EP3647553B1 - Versorgung eines elektromechanischen energiewandlers mit elektrischer energie aus einem thermodynamischen kreisprozess - Google Patents
Versorgung eines elektromechanischen energiewandlers mit elektrischer energie aus einem thermodynamischen kreisprozess Download PDFInfo
- Publication number
- EP3647553B1 EP3647553B1 EP18204344.8A EP18204344A EP3647553B1 EP 3647553 B1 EP3647553 B1 EP 3647553B1 EP 18204344 A EP18204344 A EP 18204344A EP 3647553 B1 EP3647553 B1 EP 3647553B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- voltage
- converter
- generator
- intermediate circuit
- electromechanical energy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K13/00—General layout or general methods of operation of complete plants
- F01K13/02—Controlling, e.g. stopping or starting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K13/00—General layout or general methods of operation of complete plants
- F01K13/006—Auxiliaries or details not otherwise provided for
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K25/00—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
- F01K25/08—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
Definitions
- the invention relates to a device for operating an electromechanical energy converter and a method for operating an electromechanical energy converter.
- the liquid working medium returns from the condenser to the system's feed pump, which closes the thermodynamic cycle.
- the working medium is an organic working medium, it is an Organic Rankine Cycle as a thermodynamic cycle (ORC process).
- dry coolers eg dry coolers in engine combined heat and power plants, BHKWs
- these fans should be supplied with electrical energy via a thermodynamic cycle process (eg an ORC process).
- the heat dissipation of the cycle process should be realized via the fans of the dry cooler (normally the cycle or ORC process a separate fan to provide cooling of the condenser via an air flow).
- the cyclic process converts heat (eg unused exhaust heat from a combustion engine or part of the heat from the fluid to be cooled in the cooler) into electrical energy.
- the problem here is ensuring a stable supply of electrical energy to the fan so as not to impair the cooling function.
- Another disadvantage is that excess energy from the ORC process is fed back into the public power grid. Feeding energy into the power grid is associated with other requirements, such as compliance with feed-in guidelines, system certification, registration with the grid operator, and payment of the EEG surcharge in accordance with the law for the expansion of renewable energies (Renewable Energy Sources Act, EEG). .
- document DE 10 2008 039449 A1 discloses, for example, a power plant with control of a compressor powered by two power sources.
- the object of the invention is to avoid or at least alleviate the disadvantages mentioned.
- the circular or ORC process should always deliver exactly as much power as the fan consumes (quasi-island operation). Due to the joint use of the fan for the cooling process and the cycle process, the speed of the fan and thus its power consumption are only dependent on the cooling requirement of the cooling process. The dry cooler of the ORC process can therefore not be influenced in terms of control technology. In order to ensure a high level of operational reliability, it must be possible to draw additional power from the public power grid if the ORC process (e.g. due to high outside temperatures or too little process energy (waste heat)) cannot supply enough power to operate the fan.
- the ORC process e.g. due to high outside temperatures or too little process energy (waste heat)
- the invention describes the solution of at least part of the above problems.
- the invention thus discloses a device for operating an electromechanical energy converter, such as a fan or a pump; the device comprising: a thermodynamic cycle device; an electric generator connected to a shaft of an expander of the thermodynamic cycle device and rotatable together with the shaft; wherein the generator is electrically connected to a first voltage converter, the first voltage converter is electrically connected to a DC voltage intermediate circuit and the DC voltage intermediate circuit can be electrically connected to the electromechanical energy converter in order to operate it; wherein the first voltage converter is designed to convert a first AC voltage of the electrical generator into a DC voltage; and wherein the intermediate DC circuit can be connected to an additional electrical energy supply, in particular a public power grid.
- the device further comprises a control device (60) for controlling the electrical energy supplied to the electromechanical energy converter, so that the electromechanical energy converter can be operated at a predetermined speed, the control device for controlling the electrical energy supplied to the electromechanical energy converter from the generator and, if the Electrical energy provided by the generator is not sufficient for regulating the electrical energy supplied to the electromechanical energy converter from the additional energy supply.
- a control device 60 for controlling the electrical energy supplied to the electromechanical energy converter, so that the electromechanical energy converter can be operated at a predetermined speed
- the control device for controlling the electrical energy supplied to the electromechanical energy converter from the generator and, if the Electrical energy provided by the generator is not sufficient for regulating the electrical energy supplied to the electromechanical energy converter from the additional energy supply.
- the device according to the invention has the advantages that energy is saved by supplying an electromechanical energy converter (e.g. fan or pump) via a cycle or ORC process that uses waste heat, that, for example, a separate cycle process or ORC fan is not required, that the operation of the fan is independent of the ORC process, thereby achieving high system reliability, and that grid feed-in is avoided, thereby bypassing the provision of feed-in requirements.
- an electromechanical energy converter e.g. fan or pump
- the device according to the invention can be further developed such that a second voltage converter is also provided for converting a DC voltage in the DC voltage intermediate circuit into a second AC voltage for operating an electromechanical energy converter without its own voltage converter, the second voltage converter being electrically connected to the DC voltage intermediate circuit.
- the additional energy supply is a public power grid, which is connected to the DC voltage intermediate circuit via a rectifier circuit or via a power factor correction stage, and the control device is also designed in particular to reduce the energy provided by the generator in order to avoid feeding in electrical To avoid energy in the public power grid, in particular by reducing the heat flow introduced into the thermodynamic cycle device and / or by reducing the efficiency of the thermodynamic cycle device.
- the utility grid can be connected to the DC link via a bidirectional converter circuit in order to feed excess energy from the generator into the utility grid.
- the DC voltage intermediate circuit can include a first partial DC voltage intermediate circuit connected to the first voltage converter, a second partial DC voltage intermediate circuit that can be connected to the electromechanical energy converter or is connected to the second voltage converter, and a step-up converter arranged between the two partial circuits.
- a further electromechanical energy converter can be operated via a parallel circuit on the second partial DC voltage intermediate circuit, a third voltage converter for converting the DC voltage in the second partial DC voltage intermediate circuit into a third AC voltage for operating the further electromechanical energy converter being optionally provided the additional electromechanical energy converter is, for example, an additional pump, in particular a feed pump for pumping a working medium in the thermodynamic cycle device or an additional fan.
- the electromechanical energy converter can comprise an intermediate circuit with an AC voltage connection, and the AC voltage connection can be connected directly to the second partial DC voltage intermediate circuit.
- a battery can be connected via a parallel connection to the second partial DC voltage intermediate circuit and a bidirectional DC voltage converter.
- the invention also provides a system that includes the following: a heat-generating device with a cooling fluid for dissipating heat from the heat-generating device and a cooling device with an electrically operable fan for cooling the cooling fluid, in particular the speed of the fan and thus in particular its recorded power is predetermined by the cooling demand of the cooling device; and a thermodynamic cycle device, in particular an organic Rankine cycle device, which has an evaporator for evaporating a working medium, an expansion machine that can be operated by expanding the evaporated working medium with the evaporated working medium, an electrical generator that can be operated with the expansion machine, and a condenser for condensing the expanded Working medium includes; wherein the fan is further provided for cooling the working fluid in the condenser; and wherein the system further comprises a device according to the invention for operating the fan as an electromechanical energy converter or one of the developments described above.
- the system can be further developed such that the speed of the fan is predetermined by a temperature of the cooling fluid to be achieved with the cooling device.
- the invention thus discloses a method for operating an electromechanical energy converter, for example a pump or a fan, at a predetermined speed, comprising the steps: converting a first AC voltage of a generator into a DC voltage in a DC intermediate circuit between the generator and the electromechanical energy converter, the electrical Generator is connected to a shaft of an expander of a thermodynamic cycle device, rotates together with the shaft and is driven by the shaft; Applying the DC voltage in the DC voltage intermediate circuit to the electromechanical energy converter; Application of a DC voltage to the DC voltage intermediate circuit from an additional electrical energy supply, in particular with electrical energy from a public power grid; Regulating the electrical energy supplied to the electromechanical energy converter from the generator in order to operate the electromechanical energy converter at the predetermined speed, and regulating the electrical energy supplied to the electromechanical energy converter from the auxiliary power supply if the electrical energy provided by the generator is required to operate the electromechanical energy converter at the predetermined speed is not sufficient.
- a second AC voltage can be generated from the DC voltage intermediate circuit and this (instead of the DC voltage in the DC voltage intermediate circuit) can be applied to the electromechanical energy converter (eg to a fan motor).
- the method according to the invention can be further developed in such a way that the additional energy supply is a public power grid, which is connected to the DC link via a rectifier circuit, and the method also includes the following step: avoiding the feeding of electrical energy into the public power grid by reducing the generator energy provided, in particular by reducing the heat flow introduced into the thermodynamic cycle device and/or by reducing the efficiency of the thermodynamic cycle device.
- the method according to the invention can be further developed such that the additional energy supply is a public power grid, which is connected to the DC link via a bidirectional converter circuit, the method also includes the following step: feeding excess energy from the generator into the public power grid.
- the DC voltage intermediate circuit comprises a first partial DC voltage intermediate circuit connected to the generator and a second partial DC voltage intermediate circuit connected to the electromechanical energy converter, the method comprising the following additional step: converting the first DC voltage in the first partial DC voltage intermediate circuit into a higher second DC voltage introduced into the second partial DC voltage intermediate circuit.
- the method comprises the further step: Setting the second DC voltage below a third DC voltage provided by the additional energy supply in the second partial DC voltage intermediate circuit if the electrical energy provided by the generator for operating the electromechanical energy converter at the predetermined speed is not sufficient is sufficient.
- the method can include the following additional step: converting the DC voltage in the DC voltage link into a third AC voltage to operate a further electromechanical energy converter, in particular a pump, for example a feed pump for pumping a working medium in the thermodynamic cycle device or for operating a further fan .
- a further electromechanical energy converter in particular a pump, for example a feed pump for pumping a working medium in the thermodynamic cycle device or for operating a further fan .
- the embodiments show one or more fans and/or one or more pumps, in particular for example a feed pump in the thermodynamic cycle device, as electromechanical energy converters, merely by way of example.
- Electromechanical energy converters convert electrical energy into mechanical kinetic energy, whereby the movement can be linear or rotary. Accordingly, a distinction is made between linear machines and rotating electrical machines.
