EP3556896A4 - HIGH STRENGTH COLD LAMINATED STEEL SHEET HAVING EXCELLENT ELASTICITY LIMIT, EXCELLENT DUCTILITY, AND EXCELLENT HOLE EXPANSION CAPACITY, HOT DIP GALVANIZED STEEL SHEET AND PRODUCTION METHOD THEREOF - Google Patents
HIGH STRENGTH COLD LAMINATED STEEL SHEET HAVING EXCELLENT ELASTICITY LIMIT, EXCELLENT DUCTILITY, AND EXCELLENT HOLE EXPANSION CAPACITY, HOT DIP GALVANIZED STEEL SHEET AND PRODUCTION METHOD THEREOF Download PDFInfo
- Publication number
- EP3556896A4 EP3556896A4 EP17881067.7A EP17881067A EP3556896A4 EP 3556896 A4 EP3556896 A4 EP 3556896A4 EP 17881067 A EP17881067 A EP 17881067A EP 3556896 A4 EP3556896 A4 EP 3556896A4
- Authority
- EP
- European Patent Office
- Prior art keywords
- steel sheet
- production method
- high strength
- dip galvanized
- hot dip
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910001335 Galvanized steel Inorganic materials 0.000 title 1
- 229910000576 Laminated steel Inorganic materials 0.000 title 1
- 239000008397 galvanized steel Substances 0.000 title 1
- 238000004519 manufacturing process Methods 0.000 title 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Coating With Molten Metal (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160173006A KR101858852B1 (en) | 2016-12-16 | 2016-12-16 | Cold-rolled steel sheet and galvanized steel sheet having excelent elonggation, hole expansion ration and yield strength and method for manufacturing thereof |
PCT/KR2017/013762 WO2018110867A1 (en) | 2016-12-16 | 2017-11-29 | High strength cold rolled steel plate having excellent yield strength, ductility, and hole expandability, hot dip galvanized steel plate, and method for producing same |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3556896A4 true EP3556896A4 (en) | 2019-10-23 |
EP3556896A1 EP3556896A1 (en) | 2019-10-23 |
EP3556896B1 EP3556896B1 (en) | 2021-11-10 |
Family
ID=62558805
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17881067.7A Active EP3556896B1 (en) | 2016-12-16 | 2017-11-29 | High strength cold rolled steel plate having excellent yield strength, ductility and hole expandability, and hot dip galvanized steel plate |
Country Status (6)
Country | Link |
---|---|
US (1) | US20200190612A1 (en) |
EP (1) | EP3556896B1 (en) |
JP (1) | JP6846522B2 (en) |
KR (1) | KR101858852B1 (en) |
CN (1) | CN110073026B (en) |
WO (1) | WO2018110867A1 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020067752A1 (en) * | 2018-09-28 | 2020-04-02 | 주식회사 포스코 | High-strength cold rolled steel sheet having high hole expansion ratio, high-strength hot-dip galvanized steel sheet, and manufacturing methods therefor |
CN109576579A (en) | 2018-11-29 | 2019-04-05 | 宝山钢铁股份有限公司 | It is a kind of with high hole expansibility and compared with the 980MPa grade cold-rolled steel sheet and its manufacturing method of high-elongation |
ES2911662T3 (en) | 2019-06-17 | 2022-05-20 | Tata Steel Ijmuiden Bv | Heat treatment method of a high-strength cold-rolled steel strip |
EP3754035B1 (en) | 2019-06-17 | 2022-03-02 | Tata Steel IJmuiden B.V. | Method of heat treating a cold rolled steel strip |
CN114269961B (en) * | 2019-08-20 | 2022-10-28 | 杰富意钢铁株式会社 | High-strength cold-rolled steel sheet and method for producing same |
CN110964969B (en) * | 2019-11-27 | 2021-09-21 | 本钢板材股份有限公司 | High-strength hot-dip galvanized quenching distribution steel and production method thereof |
WO2021123877A1 (en) * | 2019-12-17 | 2021-06-24 | Arcelormittal | Hot rolled steel sheet and method of manufacturing thereof |
US20230243007A1 (en) * | 2020-06-12 | 2023-08-03 | Arcelormittal | Cold rolled and heat-treated steel sheet and method of manufacturing thereof |
CN115161541B (en) * | 2021-04-02 | 2023-08-11 | 宝山钢铁股份有限公司 | 780 MPa-level high-formability hot dip galvanized dual phase steel and rapid heat treatment hot dip galvanizing manufacturing method |
CN115181895B (en) * | 2021-04-02 | 2023-09-12 | 宝山钢铁股份有限公司 | 1180 MPa-level low-carbon low-alloy hot dip galvanized Q & P steel and rapid heat treatment hot dip galvanizing manufacturing method |
CN113186459B (en) * | 2021-04-08 | 2022-09-13 | 山东钢铁股份有限公司 | Cold-rolled low-alloy steel strip with yield strength of 355MPa and preparation method thereof |
