EP3560299B1 - Dbd plasma reactor - Google Patents
Dbd plasma reactor Download PDFInfo
- Publication number
- EP3560299B1 EP3560299B1 EP17832277.2A EP17832277A EP3560299B1 EP 3560299 B1 EP3560299 B1 EP 3560299B1 EP 17832277 A EP17832277 A EP 17832277A EP 3560299 B1 EP3560299 B1 EP 3560299B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- outer tube
- reactor according
- dielectric material
- electrode
- tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005495 cold plasma Effects 0.000 claims description 34
- 239000003989 dielectric material Substances 0.000 claims description 32
- 239000012530 fluid Substances 0.000 claims description 18
- 230000004888 barrier function Effects 0.000 claims description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 7
- 238000009792 diffusion process Methods 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 6
- 229910001369 Brass Inorganic materials 0.000 claims description 3
- 239000010951 brass Substances 0.000 claims description 3
- 239000004033 plastic Substances 0.000 claims description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 3
- 210000002381 plasma Anatomy 0.000 description 33
- 239000007789 gas Substances 0.000 description 26
- 230000000694 effects Effects 0.000 description 11
- 239000002184 metal Substances 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 9
- 235000021183 entrée Nutrition 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 239000001307 helium Substances 0.000 description 3
- 229910052734 helium Inorganic materials 0.000 description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 230000009257 reactivity Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 229910018503 SF6 Inorganic materials 0.000 description 2
- 239000012080 ambient air Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 238000010079 rubber tapping Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- SFZCNBIFKDRMGX-UHFFFAOYSA-N sulfur hexafluoride Chemical compound FS(F)(F)(F)(F)F SFZCNBIFKDRMGX-UHFFFAOYSA-N 0.000 description 2
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- -1 dermatology Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 239000012777 electrically insulating material Substances 0.000 description 1
- 210000003746 feather Anatomy 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 239000004811 fluoropolymer Substances 0.000 description 1
- 238000007306 functionalization reaction Methods 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- 230000035784 germination Effects 0.000 description 1
- 238000009533 lab test Methods 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 229960000909 sulfur hexafluoride Drugs 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/2406—Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
- H05H1/2443—Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the plasma fluid flowing through a dielectric tube
- H05H1/246—Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the plasma fluid flowing through a dielectric tube the plasma being activated using external electrodes
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/2406—Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
Definitions
- the present invention relates to a dielectric barrier discharge plasma reactor for the production of cold plasma at atmospheric pressure.
- the invention finds application in particular in the following fields: biomedical, sterilization, medicine, dermatology, cosmetics, treatment of materials, surface or deposit functionalization, depollution, agro-food, germination , lighting, fast switching, flow modification, detection or metrology of nanoparticles.
- DBD Dielectric barrier discharges
- reactors for the generation of dielectric barrier discharges are disclosed in documents CN105491774A , WO2005/125286 A2 , WO2007/105428 A1 , US2014/0162338 A1 and US2002/0187066 A1 .
- DBDs are often characterized by inhomogeneous filament-like plasma structures.
- the inhomogeneous and filamentary nature of the plasma can be inadequate for certain applications, for example in the case of certain surface treatments where it is important that the surface be treated uniformly.
- the invention aims to solve these problems by proposing a dielectric barrier discharge plasma reactor capable of generating a cold plasma at atmospheric pressure without requiring drastic conditions surrounding the generation of the discharge.
- the invention therefore proposes a dielectric barrier discharge plasma reactor according to claim 1.
- the lower end of the inner tube and the lower end of the outer tube extend outside the enclosure via the cold plasma outlet orifice at atmospheric pressure.
- the enclosure further comprises at least one surrounding fluid inlet orifice coupled to at least one passage extending through the wall of the outer tube.
- the passage extends substantially perpendicular to the longitudinal axis of the outer tube.
- the passage extends substantially obliquely to the longitudinal axis of the outer tube.
- the passage is disposed at a level located between the first dielectric material and the ground electrode.
- the upper end of the outer tube is located between the first dielectric material and the ground electrode.
- the high voltage electrode, the first material dielectric and the ground electrode are each in the form of a plate circular, oval or polygonal.
- the length of the plate of the first dielectric material is longer than that of the plates of the high voltage and ground electrodes.
- the first dielectric material, the internal tube and the external tube are made of quartz glass and the second dielectric material is made of plastic material, of the PTFE, PFA or FEP type.
- the high voltage electrode and the ground electrode are made of brass.
- the reactor comprises a second high voltage electrode fixed around all or part of the outer surface of the wall of the outer tube.
- the second high voltage electrode is capable of being coupled to a second high voltage power supply and to a ground different from the ground electrode so as to allow the generation of an electric discharge in the outer tube, in a direction perpendicular to the median longitudinal axis of the outer tube.
- the example of the figure 1 illustrates a dielectric barrier discharge plasma reactor 100 for treating a target.
- the target may include physical matter such as solid material, living tissue, or a volume of fluid.
- the reactor 100 comprises a hermetic enclosure 110 subjected to atmospheric pressure.
- the hermetic enclosure 110 comprises a plasma gas inlet 111 and a cold plasma at atmospheric pressure outlet 112.
- the plasma gas inlet 111 is intended to be coupled to a source of plasma gas 120.
- the coupling is made using a straight stitching.
- the source of plasma gas 120 can comprise a rare gas, a mixture of rare gases (typically helium He, argon Ar, etc.) or a mixture of one or more rare gases with one or more molecular gases (typically oxygen O2, hydrogen H2, carbon tetrafluoride CF4, sulfur hexafluoride SF6, nitrogen N2 and/or water vapor H2O, etc.) that is to say present in low concentration compared to the concentration of rare gas (s).
- a rare gas typically helium He, argon Ar, etc.
- molecular gases typically oxygen O2, hydrogen H2, carbon tetrafluoride CF4, sulfur hexafluoride SF6, nitrogen N2 and/or water vapor H2O, etc.
- a carrier gas coming from the plasma gas source 120 is injected into the plasma gas inlet orifice 111.
- the incoming flow rate of the carrier gas is of the order of one liter per minute.
- the cold plasma outlet at atmospheric pressure 112 is designed to lead a cold plasma at atmospheric pressure produced by the reactor 100 to the outside of the hermetic enclosure 110.
- the hermetic enclosure 110 further comprises an inner tube 113 and an outer tube 114.
- the inner tube 113 and the outer tube 114 are made of an electrically insulating material with a resistivity greater than 10 15 ⁇ .m, such as , for example, a ceramic, quartz, alumina, silica (SiC) or boron nitride.