- the embodiments relate to rotating electrical machines, but linear machines can also be used for the electromechanical energy converters in the embodiments in which speed control is not essential.
- the electromechanical energy converters in the embodiments are predominantly constructed in such a way that the electromechanical energy converter itself has a Has intermediate circuit with an AC voltage connection.
- Each of these embodiments can be modified in such a way that a corresponding voltage converter is provided on the DC link for connection to the electromechanical energy converter.
- Figure 1A shows a first embodiment 100 of the device according to the invention for operating a fan.
- the device 100 comprises an electrically operable fan 80 with a motor 10 and a DC/AC voltage converter 44, an electric generator 20, which is connected to a shaft 35 of an expansion machine 30 of a thermodynamic cycle device, here an ORC device, and together with the Shaft 35 is rotatable.
- a first voltage converter 42 (input converter 42) and a DC voltage intermediate circuit 40 are provided between the generator 20 and the fan 80 .
- the first voltage converter 42 is designed to convert a first AC voltage of the electrical generator 20 into a DC voltage.
- the DC/AC voltage converter 44 (or output converter 44) is designed to convert a DC voltage in the DC voltage intermediate circuit 40 into a second AC voltage for operating the fan motor 10.
- the DC voltage intermediate circuit 40 is connected to an additional electrical energy supply 50, here a public power grid 51.
- the device 100 also includes a control device 60 for controlling the electrical energy supplied to the fan 80 so that the fan can be operated at a predetermined speed, the control device 60 being designed in such a way that it regulates the electrical energy supplied to the fan 80 from the generator 20 and, if the electrical energy provided by the generator 20 is not sufficient for this, the electrical energy supplied to the fan 80 by the additional energy supply 50 regulates.
- the DC voltage intermediate circuit 40 includes a capacitor 41.
- the AC voltage from the public power grid 51 is rectified by a rectifier circuit 52 and applied to the DC voltage intermediate circuit 40.
- the control device 60 is also designed to reduce the energy provided by the generator 20 in order to meet the energy requirements of the/des To correspond to consumer(s), in particular by reducing the heat flow introduced into the thermodynamic cycle device and/or by reducing the efficiency of the thermodynamic cycle device.
- the ORC device for obtaining electrical energy from thermal energy includes: a feed pump, which conveys liquid working medium under pressure increase to an evaporator, the evaporator itself, in which the working medium is preheated with the supply of heat, evaporated and optionally additionally overheated , the expansion machine 30, in which the high-pressure, vaporized working medium is expanded and mechanical energy is generated in the process, which can be converted into electrical energy via the generator 20, and a condenser, in which the low-pressure steam (expanded working medium) from the expansion machine 30 is heated and liquefied.
- the liquid working medium returns from the condenser to the system's feed pump, which closes the thermodynamic cycle.
- Figure 1B shows a system according to the invention in combination with the first embodiment of the device according to the invention Figure 1A .
- the system comprises a heat-generating device 110, an outlet 111 of the heat-generating device, the outlet 111 being provided for discharging process fluid to be cooled from the heat-generating device 110; an inlet 112 of the heat-generating device 110, the inlet 112 being provided for supplying cooled process fluid to the heat-generating device 110; and a thermodynamic cycle device, in particular an ORC device, wherein the thermodynamic cycle device comprises: an evaporator 120 with an inlet 121 for supplying the process fluid to be cooled from the outlet 111 of the heat-generating device 110 and with an outlet 122 for discharging the cooled process fluid to the inlet 112 the heat-generating device 110, wherein the evaporator 120 is designed for evaporating a working medium of the thermodynamic cycle device by means of heat from the process fluid; the expansion machine 30 for expanding the vaporized working medium and for generating electrical energy by means electric generator 20; an air-cooled condenser 150 for liquefying the expanded working fluid; and a pump 160 for pumping the
- an air cooler 170 is provided for cooling at least part of the process fluid to be cooled.
- the system includes a branch 171, which is provided, for example, in relation to a flow direction of the process fluid downstream of the outlet 111 and upstream of the inlet 121 for dividing the process fluid to be cooled into a first and a second partial flow of the process fluid.
- the system further includes a junction 172, which is provided with respect to a flow direction of the process fluid downstream of the outlet 122 and upstream of the inlet 112 for merging the second partial flow of the process fluid cooled by the cooler 170 and the first partial flow of the process fluid cooled by the evaporator 120 ; the branch 171 for supplying the first partial flow to the evaporator 120 and for supplying the second partial flow to the cooler 170 is designed.
- the flow of ambient air sequentially passes first through the radiator 170 and then through the condenser 150.
- FIG. 2 shows the operating states of the fan(s) in the first embodiment 100 of the device according to the invention in a performance versus outside temperature diagram, which will be described in more detail below.
- the fan 80 is connected to the generator 20 via the DC link (direct current) 40 (or via several DC links).
- the speed of the fan 80 is regulated as a function of a target flow temperature of a cooling system and is independent of the generator speed and energy supply from the ORC process.
- the ORC process If the ORC process generates less energy than is required at the intermediate circuit 40 (U_DC), the missing energy is drawn from the public grid 51 via the rectifier 52 .
- the rectifier 52 also provides operation of the fan 80 independent of the thermodynamic cycle process (e.g. in the event of failure, error). In the event of an error or failure of the cyclic process, the entire power required is drawn from the network 51 .
- the radiator driven by this fan 80 can continuously and independently provide sufficient cooling performance.
- the speed of the generator 20 is initially aligned with the optimal operating point of the ORC process and regulated by means of the input converter 42 (regulated operation). At this operating point, the amount of heat Q zu transferred to the ORC is converted into electrical energy P el with optimum efficiency ⁇ ORC .
- the measures will influence each other slightly, e.g. the reduction of the feed pump speed will lead to different steam parameters and thus also to a changed thermal efficiency.
- the voltage U_DC is now used as a control variable for the generator speed and/or the feed pump speed and the speed is reduced or increased again until sets a stable balance between ORC power generation and energy consumption. With constant consumption by the fan, the voltage U_DC behaves in such a way that it also increases with increasing ORC power. The voltage U_DC thus serves as a controlled variable.
- a brake chopper would be provided on the intermediate circuit 40, which limits the intermediate circuit voltage to a value that is not critical for the components.
- this has the disadvantage that sufficient heat dissipation of the braking resistor must be ensured and the material costs increase due to the additional component. This can be omitted here.
- more losses are generated in generator 20 via fast regulation of input converter 42 and activation of generator 20 in the suboptimal range, and the intermediate circuit voltage is thereby limited. That is, the input converter 42 is operated with a poorer efficiency as intended.
- FIG 3 shows a second embodiment 200 of the device according to the invention for operating a fan.
- the DC voltage intermediate circuit 40 comprises a first partial DC voltage intermediate circuit 46 connected to the input converter 42, a second partial DC voltage intermediate circuit 48 connected to the output converter 44 and a step-up converter 45 arranged between the two partial circuits.
- the step-up converter 45 is also synonymously known as a boost converter or step-up converter designated.
- the step-up converter 45 is interposed.
- the mains connection consists of a passive B6 rectifier 52 which is connected in 3 phases.
- FIG. 4 shows a third embodiment 300 of the device according to the invention for operating a fan.
- the network coupling can also take place on the input side of the step-up converter 45.
- an active grid coupling via power factor correction stage 54 active PFC, Power Factor Correction
- active PFC Power Factor Correction
- a 1-phase mains connection is sufficient.
- the current consumption is almost sinusoidal due to the active PFC (avoidance of harmonics).
- figure 5 shows a fourth embodiment 400 of the device according to the invention.
- a parallel circuit is provided on the second partial DC voltage intermediate circuit 48.
- a pump 81 can be connected via a further output converter 49 for converting the DC voltage in the second partial DC voltage link 48 into a third AC voltage for operating a motor 11 of the pump 81, for example a water pump and/or a feed pump for pumping a working medium in the thermodynamic Cyclic process device are driven.
- the pump 81 is also supplied from the second intermediate circuit 48 (U_DC2).
- U_DC2 the second intermediate circuit 48
- the advantage is a further increase in efficiency, since in normal operation the energy of the pump 81 also comes from the ORC process and does not have to be drawn from the grid 51 .
- the energy is drawn from the network 51 via the B6 bridge 52 .
- An auxiliary voltage supply (eg 24 VDC, not shown) can also be taken from the intermediate circuit 48 in the same way.
- FIG. 6 shows a fifth embodiment 500 of the device according to the invention.
- a further fan 82 is driven instead of the pump 81.
- the fifth embodiment 500 shows a parallel connection of several fans 80, 82 on the common DC intermediate circuit. Depending on the performance of the fans, any number of fans can be connected in parallel. In practice, multiple fans and larger coolers are often used to improve quietness and efficiency through reduced air speeds.
- FIG. 7 shows a sixth embodiment 600 of the device according to the invention.
- the sixth embodiment 600 includes the supply of a plurality of fans 80, 82 via a common converter, namely the output converter 44.
- the parallel connection is therefore on the AC side.
- a sine filter 13 connected downstream of the common converter 44 is required for this. This supplies a sinusoidal output current of variable frequency.
- the advantage over the fifth embodiment 500 results from simpler wiring (electrical strength, omission of shielded cable) and better EMC properties (electromagnetic compatibility).
- the wiring between the converter 44 and the fan motor can be 10 m and longer, for example.
- FIG. 8 shows a seventh embodiment 700 of the device according to the invention.
- the seventh embodiment 700 shows the connection of a three-phase AC input of a fan 80 directly to the DC intermediate circuit 48.
- the converter 44 usually has input rectifier diodes (body diodes), which allow direct connection to a DC circuit.
- the intermediate circuit 48 (U_DC2) is thus connected directly to the intermediate circuit of the fan converter (converter 44).
- Commercially regulated EC fans Electricly Commutated Motor
- Any existing phase failure or AC voltage monitoring must be deactivated for this.
- this embodiment also allows several fans to be connected in parallel.
- FIG 9 shows an eighth embodiment 800 of the device according to the invention.
