EP3601739B1 - Turbocharger for an internal combustion engine, and turbine wheel - Google Patents
Turbocharger for an internal combustion engine, and turbine wheel Download PDFInfo
- Publication number
- EP3601739B1 EP3601739B1 EP18718704.2A EP18718704A EP3601739B1 EP 3601739 B1 EP3601739 B1 EP 3601739B1 EP 18718704 A EP18718704 A EP 18718704A EP 3601739 B1 EP3601739 B1 EP 3601739B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- turbine
- axtip
- turbocharger
- housing
- turbine wheel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002485 combustion reaction Methods 0.000 title claims description 21
- 230000004323 axial length Effects 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 239000007789 gas Substances 0.000 description 43
- 238000010586 diagram Methods 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/147—Construction, i.e. structural features, e.g. of weight-saving hollow blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/28—Supporting or mounting arrangements, e.g. for turbine casing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D11/00—Preventing or minimising internal leakage of working-fluid, e.g. between stages
- F01D11/08—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D21/00—Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
- F01D21/04—Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for responsive to undesired position of rotor relative to stator or to breaking-off of a part of the rotor, e.g. indicating such position
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D21/00—Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
- F01D21/04—Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for responsive to undesired position of rotor relative to stator or to breaking-off of a part of the rotor, e.g. indicating such position
- F01D21/045—Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for responsive to undesired position of rotor relative to stator or to breaking-off of a part of the rotor, e.g. indicating such position special arrangements in stators or in rotors dealing with breaking-off of part of rotor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/24—Casings; Casing parts, e.g. diaphragms, casing fastenings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2220/00—Application
- F05D2220/40—Application in turbochargers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/20—Rotors
- F05D2240/24—Rotors for turbines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/50—Bearings
- F05D2240/54—Radial bearings
Definitions
- the invention relates to a turbocharger for an internal combustion engine.
- Exhaust gas turbochargers are increasingly being used to increase the performance of motor vehicle internal combustion engines. This is happening more and more frequently with the aim of reducing the size and weight of the internal combustion engine with the same or even increased performance and at the same time reducing consumption and thus CO 2 emissions in view of the increasingly strict legal requirements in this regard.
- the operating principle consists in using the energy contained in the exhaust gas flow in order to increase a pressure in an intake tract of the internal combustion engine and thus bring about better filling of a combustion chamber of the internal combustion engine with air-oxygen. This means that more fuel, such as petrol or diesel, can be converted per combustion process, i.e. the performance of the combustion engine can be increased.
- the exhaust gas turbocharger has an exhaust gas turbine arranged in the exhaust tract of the internal combustion engine, a fresh air compressor arranged in the intake tract and a rotor bearing arranged in between.
- the exhaust gas turbine has a turbine housing and a turbine impeller which is arranged therein and is driven by the exhaust gas mass flow.
- the fresh air compressor has a compressor housing and a compressor impeller which is arranged therein and builds up boost pressure.
- the turbine impeller and the compressor impeller are arranged in a rotationally fixed manner on the opposite ends of a common shaft, the so-called rotor shaft, and thus form the so-called turbocharger rotor.
- the rotor shaft extends axially between the turbine rotor and the compressor rotor through the rotor bearing arranged between the exhaust gas turbine and the fresh air compressor and is rotatably mounted in it radially and axially with respect to the rotor shaft axis.
- the turbine impeller driven by the exhaust gas mass flow drives the compressor impeller via the rotor shaft, which increases the pressure in the intake tract of the combustion engine, based on the fresh air mass flow behind the fresh air compressor, and thus causes better filling of the combustion chamber with air-oxygen.
- Such an exhaust gas turbocharger for an internal combustion engine is, for example, in document EP 3 144 541 A1 disclosed.
- This has a bearing housing which is arranged between an exhaust gas turbine with a turbine impeller and a centrifugal compressor with a compressor impeller and in which a rotor shaft is mounted so that it can rotate about a rotor axis of rotation on which the turbine impeller and the compressor impeller are each arranged in a rotationally fixed manner.
- the turbine wheel has wheel blading and is arranged in the turbine housing, which is mechanically fixed to the bearing housing.
- the turbine wheel includes turbine blades each having a flow leading edge and a flow trailing edge that define an entry radius and an exit radius of the turbine wheel.
- the turbine blades have an outer contour facing the turbine housing, which extends from the flow inlet edge to the flow outlet edge.
- the turbine housing has a housing contour that is opposite the outer contour of the turbine blades, with a radial distance being formed between the housing contour and the outer contour, which enables contact-free rotation of the turbine impeller in the turbine housing.
- An object on which the invention is based is to specify a concept for a turbocharger that contributes to safe operation of a turbocharger.
- the turbine housing and the turbine wheel are designed and matched to one another in such a way that the following condition or equation is met: L covers L axTip > 1 ⁇ hint clr R in ⁇ 3 ⁇ 4 ⁇ 1 1 ⁇ R out R in .
- damage to the turbocharger can occur during operation of the turbocharger, for example during test bench runs for the design of the turbocharger or components of the turbocharger such as the rotor. For example, a component failure of the rotor shaft or the impellers, such as a broken shaft, can occur.
- the turbine wheel can no longer be held in its intended position axially by an axial bearing.
- the turbine wheel would be moved in the direction of a turbine housing outlet for the exhaust gas mass flow primarily by aerodynamic forces, for example due to prevailing gas pressures.
- the portion of the turbine blades of the turbine wheel that has a larger diameter than an outlet diameter of the turbine housing at the downstream end of the turbine wheel abuts the turbine housing and hinders the turbine wheel in its axial movement in the direction of the turbine housing outlet. It was also recognized that if this proportion of the turbine wheel blades is not sufficiently large, the turbine blades are plastically deformed in the event of a shaft breakage in such a way that the turbine wheel can carry out a further, unwanted axial displacement.
- the turbocharger described provides that the turbine wheel and turbine housing are designed and arranged according to the condition (equation) formulated above.
- the condition stipulates that a contour profile of the turbine housing and/or the at least one turbine wheel blade are specifically redesigned compared to known turbines.
- a length portion (L cover ) of the turbine wheel blade, in which a diameter of the turbine wheel is larger than a smallest diameter DA of the turbine housing at the turbine blade outlet, is increased in such a way that in the event of a shaft breakage, a larger proportion of the turbine wheel blades would be plastically deformed in the event of an axial displacement , so that further axial movement of the turbine wheel with respect to the rotor axis of rotation is impeded or limited.
- the length portion of the turbine wheel blade in which a diameter of the turbine wheel is larger than a smallest diameter DA of the turbine housing at the turbine blade outlet is increased simply by the redesign.
- the condition defines a minimum value of said length portion of the turbine wheel blade.
- Such a design based on the given equation contributes to the fact that the turbine wheel, after a shaft breakage, i.e. in the event of damage to the turbocharger, one provides greater resistance to further axial displacement upon collision with the housing.
- the equation thus enables an optimal design for the turbine wheel and turbine housing on the basis of various parameters.
- certain parameters of the like can be specified, with one or more remaining parameters being able to be determined using the equation. In this way, a reasonable adjustment of the parameters can always be achieved according to the framework conditions.
- using the equation it is possible to easily determine the axial cover length L cover necessary for the above advantages and functions.
- a turbocharger designed according to the conditions helps to avoid the disadvantages mentioned at the outset in the event of damage, in particular the shaft breakage mentioned, in particular when the turbine wheel is only mounted radially.
- it is not absolutely necessary to constructively reinforce a back disk and/or the turbine wheel blades.
- it is not necessary to correspondingly thicken the turbine wheel blades.
- it is not necessary to provide a low trim ratio, ie a ratio between the maximum exit radius R out and the maximum entry radius R in .
- Material costs among other things, can be saved as a result. Both such measures would be disadvantageous with regard to the performance of the turbocharger, for example due to higher mass inertia.
- a meridional view means, for example, a flat, two-dimensional view in which an outermost contour of the turbine wheel is shown, which the turbine wheel traces during a rotation about the rotor axis of rotation, which also corresponds to an axis of rotation of the turbine wheel.
