisture-containing gas
US9458022B2 (en) * 2014-03-28 2016-10-04 L'Air Liquide Société Anonyme Pour L'Étude Et L'Exploitation Des Procedes Georges Claude Process and apparatus for separating NO2 from a CO2 and NO2—containing fluid
FR3112966B1 (en) * 2020-07-29 2022-11-11 Ifp Energies Now Process and system for the pretreatment of gaseous effluent for the capture of CO2 in post combustion

Also Published As

Publication number Publication date
WO2019030437A1 (en) 2019-02-14
RU2734348C1 (en) 2020-10-15
SG11202000945VA (en) 2020-03-30
FR3070016A1 (en) 2019-02-15
CN111065445A (en) 2020-04-24
US11400413B2 (en) 2022-08-02
FR3070016B1 (en) 2019-08-23
US20200206686A1 (en) 2020-07-02

Similar Documents

Publication Publication Date Title
CA2745174C (en) Treatment of flue gas from an oxyfuel combustion process
US6939393B2 (en) Method for neutralizing a stream of fluid, and washing liquid for use in one such method
EP1869385B1 (en) Integrated method and installation for cryogenic adsorption and separation for producing co2
US9186619B2 (en) CO2 recovery unit and method therefor
Kemper et al. Evaluation and analysis of the performance of dehydration units for CO2 capture
US7276153B2 (en) Method for neutralising a stream of hydrocarbon fluid
WO2016174317A1 (en) Production of helium from a gas stream containing hydrogen
JP2023501372A (en) Acid gas treatment and related separation methods using molten alkali metal borates, and processes and related systems for regenerating adsorbents
FR2872890A1 (en) Integrated process for adsorption and cryogenic separation for the production of carbon dioxide from sources containing low percentages of carbon dioxide
EP2582446A1 (en) Process and apparatus for drying and compression of a co2 rich stream
US6174348B1 (en) Nitrogen system for regenerating chemical solvent
FR3070016B1 (en) METHOD AND APPARATUS FOR PURIFYING A GAS FLOW OF SUPPLY COMPRISING AT LEAST 90% CO2
US10323202B2 (en) Method for removing hydrogen sulfide from an acid gas
US20100147147A1 (en) Method Of Separating A Syngas Containing Hydrogen And Carbon Monoxide But Also At Least Carbon Dioxide And Water Vapor
FR2949978A1 (en) PROCESS FOR PURIFYING A GASEOUS FLOW COMPRISING MERCURY
JP2004323263A (en) Apparatus for recovering carbon dioxide
FR3137100A1 (en) PROCESSES FOR CLEANING WASTE GAS FROM CARBON BLACK PRODUCTION AND SYSTEM AND INSTALLATION THEREFOR BACKGROUND OF THE INVENTION
EP2632568B1 (en) Use of 2-(3-aminopropoxy)ethan-1-ol as an absorbent to remove acidic gases
Lockwood et al. Oxy-combustion CPU–From pilots towards industrial-scale demonstration
FR2961409A1 (en) Purifying flue gas comprises contacting gas rich in carbon dioxide and containing sulfur dioxide, nitrogen oxides and oxygen with acid, separating sulfuric acid and concentrating gas into sulfur dioxide, nitric oxide and nitrogen dioxide
Santos Comparative study of amine solutions used in CO2 absorption/desorption cycles
FR2823449A1 (en) Process for eliminating oxygen from a gas containing carbon dioxide so an industrial exhaust gas can be injected into an oil well to assist recovering of oil
US20230356147A1 (en) Process and appliance for the purification of a gas flow containing at least one nitrogen oxide
Merikoski Flue gas processing in amine-based carbon capture systems
Bilsbak Conditioning of CO2 coming from a CO2 capture process for transport and storage purposes

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200310

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220204

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'EXPLOITATION DES PROCEDES GEORGES CLAUDE