- the eighth embodiment 800 shows an energy store, for example a battery 70 on the intermediate circuit 48. This is a step towards a completely currentless fan (all consumers such as pumps, fans, auxiliary voltage supply are connected to the intermediate circuit, at least there is no permanent connection to the electrical supply network required, and with appropriate dimensioning of the battery 70, the mains connection can be omitted) and also allows more freedom in the design of the control circuit of the ORC power.
- a completely currentless fan all consumers such as pumps, fans, auxiliary voltage supply are connected to the intermediate circuit, at least there is no permanent connection to the electrical supply network required, and with appropriate dimensioning of the battery 70, the mains connection can be omitted
- FIG. 10 shows a ninth embodiment 900 of the device according to the invention.
- a topology with regenerative power converter 53 (bidirectional power converter circuit) is shown. Excess energy thus flows back into the grid 51 without limiting the performance of the ORC generator.
- the feed-in converter 53 must comply with the feed-in guidelines applicable in the respective country. The advantage of all the previous embodiments is that there is no need for increased effort to comply with all technical and regulatory feed-in guidelines.
- FIG. 11 shows a tenth embodiment 1000 of the device according to the invention.
- the tenth embodiment 1000 represents the supply of a pump 83, for example a hot water pump of a heating circuit from the DC intermediate circuit 48.
- a pump 83 for example a hot water pump of a heating circuit from the DC intermediate circuit 48.
- a compressor or any other electrical consumer can also be connected.
- pumps often have a higher power requirement than the fans. If the required pump power is permanently higher than the ORC power, a direct connection of the DC output of the ORC generator converter to the intermediate voltage circuit of a regulated pump is possible. The ORC will then generate maximum energy at its optimum operating point, which is then used to operate the pump. Additional energy is permanently drawn from the grid.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Eletrric Generators (AREA)
Description
- Die Erfindung betrifft eine Vorrichtung zum Betreiben eines elektromechanischen Energiewandlers und ein Verfahren zum Betreiben eines elektromechanischen Energiewandlers.
- Eine thermodynamische Kreisprozessvorrichtung zur Gewinnung von elektrischer Energie aus Wärmeenergie umfasst die folgenden Hauptkomponenten: eine Speisepumpe, die flüssiges Arbeitsmedium unter Druckerhöhung zu einem Verdampfer fördert, den Verdampfer selbst, in dem das Arbeitsmedium unter Zuführung von Wärme vorgewärmt, verdampft und optional zusätzlich überhitzt wird, eine Expansionsmaschine, in welcher das unter hohem Druck stehende verdampfte Arbeitsmedium entspannt wird und dabei mechanische Energie erzeugt, welche beispielsweise über einen Generator in elektrische Energie gewandelt werden kann, und einen Kondensator, in dem der Niederdruckdampf (entspanntes Arbeitsmedium) aus der Expansionsmaschine enthitzt und verflüssigt wird. Aus dem Kondensator gelangt das flüssige Arbeitsmedium wieder zur Speisepumpe des Systems, wodurch der thermodynamische Kreislauf geschlossen ist. Im Falle, dass das Arbeitsmedium ein organisches Arbeitsmedium ist, handelt es sich um einen Organic Rankine Cycle als thermodynamischen Kreisprozess (ORC-Prozess).
- Aus dem Stand der Technik sind sogenannte Trockenkühler (z.B. Rückkühler an Motor-Blockheizkraftwerken, BHKWs), die durch elektrisch angetriebene Ventilatoren mit Luft durchströmt werden. Um dabei den Energieverbrauch zu minimieren, sollen gemäß internem Stand der Technik des Anmelders diese Ventilatoren über einen thermodynamischen Kreisprozess (z.B. einen ORC-Prozess) mit elektrischer Energie versorgt werden. Gleichzeitig soll die Wärmeabfuhr des Kreisprozesses über die Ventilatoren des Trockenkühlers realisiert werden (normalerweise enthält der Kreis- bzw. ORC-Prozess einen separaten Ventilator, um eine Kühlung des Kondensators über einen Luftstrom bereitzustellen). Der Kreisprozess wandelt hierbei Wärme (z.B. ungenutzte Abgaswärme eines Verbrennungsmotors oder aber einen Teil der Wärme des im Kühler abzukühlenden Fluids) in elektrische Energie um. Problematisch ist dabei, eine stabile Versorgung des Ventilators mit elektrischer Energie zu gewährleisten, um die Kühlungsfunktion nicht zu beeinträchtigen. Weiterhin ist nachteilig, dass überschüssige Energie des ORC-Prozesses in das öffentliche Stromnetz zurückgespeist wird. Eine Einspeisung von Energie in das Stromnetz ist nämlich mit weiteren Erfordernissen verbunden, wie z.B. Einhaltung der Einspeiserichtlinien, Anlagenzertifizierung, Anmeldung beim Netzbetreiber, und die Zahlung der EEG-Umlage gemäß dem Gesetz für den Ausbau erneuerbarer Energien (Erneuerbare-Energien-Gesetz, EEG).
- Dokument
DE 10 2008 039449 A1 offenbart zum Beispiel ein Kraftwerk mit einer Steuerung eines Kompressors, der von zwei Energiequellen versorgt wird. - Aufgabe der Erfindung ist es, die genannten Nachteile zu vermeiden oder zumindest abzumildern.
- Der Kreis- bzw. ORC-Prozess sollte möglichst immer genau so viel Leistung liefern wie der Ventilator verbraucht (quasi-Inselbetrieb). Durch die gemeinsame Nutzung des Ventilators für Kühlprozess und Kreisprozess ist die Drehzahl des Ventilators und somit seine aufgenommene Leistung nur vom Kühlbedarf des Kühlprozesses abhängig. Der Rückkühler des ORC-Prozesses kann somit regelungstechnisch nicht beeinflusst werden. Um eine hohe Betriebssicherheit zu gewährleisten, muss zusätzliche Leistung aus dem öffentlichen Stromnetz entnommen werden können, wenn der ORC-Prozess (z.B. wegen hoher Außentemperatur oder zu geringer Prozessenergie (Abwärme)) nicht genügend Leistung zum Betrieb des Ventilators liefern kann.
- Es muss also eine Möglichkeit gefunden werden, den fluktuierenden Leistungsbedarf des Ventilators möglichst genau mit dem ORC-Generator zu decken. Sollte der Kreisprozess nicht genügend Energie zur Verfügung stellen, muss es eine Möglichkeit geben, den Ventilator durch das öffentliche Stromnetz bzw. über eine andere Quelle mit Energie zu versorgen und gleichzeitig eine Einspeisung ins Netz zu vermeiden.
- Die Erfindung beschreibt die Lösung wenigstens eines Teils der oben genannten Probleme.
- Die erfindungsgemäße Lösung wird definiert durch eine Vorrichtung mit den Merkmalen gemäß Anspruch 1.
- Die Erfindung offenbart somit eine Vorrichtung zum Betreiben eines elektromechanischen Energiewandlers, beispielsweise eines Ventilators oder einer Pumpe; wobei die Vorrichtung Folgendes umfasst: eine thermodynamische Kreisprozessvorrichtung; einen elektrischen Generator, der mit einer Welle einer Expansionsmaschine der thermodynamischen Kreisprozessvorrichtung verbunden ist und zusammen mit der Welle drehbar ist; wobei der Generator elektrisch mit einem ersten Spannungswandler verbunden ist, der erste Spannungswandler elektrisch mit einem Gleichspannungszwischenkreis verbunden ist und der Gleichspannungszwischenkreis zum Betreiben des elektromechanischen Energiewandlers elektrisch mit diesem verbindbar ist; wobei der erste Spannungswandler zum Wandeln einer ersten Wechselspannung des elektrischen Generators in eine Gleichspannung ausgebildet ist; und wobei der Gleichspannungszwischenkreis mit einer elektrischen Zusatzenergieversorgung, insbesondere einem öffentlichen Stromnetz, verbindbar ist. Die Vorrichtung umfasst weiterhin eine Regeleinrichtung (60) zum Regeln der dem elektromechanischen Energiewandler zugeführten elektrischen Energie, so dass der elektromechanische Energiewandler mit einer vorbestimmten Drehzahl betreibbar ist, wobei die Regeleinrichtung zum Regeln der dem elektromechanischen Energiewandler zugeführten elektrischen Energie vom Generator und, falls die vom Generator bereitgestellte elektrische Energie dafür nicht ausreichend ist, zum Regeln der dem elektromechanischen Energiewandler zugeführten elektrischen Energie von der Zusatzenergieversorgung, ausgebildet ist.
- Die erfindungsgemäße Vorrichtung hat die Vorteile, dass eine Energieeinsparung durch Versorgung eines elektromechanischen Energiewandlers (z.B. Ventilator oder Pumpe) über einen Abwärme nutzenden Kreis- bzw. ORC-Prozess erfolgt, dass beispielsweise ein separater Kreisprozess- bzw. ORC-Ventilator nicht benötigt wird, dass der Betrieb des Ventilators unabhängig vom ORC-Prozess ist und dadurch eine hohe Zuverlässigkeit des Systems erzielt wird, und dass eine Netzeinspeisung vermieden und dadurch die Bereitstellung von Einspeise-Erfordernissen umgangen wird.
- Die erfindungsgemäße Vorrichtung kann dahingehend weitergebildet werden, dass weiterhin ein zweiter Spannungswandler zum Wandeln einer Gleichspannung im Gleichspannungszwischenkreis in eine zweite Wechselspannung zum Betreiben eines elektromechanischen Energiewandlers ohne eigenen Spannungswandler vorgesehen ist, wobei der zweite Spannungswandler elektrisch mit dem Gleichspannungszwischenkreis verbunden ist.
- Eine andere Weiterbildung besteht darin, dass die Zusatzenergieversorgung ein öffentliches Stromnetz ist, das über eine Gleichrichterschaltung oder über eine Leistungsfaktorkorrekturstufe mit dem Gleichspannungszwischenkreis verbunden ist, und die Regeleinrichtung insbesondere weiterhin dazu ausgebildet ist, die vom Generator bereitgestellte Energie zu reduzieren, um eine Einspeisung von elektrischer Energie in das öffentliche Stromnetz zu vermeiden, insbesondere durch Reduzieren des in die thermodynamische Kreisprozessvorrichtung eingebrachten Wärmestroms und/oder durch Reduzieren des Wirkungsgrades der thermodynamischen Kreisprozessvorrichtung.