- the view can also relate to or include at least parts of the turbine housing, with an inner contour with a minimal radius in relation to the axis of rotation in the area of the turbine wheel being shown in particular, which the turbine housing would traverse when rotating about the axis of rotation.
- the housing contour of the turbine housing (English: shroud) opposite the outer contour is designed to correspond to the outer contour.
- the smallest radial distance Tip clr with respect to the axis of rotation of the rotor can be a distance that is constant over the entire axial area between the leading edge and the trailing edge. However, it is also conceivable for the distance to be present only in sections, in a single area or point with respect to the axis of rotation.
- the axial length component (L cover ) means that axial extent of the outer contour in which a radius or a diameter of the turbine wheel with respect to the rotor axis of rotation is larger than a minimum diameter/radius of the turbine housing in the region of a downstream end of the turbine wheel. In other words, in this area the diameter of the turbine wheel is larger than a smallest diameter of the turbine housing. In other words, it is that axial area of a turbine wheel which, if the turbine wheel and the turbine housing were projected into a plane normal to the rotor axis of rotation, is covered or overlapped by the turbine housing. In other words, this is the area that lies in the shadow of the turbine housing in relation to the rotor axis of rotation.
- the outer contour of the at least one blade has an axial overlap section that corresponds to the axial length component L cover of the axial extension L axTip .
- the ratio Tip clr to R in is : hint clr R in ⁇ 2.5 % .
- the ratio Tip clr to R in is : hint clr R in ⁇ 2.0 % .
- the ratio Tip clr to R in is : hint clr R in ⁇ 1.5 % .
- the ratio of L cover to L axtip is : L covers L axTip > 0.2 .
- the ratio of L cover to L axtip is : L covers L axTip > 0.25 .
- the ratio of L cover to L axtip is: L covers L axTip > 0.3 .
- the ratio of R out to R in is : R out R in > 0.8 .
- the ratio of R out to R in is : R out R in ⁇ 0.95 .
- the ratio of R out to R in is : R out R in ⁇ 0.93 .
- the ratio of R out to R in is : R out R in ⁇ 0.92 .
- the ratio of R out to R in is : R out R in ⁇ 0.91 .
- the ratio of R out to R in is : R out R in ⁇ 0.90 .
- the ratio R out to R in is also referred to as the trim or trim ratio.
- the trim ratio is between 0.8 and one of the other limits specified above.
- a turbine wheel for a turbocharger according to one of the previous embodiments is disclosed.
- the turbine wheel has impeller blading with a plurality of turbine blades.
- the turbine wheel is designed in such a way that the following condition is met: L covers L axTip > 1 ⁇ hint clr R in ⁇ 3 ⁇ 4 ⁇ 1 1 ⁇ R out R in
- the turbine wheel enables the advantages and functions mentioned above.
- the method enables the advantages and functions mentioned above.
- FIG 1 shows a schematic of an exemplary exhaust gas turbocharger 1 in a sectional view, which has an exhaust gas turbine 20 , a fresh air compressor 30 and a rotor bearing 40 .
- the exhaust gas turbine 20 is equipped with a wastegate valve 29 and an exhaust gas mass flow AM is indicated with arrows.
- the fresh air compressor 30 has an overrun air recirculation valve 39 and a fresh air mass flow FM is also indicated with arrows.
- a so-called turbocharger rotor 10 of the exhaust gas turbocharger 1 has a turbine wheel 12 (also called turbine wheel), a compressor wheel 13 (also called compressor wheel) and a rotor shaft 14 (also called shaft).
- turbocharger rotor 10 rotates about a rotor axis of rotation 15 of the rotor shaft 14.
- the rotor axis of rotation 15 and at the same time the turbocharger axis 2 are represented by the center line drawn in and characterize the axial alignment of the exhaust gas turbocharger 1.
- a common exhaust gas turbocharger 1 As shown in figure 1 shown, a multi-part structure.
- a turbine housing 21 that can be arranged in the exhaust tract of the internal combustion engine, a compressor housing 31 that can be arranged in the intake tract of the internal combustion engine, and a bearing housing 41 between the turbine housing 21 and the compressor housing 31 are arranged next to one another with respect to the common turbocharger axis 2 and are connected to one another in terms of assembly.
- the bearing housing 41 is arranged axially between the turbine housing 21 and the compressor housing 31 .
- the bearing housing 41 accommodates the rotor shaft 14 of the turbocharger rotor 10 and the bearing arrangement required for the axial bearing and for the rotary bearing of the rotor shaft 14 .
- turbocharger rotor 10 Another assembly of the exhaust gas turbocharger 1 is the turbocharger rotor 10, the rotor shaft 14, which is arranged in the turbine housing 21 turbine impeller 12 with a Impeller blading 121 and arranged in the compressor housing 31 compressor impeller 13 having an impeller blading 131.
- the turbine wheel 12 as well as the compressor wheel 13 have a plurality of blades which are arranged on a corresponding hub.
- the turbine wheel 12 and the compressor wheel 13 are arranged on the opposite ends of the common rotor shaft 14 and are non-rotatably connected thereto.
- the rotor shaft 14 extends axially through the bearing housing 41 in the direction of the turbocharger axis 2 and is rotatably mounted in it axially and radially about its longitudinal axis, the rotor axis of rotation 15 , with the rotor axis of rotation 15 coinciding with the turbocharger axis 2 .
- the turbocharger rotor 10 is mounted with its rotor shaft 14 by means of two radial bearings 42 and an axial bearing disk 43 . Both the radial bearing 42 and the axial bearing disk 43 are supplied with lubricant via oil supply channels 44 of an oil connection 45 .
- the turbine housing 21 has one or more exhaust gas annular ducts, so-called exhaust gas flows 22 , arranged in a ring shape around the turbocharger axis 2 and the turbine impeller 12 , tapering helically towards the turbine impeller 12 .
- These exhaust gas flows 22 have a respective or common, tangentially outwardly directed exhaust gas supply channel 23 with a manifold connecting piece 24 for connection to an exhaust manifold (not shown) of an internal combustion engine, through which the exhaust gas mass flow AM flows into the respective exhaust gas flow 22 and then onto the turbine impeller 12 flows.
- the turbine housing 21 also has an exhaust gas discharge channel 26 which runs away from the axial end of the turbine impeller 12 in the direction of the turbocharger axis 2 and has an exhaust connection piece 27 for connection to the exhaust system (not shown) of the internal combustion engine.
- the exhaust gas mass flow AM emerging from the turbine impeller 12 is discharged into the exhaust system of the internal combustion engine via this exhaust gas discharge channel 26 .
- turbocharger 1 Further details of the turbocharger 1 are not explained in more detail at this point. It should be noted that the in figure 1 described turbocharger 1 is to be understood as an example and alternatively can also have other configurations, without there being any restrictions for the following description of exemplary embodiments of the invention with reference to FIG Figures 4 to 6 result.
- Figures 2 and 3 each show a meridional view of exhaust gas turbines 20 of a turbocharger 1, each of which has a turbine housing 21 and a turbine wheel 12 with a plurality of turbine blades 122.
- FIG 2 is a radial-axial turbine wheel and in figure 3 a radial turbine wheel is shown in a schematic half section.
- the turbine wheel 12 has an upstream, axial end 124 and a downstream, axial end 125.
- the turbine blade 122 shown like all other turbine blades, has a flow inlet edge 126 for the exhaust gas mass flow AM and a flow outlet edge 127 for the exhaust gas mass flow AM after exiting the turbine wheel 12 or the turbine blades 122.
- the flow inlet edge 126 and/or the flow outlet edge 127 can run obliquely or otherwise, approximately parallel, to the rotor axis of rotation 15, as shown in FIG Figures 2 and 3 is evident.
- the flow inlet edge 126 and the flow outlet edge 127 are connected via an outer contour 128 (English tip).
- the outer contour 128 lies directly opposite a housing contour 211 of the turbine housing 21 which surrounds the turbine wheel 12 .
- the housing contour 211 is designed to correspond to the outer contour 128, with a course of the two contours 128 and 211 in the view shown running essentially parallel to one another with respect to FIG Axis of rotation 123.