KR20230073569A (en) * | 2021-11-19 | 2023-05-26 | 주식회사 포스코 | Cold rolled steel sheet having excellent strength and formability and method of manufacturing the same |
CN115584378B (en) * | 2022-09-07 | 2024-10-01 | 武汉科技大学 | Low-carbon steel residual stress regulation and control method for enhancing Mn distribution plasticity |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20100076409A (en) * | 2008-12-26 | 2010-07-06 | 주식회사 포스코 | A high strength steel sheet having high yield ratio and a method for producting the same |
EP2831296A1 (en) * | 2012-03-30 | 2015-02-04 | Voestalpine Stahl GmbH | High strength cold rolled steel sheet and method of producing such steel sheet |
WO2016001700A1 (en) * | 2014-07-03 | 2016-01-07 | Arcelormittal | Method for producing a high strength steel sheet having improved strength, ductility and formability |
WO2016020899A1 (en) * | 2014-08-07 | 2016-02-11 | Arcelormittal | Method for producing a coated steel sheet having improved strength, ductility and formability |
EP3101147A1 (en) * | 2014-01-29 | 2016-12-07 | JFE Steel Corporation | High-strength cold-rolled steel sheet and method for manufacturing same |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR940002370B1 (en) | 1991-05-16 | 1994-03-23 | 주식회사 금성사 | Cooking time control apparatus and method of microwave oven |
KR940007374B1 (en) | 1992-07-24 | 1994-08-16 | 포항종합제철 주식회사 | Austenitic high manganese steel with excellent formability, strength and weldability, and its manufacturing method |
JP3942799B2 (en) | 2000-04-27 | 2007-07-11 | カルソニックカンセイ株式会社 | Method and apparatus for separating insert metal fittings of resin molded product |
JP2002177278A (en) | 2000-12-15 | 2002-06-25 | Hitachi Medical Corp | Ultrasonic diagnostic device |
US7090731B2 (en) * | 2001-01-31 | 2006-08-15 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | High strength steel sheet having excellent formability and method for production thereof |
US20060011274A1 (en) | 2002-09-04 | 2006-01-19 | Colorado School Of Mines | Method for producing steel with retained austenite |
JP4729850B2 (en) * | 2003-02-10 | 2011-07-20 | Jfeスチール株式会社 | Alloyed hot-dip galvanized steel sheet with excellent plating adhesion and method for producing the same |
KR100928788B1 (en) * | 2007-12-28 | 2009-11-25 | 주식회사 포스코 | High strength steel sheet with excellent weldability and manufacturing method |
JP5418047B2 (en) * | 2008-09-10 | 2014-02-19 | Jfeスチール株式会社 | High strength steel plate and manufacturing method thereof |
JP5446885B2 (en) * | 2010-01-06 | 2014-03-19 | 新日鐵住金株式会社 | Cold rolled steel sheet manufacturing method |
JP5454745B2 (en) * | 2011-10-04 | 2014-03-26 | Jfeスチール株式会社 | High strength steel plate and manufacturing method thereof |
JP5954011B2 (en) | 2012-07-18 | 2016-07-20 | 凸版印刷株式会社 | Microneedle penetration control device |
JP5857909B2 (en) * | 2012-08-09 | 2016-02-10 | 新日鐵住金株式会社 | Steel sheet and manufacturing method thereof |
KR101299896B1 (en) * | 2013-05-30 | 2013-08-23 | 주식회사 포스코 | METHOD FOR MANUFACTURING TENSILE STRENGTH 1.5GPa CLASS STEEL SHEET |
JP5728108B2 (en) * | 2013-09-27 | 2015-06-03 | 株式会社神戸製鋼所 | High-strength steel sheet with excellent workability and low-temperature toughness, and method for producing the same |
WO2015088523A1 (en) * | 2013-12-11 | 2015-06-18 | ArcelorMittal Investigación y Desarrollo, S.L. | Cold rolled and annealed steel sheet |
JP6306481B2 (en) * | 2014-03-17 | 2018-04-04 | 株式会社神戸製鋼所 | High-strength cold-rolled steel sheet and high-strength hot-dip galvanized steel sheet excellent in ductility and bendability, and methods for producing them |
KR101594670B1 (en) * | 2014-05-13 | 2016-02-17 | 주식회사 포스코 | Cold-rolled steel sheet and galvanized steel sheet having excellent ductility and method for manufacturing thereof |
WO2016103535A1 (en) * | 2014-12-22 | 2016-06-30 | Jfeスチール株式会社 | High-strength hot-dip galvanized steel sheet and manufacturing method thereof |
CN107109572B (en) * | 2015-01-16 | 2019-09-10 | 杰富意钢铁株式会社 | High-strength steel sheet and its manufacturing method |
MX2017012194A (en) * | 2015-03-25 | 2017-12-15 | Jfe Steel Corp | Cold-rolled steel sheet and manufacturing method therefor. |
