[go: up one dir, main page]

EP3555404B1 - Wärmegedämmtes metall-kunststoff-verbundprofil - Google Patents

Wärmegedämmtes metall-kunststoff-verbundprofil Download PDF

Info

Publication number
EP3555404B1
EP3555404B1 EP16812732.2A EP16812732A EP3555404B1 EP 3555404 B1 EP3555404 B1 EP 3555404B1 EP 16812732 A EP16812732 A EP 16812732A EP 3555404 B1 EP3555404 B1 EP 3555404B1
Authority
EP
European Patent Office
Prior art keywords
profile
insulating
metal
transverse
plastic composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP16812732.2A
Other languages
English (en)
French (fr)
Other versions
EP3555404A1 (de
Inventor
Franz Feldmeier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP3555404A1 publication Critical patent/EP3555404A1/de
Application granted granted Critical
Publication of EP3555404B1 publication Critical patent/EP3555404B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/04Wing frames not characterised by the manner of movement
    • E06B3/263Frames with special provision for insulation
    • E06B3/26301Frames with special provision for insulation with prefabricated insulating strips between two metal section members
    • E06B3/26305Connection details
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/04Wing frames not characterised by the manner of movement
    • E06B3/263Frames with special provision for insulation
    • E06B3/26301Frames with special provision for insulation with prefabricated insulating strips between two metal section members
    • E06B3/26305Connection details
    • E06B2003/26314Provisions for reducing the shift between the strips and the metal section members
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/04Wing frames not characterised by the manner of movement
    • E06B3/263Frames with special provision for insulation
    • E06B3/26301Frames with special provision for insulation with prefabricated insulating strips between two metal section members
    • E06B3/26305Connection details
    • E06B2003/26316Disconnectable connections or permitting shifting between the sections
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/04Wing frames not characterised by the manner of movement
    • E06B3/263Frames with special provision for insulation
    • E06B3/2632Frames with special provision for insulation with arrangements reducing the heat transmission, other than an interruption in a metal section
    • E06B2003/26325Frames with special provision for insulation with arrangements reducing the heat transmission, other than an interruption in a metal section the convection or radiation in a hollow space being reduced, e.g. by subdividing the hollow space
    • E06B2003/26329Frames with special provision for insulation with arrangements reducing the heat transmission, other than an interruption in a metal section the convection or radiation in a hollow space being reduced, e.g. by subdividing the hollow space the insulating strips between the metal sections being interconnected
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/04Wing frames not characterised by the manner of movement
    • E06B3/263Frames with special provision for insulation
    • E06B3/2632Frames with special provision for insulation with arrangements reducing the heat transmission, other than an interruption in a metal section
    • E06B2003/26325Frames with special provision for insulation with arrangements reducing the heat transmission, other than an interruption in a metal section the convection or radiation in a hollow space being reduced, e.g. by subdividing the hollow space
    • E06B2003/2633Frames with special provision for insulation with arrangements reducing the heat transmission, other than an interruption in a metal section the convection or radiation in a hollow space being reduced, e.g. by subdividing the hollow space the insulating strips between the metal sections having ribs extending into the hollow space
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/04Wing frames not characterised by the manner of movement
    • E06B3/263Frames with special provision for insulation
    • E06B2003/26349Details of insulating strips
    • E06B2003/2635Specific form characteristics
    • E06B2003/26365Composed of several similar parts positioned one after the other
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/04Wing frames not characterised by the manner of movement
    • E06B3/263Frames with special provision for insulation
    • E06B2003/26349Details of insulating strips
    • E06B2003/26369Specific material characteristics
    • E06B2003/26372Specific material characteristics with coatings
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/04Wing frames not characterised by the manner of movement
    • E06B3/263Frames with special provision for insulation
    • E06B2003/26349Details of insulating strips
    • E06B2003/26369Specific material characteristics
    • E06B2003/26376Non-plastic materials, e.g. wood, metal