- the other turbine housing 21 is not shown for reasons of clarity.
- the flow entry edge 126 has a maximum entry radius R in and the flow exit edge 127 has a maximum exit radius R out .
- the outer contour 128 has an axial extension length L axTiP in relation to the axis of rotation 123 or the axis of rotation 15 of the rotor.
- Outer contour 128 has an axial length portion L cover of axial extent L axTiP , in which a diameter of turbine wheel 12 is greater than a smallest diameter DA of turbine housing 21 at turbine blade outlet 129 for exhaust gas mass flow AM.
- the housing contour 211 and the outer contour 128 are spaced apart from one another in such a way that a minimal gap is formed, with a smallest radial distance Tip clr between the housing contour 211 and the outer contour 128 prevailing.
- turbochargers can be damaged with various adverse consequences. Based on Figures 4 to 6 exemplary embodiments of turbines 20 are described which, in the event of damage to the turbocharger 1, enable the functions and advantages mentioned at the outset.
- figure 4 shows a turbine 20, which is essentially the turbine of Figures 2 and 3 is equivalent to.
- the above parameter definitions apply analogously.
- the turbine 20 is designed in such a way that the figure 5 equation shown is satisfied.
- the condition is: L covers L axTip > 1 ⁇ hint clr R in ⁇ 3 ⁇ 4 ⁇ 1 1 ⁇ R out R in . This achieves the advantages and functions mentioned at the outset. It should be mentioned at this point that the ratio R out to R in can be called the trim (see Fig. figure 5 ) .
- the turbine 20 is designed and manufactured, for example, in such a way that certain parameters are specified and the remaining parameters are determined using the conditions in order to obtain a necessary minimum value for L Cover .
- the axial length portion L cover is increased and matched to the turbine housing 21 .
- the turbine wheel 12 has an enlarged portion that is covered by the turbine housing 21 .
- figure 6 shows a diagram in which the trim value is plotted on the x-axis and the ratio of L cover to L axTip is plotted on the y-axis.
- Three curves according to the equation are exemplary figure 5 shown, which are distinguished by the percentage values shown on the right next to the diagram, which result from the ratio Tip clr to R in .
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Architecture (AREA)
- Supercharger (AREA)
Description
Die Erfindung betrifft einen Turbolader für eine Brennkraftmaschine.The invention relates to a turbocharger for an internal combustion engine.
Abgasturbolader werden vermehrt zur Leistungssteigerung bei Kraftfahrzeug-Verbrennungsmotoren eingesetzt. Dies geschieht immer häufiger mit dem Ziel, den Verbrennungsmotor bei gleicher oder gar gesteigerter Leistung in Baugröße und Gewicht zu reduzieren und gleichzeitig den Verbrauch und somit den CO2-Ausstoß, im Hinblick auf immer strenger werdende gesetzliche Vorgaben diesbezüglich, zu verringern. Das Wirkprinzip besteht darin, die im Abgasstrom enthaltene Energie zu nutzen, um einen Druck in einem Ansaugtrakt des Verbrennungsmotors zu erhöhen und so eine bessere Befüllung eines Brennraumes des Verbrennungsmotors mit Luft-Sauerstoff zu bewirken. Somit kann mehr Treibstoff, wie Benzin oder Diesel, pro Verbrennungsvorgang umgesetzt werden, also die Leistung des Verbrennungsmotors erhöht werden.Exhaust gas turbochargers are increasingly being used to increase the performance of motor vehicle internal combustion engines. This is happening more and more frequently with the aim of reducing the size and weight of the internal combustion engine with the same or even increased performance and at the same time reducing consumption and thus CO 2 emissions in view of the increasingly strict legal requirements in this regard. The operating principle consists in using the energy contained in the exhaust gas flow in order to increase a pressure in an intake tract of the internal combustion engine and thus bring about better filling of a combustion chamber of the internal combustion engine with air-oxygen. This means that more fuel, such as petrol or diesel, can be converted per combustion process, i.e. the performance of the combustion engine can be increased.
Dazu weist der Abgasturbolader eine im Abgastrakt des Verbrennungsmotors angeordnete Abgasturbine, einen im Ansaugtrakt angeordneten Frischluftverdichter und ein dazwischen angeordnetes Läuferlager auf. Die Abgasturbine weist ein Turbinengehäuse und ein darin angeordnetes, durch den Abgasmassenstrom angetriebenes Turbinenlaufrad auf. Der Frischluftverdichter weist ein Verdichtergehäuse und ein darin angeordnetes, einen Ladedruck aufbauendes Verdichterlaufrad auf. Das Turbinenlaufrad und das Verdichterlaufrad sind auf den sich gegenüberliegenden Enden einer gemeinsamen Welle, der sogenannten Läuferwelle, drehfest angeordnet und bilden so den sogenannten Turboladerläufer. Die Läuferwelle erstreckt sich axial zwischen Turbinenlaufrad und Verdichterlaufrad durch das zwischen Abgasturbine und Frischluftverdichter angeordnete Läuferlager und ist in diesem, in Bezug auf die Läuferwellenachse, radial und axial drehgelagert. Gemäß diesem Aufbau treibt das vom Abgasmassenstrom angetriebene Turbinenlaufrad über die Läuferwelle das Verdichterlaufrad an, wodurch der Druck im Ansaugtrakt des Verbrennungsmotors, bezogen auf den Frischluftmassenstrom hinter dem Frischluftverdichter, erhöht und dadurch eine bessere Befüllung des Brennraumes mit Luft-Sauerstoff bewirkt wird.For this purpose, the exhaust gas turbocharger has an exhaust gas turbine arranged in the exhaust tract of the internal combustion engine, a fresh air compressor arranged in the intake tract and a rotor bearing arranged in between. The exhaust gas turbine has a turbine housing and a turbine impeller which is arranged therein and is driven by the exhaust gas mass flow. The fresh air compressor has a compressor housing and a compressor impeller which is arranged therein and builds up boost pressure. The turbine impeller and the compressor impeller are arranged in a rotationally fixed manner on the opposite ends of a common shaft, the so-called rotor shaft, and thus form the so-called turbocharger rotor. The rotor shaft extends axially between the turbine rotor and the compressor rotor through the rotor bearing arranged between the exhaust gas turbine and the fresh air compressor and is rotatably mounted in it radially and axially with respect to the rotor shaft axis. According to this structure the turbine impeller driven by the exhaust gas mass flow drives the compressor impeller via the rotor shaft, which increases the pressure in the intake tract of the combustion engine, based on the fresh air mass flow behind the fresh air compressor, and thus causes better filling of the combustion chamber with air-oxygen.
Ein solcher Abgasturbolader für eine Brennkraftmaschine ist zum Beispiel in Dokument
Weiterhin offenbart auch die Druckschrift
Eine Aufgabe, die der Erfindung zugrunde liegt, ist es, ein Konzept für einen Turbolader anzugeben, welches zu einem sicheren Betrieb eines Turboladers beiträgt.An object on which the invention is based is to specify a concept for a turbocharger that contributes to safe operation of a turbocharger.
Es wird ein Turbolader für eine Brennkraftmaschine , gemäß Anspruch 1, offenbart. Der Turbolader weist ein Lagergehäuse auf, in dem eine Läuferwelle drehbar um eine Läuferdrehachse gelagert ist, wobei die Läuferwelle über zumindest zwei Radiallager in dem Lagergehäuse gelagert ist. Der Turbolader weist eine Abgasturbine mit einem Turbinenrad, welches drehfest auf der Läuferwelle angeordnet ist und welches eine Laufradbeschaufelung mit mehreren Turbinenschaufeln aufweist, und mit einem Turbinengehäuse, welches mechanisch an dem Lagergehäuse festgelegt ist und welches das Turbinenrad umgibt, auf. Bezüglich einer Meridionalansicht der Abgasturbine gilt:
- Zumindest eine Turbinenschaufel des Turbinenrads weist eine Strömungseintrittskante und eine Strömungsaustrittskante für den Abgasmassenstrom auf.