- Alternativ dazu kann das öffentliche Stromnetz über eine bidirektionale Stromrichterschaltung mit dem Gleichspannungszwischenkreis verbunden sein, um überschüssige Energie vom Generator in das öffentliche Stromnetz einzuspeisen.
- Gemäß einer anderen Weiterbildung kann der Gleichspannungszwischenkreis einen mit dem ersten Spannungswandler verbundenen ersten Teil-Gleichspannungszwischenkreis, einen mit dem elektromechanischen Energiewandler verbindbaren oder mit dem zweiten Spannungswandler verbundenen zweiten Teil-Gleichspannungszwischenkreis und einen zwischen den beiden Teilkreisen angeordneten Aufwärtswandler umfassen.
- Dies kann dahingehend weitergebildet werden, dass über eine Parallelschaltung am zweiten Teil-Gleichspannungszwischenkreis ein weiterer elektromechanischer Energiewandler betreibbar ist, wobei optional ein dritter Spannungswandler zum Wandeln der Gleichspannung im zweiten Teil-Gleichspannungszwischenkreis in eine dritte Wechselspannung zum Betreiben des weiteren elektromechanischen Energiewandlers vorgesehen ist, wobei der weitere elektromechanische Energiewandler beispielsweise eine weitere Pumpe, insbesondere eine Speisepumpe zum Pumpen eines Arbeitsmediums in der thermodynamischen Kreisprozessvorrichtung oder ein weiterer Ventilator ist.
- Dabei kann der elektromechanische Energiewandler einen Zwischenkreis mit einem Wechselspannungsanschluss umfassen und der Wechselspannungsanschluss kann direkt mit dem zweiten Teil-Gleichspannungszwischenkreis verbunden sein.
- Gemäß einer anderen Weiterbildung kann über eine Parallelschaltung am zweiten Teil-Gleichspannungszwischenkreis und einen bidirektionalen Gleichspannungswandler eine Batterie angeschlossen sein.
- Die Erfindung stellt weiterhin ein System bereit, das Folgendes umfasst: eine wärmeerzeugende Vorrichtung mit einem Kühlfluid zum Abführen von Wärme aus der wärmeerzeugenden Vorrichtung und einer Kühlvorrichtung mit einem elektrisch betreibbaren Ventilator zum Kühlen des Kühlfluids, wobei insbesondere die Drehzahl des Ventilators und somit insbesondere seine aufgenommene Leistung vom Kühlbedarf der Kühlvorrichtung vorbestimmt ist; und eine thermodynamische Kreisprozessvorrichtung, insbesondere eine Organic-Rankine-Cycle-Vorrichtung, die einen Verdampfer zum Verdampfen eines Arbeitsmediums, eine durch Expandieren des verdampften Arbeitsmediums mit dem verdampften Arbeitsmedium betreibbare Expansionsmaschine, einen mit der Expansionsmaschine betreibbaren elektrischen Generator und einen Kondensator zum Kondensieren des expandierten Arbeitsmediums umfasst; wobei der Ventilator weiterhin zum Kühlen des Arbeitsmediums im Kondensator vorgesehen ist; und wobei das System weiterhin eine erfindungsgemäße Vorrichtung zum Betreiben des Ventilators als elektromechanischen Energiewandler oder eine der oben beschriebenen Weiterbildungen umfasst.
- Das System kann dahingehend weitergebildet werden, dass die Drehzahl des Ventilators durch eine mit der Kühlvorrichtung zu erzielende Temperatur des Kühlfluid vorgegeben ist.
- Die oben genannten Probleme werden zumindest teilweise auch durch das erfindungsgemäße Verfahren gemäß Anspruch 10 gelöst.
- Die Erfindung offenbart somit ein Verfahren zum Betreiben eines elektromechanischen Energiewandlers, beispielsweise einer Pumpe oder eines Ventilators mit einer vorbestimmten Drehzahl, umfassend die Schritte: Wandeln einer ersten Wechselspannung eines Generators in eine Gleichspannung in einem Gleichstromzwischenkreis zwischen dem Generator und dem elektromechanischen Energiewandler, wobei der elektrische Generator mit einer Welle einer Expansionsmaschine einer thermodynamischen Kreisprozessvorrichtung verbunden ist, sich zusammen mit der Welle dreht und durch die Welle angetrieben wird; Anlegen der Gleichspannung im Gleichspannungszwischenkreis an den elektromechanischen Energiewandler; Anlegen einer Gleichspannung an den Gleichspannungszwischenkreis von einer elektrischen Zusatzenergieversorgung, insbesondere mit elektrischer Energie aus einem öffentlichen Stromnetz; Regeln der dem elektromechanischen Energiewandler zugeführten elektrischen Energie vom Generator, um den elektromechanischen Energiewandler mit der vorbestimmten Drehzahl zu betreiben, und Regeln der dem elektromechanischen Energiewandler zugeführten elektrischen Energie von der Zusatzenergieversorgung, falls die vom Generator bereitgestellte elektrische Energie für das Betreiben des elektromechanischen Energiewandlers mit der vorbestimmten Drehzahl nicht ausreichend ist.
- Optional kann eine zweite Wechselspannung aus dem Gleichspannungszwischenkreis erzeugt werden, und diese (anstatt der Gleichspannung im Gleichspannungszwischenkreis) an den elektromechanischen Energiewandler (z.B. an einen Ventilatormotor) angelegt werden.
- Die Vorteile des erfindungsgemäßen Verfahrens oder dessen Weiterbildungen entsprechen jenen der erfindungsgemäßen Vorrichtung bzw. deren Weiterbildungen und werden daher hier nicht wiederholt.
- Das erfindungsgemäße Verfahren kann dahingehend weitergebildet werden, dass die Zusatzenergieversorgung ein öffentliches Stromnetz ist, das über eine Gleichrichterschaltung mit dem Gleichspannungszwischenkreis verbunden ist, und das Verfahren weiterhin den folgenden Schritt umfasst: Vermeiden einer Einspeisung von elektrischer Energie in das öffentliche Stromnetz durch Reduzieren der vom Generator bereitgestellten Energie, insbesondere durch Reduzieren des in den thermodynamischen Kreisprozessvorrichtung eingebrachten Wärmestroms und/oder durch Reduzieren des Wirkungsgrades der thermodynamischen Kreisprozessvorrichtung.
- Alternativ dazu kann das erfindungsgemäße Verfahren dahingehend weitergebildet werden, dass die Zusatzenergieversorgung ein öffentliches Stromnetz ist, das über eine bidirektionale Stromrichterschaltung mit dem Gleichspannungszwischenkreis verbunden ist, das Verfahren weiterhin den folgenden Schritt umfasst: Einspeisen von überschüssiger Energie vom Generator in das öffentliche Stromnetz.
- Eine andere Weiterbildung besteht darin, dass der Gleichspannungszwischenkreis einen mit dem Generator verbundenen ersten Teil-Gleichspannungszwischenkreis und einen mit dem elektromechanischen Energiewandler verbundenen zweiten Teil-Gleichspannungszwischenkreis umfasst, wobei das Verfahren den folgenden weiteren Schritt umfasst: Wandeln der ersten Gleichspannung im ersten Teil-Gleichspannungszwischenkreis in eine höhere, in den zweiten Teil-Gleichspannungszwischenkreis eingebrachte zweite Gleichspannung.
- Dies kann so weitergebildet werden, dass das Verfahren den weiteren Schritt umfasst: Einstellen der zweiten Gleichspannung unterhalb einer von der Zusatzenergieversorgung bereitgestellten dritten Gleichspannung im zweiten Teil-Gleichspannungszwischenkreis, falls die vom Generator bereitgestellte elektrische Energie für das Betreiben des elektromechanischen Energiewandlers mit der vorbestimmten Drehzahl nicht ausreichend ist.
- Gemäß einer anderen Weiterbildung kann das Verfahren den folgenden weiteren Schritt umfassen: Wandeln der Gleichspannung im Gleichspannungszwischenkreis in eine dritte Wechselspannung zum Betreiben eines weiteren elektromechanischen Energiewandlers, insbesondere einer Pumpe, beispielsweise einer Speisepumpe zum Pumpen eines Arbeitsmediums in der thermodynamischen Kreisprozessvorrichtung oder zum Betreiben eines weiteren Ventilators.
- Die genannten Weiterbildungen können einzeln eingesetzt oder wie beansprucht geeignet miteinander kombiniert werden.
- Weitere Merkmale und beispielhafte Ausführungsformen sowie Vorteile der vorliegenden Erfindung werden nachfolgend anhand der Zeichnungen näher erläutert. Es versteht sich, dass die Ausführungsformen nicht den Bereich der vorliegenden Erfindung erschöpfen. Es versteht sich weiterhin, dass einige oder sämtliche der im Weiteren beschriebenen Merkmale auch auf andere Weise miteinander kombiniert werden können.
-
- Fig. 1A
- zeigt eine erste Ausführungsform der erfindungsgemäßen Vorrichtung.
- Fig. 1B
- zeigt ein erfindungsgemäßes System mit der ersten Ausführungsform der erfindungsgemäßen Vorrichtung.
- Fig. 2
- zeigt Betriebszustände des oder der Ventilatoren in der ersten Ausführungsform der erfindungsgemäßen Vorrichtung.
- Fig. 3
- zeigt eine zweite Ausführungsform der erfindungsgemäßen Vorrichtung.
- Fig. 4
- zeigt eine dritte Ausführungsform der erfindungsgemäßen Vorrichtung.
- Fig. 5
- zeigt eine vierte Ausführungsform der erfindungsgemäßen Vorrichtung.
- Fig. 6
- zeigt eine fünfte Ausführungsform der erfindungsgemäßen Vorrichtung.
- Fig. 7
- zeigt eine sechste Ausführungsform der erfindungsgemäßen Vorrichtung.
- Fig. 8
- zeigt eine siebte Ausführungsform der erfindungsgemäßen Vorrichtung.
- Fig. 9
- zeigt eine achte Ausführungsform der erfindungsgemäßen Vorrichtung.