Definitions

  • the invention relates to a metal-plastic composite profile with reduced deformation in the event of temperature differences.
  • Thermally insulated composite profiles are used for the frames of windows, doors or facades.
  • An insulating profile or a large number of individual insulating webs for thermal decoupling is arranged between an outer profile made of metal and an inner profile made of metal in order to reduce the undesired heat flow between the inner and outer profile.
  • a non-positive and therefore shear-proof connection is made between the insulating profile and the inner and outer profiles.
  • the non-positive connection creates a flexural rigidity of the composite profile, which is required for the transfer of loads in the transverse direction, e.g. with wind pressure or wind suction.
  • the transverse pulling direction runs in the direction of the distance between the inner profile and outer profile, while the pushing direction runs perpendicular thereto.
  • the insulating profile between the metal profiles represents a thermal separation plane that limits the heat flow from one metal profile to the other, the difficulty arises when producing a composite profile called a shear-resistant composite with a force-fit connection in the direction of thrust and in the direction of transverse tension between the insulating profile and the metal profiles, that if there is a temperature difference between the metal profiles forming the composite profile, the composite profile will sag.
  • the reason for this is that due to the greater length expansion of the metal profile With a higher temperature, a shear stress between the components of the composite profile results which, due to the shear strength of the composite, results in a deflection of the composite profile in the direction of the metal profile with the higher temperature.
  • the bi-metal effect can be reduced by reducing the temperature differences.
  • this can be done by worsening the thermal separation, which, however, means increased heat losses in winter.
  • the thermal insulation can be worsened by the application of local thermal bridges, whereby the temperature differences between the inner and outer profile and the associated change in length and deflection are reduced.
  • Another measure is to increase the IR reflection of the outer surface, which is effective for both summer and winter cases.
  • the disadvantage of this measure is, however, that the surface variants of the outer profile are restricted to the outside of the building.
  • Another alternative is to worsen the composite effect of the overall profile. On the one hand, this can be done by reducing the rigidity of the insulating bars, as in the DE 20 2012 003 730 U1 is described.
  • the invention is based on the object of proposing a thermally insulated metal-plastic composite profile which has a reduced bimetal effect while at the same time providing sufficient flexural rigidity and thermal insulation.
  • the metal-plastic composite profile according to the invention with reduced deformation when there are temperature differences between inside and outside comprises an inner profile made of metal Outer profile made of metal and an insulating profile made of plastic, with a shear-proof connection as well as a form-fitting connection in the transverse direction of pull between the insulating profile and the inner profile. Between the insulating profile and the outer profile there is a positive connection in the transverse direction of pull and a shear-soft, ie sliding connection in the direction of shear.
  • the metal-plastic composite profile according to the invention also comprises a means for increasing the flexural rigidity of the metal-plastic composite profile, the means for increasing the flexural rigidity comprising the following measure:
  • the material of the insulating profile has a modulus of elasticity of at least 10 GPa and preferably at least 20 GPa, particularly preferably at least 40 GPa.
  • the temperature difference between inside and outside is the temperature difference between the outer profile and the inner profile.
  • the flexural strength of the metal-plastic composite profile is increased by this measure.
  • An insulating profile is used that has increased rigidity.
  • GRP fiberglass-reinforced plastic
  • CFRP carbon fiber-reinforced plastic
  • an E-module of over 40 GPa can be achieved.
  • common materials for insulating profiles such as PA 6.6 GF25, AWS or PVC, however, have E-modules that are usually below 5 GPa.
  • the at least one transverse element extending perpendicular to the transverse direction of pull is a transverse web or transverse bulkhead.
  • the necessary to achieve a sufficient The dimensions of the transverse element required for bending stiffness depend on their number and distance from the center of gravity in order to obtain a sufficiently high bending stiffness.
  • the provision of transverse bulkheads also has the effect that the heat transfer through convection is reduced.
  • the insulating profile consists of GRP.
  • GRP glass fiber reinforced plastic
  • the insulating profile has a first insulating web element and a second insulating web element
  • the sliding connection between the insulating profile and the outer profile comprises a sliding device near the outer profile between the first insulating web element and the second insulating web element.
  • the connection in the metal-plastic composite profile, which slides in the direction of thrust is either completely or additionally installed in a sliding connection between the first insulating web element and the second insulating web element, although the sliding device between the first insulating web element and the second insulating web element is closer to the outer profile than to the inner profile is arranged and is preferably located in that third of the extent of the insulating profile between the inner profile and the outer profile, which is adjacent to the outer profile.
  • connection between the plastic material of the insulating web can be more effective than a sliding connection between the metal of the outer profile and the plastic of the insulating element.
  • the connection between the The insulating profile and the outer profile can be designed in a conventional manner, ie with a shear-proof connection and a form-fitting connection in the transverse direction of pull and thus like the connection between the insulating profile and the inner profile.
  • the insulating profile has at least one cavity and a plurality of connection points in each case to the inner profile and the outer profile.
  • the insulating profile is designed as a hollow profile with a plurality of transverse webs and the transverse webs are arranged such that their averaged position is closer to the outer profile than to the inner profile.
  • the insulating profile can have a plurality of transverse webs which, in total, are arranged closer to the outer profile than to the inner profile. This can be determined by the fact that, in the case of a plurality of transverse webs, their individual position is averaged and the geometrically averaged position is closer to the outer profile than to the inner profile.
  • the provision of a layer with low emissivity on at least one of the transverse webs or at least one transverse bulkhead can further reduce the heat transfer.
  • Fig. 1 shows a first embodiment of a metal-plastic composite profile 1, which consists of an inner profile 2, an outer profile 3 and an insulating profile 4 between the inner profile 2 and the outer profile 3.
  • Both the inner profile 2 and the outer profile 3 are made of metal, aluminum, steel, stainless steel, weatherproof steel or copper / brass being particularly preferred.
  • this is preferably anodized or coated.
  • steel is preferably galvanized, in particular strip galvanized (continuously hot-dip galvanized) or piece-galvanized.
  • the steel can also be coated, in which case either liquid paint or a powder coating can be used.
  • stainless steel is selected for the inner profile and / or outer profile, it can be blank, polished, ground or electrolytically colored. When using brass / copper, this is preferably used bare or pickled.
  • a shear-resistant connection 5 with transverse tensile strength is provided between the inner profile 2 and the insulating profile 4.
  • a fixed connection is established both in the direction of the arrow A (transverse pulling direction) and in a direction perpendicular to the plane of the drawing Fig. 1 (Direction of thrust).
  • a flexible connection 7 with sufficient transverse tensile strength is produced between the insulating profile 4 and the outer profile 3.
  • a connection in the direction of arrow A (transverse pulling direction) is established with the aid of a suitable form fit, whereas in a direction perpendicular to the plane of the drawing Fig. 1 (Pushing direction) the insulating profile 4 can slide relative to the outer profile 3.
  • Both the shear-resistant connection 5 and the shear-soft connection 7 can be implemented via a form-fit connection in the transverse direction of pull.
  • connection 5 between the insulating profile 4 and the inner profile 2 as well as the connection 7 between the insulating profile 4 and the outer profile 3 can each be configured via a dovetail-shaped guide 6.
  • the connection 5 between the insulating profile 4 and the inner profile 2 can be provided with knurling in the inner profile 2 to produce the shear-proof connection 5.
  • the flexible connection 7 can also be implemented via a dovetail guide 6, but without knurling in the outer profile 3 in order to allow sliding in the longitudinal direction of the insulating profile perpendicular to the plane of the drawing Fig. 1 to enable.
  • the insulating profile 4 is made of a material with high rigidity, the modulus of elasticity of the material being at least 10 GPa.
  • the insulating profile can be made of GRP, with E-modules of up to approx. 60 GPa being achievable.
  • E-modules of over 60 GPa can even be achieved.
  • the achievable bending stiffness of the composite profile does not depend exclusively on the material of the Insulation profile 4 from, but also from its geometry. So is in the design according to Fig.
  • the insulating profile 4 is formed with an H-shaped cross section and has a transverse web 9a, which rigidly connects the two longitudinal webs 11a and 11b to one another.
  • the distance to the center of gravity referred to as the "Steiner portion” increases through the crosspiece 9a in order to create a supporting structure with an increased moment of inertia and thus improved flexural rigidity.
  • Fig. 2 shows a one-piece insulating profile 4 with two longitudinal webs 11a and 11b and two transverse webs 9a and 9b. Otherwise the embodiment corresponds to Fig. 2 after those Fig. 1 . Due to the ladder-shaped structure of the insulating profile 4 after Fig. 2 the bending resistance of the insulating profile is further improved. The provision of a hollow chamber 12 between the transverse webs 9a and 9b improves the thermal insulation.
  • the transverse webs 9a and 9b are averaged closer to the outer profile 3 than to the inner profile 2. If one were to consider the position of the crossbars in the transverse direction A relative to the connections 6 between the insulating profile 4 and the outer profile 3 and between the insulating profile 4 and the inner profile 3, the sum of the distances between the individual crossbars and the outer profile 3 would be less than the sum the spacing of the transverse webs to the inner profile 2. This measure is used to give the insulating profile 4 increased rigidity by increasing the moment of inertia, especially in the area in which there is a reduced overall rigidity due to the flexible connection 7 between the insulating profile 4 and the outer profile 3 .
  • the insulating profile 4 can also consist of individual insulating webs, each of which is connected to the inner profile via a shear-resistant connection and to the outer profile via a shear-resistant connection.
  • a so-called ⁇ -insulating profile 4 is shown, which by its increased width compared to the design according to Fig. 2 has improved properties, as the insulating profile 4 is flush with the metal profile in the outer contour.
  • the curvature of the longitudinal webs 11a, 11b, their length in the plane of the Fig. 3 increases, whereby the thermal insulation compared to the geometry according to Fig. 2 somewhat improved.
  • the transverse webs 9a, 9b are arranged closer to the outer profile 3 in order to increase the moment of inertia.
  • transverse bulkheads 14 are each provided instead of transverse webs 9, 9a, 9b, transverse bulkheads 14 on the longitudinal webs 11 of the insulating webs 4-1 and 4-2 forming the insulating profile, which are also arranged eccentrically, since the transverse bulkheads 14 spaced apart from the inner profile 2 each time the moment of inertia of the associated insulating web 4-1, 4-2 increased.
  • transverse bulkheads 14 represent a barrier which reduces the heat flow through radiation between the inner profile 2 and the outer profile 2. If two insulation bars 4-1 and 4-2 as in Figures 4 , 5 and 6th shown are designed mirror images of one another and the transverse bulkheads almost touch, almost closed hollow chambers 12 are also formed, which further improve the thermal insulation. The almost closed hollow chambers hinder the transfer of heat by convection, as there is a there is a reduced temperature difference from transverse bulkhead to transverse bulkhead.
  • the embodiments according to Figures, 7 , 8th and 9 match those after Figures 4 , 5 and 6th and additionally have at least one LE layer (low emissivity) with low emissivity applied either on one side or on both sides to the transverse bulkheads, which is either glued on as a film or sprayed on as a lacquer layer.
  • the LE layers 15, 15a, 15b, 15c, 15d reduce the heat flow due to radiation and therefore contribute to the improved thermal insulation of the metal-plastic composite profile 1 according to the embodiments of FIG Figures 7 , 8th and 9 compared to the otherwise identical embodiments Figures 4 , 5 and 6th at.
  • the exchange of energy with the outer profile is hindered more effectively if the LE layer points towards the outer profile.
  • the optimal solution is to provide both the surface facing the outer profile and the surface facing the inner profile with an LE layer.
  • an LE layer 15 is also provided on the transverse web 9a, which layer faces the inner profile 2.
  • an outer profile 3 and an inner profile 2 are also shown schematically, each of which has a dovetail-shaped receptacle 6.
  • the flexible connection 7 between the insulating profile 4 and the outer profile 3 can be laid in the insulating profile 4 as an additional variant in all the embodiments of the invention shown.
  • the insulating profile 4 consists of a first insulating web element 4a and a second insulating web element 4b.
  • Both the first insulating web element 4a and the second insulating web element 4b are connected to the inner profile 2 and outer profile 3 via a shear-resistant connection 5.
  • the shear-soft connection 7 which is positive-locking in the transverse direction, which allows relative sliding in a direction perpendicular to the plane of the drawing Fig. 10 allowed.
  • the flexible connection 7 is located near the outer profile 3, so that the flexible connection 7 is also in the immediate vicinity of the outer profile 3 in this embodiment.
  • the length L1 of the insulating bar element 4a connected to the inner profile 2 in a shear-proof manner can therefore advantageously be at least twice as great in the heat flow direction as the length L2 of the insulating bar element 4b connected to the outer profile 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Wing Frames And Configurations (AREA)
  • Door And Window Frames Mounted To Openings (AREA)