- Die Strömungseintrittskante weist einen maximalen Eintrittsradius Rin auf und die Strömungsaustrittskante weist einen maximalen Austrittsradius Rout auf, jeweils bezogen auf die Läuferdrehachse.
- Die zumindest eine Turbinenschaufel weist eine dem Turbinengehäuse zugewandte Außenkontur auf, die sich von der Strömungseintrittskante bis zu der Strömungsaustrittskante erstreckt und eine axiale Erstreckungslänge LaxTip hat.
- Das Turbinengehäuse weist eine Gehäusekontur auf, die der Außenkontur gegenüberliegt.
- Die Außenkontur der zumindest einen Turbinenschaufel weist einen axialen Längenanteil Lcover der axialen Erstreckung LaxTip auf, in welchem ein Durchmesser des Turbinenrads größer ist als ein kleinster Durchmesser DA des Turbinengehäuses am Turbinenschaufelaustritt für den Abgasmassenstrom AM.
- Zwischen der Gehäusekontur und der Außenkontur ist bezüglich der Läuferdrehachse ein geringster radialer Abstand Tipclr ausgebildet.
- At least one turbine blade of the turbine wheel has a flow inlet edge and a flow outlet edge for the exhaust gas mass flow.
- The flow inlet edge has a maximum inlet radius R in and the flow outlet edge has a maximum outlet radius R out , each based on the rotor axis of rotation.
- The at least one turbine blade has an outer contour facing the turbine housing, which extends from the flow inlet edge to the flow outlet edge and has an axial extension length L axTip .
- The turbine housing has a housing contour that is opposite to the outer contour.
- The outer contour of the at least one turbine blade has an axial length portion L cover of the axial extension L axTip , in which a diameter of the turbine wheel is larger than a smallest diameter DA of the turbine housing at the turbine blade outlet for the exhaust gas mass flow AM.
- A smallest radial distance Tip clr is formed between the housing contour and the outer contour with respect to the rotor axis of rotation.
Das Turbinengehäuse und das Turbinenrad sind derart ausgebildet und zueinander abgestimmt, dass die folgende Bedingung bzw. Gleichung erfüllt ist:
Es wurde erkannt, dass es während des Betriebs des Turboladers, beispielsweise bei Prüfstandsläufen zur Auslegung des Turboladers oder Komponenten des Turboladers wie des Läufers, zu einem Schadensfall für den Turbolader kommen kann. Beispielsweise kann es zu einem Bauteilversagen der Läuferwelle oder der Laufräder, etwa einem Wellenbruch, kommen.It was recognized that damage to the turbocharger can occur during operation of the turbocharger, for example during test bench runs for the design of the turbocharger or components of the turbocharger such as the rotor. For example, a component failure of the rotor shaft or the impellers, such as a broken shaft, can occur.
Im Falle eines Wellenbruchs der Läuferwelle kann beispielsweise das Turbinenrad nicht mehr axial durch ein Axiallager in seiner vorgesehenen Position gehalten werden. In diesem Fall würde das Turbinenrad vorwiegend durch aerodynamische Kräfte, etwa aufgrund vorherrschender Gasdrücke, in Richtung eines Turbinengehäuseausgangs für den Abgasmassenstrom bewegt. Dabei stößt der Anteil der Turbinenschaufeln des Turbinenrads, welcher einen größeren Durchmesser als ein Austrittsdurchmesser des Turbinengehäuses am stromabwärtigen Ende des Turbinenrads aufweist, am Turbinengehäuse an und behindert das Turbinenrad in seiner axialen Bewegung in Richtung Turbinengehäuseausgang. Es wurde weiter erkannt, dass, wenn dieser Anteil der Turbinenradschaufeln nicht ausreichend groß ist, die Turbinenschaufeln im Fall eines Wellenbruchs derart plastisch verformt werden, dass das Turbinenrad eine weitere, nicht gewollte axiale Verschiebung vollziehen kann.If the rotor shaft breaks, for example, the turbine wheel can no longer be held in its intended position axially by an axial bearing. In this case, the turbine wheel would be moved in the direction of a turbine housing outlet for the exhaust gas mass flow primarily by aerodynamic forces, for example due to prevailing gas pressures. The portion of the turbine blades of the turbine wheel that has a larger diameter than an outlet diameter of the turbine housing at the downstream end of the turbine wheel abuts the turbine housing and hinders the turbine wheel in its axial movement in the direction of the turbine housing outlet. It was also recognized that if this proportion of the turbine wheel blades is not sufficiently large, the turbine blades are plastically deformed in the event of a shaft breakage in such a way that the turbine wheel can carry out a further, unwanted axial displacement.
Nachteilig in einem solchen Fall wäre unter anderem, dass Kolbenringe von Öldichtungen ihre ursprüngliche axiale Position verlassen könnten und so eine Dichtwirkung verloren ginge. Dies hätte unter anderem die negative Folge, dass Öl in solchen Mengen austreten könnte, dass der Verbrennungsmotor, in dessen Ölkreislauf der Turbolader eingekoppelt ist, unmittelbar abgestellt werden muss, um Schäden zu vermeiden. Ein Ölaustritt sollte jedoch unbedingt oder weitestgehend vermieden werden, um zumindest Notlaufeigenschaften des Systems zu gewährleisten. Darüber hinaus wurde erkannt, dass ein Wellenbruch zwischen den Öldichtungen, etwa den Kolbenringen beider Dichtungen, nachteilig ist, da neben den Laufrädern und den daran verbleibenden Wellenstummeln auch die Dichtungen den Turbolader verlassen könnten, was den beschriebenen negativen Ölverlust weiter begünstigen würde.A disadvantage in such a case would be, among other things, that piston rings of oil seals could leave their original axial position and a sealing effect would be lost. This would have the negative consequence, among other things, that oil could escape in such quantities that the combustion engine, in whose oil circuit the turbocharger is coupled, would have to be switched off immediately in order to avoid damage. However, an oil leak should be avoided at all costs or as far as possible in order to at least guarantee the emergency running properties of the system. In addition, it was recognized that a broken shaft between the oil seals, such as the piston rings of both seals, is disadvantageous because, in addition to the impellers and the shaft stubs remaining on them, the seals could also leave the turbocharger, which would further promote the negative oil loss described.
Der beschriebene Turbolader sieht vor, dass Turbinenrad und Turbinengehäuse entsprechend der oben formulierten Bedingung (Gleichung) ausgelegt und angeordnet sind. Die Bedingung gibt vor, dass ein Konturverlauf des Turbinengehäuses und/oder der zumindest einen Turbinenradschaufel gezielt umgestaltet sind im Vergleich zu bekannten Turbinen. Insbesondere wird ein Längenanteil (Lcover) der Turbinenradschaufel, in welchem ein Durchmesser des Turbinenrads größer ist als ein kleinster Durchmesser DA des Turbinengehäuses am Turbinenschaufelaustritt, derart vergrößert, dass im Falle eines Wellenbruchs ein größerer Anteil der Turbinenrad Schaufeln bei einer axialen Verschiebung plastisch verformt würde, so dass eine weitere axiale Bewegung des Turbinenrad bezüglich der Läuferdrehachse behindert oder begrenzt ist. Beispielsweise wird ausgehend von einer konventionellen Gehäusekontur im Bereich des Turbinenrads allein durch die Umgestaltung der Längenanteil der Turbinenradschaufel, in welchem ein Durchmesser des Turbinenrads größer ist als ein kleinster Durchmesser DA des Turbinengehäuses am Turbinenschaufelaustritt, vergrößert. Mit anderen Worten ist durch die Bedingung ein Mindestwert des genannten Längenanteils der Turbinenradschaufel definiert.The turbocharger described provides that the turbine wheel and turbine housing are designed and arranged according to the condition (equation) formulated above. The condition stipulates that a contour profile of the turbine housing and/or the at least one turbine wheel blade are specifically redesigned compared to known turbines. In particular, a length portion (L cover ) of the turbine wheel blade, in which a diameter of the turbine wheel is larger than a smallest diameter DA of the turbine housing at the turbine blade outlet, is increased in such a way that in the event of a shaft breakage, a larger proportion of the turbine wheel blades would be plastically deformed in the event of an axial displacement , so that further axial movement of the turbine wheel with respect to the rotor axis of rotation is impeded or limited. For example, starting from a conventional housing contour in the area of the turbine wheel, the length portion of the turbine wheel blade in which a diameter of the turbine wheel is larger than a smallest diameter DA of the turbine housing at the turbine blade outlet is increased simply by the redesign. In other words, the condition defines a minimum value of said length portion of the turbine wheel blade.