- Each of the inner 113 and outer 114 tubes has a length and a wall thickness. The length of the inner 113 and outer 114 tubes is determined between an upper tube end and a lower tube end, while the wall thickness is determined between an inner wall surface and an outer wall surface.
- the inner tube 113 has a length to thickness ratio not exceeding 30, preferably between 20 and 27 and advantageously between 24 and 26, while the outer tube 114 has a length to thickness ratio not exceeding 30 , preferably between 20 and 27 and advantageously between 24 and 26.
- the length of the outer tube 114 is greater than that of the inner tube 113.
- the inner 113 and outer 114 tubes are arranged so that at least a portion of the inner tube 113 extends inside the outer tube 114 coaxially to the longitudinal axis of the outer tube 114 and so to define a diffusion space ED and an annular space EA.
- the diffusion space ED is formed inside the outer tube 114 between the lower end of the inner tube 113 and the lower end of the outer tube 114 while the annular space EA is formed between the outer surface of the wall of the inner tube 113 and the inner surface of the wall of the outer tube 114.
- the diameter of the outer tube 114 is large enough to accommodate the inner tube 113 therein.
- the diameter ratio between the outer diameter of the inner tube 113 and the inner diameter of the outer tube 114 exceeds 30%, preferably between 35 and 65%.
- the inner 113 and outer 114 tubes are arranged entirely in the hermetic enclosure 110.
- FIG 2 it can be considered an implementation of the reactor 100 of the figure 1 wherein the lower end of the inner tube 113 and the lower end of the outer tube 114 extend outside the hermetic enclosure 110 via the cold atmospheric pressure plasma outlet 112.
- This has the effect of allowing to bring the cold plasma at diffuse atmospheric pressure generated by the reactor 100 as close as possible to the target to be treated.
- a cap covering the target (not shown).
- the cap can be totally hermetic or partially hermetic in order to avoid too much confinement. This arrangement can be advantageously used when the target to be treated is small and not bulky.
- the reactor 100 is arranged so as to generate an electric discharge necessary for the production of a cold plasma at atmospheric pressure in the inner tube 113.
- the reactor 100 is arranged in a plane-plane configuration comprising a high voltage electrode 115 and a ground electrode 116, spaced by an inter-electrode space in which at least a first dielectric material 117 is placed.
- the electrodes 115 and 116 consist of an electrically conductive material having a resistivity of the order of 10 -8 ⁇ .m to 10 -9 ⁇ .m, for example, consisting of a metal or a metal alloy.
- electrodes 115 and 116 are made of tungsten, 316L stainless steel, copper, aluminum, brass, or a conductive catalytic material.
- the first dielectric material 117 consists of an electrical insulating material similar to that used, above, for the inner 113 and outer 114 tubes.
- the inner tube 113 is disposed closest to the high voltage electrode 115.
- the inner tube 13 extends through the first dielectric material 117 and the ground electrode 116.
- at least one portion of outer tube 114 extends through ground electrode 116.
- a hole is made in high voltage electrode 115, first dielectric material 117 and ground electrode accommodate the particular arrangement of the inner 113 and outer 114 tubes.
- the passage leading to the outer tube 114 is arranged at a level located between the first dielectric material 117 and the ground electrode 116. Nevertheless, the passage leading to the outer tube 114 can be arranged at any other level of the outer tube 114, preferably at a level which is above the lower end of the inner tube 113.
- reactor 100 also includes a high voltage power supply input port 1111 coupled to high voltage electrode 115 ( picture 3a ) and a grounding port 1112 coupled to the ground electrode 116 ( figure 3b ).
- the coupling with the high voltage electrode 115 and with the ground electrode 116 is achieved by soldering, in particular by tin soldering.
- the high voltage electrode 115 is able to be coupled to a high voltage HT power supply so as to allow the generation of an electric discharge in the inter-electrode space in order to produce a cold plasma at atmospheric pressure by ionizing the vector gas which circulates in the internal tube 113.
- the high voltage power supply HT delivers a voltage of several kV, for example between 1 kV and 20 kV from a signal from the sinusoidal, pulsed or chopped type.
- the high voltage electrode 115, the first dielectric material 117 and the ground electrode 116 are each in the form of a circular, oval or polygonal plate.
- the length of the plate of the first dielectric material 117 is longer than that of the plates of the high voltage and ground electrodes 116. This has the effect of avoiding the formation of an electric arc between the electrodes 115 and 116 by limiting the peak effects.
- the hermetic enclosure 110 comprises a surrounding fluid inlet 118 coupled to a passage 119 extending through the wall of the outer tube 114.
- Surrounding fluid inlet 118 is intended to be coupled to a source of surrounding fluid 130.
- the coupling is made using a straight stitching.
- the source of surrounding fluid 118 can consist of a pure gas, a mixture of pure gases (typically nitrogen N, oxygen O, methane CH4, carbonaceous gases, hydrogen H2, fluorinated gases, monomer gases, etc.), an atomized liquid (for example loaded with target treatment particles) or a mixture of one or more pure gases with one or more atomized liquids.
- surrounding fluid from surrounding fluid source 130 is injected into surrounding fluid inlet 118.
- the incoming flow rate of surrounding fluid is on the order of a few tens of cubic centimeters per minute.
- the surrounding fluid injected into the surrounding fluid inlet 118 circulates in the annular space EA to then emerge in the diffusion space ED in order to mix with the cold plasma at atmospheric pressure generated in the inner tube 113.
- This has the effect of allowing control of the environment for generating the cold plasma at atmospheric pressure and therefore of its chemical reactivity with respect to a given target.
- the upper end of the outer tube 114 is located between the first dielectric material 117 and the ground electrode 116.
- the upper end of the outer tube 114 can also be located outside the interspace. electrodes.
- the passage extends substantially perpendicular to the longitudinal axis of the outer tube 114. In another example, the passage extends substantially obliquely to the longitudinal axis of the outer tube 114.
- the hermetic enclosure 110 further comprises an enclosure body C molded in a second dielectric material.
- the enclosure body makes it possible to maintain the various elements constituting the reactor 100 in the hermetic enclosure 110.
- the second dielectric material is made of plastic material, of the fluoropolymer type (PTFE, PFA or FEP).
- the three parts can be machined separately before being assembled.
- the three parts can be assembled to form the enclosure body C, using fastening means such as screws.
- the reactor 100 has been described as comprising a plasma gas inlet 111 and a surrounding fluid inlet 118. However, other configurations are possible.