- Fig. 10
- zeigt eine neunte Ausführungsform der erfindungsgemäßen Vorrichtung.
- Fig. 11
- zeigt eine zehnte Ausführungsform der erfindungsgemäßen Vorrichtung.
- Gleiche Bezugszeichen in den Zeichnungen beziehen sich auf identische oder entsprechende Komponenten. Teilweise werden zur Vereinfachung der Darstellung in den Zeichnungen gegenüber zuvor beschriebenen Ausführungsformen nur zusätzliche Komponenten mit Bezugszeichen versehen.
- Die Ausführungsformen zeigen als elektromechanische Energiewandler lediglich beispielhaft einen oder mehrere Ventilatoren und/oder eine oder mehrere Pumpen, insbesondere beispielsweise eine Speisepumpe in der thermodynamischen Kreisprozessvorrichtung. Elektromechanische Energiewandler wandeln elektrische Energie in mechanische Bewegungsenergie um, wobei die Bewegung linear oder rotierend erfolgen kann. Dementsprechend wird zwischen Linearmaschinen und rotierenden elektrischen Maschinen unterschieden. Die Ausführungsformen betreffen rotierende elektrische Maschinen, jedoch können für die elektromechanischen Energiewandler in den Ausführungsformen bei denen eine Drehzahlregelung nicht wesentlich ist, auch Linearmaschinen eingesetzt werden.
- Weiterhin sind die elektromechanischen Energiewandler in den Ausführungsformen überwiegend so konstruiert, dass der elektromechanische Energiewandler selbst einen Zwischenkreis mit einem Wechselspannungsanschluss aufweist. Diese Ausführungsformen können jeweils so abgewandelt werden, dass ein entsprechender Spannungswandler am Gleichspannungszwischenkreis zur Verbindung mit dem elektromechanischen Energiewandler vorgesehen ist.
-
Fig. 1A zeigt eine erste Ausführungsform 100 der erfindungsgemäßen Vorrichtung zum Betreiben eines Ventilators. - Die Vorrichtung 100 umfasst einen elektrisch betreibbaren Ventilator 80 mit einem Motor 10 und einem DC/AC Spannungswandler 44, einen elektrischen Generator 20, der mit einer Welle 35 einer Expansionsmaschine 30 einer thermodynamischen Kreisprozessvorrichtung, hier einer ORC-Vorrichtung, verbunden ist und zusammen mit der Welle 35 drehbar ist. Zwischen dem Generator 20 und dem Ventilator 80 sind ein erster Spannungswandler 42 (Eingangswandler 42) und ein Gleichspannungszwischenkreis 40 vorgesehen. Der erste Spannungswandler 42 ist zum Wandeln einer ersten Wechselspannung des elektrischen Generators 20 in eine Gleichspannung ausgebildet. Der DC/AC Spannungswandler 44 (oder Ausgangswandler 44) ist zum Wandeln einer Gleichspannung im Gleichspannungszwischenkreis 40 in eine zweite Wechselspannung zum Betreiben des Ventilatormotors 10 ausgebildet. Der Gleichspannungszwischenkreis 40 ist mit einer elektrischen Zusatzenergieversorgung 50, hier einem öffentlichen Stromnetz 51, verbunden. Die Vorrichtung 100 umfasst weiterhin eine Regeleinrichtung 60 zum Regeln der dem Ventilator 80 zugeführten elektrischen Energie, so dass der Ventilator mit einer vorbestimmten Drehzahl betreibbar ist, wobei die Regeleinrichtung 60 so ausgebildet ist, dass sie die dem Ventilator 80 zugeführte elektrische Energie vom Generator 20 regelt und, falls die vom Generator 20 bereitgestellte elektrische Energie dafür nicht ausreichend ist, die dem Ventilator 80 zugeführte elektrische Energie von der Zusatzenergieversorgung 50 regelt.
- Der Gleichspannungszwischenkreis 40 beinhaltet einen Kondensator 41. Die Wechselspannung vom öffentlichen Stromnetz 51 wird durch eine Gleichrichterschaltung 52 gleichgereichtet und an den Gleichspannungszwischenkreis 40 angelegt. Die Regeleinrichtung 60 ist weiterhin dazu ausgebildet ist, die vom Generator 20 bereitgestellte Energie zu reduzieren, um dem Energiebedarf der/des Verbraucher(s) zu entsprechen, insbesondere durch Reduzieren des in die thermodynamische Kreisprozessvorrichtung eingebrachten Wärmestroms und/oder durch Reduzieren des Wirkungsgrades der thermodynamischen Kreisprozessvorrichtung.
- Die ORC-Vorrichtung zur Gewinnung von elektrischer Energie aus Wärmeenergie (beispielsweise Abwärme) umfasst: eine Speisepumpe, die flüssiges Arbeitsmedium unter Druckerhöhung zu einem Verdampfer fördert, dem Verdampfer selbst, in dem das Arbeitsmedium unter Zuführung von Wärme vorgewärmt, verdampft und optional zusätzlich überhitzt wird, die Expansionsmaschine 30, in welcher das unter hohem Druck stehende verdampfte Arbeitsmedium entspannt wird und dabei mechanische Energie erzeugt, welche über den Generator 20 in elektrische Energie gewandelt werden kann, und einem Kondensator, in dem der Niederdruckdampf (entspanntes Arbeitsmedium) aus der Expansionsmaschine 30 enthitzt und verflüssigt wird. Aus dem Kondensator gelangt das flüssige Arbeitsmedium wieder zur Speisepumpe des Systems, wodurch der thermodynamische Kreislauf geschlossen ist.
-
Fig. 1B zeigt ein erfindungsgemäßes System in Kombination mit der ersten Ausführungsform der erfindungsgemäßen Vorrichtung gemäßFig. 1A . - Das System umfasst eine wärmeerzeugende Einrichtung 110, einen Ausgang 111 der wärmeerzeugenden Einrichtung, wobei der Ausgang 111 zum Abführen von zu kühlendem Prozessfluid von der wärmeerzeugenden Einrichtung 110 vorgesehen ist; einen Eingang 112 der wärmeerzeugenden Einrichtung 110, wobei der Eingang 112 zum Zuführen von gekühltem Prozessfluid zur wärmeerzeugenden Einrichtung 110 vorgesehen ist; und eine thermodynamische Kreisprozessvorrichtung, insbesondere eine ORC-Vorrichtung, wobei die thermodynamische Kreisprozessvorrichtung umfasst: einen Verdampfer 120 mit einem Einlass 121 zum Zuführen des zu kühlenden Prozessfluids vom Ausgang 111 der wärmeerzeugenden Einrichtung 110 und mit einem Auslass 122 zum Abführen des gekühlten Prozessfluids zum Eingang 112 der wärmeerzeugenden Einrichtung 110, wobei der Verdampfer 120 zum Verdampfen eines Arbeitsmediums der thermodynamischen Kreisprozessvorrichtung mittels Wärme aus dem Prozessfluid ausgebildet ist; die Expansionsmaschine 30 zum Expandieren des verdampften Arbeitsmediums und zur Erzeugung von elektrischer Energie mittels elektrischem Generator 20; einen luftgekühlten Kondensator 150 zum Verflüssigen des expandierten Arbeitsmediums; und eine Pumpe 160 zum Pumpen des verflüssigten Arbeitsmediums zum Verdampfer.
- Zusätzlich ist ein Luftkühler 170 zum Kühlen wenigstens eines Teils des zu kühlenden Prozessfluids vorgesehen. Das System umfasst eine Abzweigung 171, die beispielhaft in Bezug auf eine Strömungsrichtung des Prozessfluids stromabwärts des Ausgangs 111 und stromaufwärts des Einlasses 121 zum Aufteilen des zu kühlenden Prozessfluids in einen ersten und einen zweiten Teilstrom des Prozessfluids vorgesehen ist. Das System umfasst weiterhin eine Zusammenführung 172, die in Bezug auf eine Strömungsrichtung des Prozessfluids stromabwärts des Auslasses 122 und stromaufwärts des Eingangs 112 zum Zusammenführen des durch den Kühler 170 gekühlten zweiten Teilstroms des Prozessfluids und des durch den Verdampfer 120 gekühlten ersten Teilstroms des Prozessfluids vorgesehen ist; wobei die Abzweigung 171 zum Zuführen des ersten Teilstroms zum Verdampfer 120 und zum Zuführen des zweiten Teilstroms zum Kühler 170 ausgebildet ist. Der Strom der Umgebungsluft geht nacheinander zuerst durch den Kühler 170 und danach durch den Kondensator 150.
- Die konkrete Ausgestaltung des Systems ist lediglich beispielhaft.
-
Fig. 2 zeigt Betriebszustände des oder der Ventilatoren in der ersten Ausführungsform 100 der erfindungsgemäßen Vorrichtung in einem Diagramm Leistung gegen Außentemperatur, die im Folgenden genauer beschrieben werden. - Der Ventilator 80 wird über den DC-Zwischenkreis (Direct Current) 40 (oder über mehrere DC-Zwischenkreise) mit dem Generator 20 verbunden. Die Drehzahl des Ventilators 80 wird abhängig von einer Soll-Vorlauftemperatur eines Kühlsystems geregelt und ist unabhängig von der Generatordrehzahl und Energiezufuhr aus dem ORC-Prozess.
- Erzeugt der ORC-Prozess weniger Energie als am Zwischenkreis 40 (U_DC) benötigt wird, so wird die fehlende Energie aus dem öffentlichen Netz 51 über den Gleichrichter 52 bezogen. Der Gleichrichter 52 stellt auch einen Betrieb des Ventilators 80 unabhängig vom thermodynamischen Kreisprozesses sicher (z.B. bei Ausfall, Fehler). Im Falle eines Fehlers oder Ausfalls des Kreisprozesses wird die gesamte benötigte Leistung aus dem Netz 51 bezogen. Der Kühler, der von diesem Ventilator 80 betrieben wird, kann also durchgängig und unabhängig eine ausreichende Kühlleistung zur Verfügung stellen.
- Erzeugt der ORC-Prozess mehr Energie, als am Zwischenkreis 40 (U_DC) benötigt wird (dafür ist das System für den normalen Betriebsfall unterhalb einer bestimmten Außentemperatur ausgelegt) müssen geeignete Maßnahmen ergriffen werden.