Durch eine derartige Auslegung anhand der vorgegebenen Gleichung wird dazu beigetragen, dass das Turbinenrad nach einem Wellenbruch, also in einem Schadensfall des Turboladers, einen größeren Widerstand gegen weitere axiale Verschiebung bei Kollision mit dem Gehäuse liefert. Die Gleichung ermöglicht also anhand von verschiedenen Parametern eine optimale Auslegung für Turbinenrad und Turbinengehäuse. Je nach Rahmenbedingungen für den Turbolader wie Einsatzzweck, Verwendungszweck oder anderen, können bestimmte Parameter dergleichen vorgegeben sein, wobei ein oder mehrere restliche Parameter mithilfe der Gleichung ermittelt werden können. So kann entsprechend den Rahmenbedingungen stets eine sinnvolle Abstimmung der Parameter erreicht werden. Insbesondere ist es mithilfe der Gleichung möglich, die für die obigen Vorteile und Funktionen notwendige axiale Überdeckungslänge Lcover auf einfache Art und Weise zu bestimmen.Such a design based on the given equation contributes to the fact that the turbine wheel, after a shaft breakage, i.e. in the event of damage to the turbocharger, one provides greater resistance to further axial displacement upon collision with the housing. The equation thus enables an optimal design for the turbine wheel and turbine housing on the basis of various parameters. Depending on the framework conditions for the turbocharger, such as application, intended use or others, certain parameters of the like can be specified, with one or more remaining parameters being able to be determined using the equation. In this way, a reasonable adjustment of the parameters can always be achieved according to the framework conditions. In particular, using the equation, it is possible to easily determine the axial cover length L cover necessary for the above advantages and functions.
Ein entsprechend der Bedingungen ausgelegten Turbolader trägt dazu bei, die eingangs genannten Nachteile bei einem Schadensfall, insbesondere den genannten Wellenbruch, zu vermeiden, insbesondere, wenn das Turbinenrad nur noch radial gelagert ist. Dabei ist es nicht zwingend notwendig, eine Rückenscheibe und/oder die Turbinenradschaufeln konstruktiv zu verstärken. Es ist mit anderen Worten dank der obigen Bedingung nicht notwendig, die Turbinenradschaufeln entsprechend aufzudicken. Auch ist es dank der obigen Bedingung nicht notwendig, ein niedriges Trimverhältnis, d.h. ein Verhältnis zwischen dem maximalen Austrittsradius Rout und dem maximalen Eintrittsradius Rin, vorzusehen. Dadurch können unter anderem Materialkosten eingespart werden. Beide solcher Maßnahmen wären nachteilig hinsichtlich des Leistungsverhaltens des Turboladers, beispielsweise aufgrund von höheren Massenträgheiten.A turbocharger designed according to the conditions helps to avoid the disadvantages mentioned at the outset in the event of damage, in particular the shaft breakage mentioned, in particular when the turbine wheel is only mounted radially. In this case, it is not absolutely necessary to constructively reinforce a back disk and/or the turbine wheel blades. In other words, thanks to the above condition, it is not necessary to correspondingly thicken the turbine wheel blades. Also, thanks to the above condition, it is not necessary to provide a low trim ratio, ie a ratio between the maximum exit radius R out and the maximum entry radius R in . Material costs, among other things, can be saved as a result. Both such measures would be disadvantageous with regard to the performance of the turbocharger, for example due to higher mass inertia.
Meridionalansicht bedeutet beispielsweise eine ebene, zweidimensionale Ansicht, in welcher eine äußerste Kontur des Turbinenrads dargestellt ist, die das Turbinenrad bei einer Rotation um die Läuferdrehachse, die auch einer Drehachse des Turbinenrad entspricht, abfährt. Die Ansicht kann auch zumindest Teile des Turbinengehäuses betreffen oder einschließen, wobei insbesondere eine Innenkontur mit minimalstem Radius bezogen auf die Drehachse im Bereich des Turbinenrads dargestellt ist, die das Turbinengehäuse bei Rotation um die Drehachse abfahren würde.A meridional view means, for example, a flat, two-dimensional view in which an outermost contour of the turbine wheel is shown, which the turbine wheel traces during a rotation about the rotor axis of rotation, which also corresponds to an axis of rotation of the turbine wheel. The view can also relate to or include at least parts of the turbine housing, with an inner contour with a minimal radius in relation to the axis of rotation in the area of the turbine wheel being shown in particular, which the turbine housing would traverse when rotating about the axis of rotation.
Die der Außenkontur gegenüberliegende Gehäusekontur des Turbinengehäuses (englisch: shroud) ist korrespondierend zu der Außenkontur ausgebildet. Bei dem geringsten radialen Abstand Tipclr bezüglich der Läuferdrehachse kann es sich um einen Abstand handeln, der über den gesamten axialen Bereich zwischen der Eintrittskante und der Austrittskante, konstant ist. Es ist jedoch auch denkbar, dass der Abstand nur abschnittsweise, in einem einzelnen Bereich oder Punkt bezüglich der Drehachse vorliegt.The housing contour of the turbine housing (English: shroud) opposite the outer contour is designed to correspond to the outer contour. The smallest radial distance Tip clr with respect to the axis of rotation of the rotor can be a distance that is constant over the entire axial area between the leading edge and the trailing edge. However, it is also conceivable for the distance to be present only in sections, in a single area or point with respect to the axis of rotation.
Mit dem axialen Längenanteil (Lcover) ist diejenige axiale Erstreckung der Außenkontur gemeint, in welchem ein Radius bzw. ein Durchmesser des Turbinenrads bezüglich der Läuferdrehachse größer ist als ein minimaler Durchmesser/Radius des Turbinengehäuses im Bereich eines stromabwärtigen Endes des Turbinenrads. Anders ausgedrückt ist in diesem Bereich der Durchmesser des Turbinenrads größer als ein kleinster Durchmesser des Turbinengehäuses. Mit anderen Worten handelt es sich um denjenigen axialen Bereich eines Turbinenrads, der, würde man das Turbinenrad und das Turbinengehäuse in eine Ebene normal zu der Läuferdrehachse projizieren, von dem Turbinengehäuse überdeckt oder überlappt ist. Mit wieder anderen Worten handelt es sich um denjenigen Bereich, der im Schatten des Turbinengehäuses liegt bezogen auf die Läuferdrehachse. Anders ausgedrückt hat die Außenkontur der zumindest einen Schaufel einen axialen Überdeckungsabschnitt, der dem axialen Längenanteil Lcover der axialen Erstreckung LaxTip entspricht.The axial length component (L cover ) means that axial extent of the outer contour in which a radius or a diameter of the turbine wheel with respect to the rotor axis of rotation is larger than a minimum diameter/radius of the turbine housing in the region of a downstream end of the turbine wheel. In other words, in this area the diameter of the turbine wheel is larger than a smallest diameter of the turbine housing. In other words, it is that axial area of a turbine wheel which, if the turbine wheel and the turbine housing were projected into a plane normal to the rotor axis of rotation, is covered or overlapped by the turbine housing. In other words, this is the area that lies in the shadow of the turbine housing in relation to the rotor axis of rotation. In other words, the outer contour of the at least one blade has an axial overlap section that corresponds to the axial length component L cover of the axial extension L axTip .
Die folgenden Ausführungsformen tragen allesamt zu den obigen Vorteilen und Funktionen bei, wobei die obige Bedingung in vorteilhafter Weise weitergebildet ist durch die Vorgabe von einem oder mehreren Grenzwerten.The following embodiments all contribute to the above advantages and functions, with the above condition being advantageously further developed by specifying one or more limit values.