- the hermetic enclosure 110 can comprise a plurality of reactors 100.
- the hermetic enclosure 110 comprises an enclosure body C consisting of three parts P1, P2 and P3 in which are arranged two reactors 100.
- the reactor 100 comprises an enclosure body C consisting of three parts P1, P2 and P3 in which are arranged six reactors 100.
- the arrangement of a plurality of reactors 100 according to the invention is particularly advantageous because a single high power supply HT voltage makes it possible to supply all of the reactors 100. It is therefore not necessary to use as many high voltage power supplies as there are reactors 100.
- the use of the second insulating material in the constitution of the body of enclosure C makes it possible to guarantee the independent generation of several cold plasmas at atmospheric pressure.
- FIG. 6a shows a top view of such a configuration in which four passageways may be coupled to one or more surrounding fluid inlets 118.
- the plurality of passages leading to the outer tube 114 are disposed at different levels of the outer tube 114.
- the work consists of acting on the reactivity of the target to be treated by allowing control of the production of reactive species produced in the gas phase.
- the electrical potential difference is due to the high potential of the central axis of cold plasma propagation at atmospheric pressure and the potential imposed on the inner surface of the outer tube 114.
- the central axis of propagation of the cold plasma at atmospheric pressure corresponds to the median longitudinal axis of the outer tube 114 passing substantially through the middle of the outer tube 114.
- the high voltage metal electrode is attached to at least a portion of the outer surface of the outer tube wall 114.
- the high voltage metal electrode is formed in a metal ring that covers all or part of the outer surface of the wall of the outer tube 114.
- the high voltage metal electrode is formed in a metallic tape which covers all or part of the outer surface of the wall of the outer tube 114. Then , when the reactor 100 is in operation, the high voltage metal electrode is electrically biased with a high voltage power supply (not shown) which is decoupled from the high voltage HT power supply of the reactor 100.
- different masses are used for grounding the high voltage metal electrode and for grounding the ground electrode 116.
- the high voltage metal electrode is biased with a positive or negative high voltage power supply.
- the high-voltage power supply supplies direct or alternating voltage.
- the high voltage power supply delivers a voltage from a signal of the sinusoidal, pulsed or chopped type.
- a high voltage source was used delivering a DC voltage of 100V to 500V DC.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Fluid Mechanics (AREA)
- Plasma Technology (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Description
La présente invention concerne un réacteur plasma de décharge à barrière diélectrique pour la production de plasma froid à pression atmosphérique.The present invention relates to a dielectric barrier discharge plasma reactor for the production of cold plasma at atmospheric pressure.
L'invention trouve notamment application dans les domaines suivants : le biomédical, la stérilisation, la médecine, la dermatologie, la cosmétique, le traitement de matériaux, la fonctionnalisation de surface ou de dépôt, la dépollution, l'agro-alimentaire, la germination, l'éclairage, la commutation rapide, la modification d'écoulement, la détection ou encore la métrologie de nanoparticules.The invention finds application in particular in the following fields: biomedical, sterilization, medicine, dermatology, cosmetics, treatment of materials, surface or deposit functionalization, depollution, agro-food, germination , lighting, fast switching, flow modification, detection or metrology of nanoparticles.
Les décharges à barrière diélectrique (DBD) sont connues depuis longtemps, notamment pour leur capacité à générer des plasmas froids hors équilibre à des pressions élevées en évitant la transition vers un régime d'arc.Dielectric barrier discharges (DBD) have been known for a long time, in particular for their ability to generate out-of-equilibrium cold plasmas at high pressures by avoiding the transition to an arcing regime.
Des exemples de réacteurs pour la génération de décharges à barrière diélectrique sont divulgués dans les documents
Les DBD sont souvent caractérisées par des structures de plasma non homogènes de type filamentaire. Cependant, la nature non homogène et filamentaire du plasma peut être inadéquate pour certaines applications, par exemple dans le cas de certains traitements de surface où il est important que la surface soit traitée de manière uniforme.DBDs are often characterized by inhomogeneous filament-like plasma structures. However, the inhomogeneous and filamentary nature of the plasma can be inadequate for certain applications, for example in the case of certain surface treatments where it is important that the surface be treated uniformly.
De nombreux travaux ont été consacrés à la recherche de conditions de DBD dans lesquelles le plasma pouvait rester homogène à pression atmosphérique. Toutefois, ces conditions sont assez drastiques, car elles nécessitent l'utilisation de gaz rares comme l'hélium en plus du respect de certaines restrictions au niveau de la distance inter-électrodes, de la pression, de la tension appliquée ainsi que de la fréquence à utiliser. Par exemple, on peut obtenir une DBD homogène dans l'hélium à pression atmosphérique pour une distance entre deux diélectriques de 5 mm et une tension d'amplitude 1 kV et de fréquence 10 kHz. Toutefois, si la fréquence est diminuée à 1 kHz, la décharge devient inhomogène et on observe la présence de filaments.Many works have been devoted to the search for DBD conditions in which the plasma could remain homogeneous at atmospheric pressure. However, these conditions are quite drastic, because they require the use of rare gases such as helium in addition to compliance with certain restrictions in terms of the inter-electrode distance, the pressure, the voltage applied as well as the frequency. use. For example, it is possible to obtain a homogeneous DBD in helium at atmospheric pressure for a distance between two dielectrics of 5 mm and a voltage of
Cette situation n'est pas satisfaisante, car les conditions requises sont si délicates à respecter qu'elles constituent un frein sérieux au développement de projets dans le domaine des plasmas homogènes.This situation is not satisfactory, because the required conditions are so delicate to respect that they constitute a serious obstacle to the development of projects in the field of homogeneous plasmas.
L'invention vise à résoudre ces problèmes en proposant un réacteur plasma de décharge à barrière diélectrique capable de générer un plasma froid à pression atmosphérique sans nécessiter de conditions draconiennes entourant la génération de la décharge.The invention aims to solve these problems by proposing a dielectric barrier discharge plasma reactor capable of generating a cold plasma at atmospheric pressure without requiring drastic conditions surrounding the generation of the discharge.
L'invention propose donc un réacteur plasma de décharge à barrière diélectrique selon la revendication 1.The invention therefore proposes a dielectric barrier discharge plasma reactor according to
Des modes de réalisation préférés de l'invention sont définis dans les revendications dépendantes.Preferred embodiments of the invention are defined in the dependent claims.
