[go: up one dir, main page]

EP3545175B1 - Method for controlling a turbomachine valve - Google Patents

Method for controlling a turbomachine valve Download PDF

Info

Publication number
EP3545175B1
EP3545175B1 EP17811651.3A EP17811651A EP3545175B1 EP 3545175 B1 EP3545175 B1 EP 3545175B1 EP 17811651 A EP17811651 A EP 17811651A EP 3545175 B1 EP3545175 B1 EP 3545175B1
Authority
EP
European Patent Office
Prior art keywords
engine speed
filtering
determining
valve
position command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17811651.3A
Other languages
German (de)
French (fr)
Other versions
EP3545175A1 (en
Inventor
Florian MACHE
Arnaud RODHAIN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
Safran Aircraft Engines SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Aircraft Engines SAS filed Critical Safran Aircraft Engines SAS
Publication of EP3545175A1 publication Critical patent/EP3545175A1/en
Application granted granted Critical
Publication of EP3545175B1 publication Critical patent/EP3545175B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/14Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing
    • F01D11/20Actively adjusting tip-clearance
    • F01D11/24Actively adjusting tip-clearance by selectively cooling-heating stator or rotor components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/06Fluid supply conduits to nozzles or the like
    • F01D9/065Fluid supply or removal conduits traversing the working fluid flow, e.g. for lubrication-, cooling-, or sealing fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/11Purpose of the control system to prolong engine life
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/20Purpose of the control system to optimize the performance of a machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/40Type of control system
    • F05D2270/44Type of control system active, predictive, or anticipative
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/60Control system actuates means
    • F05D2270/64Hydraulic actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/70Type of control algorithm
    • F05D2270/702Type of control algorithm differential