Description

    Gebiet der Erfindung
  • Die Erfindung betrifft ein Metall-Kunststoff-Verbundprofil mit reduzierter Verformung bei Temperaturunterschieden.
  • Stand der Technik
  • Wärmegedämmte Verbundprofile werden für Rahmen von Fenstern, Türen oder Fassaden eingesetzt. Dabei wird zwischen einem Außenprofil aus Metall sowie einem Innenprofil aus Metall ein Dämmprofil oder eine Vielzahl einzelner Dämmstege zur thermischen Entkopplung angeordnet, um den unerwünschten Wärmefluss zwischen dem Innen- und Außenprofil zu reduzieren. Bei herkömmlichen Verbundprofilen wird dabei eine kraftschlüssige und daher schubfeste Verbindung zwischen dem Dämmprofil und dem Innen- und Außenprofil hergestellt. Die kraftschlüssige Verbindung erzeugt eine Biegesteifigkeit des Verbundprofils, welche zur Abtragung von Lasten in Querzugrichtung, z.B. bei Winddruck oder bei Windsog benötigt wird. Die Querzugrichtung verläuft in Richtung des Abstands zwischen dem Innenprofil und Außenprofil, während die Schubrichtung senkrecht dazu verläuft.
  • Da das Dämmprofil zwischen den Metallprofilen eine thermische Trennebene darstellt, die den Wärmefluss von dem einen Metallprofil zum anderen begrenzt, entsteht allerdings bei der Herstellung eines als schubfester Verbund bezeichneten Verbundprofils mit kraftschlüssiger Verbindung in Schubrichtung sowie in Querzugrichtung zwischen dem Dämmprofil und den Metallprofilen die Schwierigkeit, dass bei einem Temperaturunterschied zwischen den das Verbundprofil bildenden Metallprofilen, eine Durchbiegung des Verbundprofils erfolgt. Der Grund dafür besteht darin, dass sich aufgrund der größeren Längenausdehnung des Metallprofils mit höherer Temperatur eine Schubspannung zwischen den Bauteilen des Verbundprofils ergibt, die sich aufgrund der Schubfestigkeit des Verbunds in einer Durchbiegung des Verbundprofils in Richtung auf das Metallprofil mit der höheren Temperatur auswirkt.
  • Eine derartige Schwierigkeit aufgrund von Temperaturdifferenzen tritt beispielsweise im Winter zwischen der Rauminnenseite und der Außenluft auf, sowie im Sommer, sobald die Sonneneinstrahlung zu einer Temperaturerhöhung des Außenprofils führt. Diese Verformungen werden als Bi-Metall-Effekt bezeichnet, wirken sich immer als Wölbung zur wärmeren Seite hin aus und beeinträchtigen die Funktion des mit dem Verbundprofil gebildeten Bauteils wie z.B. des Fensters oder der Tür. So kann es beispielsweise zu einem schwergängigen Schließen von Fenstern und Türen kommen. Weitere mögliche Schwierigkeiten können Einschränkungen bei der Luftdichtheit und Schlagregendichtheit sein. Schließlich kann die Durchbiegung auch an Trennwandausschlüssen störend sichtbar werden.
  • Im Stand der Technik wurden bereits mehrere Abhilfemaßnahmen vorgeschlagen. Zum einen lässt sich der Bi-Metall-Effekt verringern, indem die Temperaturunterschiede verringert werden. Dies kann zum einen dadurch erfolgen, dass die thermische Trennung verschlechtert wird, was allerdings erhöhte Wärmeverluste im Winter bedeutet. Insbesondere kann die Wärmedämmung durch das Anbringen von lokalen Wärmebrücken verschlechtert werden, wodurch die Temperaturdifferenzen zwischen Innen- und Außenprofil verringert und die damit verbundene Längenänderung und Durchbiegung herabgesetzt werden.
  • Eine weitere Maßnahme besteht darin, die IR-Reflexion der Außenoberfläche zu erhöhen, was sowohl für den Sommerfall als auch den Winterfall wirksam ist. Der Nachteil dieser Maßnahme besteht allerdings darin, dass die Oberflächenvarianten des Außenprofils zur Gebäudeaußenseite hin eingeschränkt werden. Eine weitere Alternative besteht darin, die Verbundwirkung des Gesamtprofils zu verschlechtern. Dies kann zum einen dadurch geschehen, dass die Steifigkeit der Dämmstege reduziert wird, wie in der DE 20 2012 003 730 U1 beschrieben wird.
  • Eine weitere mögliche Maßnahme ist in der DE 296 23 019 U1 beschrieben. Bei dem darin beschriebenen wärmegedämmten Verbundprofil wird zur Vermeidung einer Ausbiegung bei ungleichmäßiger Erwärmung der Metallprofile eine gleitende Verbindung zwischen den Dämmstegen und den Metallprofilen vorgesehen.
  • Alle Maßnahmen zur Verschlechterung der Verbundwirkung des Gesamtprofils besitzen allerdings den Nachteil, dass die Biegesteifigkeit gegenüber einem querschnittsgleichen Verbundprofil, d.h. mit einem schubfesten Verbund zwischen dem Dämmprofil und den Metallprofilen deutlich herabgesetzt wird. DE 32 36 357 A1 offenbart ein Metall-Kunststoff-Verbundprofil mit allen Merkmalen des Oberbegriffs des Anspruchs 1.
  • Darstellung der Erfindung
  • Der Erfindung liegt die Aufgabe zugrunde, ein wärmegedämmtes Metall-Kunststoff-Verbundprofil vorzuschlagen, das einen reduzierten Bi-Metall-Effekt aufweist bei gleichzeitig ausreichender Biegesteifigkeit und Wärmedämmung.
  • Diese Aufgabe wird durch ein Metall-Kunststoff-Verbundprofil mit den Merkmalen des Anspruchs 1 gelöst. Bevorzugte Ausführungsformen folgen aus den übrigen Ansprüchen.
  • Das erfindungsgemäße Metall-Kunststoff-Verbundprofil mit reduzierter Verformung bei Temperaturunterschieden zwischen innen und außen umfasst ein Innenprofil aus Metall, ein Außenprofil aus Metall und ein Dämmprofil aus Kunststoff, mit einer schubfesten Verbindung sowie formschlüssigen Verbindung in Querzugrichtung zwischen dem Dämmprofil und dem Innenprofil. Zwischen dem Dämmprofil und dem Außenprofil besteht eine formschlüssige Verbindung in Querzugrichtung und eine schubweiche, d.h. gleitende Verbindung in Schubrichtung. Das erfindungsgemäße Metall-Kunststoff-Verbundprofil umfasst weiterhin ein Mittel zum Erhöhen der Biegesteifigkeit des Metall-Kunststoff-Verbundprofils, wobei das Mittel zum Erhöhen der Biegesteifigkeit die nachfolgende Maßnahme umfasst:
    Das Material des Dämmprofils weist ein E-Modul von mindestens 10 GPa und vorzugsweise mindestens 20 GPa auf, besonders bevorzugt von mindestens 40 GPa.
  • Der Temperaturunterschied zwischen innen und außen ist dabei der Temperaturunterschied zwischen Außenprofil und Innenprofil.
  • Erfindungsgemäß wird die Biegesteifigkeit des Metall-Kunststoff-Verbundprofils durch diese Maßnahme erhöht.
  • Es wird ein Dämmprofil verwendet, das eine erhöhte Steifigkeit aufweist. So kann bei dem Einsatz von glasfaserverstärktem Kunststoff (GFK) ein E-Modul von bis zu 60 GPa oder beim Einsatz von karbonfaserverstärktem Kunststoff (CFK) ein E-Modul von über 40 GPa erreicht werden. Im Stand der Technik übliche Werkstoffe für Dämmprofile wie PA 6.6 GF25, AWS oder PVC weisen hingegen E-Module auf, die in der Regel unter 5 GPa liegen. Indem ein Dämmsteg eingesetzt wird, dessen E-Modul mindestens 10 GPa beträgt, wird bereits eine erhöhte Biegesteifigkeit erzeugt, die zusätzlich durch das Vorsehen von mindestens einem, sich senkrecht zur Querzugrichtung erstreckenden Querelement weiter erhöht wird. Das mindestens eine sich senkrecht zur Querzugrichtung erstreckende Querelement ist ein Quersteg oder Querschott. Die zur Erzielung einer ausreichenden Biegesteifigkeit erforderlichen Abmessungen des Querelements richten sich nach deren Anzahl und Abstand vom Schwerpunkt, um eine ausreichend hohe Biegesteifigkeit zu erhalten. Das Vorsehen von Querschotten besitzt darüber hinaus den Effekt, dass die Wärmeübertragung durch Konvektion reduziert wird.
  • Nach einer bevorzugten Ausführungsform der Erfindung besteht das Dämmprofil aus GFK. GFK (glasfaserverstärkter Kunststoff) besitzt den wesentlichen Vorteil, dass übliche GFK Werkstoffe mit einem Glasfasergehalt von mehr als 40% und unter Verwendung üblicher Harze einen Wärmeausdehnungskoeffizienten aufweisen, der bei 25% bis 50% des Wärmeausdehnungskoeffizienten von Thermoplasten liegt. Dies macht ein Dämmprofil aus GFK weniger empfindlich bezüglich temperaturbedingter Verformung bei einer hohen Temperaturdifferenz im Dämmprofil.
  • Nach einer bevorzugten Ausführungsform der Erfindung weist das Dämmprofil ein erstes Dämmstegelement und ein zweites Dämmstegelement auf, und die gleitende Verbindung zwischen Dämmprofil und Außenprofil umfasst eine Gleitvorrichtung nahe dem Außenprofil zwischen dem ersten Dämmstegelement und dem zweiten Dämmstegelement. Auf diese Weise wird die in Schubrichtung gleitende Verbindung im Metall-Kunststoff-Verbundprofil entweder vollständig oder zusätzlich in eine Gleitverbindung zwischen dem ersten Dämmstegelement und dem zweiten Dämmstegelement verlegt, wobei allerdings die Gleitvorrichtung zwischen dem ersten Dämmstegelement und dem zweiten Dämmstegelement näher an dem Außenprofil als an dem Innenprofil angeordnet ist und sich vorzugsweise in demjenigen Drittel der Erstreckung des Dämmprofils zwischen Innenprofil und Außenprofil befindet, das an das Außenprofil angrenzt. Diese bevorzugte Maßnahme kann vorteilhaft sein, da eine Gleitverbindung zwischen dem Kunststoffmaterial des Dämmstegs wirkungsvoller sein kann als eine Gleitverbindung zwischen dem Metall des Außenprofils und dem Kunststoff des Dämmelements. Die Verbindung zwischen dem Dämmprofil und dem Außenprofil kann in herkömmlicher Weise ausgeführt sein, d.h. mit einer schubfesten Verbindung sowie formschlüssigen Verbindung in Querzugrichtung und somit wie die Verbindung zwischen dem Dämmprofil und dem Innenprofil.
  • Durch das Anordnen der Querstege so, dass ihre gemittelte Position näher am Außenprofil liegt als am Innenprofil wird erreicht, dass der Verbund aus Innenprofil und Dämmprofil eine besonders hohe Biegesteifigkeit erhält.
  • Nach einer Ausführungsform der Erfindung weist das Dämmprofil mindestens einen Hohlraum sowie jeweils eine Mehrzahl von Verbindungsstellen zu dem Innenprofil und dem Außenprofil auf. Durch die Verwendung eines Hohlraums und den sich hieraus ergebenden erhöhten Trägheitsmomenten wird die Biegesteifigkeit des Dämmprofils und damit die Biegesteifigkeit des gesamten Metall-Kunststoff-Verbundprofils weiter erhöht.
  • Nach einer weiteren möglichen Ausgestaltung der Erfindung ist das Dämmprofil als Hohlprofil mit mehreren Querstegen ausgebildet und die Querstege sind so angeordnet, dass ihre gemittelte Position näher am Außenprofil als am Innenprofil liegt. Mit anderen Worten kann das Dämmprofil mehrere Querstege aufweisen, die in Summe näher am Außenprofil als am Innenprofil angeordnet sind. Dies lässt sich dadurch feststellen, dass bei einer Mehrzahl von Querstegen deren individuelle Position gemittelt wird und sich die geometrisch gemittelte Position näher am Außenprofil befindet als am Innenprofil.
  • Das Vorsehen einer Schicht mit geringer Emissivität auf mindestens einem der Querstege oder mindestens einem Querschott kann nach einer bevorzugten Ausführungsform die Wärmeübertragung weiter herabsetzen.
  • Kurze Beschreibung der Zeichnungen
  • Nachfolgend wird die Erfindung rein beispielhaft anhand der beiliegenden Figuren beschrieben, in denen
  • Fig. 1
    schematisch eine erste Ausführungsform des wärmegedämmte Metall-Kunststoff-Verbundprofils nach der Erfindung zeigt;
    Fig. 2
    eine Variante der in Fig. 1 dargestellten Ausführungsform mit zwei Querstegen zeigt;
    Fig. 3
    eine Variante der in Fig. 2 dargestellten Ausführungsform mit einer unterschiedlichen Form des Dämmprofils zeigt;