À cet effet, il est proposé un réacteur plasma de décharge à barrière diélectrique comprenant une enceinte soumise à la pression atmosphérique et ayant au moins un orifice d'entrée de gaz plasmagène et au moins un orifice de sortie de plasma froid à pression atmosphérique. L'enceinte comprend en outre un tube interne et un tube externe. Le tube interne et le tube externe sont du type diélectrique, chacun comprenant une extrémité supérieure, une extrémité inférieure et une paroi avec une surface intérieure et une surface extérieure, l'extrémité supérieure du tube interne étant couplée à l'orifice d'entrée de gaz plasmagène, l'extrémité supérieure du tube externe étant fermée hermétiquement et étant traversée par le tube interne, l'extrémité inférieure du tube interne étant ouverte et l'extrémité inférieure du tube externe étant couplée à l'orifice de sortie de plasma froid à pression atmosphérique. En outre, le tube interne et le tube externe sont agencés de sorte qu'au moins une portion du tube interne s'étend à l'intérieur du tube externe de manière parallèle à l'axe longitudinal du tube externe et de façon à définir un espace de diffusion et un espace annulaire. L'espace de diffusion est formé à l'intérieur du tube externe entre l'extrémité inférieure du tube interne et l'extrémité inférieure du tube externe, et l'espace annulaire est formé entre la surface externe de la paroi du tube interne et la surface interne de la paroi du tube externe. l'enceinte comprend en outre,
- une première électrode haute tension et une électrode de masse, espacées par un espace inter-électrodes dans lequel au moins un premier matériau diélectrique est disposé,
- un orifice d'entrée d'alimentation électrique haute tension couplé à l'électrode haute tension, et apte à être couplé à une première alimentation haute tension de façon à permettre la génération d'une décharge électrique dans l'espace inter-électrodes, et dans laquelle,
- au moins une portion du tube interne est disposée au plus près de l'électrode haute tension, et s'étend à travers le premier matériau diélectrique et l'électrode de masse, et
- au moins une portion du tube externe s'étend à travers l'électrode de masse.
- a first high voltage electrode and a ground electrode, spaced apart by an inter-electrode space in which at least a first dielectric material is arranged,
- a high voltage power supply input port coupled to the high voltage electrode, and adapted to be coupled to a first high voltage power supply so as to allow the generation of an electric discharge in the inter-electrode space, and in which,
- at least a portion of the inner tube is disposed closest to the high voltage electrode, and extends through the first dielectric material and the ground electrode, and
- at least a portion of the outer tube extends through the ground electrode.
Selon une première caractéristique possible, l'extrémité inférieure du tube interne et l'extrémité inférieure du tube externe s'étendent en dehors de l'enceinte via l'orifice de sortie de plasma froid à pression atmosphérique.According to a first possible characteristic, the lower end of the inner tube and the lower end of the outer tube extend outside the enclosure via the cold plasma outlet orifice at atmospheric pressure.
Selon une deuxième caractéristique possible, l'enceinte comprend en outre au moins un orifice d'entrée de fluide environnant couplé à au moins un passage s'étendant à travers la paroi du tube externe. Dans un exemple, le passage s'étend de manière sensiblement perpendiculaire à l'axe longitudinal du tube externe. Dans un autre exemple, le passage s'étend de manière sensiblement oblique à l'axe longitudinal du tube externe. De préférence, le passage est disposé à un niveau situé entre le premier matériau diélectrique et l'électrode de masse.According to a second possible characteristic, the enclosure further comprises at least one surrounding fluid inlet orifice coupled to at least one passage extending through the wall of the outer tube. In one example, the passage extends substantially perpendicular to the longitudinal axis of the outer tube. In another example, the passage extends substantially obliquely to the longitudinal axis of the outer tube. Preferably, the passage is disposed at a level located between the first dielectric material and the ground electrode.
Dans un exemple de la deuxième caractéristique possible, l'extrémité supérieure du tube externe est située entre le premier matériau diélectrique et l'électrode de masse.In an example of the second possible characteristic, the upper end of the outer tube is located between the first dielectric material and the ground electrode.
Selon une troisième caractéristique possible, l'électrode haute tension, le premier matériau diélectrique et l'électrode de masse se présentent chacun sous la forme d'une plaque circulaire, ovale ou polygonale. Dans un exemple, la longueur de la plaque du premier matériau diélectrique est plus longue que celle des plaques des électrodes haute tension et de masse.According to a third possible characteristic, the high voltage electrode, the first material dielectric and the ground electrode are each in the form of a plate circular, oval or polygonal. In one example, the length of the plate of the first dielectric material is longer than that of the plates of the high voltage and ground electrodes.
De préférence, l'enceinte comprend en outre un corps d'enceinte moulé dans un deuxième matériau diélectrique. Dans un premier exemple, le corps d'enceinte est constitué d'une seule pièce. Dans un deuxième exemple, le corps d'enceinte est constitué de trois pièces,
- la première pièce comprenant l'orifice d'entrée de gaz plasmagène, l'électrode haute tension et le premier matériau diélectrique,
- la deuxième pièce comprenant l'orifice d'entrée de fluide environnant et le passage s'étendant à travers la paroi du tube externe, et
- la troisième pièce comprenant l'électrode de masse et l'orifice de sortie de plasma froid à pression atmosphérique.
- the first part comprising the plasma gas inlet orifice, the high voltage electrode and the first dielectric material,
- the second piece comprising the surrounding fluid inlet port and the passage extending through the wall of the outer tube, and
- the third part comprising the ground electrode and the atmospheric pressure cold plasma outlet orifice.
De préférence, le premier matériau diélectrique, le tube interne et le tube externe sont en verre de quartz et le deuxième matériau diélectrique est en matière plastique, du type PTFE, PFA ou FEP.Preferably, the first dielectric material, the internal tube and the external tube are made of quartz glass and the second dielectric material is made of plastic material, of the PTFE, PFA or FEP type.
De préférence, l'électrode haute tension et l'électrode de masse sont en laiton.Preferably, the high voltage electrode and the ground electrode are made of brass.
Selon une quatrième caractéristique possible, le réacteur comprend une deuxième électrode haute tension fixée autour de tout ou partie de la surface externe de la paroi du tube externe. La deuxième électrode haute tension est apte à être couplée à une deuxième alimentation haute tension et à une masse différente de l'électrode de masse de façon à permettre la génération d'une décharge électrique dans le tube externe, selon une direction perpendiculaire à l'axe longitudinal médian du tube externe.According to a fourth possible characteristic, the reactor comprises a second high voltage electrode fixed around all or part of the outer surface of the wall of the outer tube. The second high voltage electrode is capable of being coupled to a second high voltage power supply and to a ground different from the ground electrode so as to allow the generation of an electric discharge in the outer tube, in a direction perpendicular to the median longitudinal axis of the outer tube.