Definitions

  • the invention relates to turbomachines and methods or devices for controlling valves controlling an air flow, and in particular LPTACC valves (“low pressure turbine active clearance command ” in English according to the terminology used in aeronautics for active control. low pressure turbine clearances), that is to say the valves which aim to control the clearance between a turbine blade and a casing disposed radially around it.
  • LPTACC valves low pressure turbine active clearance command
  • the valves which aim to control the clearance between a turbine blade and a casing disposed radially around it.
  • the expansion of elements depends on several parameters, including materials, assemblies, speed of rotation, temperature, etc.
  • the LPTACC valve therefore makes it possible to influence the temperature of the crankcase.
  • the game is modulated according to the phases of flight, engine speed, altitude ...
  • a turbomachine 10 with double flow for aeronautical propulsion is shown in figure 1a . It comprises a fan 11 delivering an air flow, a central part of which is injected into a primary stream VP comprising a compressor 12 which supplies a turbine 14 driving the fan.
  • the turbine 14 comprises a plurality of radially extending vanes 140 and is housed radially inside a casing 16.
  • the peripheral part of the air flow coming from the blower circulates in a secondary vein VS. This peripheral part of the air flow is ejected towards the atmosphere to provide the major part of the thrust of the turbomachine 10.
  • control valve 20 which is preferably of the LPTACC type, is provided.
  • the figure 1b schematically illustrates the architecture of the environment of this valve 20 and of its active control.
  • This control valve 20 makes it possible to continuously control an air flow coming from the secondary stream, from a sample 18, and to direct it towards the casing 16 arranged opposite the blades 140 of the turbine 14.
  • the sampling 18 communicates with a supply duct 22 which brings the air flow to the control valve 20.
  • a reject duct 24 then brings this air from the control valve 20 to the housing 16.
  • a calculation unit 40 receives in particular as input the value of the engine speed and calculates a flow control which is converted into a position control. This position command is sent to an actuator 30 which controls the valve 20. Position sensors (not shown) allow feedback to the calculation unit 40.
  • FIG. 1b it is a hydraulic actuator 30 which controls a hydraulic servo valve 20.
  • the link 41 between the calculation unit 40 and the actuator 30 is electrical.
  • the connection 31 between the actuator 30 and the valve 20 is hydraulic.
  • the return link 21 between the control valve 20 and the computing unit 40 is electrical.
  • the main aim of the active control is to reduce the clearance at the top of the blade 140 of the turbine 14 in order to optimize the specific consumption, that is to say the quantity of fuel necessary to produce a thrust of one Newton for one hour.
  • One of the objectives of the control is to define an optimal air flow for the active control, making it possible to limit as much as possible the clearance at the top of the blades 140 while minimizing the quantity of air taken from the fan, because the air flowing in this way does not directly contribute to the thrust provided by the turbomachine 10.
  • This objective is mainly aimed at during the cruising phases (“ cruise ” in English, ie the steady state).
  • the reference patent application is also known WO2007 / 086893 presenting a system for controlling the blade tip play in turbomachines.
  • the invention relates to the control valves 20 of a turbomachine 10 and the associated methods.
  • the elements and their references indicated in the introduction will be reused for the description below.
  • the position control is intended to allow the control of the valve 20, in particular via an actuator 30 if the latter is not integrated into the valve 20.
  • control valve 20 oscillates around its equilibrium position.
  • the amplitude of these oscillations is small compared to the value of the command, but the frequency is high compared to the thermal response of the housing 16.
  • step E3 of determining the control in position of the valve directly follows step E2.
  • the flow control supplied by the computing unit 40 is very sensitive to the oscillations of the engine speed which varies by a few percent when it is in cruising mode.
  • a cruising value Vc around which the engine speed oscillates at a frequency fo and an amplitude Ao (Ao being low compared to Vc, typically less than 5% of Vc).
  • the frequency fo is about 1 Hz (variable depending on the turbomachines).
  • the invention therefore proposes a control method comprising a step of determining for the control valve 20 a control in the filtered position of the oscillations of the engine speed around the cruising value Vc.
  • the filtering uses a low-pass filter whose cutoff frequency is greater than a frequency associated with the thermal response time of the casing, in order to ensure that the filtering does not disturb the function of the valve.
  • a suitable filtering makes it possible to eliminate the noise of the signal and to optimize the management of the valve.
  • the cumulative stroke of the valve can thus be divided by three on a flight, which increases its service life.
  • the filtering is performed using a low pass filter, a cutoff frequency fc of which is lower than the frequency of the oscillations fo, in order to attenuate them. More generally, the cutoff frequency fc is chosen to attenuate the oscillations throughout the cruising phase.
  • the filtering provided in the process makes it possible to limit the influence of the oscillations on the control in position and thus to improve the service life of the valve 20.
  • the filtering can be carried out on different signals but ultimately produces a similar result, namely that the position control is filtered from the oscillations of the engine speed.
  • the invention applies advantageously to LPTACC valves (that is to say intended to supply the casing with air to modify its expansion), but also to any type of valve including the computer unit which controls it in Input of engine speed data and therefore applies to valves whose position oscillates in response to engine speed oscillations. These valves control the flow of fluid, in particular air.
  • the invention also proposes a system for controlling a control valve of a turbomachine operating at engine speed at a cruising value Vc, said control valve being intended to supply air to a casing in order to modify its expansion, said system comprising a control valve and a calculation unit configured to implement the method as described above.
  • the calculation unit comprises a data reception interface, a processor capable of processing data, a memory (for storing data) and a data output interface.
  • the computing unit comprises a filtration unit (typically the processor which executes operations), which performs the filtering operation.
  • the filtering step Ef is applied to the command in position resulting from step E3, so that a command in filtered position is obtained at the output.
  • the filtering is carried out with a first order low pass filter, having a single cutoff frequency fc.
  • the choice of the type of filter is based on the fact that the frequencies to be suppressed are much higher than the nominal behavior of the logic.
  • Determining the cutoff frequency fc is an important condition for obtaining effective filtering that does not cripple the control process.
  • the response time of the filter was chosen by a compromise between two constraints. Indeed, this response time must be high enough to eliminate a maximum of oscillations without slowing down the system to unacceptable proportions from the point of view of the thermal response of the casing. In fact, too low a frequency would filter the nominal value of the control and the control valve 20 would remain virtually stationary.
  • the frequency fo of the micro-oscillations was also estimated, which made it possible to determine a lower limit of the response time, and therefore an upper limit for the cut-off frequency fc.
  • a cutoff frequency fc between 0.05 and 0.15 Hz, or even 0.08 and 0.12 Hz or more broadly between 0.01 and 0.20Hz .
  • the frequency fo is around 1 Hz, which is far enough from the previous upper bounds to ensure effective filtering.
  • cut-off frequencies fc in the latter interval it is ensured to have response times lower than those of the housing 16.
  • the addition of the filter slows down the system somewhat and it should preferably only be applied in relevant flight phases. In this case, it is only desirable to apply this filtering in cruising flight conditions, that is to say when the engine speed is in steady state (speed at which the oscillations are observed at the frequency fo).
  • control valve 20 when the system requests a rapid reaction from the control valve 20, it is desired that the control is not slowed down by a filter (for example an action of the pilot, during take-off or landing or for example a sudden change environment).
  • a filter for example an action of the pilot, during take-off or landing or for example a sudden change environment.
  • this gradient is compared with a deactivation threshold value Sg. More precisely, to get rid of questions of signs, the absolute value of this gradient is compared with the deactivation threshold value Sg.
  • the filtering step Ef is deactivated if the gradient is greater than or equal to said threshold Sg.
  • a threshold value which is between 0.5 and 2.5% per second, that is to say that at one second interval, the command varies between 0.5 and 2.5% of its original value.
  • the threshold value is 1% for 0.72 seconds, or 1.4% per second.
  • An interval of 1 and 2% per second may also be suitable.
  • a gradient greater than the threshold Sg means that it is not a micro-oscillation which is detected, but a relevant change for the system which can have an impact on the housing 16.
  • the filtering stops and the system recovers its classic operation.
  • the value analyzed is the control gradient and not the physical measurement given by the sensors: the solution would take filtering into account (since the control in position has been filtered) and would be too slow.
  • the reactivation (or activation) of the filtering step is also done under condition using another sub-process, also represented in figure 3 .
  • Step E63 is improperly represented on the figure 3 , since the drawn block outputs an activation condition, which is then preferably combined with the other activation conditions to effectively activate the filter.
  • the filter can be re-engaged.
  • the filtering step Ef is applied to the engine speed data from step E1, so that a command in the filtered position is again obtained at the output.
  • the step of determining a flow rate control E2 is then carried out on the basis of the filtered data relating to the engine speed.
  • Embodiments with activation and deactivation thresholds can also be implemented.
  • step E3 It is also conceivable to apply the filtering step to the flow control resulting from step E2.
  • the step of determining the command in position E3 is then carried out on the basis of filtered flow control data. This embodiment is illustrated in figure 5 .
  • Embodiments with activation and deactivation thresholds can also be implemented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Control Of Turbines (AREA)