- Die Drehzahl des Generators 20 wird zunächst am optimalen Arbeitspunkt des ORC-Prozesses ausgerichtet und mittels Eingangswandler 42 geregelt (geregelter Betrieb). Es wird in diesem Betriebspunkt die an den ORC übertragene Wärmemenge Qzu mit einem optimalen Wirkungsgrad ηORC in elektrische Energie Pel gewandelt.
- Um die gewandelte elektrische Energie wunschgemäß zu reduzieren, gibt es prinzipiell zwei unterschiedliche Möglichkeiten:
- Reduktion der zugeführten Wärme Qzu durch Reduktion der Speisepumpendrehzahl
- Reduktion des Wirkungsgrads ηORC=ηth•ηGen•ηEW durch Verschlechterung von einzelnen Wirkungsgraden in der Wirkungsgradkette wie z.B. des thermischen Wirkungsgrads ηth, des Generatorwirkungsgrads ηGen oder des Wirkungsgrads des Eingangswandlers ηEW
- In der realen Umsetzung werden die Maßnahmen sich jeweils geringfügig gegenseitig beeinflussen, so wird z.B. die Reduktion der Speisepumpendrehzahl zu anderen Dampfparametern und somit auch zu einem geänderten thermischen Wirkungsgrad führen.
- Anders als bei bisherigen ORC-Regelungen wird die Spannung U_DC nun als Regelgröße für Generatordrehzahl und / oder die Speisepumpendrehzahl herangezogen und die Drehzahl solange reduziert oder auch wieder erhöht, bis sich ein stabiles Gleichgewicht zwischen ORC-Leistungserzeugung und Energieverbrauch einstellt. Bei konstanter Abnahme durch den Ventilator verhält sich die Spannung U_DC so, dass sie bei steigender ORC-Leistung ebenfalls steigt. Die Spannung U_DC dient somit als Regelgröße.
- Nach Stand der Technik würde am Zwischenkreis 40 ein Brems-Chopper vorgesehen, welcher die Zwischenkreisspannung auf einen für die Bauteile unkritischen Wert begrenzt. Dieser besitzt jedoch den Nachteil, dass eine ausreichende Wärmeabfuhr des Bremswiderstandes gewährleistet werden muss und die Materialkosten durch die zusätzliche Komponente steigen. Auf diesen kann hier verzichtet werden. Stattdessen werden erfindungsgemäß über eine schnelle Regelung des Eingangswandlers 42 und einer Ansteuerung des Generators 20 im suboptimalen Bereich mehr Verluste im Generator 20 erzeugt und dadurch die Zwischenkreisspannung begrenzt. Das heißt, der Eingangswandlers 42 wird in beabsichtigter Weise mit einem schlechteren Wirkungsgrad betrieben.
-
Fig. 3 zeigt eine zweite Ausführungsform 200 der erfindungsgemäßen Vorrichtung zum Betreiben eines Ventilators. - Gegenüber der ersten Ausführungsform 100 gemäß
Fig. 1A umfasst der Gleichspannungszwischenkreis 40 einen mit dem Eingangswandler 42 verbundenen ersten Teil-Gleichspannungszwischenkreis 46, einen mit dem Ausgangswandler 44 verbundenen zweiten Teil-Gleichspannungszwischenkreis 48 und einen zwischen den beiden Teilkreisen angeordneten Aufwärtswandler 45. Der Aufwärtswandler 45 wird synonym auch als Hochsetzsteller oder Step-Up Converter bezeichnet. - Um Generatoren mit einer Nennspannung deutlich unterhalb der benötigten Ausgangsspannung für die Ventilatoren zu erhalten wird der Hochsetzsteller 45 zwischengeschaltet. Der Netzanschluss besteht hierbei aus einem passiven B6-Gleichrichter 52 welcher 3phasig angeschlossen wird.
-
Fig. 4 zeigt eine dritte Ausführungsform 300 der erfindungsgemäßen Vorrichtung zum Betreiben eines Ventilators. - Alternativ zur zweiten Ausführungsform 200 gemäß
Fig. 3 kann die Netzkopplung auch auf Eingangsseite des Hochsetzstellers 45 erfolgen. Außerdem wird eine aktive Netzkopplung über Leistungsfaktorkorrekturstufe 54 (aktive PFC, Power Factor Correction) verwendet, welche immer eine geringe Leistung aus dem Netz zieht und so der Regelung der Leistungsbalance zwischen ORC Generator und Verbraucher (Ventilator) Spielraum verschafft. Im Unterschied zur zweiten Ausführungsform reicht ein 1 phasiger Netzanschluss. Durch die aktive PFC wird die Stromaufnahme im Unterschied zur zweiten Ausführungsform nahezu sinusförmig (Vermeidung von Oberwellen). -
Fig. 5 zeigt eine vierte Ausführungsform 400 der erfindungsgemäßen Vorrichtung. - In der vierten Ausführungsform 400 ist im Vergleich zu der zweiten Ausführungsform 200 eine Parallelschaltung am zweiten Teil-Gleichspannungszwischenkreis 48 vorgesehen. Auf diese Weise kann eine Pumpe 81 über einen weiteren Ausgangswandler 49 zum Wandeln der Gleichspannung im zweiten Teil-Gleichspannungszwischenkreis 48 in eine dritte Wechselspannung zum Betreiben eines Motors 11 der Pumpe 81, beispielsweise einer Wasserpumpe und/oder einer Speisepumpe zum Pumpen eines Arbeitsmediums in der thermodynamischen Kreisprozessvorrichtung angetrieben werden.
- Hierbei wird neben dem Ventilator 80 auch die Pumpe 81 aus dem zweiten Zwischenkreis 48 (U_DC2) versorgt. Der Vorteil ist eine weitere Effizienzsteigerung, da im normalen Betrieb auch die Energie der Pumpe 81 aus dem ORC-Prozess stammt und nicht aus dem Netz 51 bezogen werden muss. Für den Anlauf des ORC-Prozesses wird die Energie über die B6 Brücke 52 aus dem Netz 51 bezogen. In gleicher Weise kann auch eine Hilfsspannungsversorgung (z.B. 24 VDC, nicht dargestellt) aus dem Zwischenkreis 48 entnommen werden.
-
Fig. 6 zeigt eine fünfte Ausführungsform 500 der erfindungsgemäßen Vorrichtung. - Gegenüber der vierten Ausführungsform 400 wird anstatt der Pumpe 81 ein weiterer Ventilator 82 angetrieben.
- Die fünfte Ausführungsform 500 zeigt eine Parallelschaltung mehrerer Ventilatoren 80, 82 am gemeinsamen DC-Zwischenkreis. Hier lassen sich, abhängig von der Leistung der Ventilatoren, beliebig viele Ventilatoren parallel schalten. In der Praxis werden häufig mehrere Ventilatoren und größere Kühler eingesetzt, um Laufruhe und Effizienz durch verringerte Luftgeschwindigkeiten zu verbessern.
-
Fig. 7 zeigt eine sechste Ausführungsform 600 der erfindungsgemäßen Vorrichtung. - Die sechste Ausführungsform 600 beinhaltet die Versorgung mehrerer Ventilatoren 80, 82 über einen gemeinsamen Umrichter, nämlich den Ausgangswandler 44. Die Parallelschaltung erfolgt also AC-seitig. Hierfür ist ein dem gemeinsamen Umrichter 44 nachgeschaltetes Sinusfilter 13 erforderlich. Dieser liefert einen sinusförmigen Ausgangsstrom variabler Frequenz. Der Vorteil gegenüber der fünften Ausführungsform 500 ergibt sich durch eine einfachere Verkabelung (Spannungsfestigkeit, Wegfall geschirmter Leitung) und bessere EMV-Eigenschaften (Elektromagnetische Verträglichkeit). Die Verkabelung zwischen Umrichter 44 und Ventilatormotor kann dabei beispielsweise 10 m und länger werden.
-
Fig. 8 zeigt eine siebente Ausführungsform 700 der erfindungsgemäßen Vorrichtung. - Die siebente Ausführungsform 700 zeigt den Anschluss eines dreiphasigen AC-Eingangs eines Lüfters 80 direkt an den DC Zwischenkreis 48. Der Wandler 44 verfügt in der Regel über Eingangsgleichrichterdioden (Bodydioden), welche einen direkten Anschluss an einen DC Kreis ermöglichen. Der Zwischenkreis 48 (U_DC2) wird somit direkt an den Zwischenkreis des Ventilatorconverters (Wandler 44) angeschlossen. So können direkt handelsübliche geregelte EC-Lüfter (Electronically Commutated Motor) eingesetzt werden. Eine ggf. vorhandene Phasenausfall- oder AC-Spannungsüberwachung muss hierfür deaktiviert werden. Auch diese Ausführungsform lässt in einer Abwandlung den Anschluss mehrerer Lüfter parallel zu.
-
Fig. 9 zeigt eine achte Ausführungsform 800 der erfindungsgemäßen Vorrichtung. - Die achte Ausführungsform 800 zeigt einen Energiespeicher, beispielsweise eine Batterie 70 am Zwischenkreis 48. Dies ist ein Schritt in Richtung eines komplett stromlosen Lüfters (alle Verbraucher wie Pumpen, Lüfter, Hilfsspannungsversorgung sind am Zwischenkreis angeschlossen, es wird zumindest keine dauerhafte Anbindung an das elektrische Versorgungsnetz benötigt, und bei entsprechender Dimensionierung der Batterie 70 kann der Netzanschluss ganz entfallen) und ermöglicht außerdem mehr Freiheiten bei der Auslegung des Regelkreises der ORC-Leistung.
-
Fig. 10 zeigt eine neunte Ausführungsform 900 der erfindungsgemäßen Vorrichtung. - In der neunten Ausführungsform 900 ist eine Topologie mit rückspeisefähigem Netzumrichter 53 (bidirektionale Stromrichterschaltung) dargestellt. Überschüssige Energie fließt so ins Netz 51 zurück ohne den ORC-Generator in seiner Leistung zu begrenzen. Der Einspeiseumrichter 53 muss den im jeweiligen Land gültigen Einspeiserichtlinien entsprechen. Der Entfall des erhöhten Aufwands für die Erfüllung aller technischen und regulatorischen Einspeiserichtlinien ist der Vorteil aller vorangegangenen Ausführungsformen.