Les caractéristiques et avantages de l'invention seront mieux compris à la lecture de la description qui va suivre et en référence aux dessins annexés, donnés à titre illustratif et nullement limitatif.
- La
figure 1 représente un réacteur selon une première mise en œuvre de l'invention. - La
figure 2 représente le réacteur de lafigure 1 selon une autre mise en œuvre de l'invention. - Les
figures 3A et 3B représentent une vue en coupe transversale détaillant l'alimentation haute tension et la mise à la masse. - La
figure 4 représente une deuxième mise en œuvre de l'invention. - La
figure 5 représente une troisième mise en œuvre de l'invention. - Les
figures 6A et 6B représentent des agencements particuliers des tubes internes et externes de l'invention.
- The
figure 1 represents a reactor according to a first implementation of the invention. - The
picture 2 represents the reactor of thefigure 1 according to another implementation of the invention. - The
figures 3A and 3B show a cross-sectional view detailing the high voltage supply and ground. - The
figure 4 represents a second implementation of the invention. - The
figure 5 represents a third implementation of the invention. - The
figures 6A and 6B represent particular arrangements of the inner and outer tubes of the invention.
Dans ces figures, des références identiques ou analogues d'une figure à une autre désignent des éléments identiques ou analogues. Pour des raisons de clarté, les éléments représentés ne sont pas à l'échelle les uns par rapport aux autres, sauf mention contraire.In these figures, identical or similar references from one figure to another designate identical or similar elements. For clarity, items shown are not to scale relative to each other unless otherwise noted.
L'exemple de la
Le réacteur 100 comprend une enceinte hermétique 110 soumise à la pression atmosphérique. L'enceinte hermétique 110 comprend un orifice d'entrée de gaz plasmagène 111 et un orifice de sortie de plasma froid à pression atmosphérique 112.The
L'orifice d'entrée de gaz plasmagène 111 est destiné à être couplé à une source de gaz plasmagène 120. Dans l'exemple de la
Ainsi, lorsque le réacteur 100 est en opération, un gaz vecteur provenant de la source de gaz plasmagène 120 est injecté dans l'orifice d'entrée de gaz plasmagène 111. De préférence, le débit entrant du gaz vecteur est de l'ordre d'un litre par minute.Thus, when the
L'orifice de sortie de plasma froid à pression atmosphérique 112 est prévu pour mener un plasma froid à pression atmosphérique produit par le réacteur 100 vers l'extérieur de l'enceinte hermétique 110.The cold plasma outlet at
Dans la
Selon l'invention, le tube interne 113 présente un rapport longueur sur épaisseur ne dépassant pas 30, de préférence compris entre 20 et 27 et avantageusement compris entre 24 et 26 tandis que le tube externe 114 présente un rapport longueur sur épaisseur ne dépassant pas 30, de préférence compris entre 20 et 27 et avantageusement compris entre 24 et 26. En outre, de préférence, la longueur du tube externe 114 est plus grande que celle du tube interne 113.According to the invention, the
Comme on peut le voir dans la
- l'extrémité supérieure du
tube interne 113 est couplée à l'orifice d'entrée de gaz plasmagène 111, - l'extrémité supérieure du
tube externe 114 est fermée hermétiquement, - les extrémités inférieures des tubes internes 113 et externes 114 sont ouvertes, et
- l'extrémité inférieure du
tube externe 114 est couplée à l'orifice de sortie de plasma froid à pression atmosphérique 112.
- the upper end of the
inner tube 113 is coupled to theplasma gas inlet 111, - the upper end of the
outer tube 114 is hermetically sealed, - the lower ends of the inner 113 and outer 114 tubes are open, and
- the lower end of the
outer tube 114 is coupled to the cold atmosphericpressure plasma outlet 112.
En outre, les tubes interne 113 et externe 114 sont agencés de sorte qu'au moins une portion du tube interne 113 s'étend à l'intérieur du tube externe 114 de manière coaxiale à l'axe longitudinal du tube externe 114 et de façon à définir un espace de diffusion ED et un espace annulaire EA. L'espace de diffusion ED est formé à l'intérieur du tube externe 114 entre l'extrémité inférieure du tube interne 113 et l'extrémité inférieure du tube externe 114 tandis que l'espace annulaire EA est formé entre la surface externe de la paroi du tube interne 113 et la surface interne de la paroi du tube externe 114. En d'autres termes, le diamètre du tube externe 114 est suffisamment grand pour pouvoir y loger le tube interne 113 à l'intérieur. Selon l'invention, le rapport de diamètre entre le diamètre extérieur du tube interne 113 et le diamètre interne du tube externe 114 dépassant 30%, de préférence compris entre 35 et 65 %.In addition, the inner 113 and outer 114 tubes are arranged so that at least a portion of the
Avec cet agencement particulier, il a été trouvé qu'un plasma froid à pression atmosphérique généré dans le tube interne 113 devient diffus dans l'espace de diffusion ED. En pratique, un tel plasma prend la forme d'une plume à l'intérieur du tube externe 114 et également à l'extérieur du réacteur 100, dans l'air ambiant. Cet agencement a donc pour effet de transformer le caractère filamentaire d'un plasma froid à pression atmosphérique en un plasma froid à pression atmosphérique présentant un caractère plus diffus.With this particular arrangement, it has been found that a cold plasma at atmospheric pressure generated in the
Dans l'exemple de la
De retour à la
Les électrodes 115 et 116 sont constituées d'un matériau conducteur électrique ayant une résistivité de l'ordre 10-8 Ω.m à 10-9 Ω.m, par exemple, constitué d'un métal ou d'un alliage de métaux. Par exemple, les électrodes 115 et 116 sont constituées de tungstène, d'acier inoxydable 316L, de cuivre, d'aluminium, de laiton ou d'un matériau catalytique conducteur.The
Le premier matériau diélectrique 117 est constitué d'un matériau isolant électrique similaire à celui utilisé, ci-dessus, pour les tubes interne 113 et externe 114.The first
En outre, dans la
Dans l'exemple de la
Enfin, en liaison avec la