    Fig. 4
    eine weitere Ausführungsform der Erfindung unter Verwendung von zwei separaten Dämmstegen darstellt
    Fig. 5
    eine Variante der Ausführungsform der Erfindung nach Fig. 4 zeigt;
    Fig. 6
    eine weitere Variante der Ausführungsform der Erfindung nach Fig. 4 und 5;
    Fig. 7
    eine Variante der Ausführungsform der Erfindung nach Fig. 4 zeigt;
    Fig. 8
    eine Variante der Ausführungsform der Erfindung nach Fig. 5 zeigt;
    Fig. 9
    eine Variante der Ausführungsform der Erfindung nach Fig. 6 zeigt; und
    Fig. 10
    eine weitere Ausführungsform der Erfindung darstellt.
    Beschreibung der bevorzugten Ausführungsformen
  • In den nachfolgenden Figuren werden jeweils dieselben Elemente mit denselben Referenzziffern bezeichnet.
  • Fig. 1 zeigt eine erste Ausführungsform eines Metall-Kunststoff-Verbundprofils 1, das aus einem Innenprofil 2, einem Außenprofil 3 sowie einem Dämmprofil 4 zwischen dem Innenprofil 2 und dem Außenprofil 3 besteht.
  • Sowohl das Innenprofil 2 wie auch Außenprofil 3 bestehen aus Metall, wobei Aluminium, Stahl, Edelstahl, wetterfester Stahl oder Kupfer/Messing besonders bevorzugt sind.
  • Bei der Verwendung von Aluminium ist dieses bevorzugt anodisiert oder beschichtet. Wird Stahl eingesetzt, so ist dieser bevorzugt verzinkt, insbesondere bandverzinkt (kontinuierlich schmelztauchveredelt) oder stückverzinkt. Alternativ kann der Stahl aber auch beschichtet sein, wobei entweder Flüssiglack oder eine Pulverbeschichtung zum Einsatz kommen können. Es ist aber auch möglich, den Stahl mittels eines Duplex-Verfahrens zu behandeln, d.h. sowohl zu verzinken als auch zu beschichten.
  • Wird für das Innenprofil und/oder Außenprofil Edelstahl gewählt, so kann dieser blank, poliert, geschliffen oder aber elektrolytisch gefärbt sein. Bei der Verwendung von Messing/Kupfer wird dieses bevorzugt blank oder gebeizt eingesetzt.
  • Zwischen dem Innenprofil 2 und dem Dämmprofil 4 ist eine schubfeste Verbindung 5 mit Querzugtragfähigkeit vorgesehen. Mit anderen Worten wird eine feste Verbindung sowohl in Pfeilrichtung A (Querzugrichtung) als auch in einer Richtung senkrecht zur Zeichenebene der Fig. 1 (Schubrichtung) hergestellt.
  • Zwischen dem Dämmprofil 4 und dem Außenprofil 3 hingegen wird eine schubweiche Verbindung 7 mit ausreichender Querzugtragfähigkeit hergestellt. Mit anderen Worten wird mit Hilfe eines geeigneten Formschlusses eine Verbindung in Pfeilrichtung A (Querzugrichtung) hergestellt, wohingegen in einer Richtung senkrecht zur Zeichenebene der Fig. 1 (Schubrichtung) das Dämmprofil 4 relativ zum Außenprofil 3 gleiten kann.
  • Sowohl die schubfeste Verbindung 5 als auch die schubweiche Verbindung 7 können über eine Formschlussverbindung in Querzugrichtung realisiert werden.
  • Die Verbindung 5 zwischen dem Dämmprofil 4 und dem Innenprofil 2 sowie die Verbindung 7 zwischen dem Dämmprofil 4 und dem Außenprofil 3 können jeweils über eine schwalbenschwanzförmige Führung 6 ausgestaltet sein. Die Verbindung 5 zwischen dem Dämmprofil 4 und dem Innenprofil 2 kann zur Herstellung der schubfesten Verbindung 5 mit einer Rändelung im Innenprofil 2 versehen ist. Im Gegensatz dazu kann die schubweiche Verbindung 7 ebenfalls über eine Schwalbenschwanzführung 6 realisiert werden, jedoch ohne eine Rändelung im Außenprofil 3, um ein Gleiten in der Längsrichtung des Dämmprofils senkrecht zur Zeichenebene der Fig. 1 zu ermöglichen.
  • Um die durch die schubweiche Verbindung 7 verringerte Biegesteifigkeit des Verbundprofils 1 zumindest teilweise zu kompensieren, wird das Dämmprofil 4 aus einem Werkstoff mit hoher Steifigkeit gefertigt, wobei der E-Modul des Werkstoffs mindestens 10 GPa beträgt. Beispielsweise lässt sich das Dämmprofil aus GFK fertigen, wobei hierbei E-Module von bis zu ca. 60 GPa erreichbar sind. Bei der Verwendung eines Dämmprofils aus einem karbonfaserverstärktem Kunststoff lassen sich sogar E-Module von über 60 GPa erzielen. Die erzielbaren Biegesteifigkeiten des Verbundprofils hängen allerdings nicht ausschließlich von dem Material des Dämmprofils 4 ab, sondern auch von dessen Geometrie. So wird in der Ausgestaltung nach Fig. 1 das Dämmprofil 4 mit einem H-förmigen Querschnitt gebildet und besitzt einen Quersteg 9a, welcher die beiden Längsstege 11a und 11b miteinander starr verbindet. In Verbindung mit einer schubfesten Verbindung 5 zum Innenprofil steigt durch den Quersteg 9a dabei der als "Steiner-Anteil" bezeichnete Abstand zum Schwerpunkt, um so ein Traggerüst mit erhöhtem Trägheitsmoment und damit verbesserter Biegesteifigkeit zu schaffen.
  • Bei der Ausführungsform nach Fig. 2 ist ein einteiliges Dämmprofil 4 mit zwei Längsstegen 11a und 11b sowie zwei Querstegen 9a und 9b dargestellt. Ansonsten entspricht die Ausführungsform nach Fig. 2 derjenigen nach Fig. 1. Durch die leiterförmige Struktur des Dämmprofils 4 nach Fig. 2 wird die Biegeseifigkeit des Dämmprofils weiter verbessert. Das Vorsehen einer Hohlkammer 12 zwischen den Querstegen 9a und 9b verbessert die Wärmedämmung.
  • Beiden Ausführungsformen nach Fig. 1 und Fig. 2 ist gemeinsam, dass die Querstege 9a und 9b gemittelt näher zum Außenprofil 3 als zum Innenprofil 2 angeordnet sind. Würde man die Position der Querstege in Querzugrichtung A relativ zu den Verbindungen 6 zwischen dem Dämmprofil 4 und dem Außenprofil 3 und zwischen dem Dämmprofil 4 und dem Innenprofil 3 betrachten, so würde die Summe der Abstände der einzelnen Querstege zum Außenprofil 3 geringer sein als die Summe der Abstände der Querstege zum Innenprofil 2. Diese Maßnahme dient dazu, dem Dämmprofil 4 durch die Erhöhung des Trägheitsmoment eine erhöhte Steifigkeit insbesondere in demjenigen Bereich zu geben, in dem aufgrund der schubweichen Verbindung 7 zwischen dem Dämmprofil 4 und dem Außenprofil 3 eine verminderte Gesamtsteifigkeit besteht.