JP6586776B2 (en) * | 2015-05-26 | 2019-10-09 | 日本製鉄株式会社 | High strength steel plate with excellent formability and method for producing the same |
US10745775B2 (en) * | 2015-06-11 | 2020-08-18 | Nippon Steel Corporation | Galvannealed steel sheet and method for producing the same |
-
2016
- 2016-12-16 KR KR1020160173006A patent/KR101858852B1/en active Active
-
2017
- 2017-11-29 US US16/468,162 patent/US20200190612A1/en active Pending
- 2017-11-29 WO PCT/KR2017/013762 patent/WO2018110867A1/en unknown
- 2017-11-29 CN CN201780077454.0A patent/CN110073026B/en active Active
- 2017-11-29 EP EP17881067.7A patent/EP3556896B1/en active Active
- 2017-11-29 JP JP2019531765A patent/JP6846522B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20100076409A (en) * | 2008-12-26 | 2010-07-06 | 주식회사 포스코 | A high strength steel sheet having high yield ratio and a method for producting the same |
EP2831296A1 (en) * | 2012-03-30 | 2015-02-04 | Voestalpine Stahl GmbH | High strength cold rolled steel sheet and method of producing such steel sheet |
EP3101147A1 (en) * | 2014-01-29 | 2016-12-07 | JFE Steel Corporation | High-strength cold-rolled steel sheet and method for manufacturing same |
WO2016001700A1 (en) * | 2014-07-03 | 2016-01-07 | Arcelormittal | Method for producing a high strength steel sheet having improved strength, ductility and formability |
WO2016020899A1 (en) * | 2014-08-07 | 2016-02-11 | Arcelormittal | Method for producing a coated steel sheet having improved strength, ductility and formability |
Non-Patent Citations (1)
Title |
---|
See also references of WO2018110867A1 * |
Also Published As
Publication number | Publication date |
---|---|
CN110073026A (en) | 2019-07-30 |
CN110073026B (en) | 2021-09-07 |
JP6846522B2 (en) | 2021-03-24 |
WO2018110867A8 (en) | 2019-01-31 |
JP2020509177A (en) | 2020-03-26 |
KR101858852B1 (en) | 2018-06-28 |
WO2018110867A1 (en) | 2018-06-21 |
EP3556896A1 (en) | 2019-10-23 |
EP3556896B1 (en) | 2021-11-10 |
US20200190612A1 (en) | 2020-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3556896A4 (en) | HIGH STRENGTH COLD LAMINATED STEEL SHEET HAVING EXCELLENT ELASTICITY LIMIT, EXCELLENT DUCTILITY, AND EXCELLENT HOLE EXPANSION CAPACITY, HOT DIP GALVANIZED STEEL SHEET AND PRODUCTION METHOD THEREOF | |
EP3378965A4 (en) | HIGH-STRENGTH STEEL SHEET, GALVANIZED BY HOT DIP, HAVING EXCELLENT RESISTANCE TO SHOCK AND CORROSION DETACHING OF AN OPEN SECTION | |
MA49449A (en) | ZINC COATED STEEL SHEET WITH HIGH STRENGTH SPOT WELDABILITY | |
MA43659A (en) | HIGH STRENGTH STEEL SHEET SHOWING EXCELLENT FORMATABILITY AND MANUFACTURING PROCESS | |
MA49159A (en) | PROCESS FOR THE PRODUCTION OF A HIGH STRENGTH STEEL SHEET WITH IMPROVED STRENGTH AND FORMABILITY AND HIGH STRENGTH STEEL SHEET THUS OBTAINED | |
EP4012064C0 (en) | STEEL SHEET FOR HOT-PRESSED ELEMENT HAVING EXCELLENT PAINT ADHESION AND EXCELLENT RESISTANCE TO POST-PAINTING CORROSION, AND METHOD FOR MANUFACTURING SAME | |
MA39954B1 (en) | Cold rolled and hot dip coated steel sheet, method of manufacture and use | |
EP3434801A4 (en) | HIGH-STRENGTH STEEL SHEET AND HIGH-STRENGTH GALVANIZED STEEL SHEET | |
EP3584337A4 (en) | HIGH-STRENGTH HOT-ROLLED STEEL SHEET AND MANUFACTURING METHOD THEREOF | |
EP3561141A4 (en) | HOT DIP ALUMINIZED STEEL MATERIAL HAVING EXCELLENT CORROSION RESISTANCE AND EXCELLENT SHAPING ABILITY, AND MANUFACTURING METHOD THEREOF | |
EP3561116C0 (en) | ALUMINUM ALLOY PLATED STEEL MATERIAL HAVING EXCELLENT CORROSION RESISTANCE AND METHOD FOR MANUFACTURING SAME | |
EP3517636A4 (en) | COLD ROLLED STEEL SHEET FOR HOT FORMING, HAVING EXCELLENT PROPERTIES OF CORROSION RESISTANCE AND STITCH WELDING, HOT-FORMED ELEMENT, AND METHOD FOR MANUFACTURING THE SAME | |
EP2762583A4 (en) | HIGH-STRENGTH HOT-DIP GALVANIZED STEEL SHEET WITH EXCELLENT BREAKAGE RESISTANCE AND PRODUCTION METHOD THEREOF | |
MA50091A (en) | SHEET STEEL SHOWING EXCELLENT TENACITY, DUCTILITY AND STRENGTH, AND ITS MANUFACTURING PROCESS | |
EP3040440A4 (en) | HOT GALVANIZED STEEL SHEET WITH HIGH STRENGTH AND METHOD OF MANUFACTURING THE SAME | |