Avec cet agencement, lorsque le réacteur 100 est en opération, l'électrode haute tension 115 est apte à être couplée à une alimentation haute tension HT de façon à permettre la génération d'une décharge électrique dans l'espace inter-électrodes afin de produire un plasma froid à pression atmosphérique en ionisant le gaz vecteur qui circule dans le tube interne 113. De préférence, l'alimentation haute tension HT délivre une tension de plusieurs kV, par exemple entre 1 kV et 20 kV à partir d'un signal du type sinusoïdal, pulsé ou haché.With this arrangement, when the
Dans une mise en œuvre particulière, l'électrode haute tension 115, le premier matériau diélectrique 117 et l'électrode de masse 116 se présentent chacun sous la forme d'une plaque circulaire, ovale ou polygonale. Dans un exemple de cette mise en œuvre, comme illustré dans la
Il a été remarqué que l'environnement gazeux de l'air ambiant, dans lequel se propage un plasma froid à pression atmosphérique tel que celui généré par le réacteur 100, peut avoir un impact important sur la variabilité des effets obtenus sur une cible à traiter. Il se pose alors le problème de la reproductibilité des plasmas froids à pression atmosphérique. À ce titre, il est important de pouvoir contrôler l'environnement gazeux régnant autour d'un tel plasma afin de réguler la réactivité chimique en phase gazeuse.It has been observed that the gaseous environment of the ambient air, in which propagates a cold plasma at atmospheric pressure such as that generated by the
Pour cela, dans une mise en œuvre particulière de l'invention, l'enceinte hermétique 110 comprend un orifice d'entrée de fluide environnant 118 couplé à un passage 119 s'étendant à travers la paroi du tube externe 114.For this, in a particular implementation of the invention, the
L'orifice d'entrée de fluide environnant 118 est destiné à être couplé à une source de fluide environnant 130. Dans l'exemple de la
Ainsi, lorsque le réacteur 100 est en opération, un fluide environnant provenant de la source de fluide environnant 130 est injecté dans l'orifice d'entrée de fluide environnant 118. De préférence, le débit entrant du fluide environnant est de l'ordre de quelques dizaines de centimètres cubes par minute.Thus, when
De cette manière, vu l'agencement particulier des tubes interne 113 et externe 114, le fluide environnant injecté dans l'orifice d'entrée de fluide environnant 118, circule dans l'espace annulaire EA pour ensuite déboucher dans l'espace de diffusion ED afin de se mélanger avec le plasma froid à pression atmosphérique généré dans le tube interne 113. Ceci a pour effet de permettre le contrôle de l'environnement de génération du plasma froid à pression atmosphérique et donc de sa réactivité chimique vis-à-vis d'une cible donnée.In this way, given the particular arrangement of the internal 113 and external 114 tubes, the surrounding fluid injected into the surrounding
Dans la
Dans ce même exemple, le passage s'étend de manière sensiblement perpendiculaire à l'axe longitudinal du tube externe 114. Dans un autre exemple, le passage s'étend de manière sensiblement oblique à l'axe longitudinal du tube externe 114.In this same example, the passage extends substantially perpendicular to the longitudinal axis of the
De retour à la
Dans un exemple, le corps d'enceinte C est constitué d'une seule pièce. Dans un autre exemple, le corps d'enceinte C est constitué de trois pièces. Dans ce cas,
- la première pièce comprend l'orifice d'entrée de gaz plasmagène 111, l'électrode haute
tension 115 et le premier matériau diélectrique 117, - la deuxième pièce comprend l'orifice d'entrée de fluide environnant 118 et le
passage 119 s'étendant à travers la paroi dutube externe 114, et - la troisième pièce comprend l'électrode de masse 116 et l'orifice de sortie de plasma froid à pression atmosphérique.
- the first part comprises the
plasma gas inlet 111, thehigh voltage electrode 115 and the firstdielectric material 117, - the second piece includes the surrounding
fluid inlet 118 and thepassage 119 extending through the wall of theouter tube 114, and - the third piece includes the
ground electrode 116 and the atmospheric pressure cold plasma outlet.
Ceci a pour effet de faciliter la fabrication du réacteur 100, car les trois pièces peuvent être usinées séparément avant d'être assemblées. Par exemple, les trois pièces peuvent être assemblées pour former le corps d'enceinte C, grâce à des moyens de fixation tels des vis.This has the effect of facilitating the manufacture of the
Dans la description, le réacteur 100 a été décrit comme comprenant un orifice d'entrée de gaz plasmagène 111 et un orifice d'entrée de fluide environnant 118. Toutefois, d'autres configurations sont envisageables.In the description, the
Par exemple, comme illustré dans la
Par ailleurs, lorsque plusieurs réacteurs 100 sont compris dans l'enceinte hermétique 110, il peut également être envisagé de positionner une pluralité de passages menant au tube externe 114. Par exemple, la
La présente invention a été décrite et illustrée dans la présente description détaillée et dans des dessins annexés. La présente invention ne se limite pas, toutefois, aux formes de réalisation ainsi présentées. D'autres variantes et modes de réalisation peuvent être déduits et mis en œuvre par la personne du métier à la lecture de la présente description et des dessins annexés.The present invention has been described and illustrated in this detailed description and in accompanying drawings. The present invention is not limited, however, to the embodiments thus presented. Other variants and embodiments can be deduced and implemented by those skilled in the art on reading this description and the appended drawings.
Dans une mise en œuvre particulière de l'invention, il est envisagé de moduler l'énergie transmise dans le plasma froid à pression atmosphérique. L'objectif d'une telle mise en œuvre consiste à agir sur la réactivité de la cible à traiter en permettant le contrôle de la production des espèces réactives produites en phase gazeuse.In a particular implementation of the invention, it is envisaged to modulate the energy transmitted in the cold plasma at atmospheric pressure. The objective of such implementation The work consists of acting on the reactivity of the target to be treated by allowing control of the production of reactive species produced in the gas phase.