  • Bei der Verwendung eines Dämmprofils aus einem Werkstoff hoher Steifigkeit mit einem E-Modul von mindestens 10 GPa können auch alternative Geometrien des Dämmprofils vorgesehen sein. So kann das Dämmprofil 4 auch aus einzelnen Dämmstegen bestehen, die jeweils über eine schubfeste Verbindung mit dem Innenprofil und eine schubweiche Verbindung mit dem Außenprofil verbunden sind.
  • Bei der Ausführungsform nach Fig. 3 ist ein sogenanntes Ω-Dämmprofil 4 dargestellt, das durch seine erhöhte Breite gegenüber der Ausgestaltung nach Fig. 2 verbesserte Eigenschaften besitzt, da das Dämmprofil 4 flächenbündig mit dem Metallprofilen in der Außenkontur abschließt. Darüber hinaus wird durch die Krümmung der Längsstege 11a, 11b deren Länge in der Zeichenebene der Fig. 3 erhöht, wodurch sich die Wärmedämmung gegenüber der Geometrie nach Fig. 2 etwas verbessert. Auch bei der Ausführungsform nach Fig. 3 sind die Querstege 9a, 9b näher zum Außenprofil 3 hin angeordnet, um das Trägheitsmoment zu erhöhen.
  • Bei den Ausführungsformen nach Figuren 4,5 und 6 sind jeweils anstelle von Querstegen 9, 9a, 9b, Querschotte 14 an den Längsstegen 11 der das Dämmprofil bildenden Dämmstege 4-1 und 4-2 vorgesehen, die ebenfalls außermittig angeordnet sind, da durch die vom Innenprofil 2 beanstandeten Querschotte 14 sich jeweils das Trägheitsmoment des zugehörigen Dämmstegs 4-1, 4-2 erhöht. Je mehr Querschotte 14 vorgesehen sind, desto höher wird das Trägheitsmoment.
  • Darüber hinaus stellen die Querschotte 14 eine Barriere dar, die den Wärmestrom durch Strahlung zwischen dem Innenprofil 2 und dem Außenprofil 2 verringern. Wenn zwei Dämmstege 4-1 und 4-2 wie in den Figuren 4,5 und 6 dargestellt spiegelbildlich zueinander gestaltet sind und sich die Querschotte beinahe berühren, werden zudem beinahe geschlossene Hohlkammern 12 gebildet, welche die Wärmedämmung weiter verbessern. Die beinahe geschlossenen Hohlkammern behindern die Wärmeübertragung durch Konvektion, da in den Kammern eine verringerte Temperaturdifferenz von Querschott zu Querschott vorliegt.
  • Die Ausführungsformen nach Figuren, 7,8 und 9 entsprechen diejenigen nach Figuren 4,5 und 6 und weisen zusätzlich mindestens eine entweder einseitig oder beidseitig auf die Querschotte aufgebrachte LE-Schicht (low emissivity) mit geringer Emissivität auf, die entweder als Folie aufgeklebt oder als Lackschicht aufgesprüht ist. Die LE-Schichten 15, 15a, 15b, 15c, 15d verringern den Wärmestrom durch Strahlung und tragen daher zur verbesserten Wärmedämmung des Metall-Kunststoff-Verbundprofils 1 nach den Ausführungsformen der Figuren 7, 8 und 9 gegenüber den ansonsten identischen Ausführungsformen nach Figuren 4, 5 und 6 bei. Allgemein gilt, dass der Energieaustausch mit dem Außenprofil wirkungsvoller behindert wird, wenn die LE-Schicht zu dem Außenprofil hin zeigt. Die optimale Lösung besteht allerdings darin, sowohl die zum Außenprofil gerichtete Fläche als auch die zum Innenprofil gerichtete Fläche mit einer LE-Schicht zu versehen.
  • Bei der Ausführungsform nach Fig. 10 mit H-förmigem Dämmprofil 4 ist ebenfalls auf dem Quersteg 9a eine LE-Schicht 15 vorgesehen, die dem Innenprofil 2 zugewandt ist. In der Fig. 10 sind zudem schematisch ein Außenprofil 3 sowie ein Innenprofil 2 dargestellt, die jeweils eine schwalbenschwanzförmige Aufnahme 6 besitzen. Abweichend zu den in den übrigen Figuren dargestellten Ausführungsformen kann die schubweiche Verbindung 7 zwischen dem Dämmprofil 4 und dem Außenprofil 3 bei allen dargestellten Ausführungsformen der Erfindung als zusätzliche Variante in das Dämmprofil 4 verlegt werden. Dazu besteht das Dämmprofil 4 aus einem ersten Dämmstegelement 4a und einem zweiten Dämmstegelement 4b. Sowohl das erste Dämmstegelement 4a wie auch das zweite Dämmstegelement 4b sind dabei über eine schubfeste Verbindung 5 mit dem Innenprofil 2 und Außenprofil 3 verbunden. Zwischen den beiden Dämmstegelementen 4a und 4b befindet sich die schubweiche und in Querzugsrichtung formschlüssige Verbindung 7, welche ein relatives Gleiten in einer Richtung senkrecht zu Zeichenebene der Fig. 10 erlaubt. Wichtig ist allerdings, dass sich die schubweiche Verbindung 7 nahe dem Außenprofil 3 befindet, so dass sich die schubweiche Verbindung 7 auch bei dieser Ausgestaltung in unmittelbarer Nähe zum Außenprofil 3 befindet. Die Länge L1 des mit dem Innenprofil 2 schubfest verbundenen Dämmstegelements 4a kann in vorteilhafter Weise daher mindestens doppelt so groß in Wärmestromrichtung sein wie die Länge L2 des mit dem Außenprofil 3 verbundenen Dämmstegelements 4b.
  • Allen Ausführungsformen ist gemeinsam, dass sich durch die Schaffung eines erfindungsgemäßen Metall-Kunststoff-Verbundprofils der Bi-Metall-Effekt beschränken lässt und sich zugleich eine ausreichende Wärmedämmung und ausreichende Biegesteifigkeiten erzielen lassen. Bei der Wärmedämmung lassen sich Wärmedurchgangskoeffizienten Uf von ≤ 3.0 W/(m2K) und bis hin zu Wärmedurchgangskoeffizienten von Uf von ≤ 1.5 W/(m2K) erzielen. Je nach der Geometrie des Dämmprofils und dessen Materialwahl kann eine Biegesteifigkeit erzielt werden, die gegenüber einem Verbundprofil aus einem herkömmlichen thermoplastischen Material und mit gleitender Verbindung zwischen dem Dämmprofil und dem Außenprofil eine deutlich höhere Biegesteifigkeit erreicht.