Description

DOMAINE TECHNIQUE GENERALGENERAL TECHNICAL FIELD

L'invention concerne les turbomachines et les procédés ou dispositifs de commandes de vannes contrôlant un flux d'air, et en particulier les vannes LPTACC (« low pressure turbine active clearance command » en anglais selon la terminologie employée dans l'aéronautique pour commande active des jeux de la turbine basse pression), c'est-à-dire les vannes qui ont pour but de contrôler le jeu entre une aube de turbine et un carter disposé radialement autour. En injectant de l'air sur le carter, on peut le refroidir et contrôler sa dilatation thermique, ce qui provoque une diminution de sa taille et donc une diminution du jeu.The invention relates to turbomachines and methods or devices for controlling valves controlling an air flow, and in particular LPTACC valves (“ low pressure turbine active clearance command ” in English according to the terminology used in aeronautics for active control. low pressure turbine clearances), that is to say the valves which aim to control the clearance between a turbine blade and a casing disposed radially around it. By injecting air into the crankcase, it can be cooled and its thermal expansion controlled, which causes a reduction in its size and therefore a reduction in play.

La dilation des éléments dépend de plusieurs paramètres, dont les matériaux, les assemblages, la vitesse de rotation, la température, etc. La vanne LPTACC permet donc d'influer sur la température du carter.The expansion of elements depends on several parameters, including materials, assemblies, speed of rotation, temperature, etc. The LPTACC valve therefore makes it possible to influence the temperature of the crankcase.

Le jeu est modulé en fonction des phases de vol, du régime moteur, de l'altitude...The game is modulated according to the phases of flight, engine speed, altitude ...