-
Fig. 11 zeigt eine zehnte Ausführungsform 1000 der erfindungsgemäßen Vorrichtung. - Die zehnte Ausführungsform 1000 stellt die Versorgung einer Pumpe 83, beispielsweise einer Heißwasserpumpe eines Heizkreises aus dem DC-Zwischenkreis 48, dar. Es kann jedoch statt der Pumpe 83 auch ein Kompressor oder jeder sonstige elektrische Verbraucher angeschlossen werden.
- Pumpen haben in dieser Anwendung oft einen höheren Leistungsbedarf als die Ventilatoren. Ist die benötigte Pumpenleistung dauerhaft größer als die ORC-Leistung ist ein direkter Anschluss des DC-Ausgangs des ORC Generatorumrichters an den Spannungszwischenkreis einer geregelten Pumpe möglich. Der ORC wird dann in seinem optimalen Arbeitspunkt maximal Energie erzeugen, welche zum Betrieb der Pumpe verwendet wird. Zusätzliche Energie wird dauerhaft aus dem Netz bezogen.
- Die dargestellten Ausführungsformen sind lediglich beispielhaft. Der vollständige Umfang der vorliegenden Erfindung wird durch die Ansprüche definiert.
Claims (15)
- Vorrichtung (100-1000) zum Betreiben eines elektromechanischen Energiewandlers (80, 81, 82, 83), beispielsweise eines Ventilators oder einer Pumpe; umfassend:eine thermodynamische Kreisprozessvorrichtung (30, 120, 150, 160);einen elektrischen Generator (20), der mit einer Welle (35) einer Expansionsmaschine (30) der thermodynamischen Kreisprozessvorrichtung verbunden ist und zusammen mit der Welle drehbar ist;wobei der Generator (20) elektrisch mit einem ersten Spannungswandler (42) verbunden ist, der erste Spannungswandler (42) elektrisch mit einem Gleichspannungszwischenkreis (40) verbunden ist und der Gleichspannungszwischenkreis (40) zum Betreiben des elektromechanischen Energiewandlers (80, 81, 82, 83) elektrisch mit diesem verbindbar ist;wobei der erste Spannungswandler (42) zum Wandeln einer ersten Wechselspannung des elektrischen Generators (20) in eine Gleichspannung ausgebildet ist; undwobei der Gleichspannungszwischenkreis (40) mit einer elektrischen Zusatzenergieversorgung (50), insbesondere einem öffentlichen Stromnetz (51), verbindbar ist; undeine Regeleinrichtung (60) zum Regeln der dem elektromechanischen Energiewandler (80, 81, 82, 83) zugeführten elektrischen Energie, so dass der elektromechanische Energiewandler mit einer vorbestimmten Drehzahl betreibbar ist,dadurch gekennzeichnet, dassdie Regeleinrichtung (60) zum Regeln der dem elektromechanischen Energiewandler (80, 81, 82, 83) zugeführten elektrischen Energie vom Generator (20) und, falls die vom Generator (20) bereitgestellte elektrische Energie dafür nicht ausreichend ist, zum Regeln der dem elektromechanischen Energiewandler (80, 81, 82, 83) zugeführten elektrischen Energie von der Zusatzenergieversorgung (60) ausgebildet ist.
- Vorrichtung nach Anspruch 1, wobei weiterhin ein zweiter Spannungswandler (44) zum Wandeln einer Gleichspannung im Gleichspannungszwischenkreis in eine zweite Wechselspannung zum Betreiben des elektromechanischen Energiewandlers vorgesehen ist, wobei der zweite Spannungswandler elektrisch mit dem Gleichspannungszwischenkreis verbunden ist.
- Vorrichtung nach Anspruch 1 oder 2, wobei die Zusatzenergieversorgung ein öffentliches Stromnetz (51) ist, das über eine Gleichrichterschaltung (52) oder über eine Leistungsfaktorkorrekturstufe (54) mit dem Gleichspannungszwischenkreis verbindbar ist, und die Regeleinrichtung optional weiterhin dazu ausgebildet ist, die vom Generator bereitgestellte Energie zu reduzieren, um eine Einspeisung von elektrischer Energie in das öffentliche Stromnetz zu vermeiden, insbesondere durch Reduzieren des in die thermodynamische Kreisprozessvorrichtung eingebrachten Wärmestroms und/oder durch Reduzieren des Wirkungsgrades der thermodynamischen Kreisprozessvorrichtung; oder
wobei die Zusatzenergieversorgung ein öffentliches Stromnetz (51) ist, das über eine bidirektionale Stromrichterschaltung (53) mit dem Gleichspannungszwischenkreis verbindbar ist, und überschüssige Energie vom Generator in das öffentliche Stromnetz einspeisbar ist. - Vorrichtung nach einem der Ansprüche 1 bis 3, wobei der Gleichspannungszwischenkreis (40) einen mit dem ersten Spannungswandler (42) verbundenen ersten Teil-Gleichspannungszwischenkreis (46), einen mit dem elektromechanischen Energiewandler verbindbaren oder in Kombination mit Anspruch 2 mit dem zweiten Spannungswandler verbundenen zweiten Teil-Gleichspannungszwischenkreis (48) und einen zwischen den beiden Teilkreisen angeordneten Aufwärtswandler (45) umfasst.
- Vorrichtung nach Anspruch 4, wobei über eine Parallelschaltung am zweiten Teil-Gleichspannungszwischenkreis ein weiterer elektromechanischer Energiewandler betreibbar ist, wobei optional in Kombination mit Anspruch 2 ein dritter Spannungswandler zum Wandeln der Gleichspannung im zweiten Teil-Gleichspannungszwischenkreis in eine dritte Wechselspannung zum Betreiben des weiteren elektromechanischen Energiewandlers vorgesehen ist, wobei der weitere elektromechanische Energiewandler beispielsweise eine weitere Pumpe, insbesondere eine Speisepumpe zum Pumpen eines Arbeitsmediums in der thermodynamischen Kreisprozessvorrichtung oder ein weiterer Ventilator ist.
- Vorrichtung nach einem der Anspruch 4 oder 5 in Kombination mit Anspruch 2, wobei der elektromechanische Energiewandler einen Zwischenkreis mit einem Wechselspannungsanschluss umfasst und der Wechselspannungsanschluss direkt mit dem zweiten Teil-Gleichspannungszwischenkreis verbunden ist.
- Vorrichtung nach einem der Ansprüche 3 bis 6, wobei über eine Parallelschaltung am zweiten Teil-Gleichspannungszwischenkreis und einen bidirektionalen Gleichspannungswandler eine Batterie angeschlossen ist.
- System, umfassend:eine Vorrichtung (100-1000) zum Betreiben eines elektrisch betreibbaren Ventilators (80) als elektromechanischen Energiewandler gemäß einem der Ansprüche 1 bis 7;eine wärmeerzeugende Vorrichtung (110) mit einem Kühlfluid zum Abführen von Wärme aus der wärmeerzeugenden Vorrichtung (110) und einer Kühlvorrichtung (150) mit dem elektrisch betreibbaren Ventilator (80) zum Kühlen des Kühlfluids;wobei die thermodynamische Kreisprozessvorrichtung insbesondere eine Organic-Rankine-Cycle-Vorrichtung ist und wobei die thermodynamische Kreisprozessvorrichtung einen Verdampfer (120) zum Verdampfen eines Arbeitsmediums, die durch Expandieren des verdampften Arbeitsmediums mit dem verdampften Arbeitsmedium betreibbare Expansionsmaschine (30), und einen Kondensator zum Kondensieren des expandierten Arbeitsmediums umfasst; undwobei der Ventilator (80) weiterhin zum Kühlen des Arbeitsmediums im Kondensator (150) vorgesehen ist.
- System nach Anspruch 8, wobei die Drehzahl des Ventilators durch eine mit der Kühlvorrichtung zu erzielende Temperatur des Kühlfluid vorgegeben ist.
- Verfahren zum Betreiben eines elektromechanischen Energiewandlers (80, 81, 82, 83), beispielsweise einer Pumpe oder eines Ventilators mit einer vorbestimmten Drehzahl, umfassend die Schritte:Wandeln einer ersten Wechselspannung eines Generators (20) in eine Gleichspannung, die einem Gleichspannungszwischenkreis (40) zwischen dem Generator und dem elektromechanischen Energiewandler zugeführt wird, wobei der elektrische Generator mit einer Welle (35) einer Expansionsmaschine (30) einer thermodynamischen Kreisprozessvorrichtung (30, 120, 150, 160) verbunden ist, sich zusammen mit der Welle dreht und durch die Welle angetrieben wird;optionales Wandeln einer Gleichspannung im Gleichspannungszwischenkreis (40) in eine zweite Wechselspannung;Anlegen der Gleichspannung im Gleichspannungszwischenkreis (40) oder der zweiten Wechselspannung an den elektromechanischen Energiewandler (80, 81, 82, 83);Anlegen einer Gleichspannung an den Gleichspannungszwischenkreis (40) von einer elektrischen Zusatzenergieversorgung (50), insbesondere mit elektrischer Energie aus einem öffentlichen Stromnetz (51); undRegeln der dem elektromechanischen Energiewandler (80, 81, 82, 83) zugeführten elektrischen Energie vom Generator, um den elektromechanischen Energiewandler mit der vorbestimmten Drehzahl zu betreiben;gekennzeichnet durchRegeln der dem elektromechanischen Energiewandler (80, 81, 82, 83) zugeführten elektrischen Energie von der Zusatzenergieversorgung (50), falls die vom Generator (20) bereitgestellte elektrische Energie für das Betreiben des elektromechanischen Energiewandlers (80, 81, 82, 83) mit der vorbestimmten Drehzahl nicht ausreichend ist.