Gemäß einer Ausführungsform gilt für das Verhältnis Tipclr zu Rin:
Gemäß einer Ausführungsform gilt für das Verhältnis Tipclr zu Rin:
Gemäß einer Ausführungsform gilt für das Verhältnis Tipclr zu Rin:
Gemäß einer Ausführungsform gilt für das Verhältnis Lcover zu Laxtip:
Gemäß einer Ausführungsform gilt für das Verhältnis Lcover zu Laxtip:
Gemäß einer Ausführungsform gilt für das Verhältnis Lcover zu Laxtip:
Gemäß einer Ausführungsform gilt für das Verhältnis Rout zu Rin:
Gemäß einer Ausführungsform gilt für das Verhältnis Rout zu Rin:
Gemäß einer Ausführungsform gilt für das Verhältnis Rout zu Rin:
Gemäß einer Ausführungsform gilt für das Verhältnis Rout zu Rin:
Gemäß einer Ausführungsform gilt für das Verhältnis Rout zu Rin:
Gemäß einer Ausführungsform gilt für das Verhältnis Rout zu Rin:
Das Verhältnis Rout zu Rin wird auch als Trim oder Trimverhältnis bezeichnet.The ratio R out to R in is also referred to as the trim or trim ratio.
Gemäß Ausführungsformen liegt das Trimverhältnis zwischen 0,8 und einer der weiteren, oben angegebenen Grenzen.According to embodiments, the trim ratio is between 0.8 and one of the other limits specified above.
Des Weiteren wird ein Turbinenrad für einen Turbolader gemäß einer der vorigen Ausführungsformen offenbart. Das Turbinenrad weist eine Laufradbeschaufelung mit mehreren Turbinenschaufeln auf. Das Turbinenrad ist derart ausgebildet, dass die folgende Bedingung erfüllt ist:
Dabei gilt bezüglich einer Meridionalansicht des Turbinenrads, dass
- zumindest eine Turbinenschaufel des Turbinenrads eine Strömungseintrittskante und eine Strömungsaustrittskante für den Abgasmassenstrom aufweist;
- Rin einen maximalen Eintrittsradius der Strömungseintrittskante und Rout einen maximalen Austrittsradius der Strömungsaustrittskante beschreibt, jeweils bezogen auf eine Drehachse des Turbinenrads;
- LaxTip eine axiale Erstreckungslänge einer Außenkontur der zumindest einen Turbinenschaufel beschreibt, wobei sich die Außenkontur von der Strömungseintrittskante bis zu der Strömungsaustrittskante erstreckt und in einem bestimmungsgemäßen Betrieb einem umgebenden Turbinengehäuse zugewandt ist;
- Lcover einen axialen Längenanteil der axialen Erstreckung LaxTip der Außenkontur beschreibt, in welchem ein Durchmesser des Turbinenrads größer ist als ein kleinster Durchmesser DA des Turbinengehäuses am Turbinenschaufelaustritt;
- Tipclr einen geringsten radialen Abstand zwischen einer Gehäusekontur des Turbinengehäuses, welche in dem bestimmungsgemäßen Betrieb der Außenkontur gegenüberliegt, und der Außenkontur bezüglich der Läuferdrehachse beschreibt.
- at least one turbine blade of the turbine wheel has a flow inlet edge and a flow outlet edge for the exhaust gas mass flow;
- R in describes a maximum inlet radius of the flow inlet edge and R out describes a maximum outlet radius of the flow outlet edge, in each case based on an axis of rotation of the turbine wheel;
- L axTip describes an axial extension length of an outer contour of the at least one turbine blade, the outer contour extending from the flow inlet edge to the flow outlet edge and facing a surrounding turbine housing in normal operation;
- L cover describes an axial length component of the axial extension L axTip of the outer contour, in which a diameter of the turbine wheel is larger than a smallest diameter DA of the turbine housing at the turbine blade outlet;
- Tip clr describes a smallest radial distance between a housing contour of the turbine housing, which is opposite the outer contour in normal operation, and the outer contour with respect to the rotor axis of rotation.
Es gelten die obigen Ausführungen analog.The above statements apply analogously.
Das Turbinenrad ermöglicht die oben genannten Vorteile und Funktionen.The turbine wheel enables the advantages and functions mentioned above.
Des Weiteren wird ein Verfahren zum Herstellen eines Turboladers gemäß einer der obigen Ausführungsformen offenbart. Das Verfahren umfasst die Schritte:
- Ermitteln und/oder Bestimmen der Parameter des maximalen Eintrittsradius Rin, des maximalen Austrittsradius Rout, der axialen Erstreckungslänge LaxTip, des axialen Längenanteils Lcover und des geringsten radialen Abstands Tipclr derart, dass für das Turbinenrad und das Turbinengehäuse die folgende Bedingung erfüllt ist:
- Fertigen des Turbinenrads und des Turbinengehäuses anhand der mittels der Bedingung ermittelten Parameter.
- Determine and/or determine the parameters of the maximum entry radius R in , the maximum exit radius R out , the axial extension length L axTip , the axial length portion L cover and the smallest radial distance Tip clr such that the following condition is met for the turbine wheel and the turbine housing is:
- Manufacture of the turbine wheel and the turbine housing based on the parameters determined using the condition.
Es gelten die obigen Ausführungen analog.The above statements apply analogously.
Das Verfahren ermöglicht die oben genannten Vorteile und Funktionen.The method enables the advantages and functions mentioned above.
Im Folgenden werden Ausführungsbeispiele der Erfindung, ohne Einschränkung der Allgemeinheit, beschrieben.Exemplary embodiments of the invention are described below without restricting the generality.
Die Ausführungsbeispiele werden unter Zuhilfenahme der angehängten Figuren nachfolgend beschrieben. Gleichartige oder gleichwirkende Elemente sind figurenübergreifend mit den gleichen Bezugszeichen versehen.The exemplary embodiments are described below with the aid of the attached figures. Elements that are of the same type or have the same effect are provided with the same reference symbols across the figures.
In den Figuren zeigen:
Figur 1- eine schematische Schnittansicht eines Turboladers,
Figur 2 und 3- zwei schematische Schnittansichten von Abgasturbinen eines Turboladers,
Figur 4- eine schematische Schnittansicht einer Abgasturbine eines Turboladers gemäß einem Ausführungsbeispiel,
- Figur 5
- eine Gleichung für die Auslegung der Abgasturbine gemäß der vorliegenden Erfindung und
- Figur 6
- eine Diagrammdarstellung der Gleichung der
Figur 5 mit drei beispielhaften Parameterauswahlen.
- figure 1
- a schematic sectional view of a turbocharger,
- Figure 2 and 3
- two schematic sectional views of exhaust gas turbines of a turbocharger,
- figure 4
- a schematic sectional view of an exhaust gas turbine of a turbocharger according to an embodiment,
- figure 5
- an equation for the design of the exhaust gas turbine according to the present invention and
- figure 6
- a diagram representation of the equation of the
figure 5 with three exemplary parameter selections.