Pour cela, il est proposé de moduler l'énergie transmise dans le plasma froid à pression atmosphérique généré par le réacteur 100 en polarisant une électrode métallique haute tension (non représentée) qui induit une différence de potentiel électrique sensiblement perpendiculaire à un axe central de propagation du plasma froid à pression atmosphérique. En pratique, la différence de potentiel électrique est due au potentiel élevé de l'axe central de propagation du plasma froid à pression atmosphérique et le potentiel imposé à la surface interne du tube externe 114. Dans une mise en œuvre particulière, l'axe central de propagation du plasma froid à pression atmosphérique correspond à l'axe longitudinal médian du tube externe 114 passant sensiblement au milieu du tube externe 114.For this, it is proposed to modulate the energy transmitted in the cold plasma at atmospheric pressure generated by the
Dit autrement, il s'agit de former une décharge à barrière diélectrique radiale, c'est-à-dire perpendiculaire à l'axe longitudinal médian du tube externe 114, en même temps que le réacteur 100 forme le plasma froid à pression atmosphérique.In other words, it is a question of forming a discharge with a radial dielectric barrier, that is to say perpendicular to the median longitudinal axis of the
Dans cette mise en œuvre particulière, on fixe l'électrode métallique haute tension sur au moins une portion de la surface externe de la paroi du tube externe 114. Dans un exemple, l'électrode métallique haute tension est formée dans une bague métallique qui couvre tout ou partie de la surface externe de la paroi du tube externe 114. Dans un autre exemple, l'électrode métallique haute tension est formée dans un scotch métallique qui couvre tout ou partie de la surface externe de la paroi du tube externe 114. Ensuite, lorsque le réacteur 100 est en opération, on polarise électriquement l'électrode métallique haute tension avec une alimentation haute tension (non représentée) qui est découplée de l'alimentation haute tension HT du réacteur 100. En outre, des masses différentes sont utilisées pour la mise à la masse de l'électrode métallique haute tension et pour la mise à la masse de l'électrode de masse 116.In this particular implementation, the high voltage metal electrode is attached to at least a portion of the outer surface of the
Dans un exemple, on polarise l'électrode métallique haute tension avec une alimentation haute tension de tension positive ou négative. Selon les besoins, l'alimentation haute tension délivre une tension continue ou alternative. De préférence, l'alimentation haute tension délivre une tension à partir d'un signal du type sinusoïdal, pulsé ou haché. Par exemple, dans le cadre d'essais de laboratoire, on a utilisé une source de haute tension délivrant une tension continue de 100V à 500V continu.In one example, the high voltage metal electrode is biased with a positive or negative high voltage power supply. Depending on requirements, the high-voltage power supply supplies direct or alternating voltage. Preferably, the high voltage power supply delivers a voltage from a signal of the sinusoidal, pulsed or chopped type. For example, in the context of laboratory tests, a high voltage source was used delivering a DC voltage of 100V to 500V DC.
Dans ces essais, avec une tension continue positive, il a été remarqué une réduction de la différence de potentiel électrique entre l'axe longitudinal médian du tube externe 114 et la surface interne du tube externe 114. Ceci a pour effet que le plasma froid à pression atmosphérique diffus généré par le réacteur 100 est moins énergétique. Cet effet se traduit visuellement par une luminosité moins importante du plasma froid à pression atmosphérique diffus généré par le réacteur 100 par rapport aux mises en œuvre dans lesquelles la polarisation du plasma froid à pression atmosphérique diffus n'est pas appliquée.In these tests, with a positive DC voltage, a reduction in the electrical potential difference between the median longitudinal axis of the
Au contraire, avec une tension continue négative, il a été remarqué une augmentation de la différence de potentiel électrique entre l'axe longitudinal médian du tube externe 114 et la surface interne du tube externe 114. Ceci a pour effet que le plasma froid à pression atmosphérique diffus généré par le réacteur 100 est plus énergétique. Cet effet se traduit visuellement par une luminosité plus importante du plasma froid à pression atmosphérique diffus généré par le réacteur 100 par rapport aux mises en œuvre dans lesquelles la polarisation du plasma froid à pression atmosphérique diffus n'est pas appliquée.On the contrary, with a negative DC voltage, an increase in the electrical potential difference between the median longitudinal axis of the
Dans les revendications, le terme "comporter" n'exclut pas d'autres éléments ou d'autres étapes. Les différentes caractéristiques présentées et/ou revendiquées peuvent être avantageusement combinées sans sortir du cadre des revendications.In the claims, the term "comprising" does not exclude other elements or other steps. The various features presented and/or claimed can be advantageously combined without departing from the scope of the claims.
L'étendue de l'invention est déterminée par les revendications.The scope of the invention is determined by the claims.
Claims (15)
- A dielectric barrier discharge plasma reactor (100) comprising:- a chamber (110) subjected to atmospheric pressure and having at least one plasma gas inlet port (111) and at least one outlet port (112) for cold plasma at atmospheric pressure,wherein the chamber (110) further comprises:- an inner tube (113) and an outer tube (114), with the inner tube (113) and the outer tube (114) being made of dielectric material, each comprising an upper end, a lower end and a wall with an inner surface and an outer surface, the upper end of the inner tube (113) being coupled to the plasma gas inlet port, the upper end of the outer tube (114) being hermetically sealed and being traversed by the inner tube (113), the lower end of the inner tube (113) being open and the lower end of the outer tube (114) being coupled to the outlet port for cold plasma at atmospheric pressure,and wherein the inner tube (113) and the outer tube (114) are arranged so that at least a portion of the inner tube (113) extends inside the outer tube (114) parallel to the longitudinal axis of the outer tube (114) and so as to define:- a diffusion space (ED), formed inside the outer tube (114) between the lower end of the inner tube (113) and the lower end of the outer tube (114); and- an annular space (EA), formed between the outer surface of the wall of the inner tube (113) and the inner surface of the wall of the outer tube (114);wherein the chamber (110) further comprises:- a first high-voltage electrode (115) and a ground electrode (116), spaced apart by an inter-electrode gap, in which at least a first dielectric material (117) is disposed;- a high-voltage electric power supply input port (1111) coupled to the high-voltage electrode, and adapted to be coupled to a first high-voltage power supply (HT) so as to allow an electric discharge to be generated in the inter-electrode space;and wherein:- at least a portion of the inner tube (113) is disposed as close as possible to the high-voltage electrode and extends through the first dielectric material and the ground electrode; and- at least a portion of the outer tube (114) extends through the ground electrode.
- The reactor according to claim 1, wherein the lower end of the inner tube (113) and the lower end of the outer tube (114) extend outside the chamber (110) via the outlet port for cold plasma at atmospheric pressure.
- The reactor according to any one of claims 1 or 2, wherein the chamber (110) further comprises at least one inlet port (118) for surrounding fluid coupled to at least one passage (119) extending through the wall of the outer tube (114).
- The reactor according to claim 3, wherein the passage (119) extends substantially perpendicular to the longitudinal axis of the outer tube (114).
- The reactor according to claim 3, wherein the passage (119) extends substantially obliquely to the longitudinal axis of the outer tube (114).
- The reactor according to any one of claims 3, 4 or 5, wherein the passage (119) is disposed at a level located between the first dielectric material (117) and the ground electrode.
- The reactor according to any one of claims 1, 2, 3, 4, 5 or 6, wherein the upper end of the outer tube (114) is located between the first dielectric material (117) and the ground electrode (116).