- Verfahren nach Anspruch 10, wobei die Zusatzenergieversorgung ein öffentliches Stromnetz (51) ist, das über eine Gleichrichterschaltung (52) mit dem Gleichspannungszwischenkreis verbunden ist, und das Verfahren weiterhin den folgenden Schritt umfasst:
Vermeiden einer Einspeisung von elektrischer Energie in das öffentliche Stromnetz durch Reduzieren der vom Generator (20) bereitgestellten Energie, insbesondere durch Reduzieren des in die thermodynamische Kreisprozessvorrichtung eingebrachten Wärmestroms und/oder durch Reduzieren des Wirkungsgrades der thermodynamischen Kreisprozessvorrichtung. - Verfahren nach Anspruch 10, wobei die Zusatzenergieversorgung ein öffentliches Stromnetz (51) ist, das über eine bidirektionale Stromrichterschaltung mit dem Gleichspannungszwischenkreis (40) verbunden ist, das Verfahren weiterhin den folgenden Schritt umfasst:
Einspeisen von überschüssiger Energie vom Generator (20) in das öffentliche Stromnetz (51). - Verfahren nach einem der Ansprüche 10 bis 12, wobei der Gleichspannungszwischenkreis einen mit dem Generator (20) verbundenen ersten Teil-Gleichspannungszwischenkreis (46) und einen mit dem elektromechanischen Energiewandler verbundenen zweiten Teil-Gleichspannungszwischenkreis (48) umfasst, wobei das Verfahren den folgenden weiteren Schritt umfasst:
Wandeln der ersten Gleichspannung im ersten Teil-Gleichspannungszwischenkreis in eine höhere, in den zweiten Teil-Gleichspannungszwischenkreis eingebrachte zweite Gleichspannung. - Verfahren nach Anspruch 13, mit dem weiteren Schritt:
Einstellen der zweiten Gleichspannung unterhalb einer von der Zusatzenergieversorgung bereitgestellten dritten Gleichspannung im zweiten Teil-Gleichspannungszwischenkreis, falls die vom Generator bereitgestellte elektrische Energie für das Betreiben des elektromechanischen Energiewandlers mit der vorbestimmten Drehzahl nicht ausreichend ist. - Verfahren nach einem der Ansprüche 10 bis 14, mit dem weiteren Schritt:
Wandeln der Gleichspannung im Gleichspannungszwischenkreis (40) in eine dritte Wechselspannung zum Betreiben eines weiteren elektromechanischen Energiewandlers, insbesondere einer Pumpe, beispielsweise einer Speisepumpe zum Pumpen eines Arbeitsmediums in der thermodynamischen Kreisprozessvorrichtung oder zum Betreiben eines weiteren Ventilators.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18204344.8A EP3647553B1 (de) | 2018-11-05 | 2018-11-05 | Versorgung eines elektromechanischen energiewandlers mit elektrischer energie aus einem thermodynamischen kreisprozess |
CN201980072013.0A CN113167132A (zh) | 2018-11-05 | 2019-10-25 | 从热力学循环过程向机电能量转换器供应电能 |
JP2021523672A JP7471287B2 (ja) | 2018-11-05 | 2019-10-25 | 熱力学サイクルプロセスから電気機械的エネルギー変換器への電気エネルギーの供給 |
PCT/EP2019/079126 WO2020094418A1 (de) | 2018-11-05 | 2019-10-25 | Versorgung eines elektromechanischen energiewandlers mit elektrischer energie aus einem thermodynamischen kreisprozess |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18204344.8A EP3647553B1 (de) | 2018-11-05 | 2018-11-05 | Versorgung eines elektromechanischen energiewandlers mit elektrischer energie aus einem thermodynamischen kreisprozess |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3647553A1 EP3647553A1 (de) | 2020-05-06 |
EP3647553B1 true EP3647553B1 (de) | 2022-12-28 |
Family
ID=64172371
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18204344.8A Active EP3647553B1 (de) | 2018-11-05 | 2018-11-05 | Versorgung eines elektromechanischen energiewandlers mit elektrischer energie aus einem thermodynamischen kreisprozess |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP3647553B1 (de) |
JP (1) | JP7471287B2 (de) |
CN (1) | CN113167132A (de) |
WO (1) | WO2020094418A1 (de) |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004019476A (ja) | 2002-06-12 | 2004-01-22 | Ebara Corp | ガスタービン装置 |
DE102008008832A1 (de) * | 2008-02-13 | 2009-08-27 | Dynatronic Gmbh | Strom produzierendes Heizsystem |
DE102008039449A1 (de) * | 2008-08-25 | 2010-03-04 | Rheinisch-Westfälische Technische Hochschule Aachen | Emissionsfreies Karftwerk |
EP2295733A1 (de) * | 2009-08-12 | 2011-03-16 | Siemens Aktiengesellschaft | Kraftwerksanlage und Verfahren zum Betreiben einer Kraftwerksanlage |
SG182746A1 (en) * | 2010-01-27 | 2012-08-30 | United Technologies Corp | Organic rankine cycle (orc) load following power generation system and method of operation |
DE102011008027A1 (de) * | 2011-01-05 | 2012-07-05 | Frank Eckert | Verfahren zur Kopplung von Rankine-Prozessen an Verbrennungsmotoren und Gasturbinen |
JP6167341B2 (ja) | 2012-11-01 | 2017-07-26 | 日東工業株式会社 | 系統連系システム |
CN105281624B (zh) * | 2014-06-17 | 2021-04-06 | 松下知识产权经营株式会社 | 热动力发电装置和热动力发电系统 |
DK3006682T3 (da) * | 2014-10-07 | 2022-09-12 | Orcan Energy Ag | Indretning og fremgangsmåde til drift af en varmeoverføringsstation |
CN104879177A (zh) * | 2015-04-21 | 2015-09-02 | 同济大学 | 一种有机朗肯循环与热泵循环的耦合系统 |
JP6640524B2 (ja) | 2015-10-16 | 2020-02-05 | パナソニック株式会社 | ランキンサイクル発電装置 |
-
2018
- 2018-11-05 EP EP18204344.8A patent/EP3647553B1/de active Active
-
2019
- 2019-10-25 JP JP2021523672A patent/JP7471287B2/ja active Active
- 2019-10-25 CN CN201980072013.0A patent/CN113167132A/zh active Pending
- 2019-10-25 WO PCT/EP2019/079126 patent/WO2020094418A1/de active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2020094418A1 (de) | 2020-05-14 |
JP2022506349A (ja) | 2022-01-17 |
JP7471287B2 (ja) | 2024-04-19 |
CN113167132A (zh) | 2021-07-23 |
EP3647553A1 (de) | 2020-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE60026700T2 (de) | Eine thermische energiequelle verwendende unterbrechungsfreie stromversorgung (usv) | |
DE69401885T2 (de) | Elektrische Energieversorgungsvorrichtung | |
EP3159506B1 (de) | Funktionssynergien bei der integration von orc-systemen in verbrennungskraftmotoren | |
WO2011137980A2 (de) | Regelung eines thermischen kreisprozesses | |
CH618556A5 (de) | ||
EP2288791B1 (de) | Betrieb einer gas- und dampfturbinenanlage mittels frequenzumrichter | |
EP2133991B1 (de) | Kreiselpumpenaggregat | |
EP2653668A1 (de) | Verfahren zum Laden und Entladen eines Wärmespeichers und Anlage zur Speicherung und Abgabe von thermischer Energie, geeignet für dieses Verfahren | |
DE112014003274T5 (de) | Erzeugung von Energie aus Abwärme von Brennstoffzellen | |
EP3330499B1 (de) | System und verfahren zur energierückgewinnung in industrieanlagen | |
EP3523199B2 (de) | Bodenstartgerät zum starten und warten von strahltriebwerken von flugzeugen | |
EP3647553B1 (de) | Versorgung eines elektromechanischen energiewandlers mit elektrischer energie aus einem thermodynamischen kreisprozess | |
DE102012101928B4 (de) | Leistungsmanagement zur dezentralen Stabilisierung eines Stromnetzes | |
EP3447256B1 (de) | System zum kühlen eines prozessfluids einer wärmeerzeugenden einrichtung | |
EP3511534A1 (de) | Dampfkraftwerk und verfahren zum betreiben eines dampfkraftwerks | |
EP3530890A1 (de) | Antrieb mit integriertem orc | |
DE202012006090U1 (de) | Anordnung mit einer statischen Ein-/Rückspeiseeinheit und mit einer Verbrennungsmotor-Generatoreinheit | |
EP3555463B1 (de) | Verfahren und vorrichtung zum betreiben von windenergieanlagen | |
EP2393708A1 (de) | Verbrennungskraftmaschinenanlage mit abgasenergierückgewinnung für schwimmende einrichtungen | |
EP0047867B1 (de) | Schaltungsanordnung zur wirtschaftlichen Ausnutzung von Primär-Energiewandlern | |
CH699321A1 (de) | Kraftwerksanlage zum wahlweisen betrieb in stromnetzen mit unterschiedlicher netzfrequenz. | |
EP2989310B1 (de) | Gasturbinen gekoppeltes speichersystem zur ansaugfluidvorwärmung | |
EP3088297B1 (de) | Vorrichtung zur nutzung der abgaswärme eines schiffsantriebes | |
DE102018209054A1 (de) | Leistungserzeugungseinrichtung zur Erzeugung elektrischer Leistung und Stromnetz mit einer solchen Leistungserzeugungseinrichtung | |
EP2385224A2 (de) | Motorbetriebene Einrichtung zur Stromerzeugung sowie Verfahren hierfür |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20200812 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20220707 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: SCHWALBE, ULF Inventor name: ZIMMERMANN, ALEXANDER Inventor name: LANGER, ROY |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: SCHWALBE, ULF Inventor name: ZIMMERMANN, ALEXANDER Inventor name: LANGER, ROY |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502018011304 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1540623 Country of ref document: AT Kind code of ref document: T Effective date: 20230115 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221228 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230328 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221228 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221228 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221228 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221228 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230329 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221228 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221228 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230428 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221228 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221228 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221228 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230428 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221228 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502018011304 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221228 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20230929 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221228 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231105 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221228 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231105 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231130 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20231130 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231105 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231105 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221228 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20241128 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20241126 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1540623 Country of ref document: AT Kind code of ref document: T Effective date: 20231105 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20241127 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20241127 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231105 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20241031 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20241127 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231105 |