In der Regel weist ein gebräuchlicher Abgasturbolader 1, wie in
Das Lagergehäuse 41 ist axial zwischen dem Turbinengehäuse 21 und dem Verdichtergehäuse 31 angeordnet. Im Lagergehäuse 41 ist die Läuferwelle 14 des Turboladerläufers 10 sowie die erforderliche Lageranordnung zur Axiallagerung und zur Drehlagerung der Läuferwelle 14 aufgenommen.The bearing
Eine weitere Baueinheit des Abgasturboladers 1 stellt der Turboladerläufer 10 dar, der die Läuferwelle 14, das in dem Turbinengehäuse 21 angeordnete Turbinenlaufrad 12 mit einer Laufradbeschaufelung 121 und das in dem Verdichtergehäuse 31 angeordnete Verdichterlaufrad 13 mit einer Laufradbeschaufelung 131 aufweist. Mit anderen Worten haben das Turbinenrad 12 sowie das Verdichterrad 13 mehrere Schaufeln, die auf einer entsprechenden Nabe angeordnet sind. Das Turbinenlaufrad 12 und das Verdichterlaufrad 13 sind auf den sich gegenüberliegenden Enden der gemeinsamen Läuferwelle 14 angeordnet und mit dieser drehfest verbunden. Die Läuferwelle 14 erstreckt sich in Richtung der Turboladerachse 2 axial durch das Lagergehäuse 41 und ist in diesem axial und radial um seine Längsachse, die Läuferdrehachse 15, drehgelagert, wobei die Läuferdrehachse 15 mit der Turboladerachse 2 zusammenfällt. Der Turboladerläufer 10 ist mit seiner Läuferwelle 14 mittels zweier Radiallager 42 und einer Axiallagerscheibe 43 gelagert. Sowohl die Radiallager 42 als auch die Axiallagerscheibe 43 werden über Ölversorgungskanäle 44 eines Ölanschlusses 45 mit Schmiermittel versorgt.Another assembly of the
Das Turbinengehäuse 21 weist einen oder mehrere ringförmig um die Turboladerachse 2 und das Turbinenlaufrad 12 angeordnete, sich schneckenförmig zum Turbinenlaufrad 12 hin verjüngende Abgas-Ringkanäle, sogenannte Abgasfluten 22 auf. Diese Abgasfluten 22 weisen einen jeweiligen oder gemeinsamen, tangential nach außen gerichteten Abgaszuführkanal 23 mit einem Krümmer-Anschlussstutzen 24 zum Anschluss an einen Abgaskrümmer (nicht dargestellt) eines Verbrennungsmotors auf, durch den der Abgasmassenstrom AM in die jeweilige Abgasflute 22 und dann auf das Turbinenlaufrad 12 strömt. Das Turbinengehäuse 21 weist weiterhin einen Abgasabführkanal 26 auf, der vom axialen Ende des Turbinenlaufrades 12 weg in Richtung der Turboladerachse 2 verläuft und einen Auspuff-Anschlussstutzen 27 zum Anschluss an das Auspuffsystem (nicht dargestellt) des Verbrennungsmotors aufweist. Über diesen Abgasabführkanal 26 wird der aus dem Turbinenlaufrad 12 austretende Abgasmassenstrom AM in das Auspuffsystem des Verbrennungsmotors abgeführt.The
Weitere Details des Turboladers 1 werden an dieser Stelle nicht näher erläutert. Es sei darauf hingewiesen, dass der in
Die Turbinen 20 der beiden
Das Turbinenrad 12 hat ein stromaufwärtiges, axiales Ende 124 und ein stromabwärtiges, axiales Ende 125. Wie in der Meridionalansicht erkennbar, hat die dargestellte Turbinenschaufel 122, wie auch alle weiteren Turbinenschaufeln, eine Strömungseintrittskante 126 für den Abgasmassenstrom AM und eine Strömungsaustrittskante 127 für den Abgasmassenstrom AM nach dem Austritt aus dem Turbinenrad 12 bzw. aus den Turbinenschaufeln 122. Die Strömungseintrittskante 126 und/oder die Strömungsaustrittskante 127 können schräg oder andersartig, etwa parallel, zur Läuferdrehachse 15 verlaufen, wie anhand der
Es wurde erkannt, dass sich die gezeigten Abgasturbinen 20 der
Die Strömungseintrittskante 126 hat einen maximalen Eintrittsradius Rin und die Strömungsaustrittskante 127 hat einen maximalen Austrittsradius Rout. Die Außenkontur 128 hat bezogen auf die Drehachse 123 bzw. die Läuferdrehachse 15 eine axiale Erstreckungslänge LaxTiP. Die Außenkontur 128 hat einen axialen Längenanteil Lcover der axialen Erstreckung LaxTiP, in welchem ein Durchmesser des Turbinenrads 12 größer ist als ein kleinster Durchmesser DA des Turbinengehäuses 21 am Turbinenschaufelaustritt 129 für den Abgasmassenstrom AM. Weiterhin sind die Gehäusekontur 211 und die Außenkontur 128 so zueinander beabstandet, dass sich ein minimaler Spalt ausbildet, wobei ein geringster radialer Abstand Tipclr zwischen der Gehäusekontur 211 und der Außenkontur 128 vorherrscht.The
Wie eingangs erwähnt, kann es bei Turboladern zu einem Schadensfall mit verschiedenen nachteiligen Folgen kommen. Anhand der
Die Auslegung und Herstellung der Turbine 20 erfolgt beispielsweise derart, dass bestimmte Parameter vorgeben sind und mittels der Bedingungen restliche Parameter ermittelt werden, um einen notwenigen Mindestwert für LCover zu erhalten. Vorteilhaft ist, wie auch in der
Claims (10)
- Turbocharger (1) for an internal combustion engine, having- a bearing housing (41), in which a rotor shaft (14) is mounted such that it can be rotated about a rotor rotational axis (15); and- an exhaust gas turbine (20) with a turbine wheel (12) which is arranged fixedly on the rotor shaft (14) for conjoint rotation and which has a runner blade system (121) with a plurality of turbine blades (122), and with a turbine housing (21) which is fixed mechanically on the bearing housing (41) and which surrounds the turbine wheel (12);
wherein, with regard to a meridional view of the exhaust gas turbine (20),- at least one turbine blade (122) of the turbine wheel (12) has a flow inlet edge (126) and a flow outlet edge (127) for the exhaust gas mass flow (AM),- the flow inlet edge (126) has a maximum inlet radius Rin and the flow outlet edge (127) has a maximum outlet radius Rout, in each case in relation to the rotor rotational axis (15);- the at least one turbine blade (122) has an outer contour (128) which faces the turbine housing (21), extends from the flow inlet edge (126) as far as the flow outlet edge (127), and has an axial extent length LaxTip;- the turbine housing (21) has a housing contour (211) which lies opposite the outer contour (128);- the outer contour (128) of the at least one turbine blade (122) has an axial length portion Lcover of the axial extent LaxTip, in which a diameter of the turbine wheel is greater than a smallest diameter DA of the turbine housing at the turbine blade outlet for the exhaust gas mass flow AM; and- a smallest radial spacing Tipclr is configured between the housing contour (211) and the outer contour (128) with regard to the rotor rotational axis (15); and wherein the exhaust gas turbine is characterized in that the turbine housing (21) and the turbine wheel (12) are configured and matched to one another in such a way that the following condition is met: - Turbine wheel (12) for a turbocharger (1) according to one of the preceding claims, having a runner blade system (121) with a plurality of turbine blades (122), characterizedwherein, with regard to a meridional view of the turbine wheel (12),- at least one turbine blade (122) of the turbine wheel (12) has a flow inlet edge (126) and a flow outlet edge (127) for the exhaust gas mass flow (AM);- Rin describes a maximum inlet radius of the flow inlet edge (126) and Rout describes a maximum outlet radius of the flow outlet edge (127), in each case in relation to a rotational axis (123) of the turbine wheel (12) ;- LaxTip describes an axial extent length of an outer contour (128) of the at least one turbine blade (122), the outer contour (128) extending from the flow inlet edge (126) as far as the flow outlet edge (127), and facing a surrounding turbine housing (21) in proper operation;- Lcover describes an axial length portion of the axial extent LaxTip of the outer contour (128), in which a diameter of the turbine wheel is greater than a smallest diameter DA of the turbine housing at the turbine blade outlet for the exhaust gas mass flow AM;- Tipclr describes a smallest radial spacing between a housing contour (211), lying opposite the outer contour (128) in proper operation, of the turbine housing (21) and the outer contour (128) with regard to the rotational axis (123) .