EP3054025A4 (en) | HOT GALVANIZED STEEL SHEET WITH HIGH STRENGTH AND METHOD FOR MANUFACTURING THE SAME | |
EP3438307A4 (en) | HOT GALVANIZED STEEL SHEET | |
EP2921569A4 (en) | HOT GALVANIZED STEEL SHEET SUPER-RESISTANT AND HAVING HIGH DEFORMABILITY AND PROCESS FOR PRODUCING THE SAME | |
MA53357A (en) | METHOD FOR PRODUCING A HIGH STRENGTH COATED STEEL SHEET HAVING IMPROVED STRENGTH, DUCTILITY AND FORMABILITY | |
EP3473742A4 (en) | HIGH-DUTY, HIGH-STRENGTH DUCTILITY STEEL SHEET HAVING EXCELLENT ELASTIC LIMIT AND METHOD FOR MANUFACTURING SAME | |
EP2794950A4 (en) | HOT DIP GALVANIZED STEEL SHEET HAVING EXCELLENT ULTRA-BASS TEMPERATURE HANDLING AND METHOD FOR MANUFACTURING THE SAME | |
MA49777A (en) | PROCESS FOR THE PRODUCTION OF A HIGH STRENGTH STEEL SHEET WITH IMPROVED STRENGTH AND FORMABILITY AND SHEET THUS OBTAINED | |
EP3647444A4 (en) | HOT COMPRESSION ELEMENT AND MANUFACTURING METHOD THEREOF, AND COLD-ROLLED STEEL SHEET FOR HOT COMPRESSION AND MANUFACTURING METHOD THEREOF | |
EP3561135A4 (en) | HOT DIP GALVANIZED STEEL MATERIAL HAVING EXCELLENT WELDABILITY AND EXCELLENT PRESS-SHAPING SUITABILITY AND METHOD OF MANUFACTURING THE SAME | |
EP3556894A4 (en) | ULTRA-HIGH RESISTANCE STEEL SHEET HAVING EXCELLENT PLIABILITY AND METHOD FOR MANUFACTURING THE SAME |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190701 |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20190916 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20201120 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20210602 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1446161 Country of ref document: AT Kind code of ref document: T Effective date: 20211115 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602017049273 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20211110 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1446161 Country of ref document: AT Kind code of ref document: T Effective date: 20211110 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220210 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220310 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220310 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220210 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220211 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211129 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211130 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20211130 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602017049273 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211130 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211130 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 602017049273 Country of ref document: DE Owner name: POSCO CO., LTD, POHANG-SI, KR Free format text: FORMER OWNER: POSCO, POHANG-SI, GYEONGSANGBUK-DO, KR Ref country code: DE Ref legal event code: R081 Ref document number: 602017049273 Country of ref document: DE Owner name: POSCO CO., LTD, POHANG- SI, KR Free format text: FORMER OWNER: POSCO, POHANG-SI, GYEONGSANGBUK-DO, KR Ref country code: DE Ref legal event code: R081 Ref document number: 602017049273 Country of ref document: DE Owner name: POSCO HOLDINGS INC., KR Free format text: FORMER OWNER: POSCO, POHANG-SI, GYEONGSANGBUK-DO, KR |
|
26N | No opposition filed |
Effective date: 20220811 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20220210 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211129 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220210 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 602017049273 Country of ref document: DE Owner name: POSCO CO., LTD, POHANG-SI, KR Free format text: FORMER OWNER: POSCO HOLDINGS INC., SEOUL, KR Ref country code: DE Ref legal event code: R081 Ref document number: 602017049273 Country of ref document: DE Owner name: POSCO CO., LTD, POHANG- SI, KR Free format text: FORMER OWNER: POSCO HOLDINGS INC., SEOUL, KR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20171129 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20241121 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20241121 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20241125 Year of fee payment: 8 |