Claims (7)

  1. Metall-Kunststoff-Verbundprofil umfassend:
    - ein Innenprofil (2) aus Metall;
    - ein Außenprofil (3) aus Metall; und
    - ein Dämmprofil (4) aus Kunststoff; wobei
    - das Dämmprofil (4) eine Geometrie besitzt, die mindestens ein sich senkrecht zur Querzugrichtung erstreckendes Querelement (9a, 9b, 9c; 14) umfasst;
    dadurch gekennzeichnet, dass
    das Metall-Kunststoff-Verbundprofil umfasst
    - eine schubfeste und in Querzugrichtung formschlüssigen Verbindung (6) zwischen dem Dämmprofil (4) und dem Innenprofil (2) und
    - zwischen dem Dämmprofil (4) und dem Außenprofil (3) eine formschlüssige Verbindung in Querzugrichtung und eine gleitende Verbindung (7) in Schubrichtung; so dass
    - das Metall-Kunststoff-Verbundprofil eine reduzierte Verformung bei Temperaturunterschieden zwischen innen und außen aufweist; wobei
    das Material des Dämmprofils (4) ein E-Modul von mindestens 10 GPa, vorzugsweise mindestens 20 GPa und besonders bevorzugt mindestens 40 GPa aufweist, um die Biegesteifigkeit des Metall-Kunststoff-Verbundprofils (1) zu erhöhen.
  2. Metall-Kunststoff-Verbundprofil nach Anspruch 1,
    dadurch gekennzeichnet, dass
    das Dämmprofil (4) aus GFK oder CFK, vorzugsweise aber aus GFK besteht.
  3. Metall-Kunststoff-Verbundprofil nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    das Dämmprofil (4) ein erstes Dämmstegelement (4a) und ein zweites Dämmstegelement (4b) aufweist und die gleitende Verbindung (7) zwischen Dämmprofil (4) und Außenprofil (3) eine Gleitvorrichtung nahe dem Außenprofil (3) zwischen dem ersten Dämmstegelement (4a) und dem zweiten Dämmstegelement (4b) umfasst.
  4. Metall-Kunststoff-Verbundprofil nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet., dass
    das Dämmprofil (4) mindestens einen Hohlraum sowie jeweils eine Mehrzahl von Verbindungsstellen zu dem Innenprofil und dem Außenprofil aufweist.
  5. Metall-Kunststoff-Verbundprofil nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    das Dämmprofil (4) als Hohlprofil mit einem oder mehreren Querstegen (9; 9a, 9b, 9c) ausgebildet ist und der Quersteg (9) oder die Querstege (9a, 9b, 9c) so angeordnet sind, dass ihre gemittelte Position näher am Außenprofil (3) als am Innenprofil (2) liegt.
  6. Metall-Kunststoff-Verbundprofil nach einem der Ansprüche 1 bis 4, weiter umfassend mehrere Querschotte (14) an den Längsstegen (11) des Dämmprofils (4).
  7. Metall-Kunststoff-Verbundprofil nach einem der Ansprüche 5 und 6, weiter umfassend eine Schicht mit geringer Emissivität (15) auf mindestens einem Quersteg (9; 9a, 9b, 9c) oder mindestens einem Querschott (14).
EP16812732.2A 2016-12-14 2016-12-14 Wärmegedämmtes metall-kunststoff-verbundprofil Not-in-force EP3555404B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2016/081042 WO2018108268A1 (de) 2016-12-14 2016-12-14 Wärmegedämmtes metall-kunststoff-verbundprofil