- The reactor according to any one of claims 1, 2, 3, 4, 5, 6 or 7, wherein the high-voltage electrode (115), the first dielectric material (117) and the ground electrode (116) are each in the form of a circular, oval or polygonal plate.
- The reactor according to claim 8, wherein the length of the plate of the first dielectric material (117) is longer than that of the plates of the high-voltage and ground electrodes (115, 116).
- The reactor according to any one of the preceding claims, wherein the chamber (110) further comprises a chamber body (C) moulded in a second dielectric material.
- The reactor according to claim 10, wherein the chamber body (C) is formed by a single part.
- The reactor according to claim 10, wherein the chamber body (C) is formed by three parts:- the first part (P1) comprising the plasma gas inlet orifice, the high-voltage electrode (115) and the first dielectric material (117);- the second part (P2) comprising the inlet port for surrounding fluid and the passage (119) extending through the wall of the outer tube (114); and- the third part (P3) comprising the ground electrode (116) and the outlet port for cold plasma at atmospheric pressure.
- The reactor according to claim 9, wherein the first dielectric material (117), the inner tube (113) and the outer tube (114) are made of quartz glass and the second dielectric material is made of plastic material, of the PTFE, PFA or FEP type.
- The reactor according to any one of the preceding claims, wherein the high-voltage electrode and the ground electrode (115, 116) are made of brass.
- The reactor according to any one of the preceding claims, further comprising a second high-voltage electrode fixed around all or part of the outer surface of the wall of the outer tube (114), the second high-voltage electrode being able to be coupled to a second high-voltage power supply and to a different ground from the ground electrode so as to allow an electric discharge to be generated in the outer tube (114) in a direction perpendicular to a median longitudinal axis of the outer tube (114).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1663220A FR3061402B1 (en) | 2016-12-22 | 2016-12-22 | DIELECTRIC BARRIER DISCHARGE PLASMA REACTOR |
PCT/FR2017/053791 WO2018115774A1 (en) | 2016-12-22 | 2017-12-21 | Dielectric barrier discharge plasma reactor |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3560299A1 EP3560299A1 (en) | 2019-10-30 |
EP3560299B1 true EP3560299B1 (en) | 2022-08-17 |
Family
ID=58547611
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17832277.2A Active EP3560299B1 (en) | 2016-12-22 | 2017-12-21 | Dbd plasma reactor |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3560299B1 (en) |
FR (1) | FR3061402B1 (en) |
WO (1) | WO2018115774A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111494774A (en) * | 2020-04-14 | 2020-08-07 | 西安交通大学 | Plasma active gas humidifier |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020187066A1 (en) * | 2001-06-07 | 2002-12-12 | Skion Corporation | Apparatus and method using capillary discharge plasma shower for sterilizing and disinfecting articles |
DE102004029081A1 (en) * | 2004-06-16 | 2006-01-05 | Je Plasmaconsult Gmbh | Device for processing a substrate by means of at least one plasma jet |
JP4953255B2 (en) * | 2006-02-13 | 2012-06-13 | 国立大学法人群馬大学 | Nozzle for plasma generator, plasma generator, plasma surface treatment apparatus, plasma generation method and plasma surface treatment method |
TWI432228B (en) * | 2010-09-07 | 2014-04-01 | Univ Nat Cheng Kung | Micro-plasma generating device and sterilization system thereof |
DE102011076806A1 (en) * | 2011-05-31 | 2012-12-06 | Leibniz-Institut für Plasmaforschung und Technologie e.V. | Apparatus and method for producing a cold, homogeneous plasma under atmospheric pressure conditions |
CN105491774A (en) * | 2016-01-18 | 2016-04-13 | 大连民族大学 | Array type microplasma generating device based on conductive coating |
-
2016
- 2016-12-22 FR FR1663220A patent/FR3061402B1/en not_active Expired - Fee Related
-
2017
- 2017-12-21 WO PCT/FR2017/053791 patent/WO2018115774A1/en unknown
- 2017-12-21 EP EP17832277.2A patent/EP3560299B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
FR3061402B1 (en) | 2023-02-10 |
WO2018115774A1 (en) | 2018-06-28 |
EP3560299A1 (en) | 2019-10-30 |
FR3061402A1 (en) | 2018-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0575260B1 (en) | Apparatus for the formation of excited or instable gaseous molecules and use of said apparatus | |
FR2480552A1 (en) | PLASMA GENERATOR | |
EP1332511B1 (en) | Device for treating gas with plasma | |
EP0781921B1 (en) | Ion source with closed electron drift | |
RU2366757C2 (en) | Interior electrode designed for forming shielding film and installation for forming this film | |
CA2370479C (en) | Plasma torch cartridge and plasma torch equipped therewith | |
EP2374753A1 (en) | Device for producing a chemical species from a fluid by implementing a microwave resonant structure | |
WO2011001070A1 (en) | Device for emitting a plasma jet from the atmospheric air at ambient temperature and pressure, and use of said device | |
EP3560299B1 (en) | Dbd plasma reactor | |
EP0914241B1 (en) | Method for treating a surface by dry process and device for implementing same | |
EP0346168B1 (en) | Plasma reactor | |
EP0343038A1 (en) | Surface cleaning method with a transported plasma | |
WO2020148487A1 (en) | Treatment method and device for depositing a barrier-effect coating | |
EP2586276A1 (en) | Device for generating a plasma jet | |
WO2012080650A1 (en) | Electron cyclotron resonance ion source device | |
EP2502468B1 (en) | Plasma torch and method for stabilizing a plasma torch | |
EP0538736B1 (en) | Device for surface treatment by corona discharge | |
WO2022229515A1 (en) | Tool for a plasma medical treatment device, and corresponding device | |
WO2023232640A1 (en) | Electron beam device for surface treatment | |
WO2024146899A1 (en) | Plasma jet device | |
CA2677227C (en) | Device for generating cold plasma in a vacuum chamber and use of said device for thermo-chemical processing | |
FR2775156A1 (en) | Generation and projection of pulsed jets of plasma for treatment of surfaces | |
BE515841A (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190621 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20201021 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20220331 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602017060818 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1513013 Country of ref document: AT Kind code of ref document: T Effective date: 20220915 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20220817 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221219 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221117 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1513013 Country of ref document: AT Kind code of ref document: T Effective date: 20220817 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221217 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602017060818 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 |
|
26N | No opposition filed |
Effective date: 20230519 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20221231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221231 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221221 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20171221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240130 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20241220 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20241224 Year of fee payment: 8 |