- Method for producing a turbocharger (1) according to one of Claims 1 to 8, characterized
in that it comprises the following steps:- determining and/or defining of the parameters of the maximum inlet radius Rin, the maximum outlet radius Rout, the axial extent length LaxTiP, the axial length portion Lcover and the smallest radial spacing Tipclr in such a way that the following condition is met for the turbine wheel (12) and the turbine housing (21):- manufacturing of the turbine wheel (12) and the turbine housing (21) on the basis of the parameters which are determined by means of the condition.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102017205457.3A DE102017205457A1 (en) | 2017-03-30 | 2017-03-30 | Turbocharger for an internal combustion engine and turbine housing |
PCT/EP2018/057247 WO2018177864A1 (en) | 2017-03-30 | 2018-03-22 | Turbocharger for an internal combustion engine, and turbine housing |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3601739A1 EP3601739A1 (en) | 2020-02-05 |
EP3601739B1 true EP3601739B1 (en) | 2022-06-15 |
Family
ID=62025774
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18718704.2A Active EP3601739B1 (en) | 2017-03-30 | 2018-03-22 | Turbocharger for an internal combustion engine, and turbine wheel |
Country Status (5)
Country | Link |
---|---|
US (1) | US11002154B2 (en) |
EP (1) | EP3601739B1 (en) |
CN (1) | CN110520598B (en) |
DE (1) | DE102017205457A1 (en) |
WO (1) | WO2018177864A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3940203A1 (en) | 2020-07-16 | 2022-01-19 | BMTS Technology GmbH & Co. KG | Exhaust gas turbine |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160341072A1 (en) * | 2014-02-04 | 2016-11-24 | Borgwarner Inc. | Heat shield for mixed flow turbine wheel turbochargers |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6767185B2 (en) * | 2002-10-11 | 2004-07-27 | Honeywell International Inc. | Turbine efficiency tailoring |
WO2005119030A1 (en) | 2004-06-04 | 2005-12-15 | Abb Turbo Systems Ag | Turbine hub cooling system for exhaust-gas turbines |
DE102009000214A1 (en) * | 2009-01-14 | 2010-09-02 | Ford Global Technologies, LLC, Dearborn | Internal combustion engine with turbocharging |
BRPI1011647A2 (en) * | 2009-07-02 | 2016-03-22 | Borgwarner Inc | turbocharger turbine |
WO2014109883A1 (en) * | 2013-01-14 | 2014-07-17 | Borgwarner Inc. | Split nozzle ring to control egr and exhaust flow |
DE102013210990A1 (en) * | 2013-06-13 | 2014-12-18 | Continental Automotive Gmbh | Exhaust gas turbocharger with a radial-axial turbine wheel |
DE102013223873B4 (en) * | 2013-11-22 | 2018-09-20 | Continental Automotive Gmbh | Exhaust gas turbocharger with a twin scroll turbine housing |
EP3144541B1 (en) * | 2014-07-02 | 2021-01-27 | Mitsubishi Heavy Industries, Ltd. | Compressor |
GB2533351A (en) * | 2014-12-17 | 2016-06-22 | Gm Global Tech Operations Inc | Internal combustion engine having a two stage turbocharger |
SE541037C2 (en) * | 2015-04-29 | 2019-03-12 | Scania Cv Ab | A stopping arrangement, an intake and exhaust system, and a vehicle comprising such a system |
-
2017
- 2017-03-30 DE DE102017205457.3A patent/DE102017205457A1/en not_active Withdrawn
-
2018
- 2018-03-22 CN CN201880021605.5A patent/CN110520598B/en active Active
- 2018-03-22 EP EP18718704.2A patent/EP3601739B1/en active Active
- 2018-03-22 WO PCT/EP2018/057247 patent/WO2018177864A1/en unknown
-
2019
- 2019-09-09 US US16/564,458 patent/US11002154B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160341072A1 (en) * | 2014-02-04 | 2016-11-24 | Borgwarner Inc. | Heat shield for mixed flow turbine wheel turbochargers |
Non-Patent Citations (1)
Title |
---|
EARL ET AL: "Chapter 7: Fundamentals of Turbine Design", 1 May 2003, HANDBOOK OF TURBOMACHINERY, CRC PRESS LLC, PAGE(S) 365 - 426, ISBN: 978-0-8247-0995-2, XP009532842 * |
Also Published As
Publication number | Publication date |
---|---|
CN110520598B (en) | 2022-05-13 |
US20200003079A1 (en) | 2020-01-02 |
EP3601739A1 (en) | 2020-02-05 |
WO2018177864A1 (en) | 2018-10-04 |
CN110520598A (en) | 2019-11-29 |
DE102017205457A1 (en) | 2018-10-04 |
US11002154B2 (en) | 2021-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102014216162B4 (en) | Charged internal combustion engine with exhaust gas turbocharger and method for operating such an internal combustion engine | |
EP2136052A1 (en) | Turboprop engine comprising a device for creating a cooling air flow | |
EP0243596B1 (en) | Axial drag regulator for an exhaust turbo charger for internal-combustion engines | |
EP3682092B1 (en) | Exhaust gas turbine with a diffusser | |
WO2006117073A1 (en) | Exhaust-gas turbocharger for an internal combustion engine | |
EP1706597B1 (en) | Gas turbine with axially displaceable rotor | |
DE102004029830A1 (en) | Turbine wheel in an exhaust gas turbine of an exhaust gas turbocharger | |
DE102018221812A1 (en) | Exhaust gas turbine with an exhaust gas guide device for an exhaust gas turbocharger and exhaust gas turbocharger | |
DE10028733A1 (en) | Exhaust turbine for turbocharger ha guide blades with flow intake edges and/or outflow edges at angle relative to jacket line, and cover rings to connected blade ends | |
EP2112332B1 (en) | Supporting ring for a guide vane assembly with an air-sealed channel | |
DE102013201771A1 (en) | Compressor of exhaust gas turbocharger mounted in internal combustion engine, forms with passage gap having passage gap inlet opening and passage gap outlet opening that are fluid connected with inlet and outlet channels of compressor | |
EP3495639B1 (en) | Compressor module for a turbomachine reducing the boundary layer in an intermediate compressor case | |
EP3601739B1 (en) | Turbocharger for an internal combustion engine, and turbine wheel | |
DE102015006288A1 (en) | Turbine for an exhaust gas turbocharger, in particular an internal combustion engine, and drive device for a motor vehicle | |
DE102012022647A1 (en) | Exhaust gas turbocharger for lifting cylinder internal combustion engine of motor vehicle, has portion limited by spine in axial direction, where spine comprises blade elements partially arranged in portion for compressing blade | |
DE102016004770B4 (en) | Stop arrangement, intake and exhaust system and vehicle comprising such a system | |
EP3636880B1 (en) | Turbine wheel | |
EP4031752B1 (en) | Concentric introduction of waste-gate mass flow into a flow-optimized axial diffuser | |
DE102010020307A1 (en) | Rotor for fluid energy machine, particularly compressor of exhaust gas turbocharger, has base body and guide vane that is flowed by medium flowing in fluid energy machine | |
DE102020004918B4 (en) | Turbine wheel for a turbomachine, in particular of a motor vehicle, turbomachine and motor vehicle with turbomachine | |
DE102012019632A1 (en) | Centrifugal compressor for exhaust gas turbocharger of internal combustion engine of motor vehicle, has impeller blade with trailing edge partially arranged in plane, which with axial direction has angle different from zero degree angle | |
DE102018221147B4 (en) | Supercharged internal combustion engine with a compressor and a guide device arranged upstream of the compressor | |
DE102016213626A1 (en) | Turbine for an exhaust gas turbocharger | |
DE102015016591A1 (en) | Turbine for an exhaust gas turbocharger | |
WO2023061641A1 (en) | Turbocharger housing and exhaust gas turbocharger with integral turborotor housing and compressor housing cover |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20191030 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: KLAUS, MICHAEL Inventor name: BOENING, RALF Inventor name: SANDOR, IVO Inventor name: WITTWER, SEBASTIAN |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: VITESCO TECHNOLOGIES GMBH |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20201105 |
|
RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: VITESCO TECHNOLOGIES GMBH |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20220317 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502018009924 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1498518 Country of ref document: AT Kind code of ref document: T Effective date: 20220715 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20220615 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220915 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220916 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220915 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221017 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221015 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502018009924 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 |
|
26N | No opposition filed |
Effective date: 20230316 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230830 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20230322 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20230331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230322 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230322 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230331 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230322 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230322 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230331 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230331 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240331 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1498518 Country of ref document: AT Kind code of ref document: T Effective date: 20230322 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230322 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230322 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 |