Publications (2)

Publication Number Publication Date
EP3555404A1 EP3555404A1 (de) 2019-10-23
EP3555404B1 true EP3555404B1 (de) 2021-01-20

Family

ID=57570067

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16812732.2A Not-in-force EP3555404B1 (de) 2016-12-14 2016-12-14 Wärmegedämmtes metall-kunststoff-verbundprofil

Country Status (2)

Country Link
EP (1) EP3555404B1 (de)
WO (1) WO2018108268A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016125602B4 (de) * 2016-12-23 2020-09-24 Solarlux Gmbh Isolierkörper für mehrschalige Bauelemente
FR3099199B1 (fr) * 2019-07-23 2022-02-11 Groupe Liebot Ouvrant pour une menuiserie destinée à équiper une baie de bâtiment
WO2021162643A1 (en) * 2020-02-11 2021-08-19 Pirnar, Trženje, Proizvodnja In Razvoj, D.O.O. A frame, in particular door frame
US20250003284A1 (en) * 2021-10-29 2025-01-02 Vic De Zen Structural component, with low emissivity materials, for use in a building structure

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3236357A1 (de) * 1982-10-01 1984-04-05 Wilfried Dipl.-Ing. 7031 Nufringen Ensinger Verfahren zum verbinden der metallischen innen- und aussenteile eines verbundprofils mit einem isoliersteg aus kunststoff
DE19528498C1 (de) * 1995-02-01 1996-06-27 Albert Kraemer Isolierkern für Verbundprofil, insbesondere für Fenster, Türen und Fassadenkonstruktionen
EP1225297A1 (de) * 2001-01-19 2002-07-24 DFS Technology & Service AG Fensterkonstruktion und Fensterrahmen
DE102008020988A1 (de) * 2008-04-25 2009-10-29 Mario Reincke Wärmeisolierendes Rahmenprofil für die Herstellung von Tür- und Fensterrahmen
DE102013204693A1 (de) * 2012-03-19 2013-09-19 Harald Schulz Dämmsteg für wärmegedämmte Metall-Kunststoff-Verbundprofile mit über der Dämmsteglänge veränderlicher Schubtragfähigkeit sowie wärmegedämmtes Verbundprofil
DE102012009838A1 (de) * 2012-05-16 2013-11-21 Technoform Bautec Holding Gmbh Isoliersteg mit Folienisolierkörper

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3555404A1 (de) 2019-10-23
WO2018108268A1 (de) 2018-06-21

Similar Documents

Publication Publication Date Title
EP0829609B1 (de) Wärmegedämmtes Verbundprofil für Türen, Fenster oder Fassaden
EP3555404B1 (de) Wärmegedämmtes metall-kunststoff-verbundprofil
EP0153758A2 (de) Verbundstab, insbesondere für Fensterrahmen, Türrahmen und Rolläden
EP2360341B1 (de) Verfahren zum Herstellen einer Profilanordnung und deren Verwendung
EP2236720A1 (de) Profilelement für Fenster oder Türen
EP2559838A2 (de) Lackierfähiger Isoliersteg für ein Verbundprofil für Fenster-, Türen-, oder Fassadenelemente und Verbundprofil mit demselben
EP3184723B1 (de) Verbundprofil für fenster, türen oder dergleichen
EP2916079B1 (de) Rahmenanordnung für fenster, türen oder vorhängefassaden mit mindestens einem heizmittel
WO1999010619A1 (de) Profilsystem und verfahren zur herstellung von fenstern oder türen
EP2586953B1 (de) Isoliersteg und wärmegedämmtes profil
EP3555405B1 (de) Wärmegedämmtes metall-kunststoff-verbundprofil
EP1681430A2 (de) Verbundprofiil für Rahmen von Wandelementen, Türen und Fenstern
EP2500503B1 (de) Schieberahmenvorrichtung
EP2990581B1 (de) Tür oder fenster mit brandschutzeigenschaften
DE202007015319U1 (de) Isolator für Fenster-, Tür- und Fassadensysteme
DE102014112145A1 (de) Verbundprofil für Türen, Fenster oder Fassadenelemente
EP3048232B1 (de) Metallprofil, Verbundprofil mit einem solchen Metallprofil sowie Verfahren zur Herstellung des Metallprofils
EP4102021B1 (de) Fenster- oder tür-hohlkammerprofil, system mit einem solchen hohlkammerprofil und daraus hergestellter rahmen
DE102011122924B4 (de) Isoliersteg und wärmegedämmtes Profil
EP2607599A1 (de) Hohlprofil für einen Rahmen
EP2453096B1 (de) Schieberahmenvorrichtung
DE102020203105A1 (de) Tür
EP1070821B1 (de) Kunststoffhohlprofil
EP4325018A1 (de) Wärmegedämmtes metallprofil mit isolierstegen zum verbinden zweier profilelemente sowie brückenstege zum verbinden zweier isolierstege
EP4446549A1 (de) Flügel- oder blendrahmen eines fensters, einer tür oder einer fassadenverkleidung

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190702

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200729

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016012272

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1356541

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210120

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210420

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210520

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210520

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016012272

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502016012272

Country of ref document: DE

Owner name: SCHULZ, HARALD, DR.-ING., DE

Free format text: FORMER OWNER: FELDMEIER, FRANZ, DR., 83109 GROSSKAROLINENFELD, DE

26N No opposition filed

Effective date: 20211021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211214

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211214

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211214

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220518

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1356541

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210120

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20161214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502016012272

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240702