ETAT DE L'ARTSTATE OF THE ART

Une turbomachine 10 à double flux pour la propulsion aéronautique est représentée en figure 1a . Elle comprend une soufflante 11 délivrant un flux d'air dont une partie centrale est injectée dans une veine primaire VP comprenant un compresseur 12 qui alimente une turbine 14 entraînant la soufflante. La turbine 14 comprend une pluralité d'aubes 140 s'étendant radialement et est logée radialement à l'intérieur d'un carter 16.A turbomachine 10 with double flow for aeronautical propulsion is shown in figure 1a . It comprises a fan 11 delivering an air flow, a central part of which is injected into a primary stream VP comprising a compressor 12 which supplies a turbine 14 driving the fan. The turbine 14 comprises a plurality of radially extending vanes 140 and is housed radially inside a casing 16.

La partie périphérique du flux d'air provenant de la soufflante circule dans une veine secondaire VS. Cette partie périphérique du flux d'air est éjectée vers l'atmosphère pour fournir la majeure partie de la poussée de la turbomachine 10.The peripheral part of the air flow coming from the blower circulates in a secondary vein VS. This peripheral part of the air flow is ejected towards the atmosphere to provide the major part of the thrust of the turbomachine 10.

Afin de contrôler le jeu entre les aubes 140 de la turbine 14 et le carter 16, une vanne de contrôle 20, qui est préférablement du type LPTACC, est prévue. La figure 1b illustre schématiquement l'architecture de l'environnement de cette vanne 20 et de son contrôle actif.In order to control the clearance between the blades 140 of the turbine 14 and the casing 16, a control valve 20, which is preferably of the LPTACC type, is provided. The figure 1b schematically illustrates the architecture of the environment of this valve 20 and of its active control.

Cette vanne de contrôle 20 permet de contrôler de façon continue un débit d'air issu de la veine secondaire, à partir d'un prélèvement 18, et de le diriger vers le carter 16 disposé en regard des aubes 140 de la turbine 14. Le prélèvement 18 communique avec un conduit d'amenée 22 qui amène le flux d'air à la vanne de contrôle 20. Un conduit de rejet 24 amène ensuite cet air depuis la vanne de contrôle 20 vers le carter 16.This control valve 20 makes it possible to continuously control an air flow coming from the secondary stream, from a sample 18, and to direct it towards the casing 16 arranged opposite the blades 140 of the turbine 14. The sampling 18 communicates with a supply duct 22 which brings the air flow to the control valve 20. A reject duct 24 then brings this air from the control valve 20 to the housing 16.

Une unité de calcul 40 reçoit notamment en entrée la valeur du régime moteur et calcule une commande en débit qui est convertie en une commande en position. Cette commande en position est envoyée vers un actionneur 30 qui pilote la vanne 20. Des capteurs de position (non représentés) permettent un retour vers l'unité de calcul 40.A calculation unit 40 receives in particular as input the value of the engine speed and calculates a flow control which is converted into a position control. This position command is sent to an actuator 30 which controls the valve 20. Position sensors (not shown) allow feedback to the calculation unit 40.

Sur la figure 1b , il s'agit d'un actionneur 30 hydraulique qui pilote une servovanne 20 hydraulique. La liaison 41 entre l'unité de calcul 40 et l'actionneur 30 est électrique. La liaison 31 entre l'actionneur 30 et la vanne 20 est hydraulique. La liaison de retour 21 entre la vanne de contrôle 20 et l'unité de calcul 40 est électrique.On the figure 1b , it is a hydraulic actuator 30 which controls a hydraulic servo valve 20. The link 41 between the calculation unit 40 and the actuator 30 is electrical. The connection 31 between the actuator 30 and the valve 20 is hydraulic. The return link 21 between the control valve 20 and the computing unit 40 is electrical.

Le contrôle actif vise principalement à réduire le jeu en sommet d'aube 140 de turbine 14 pour optimiser la consommation spécifique, c'est-à-dire la quantité de carburant nécessaire pour produire une poussée de un Newton pendant une heure.The main aim of the active control is to reduce the clearance at the top of the blade 140 of the turbine 14 in order to optimize the specific consumption, that is to say the quantity of fuel necessary to produce a thrust of one Newton for one hour.

L'un des objectifs du contrôle est de définir un débit optimal d'air pour le contrôle actif, permettant de limiter au maximum le jeu en sommet des aubes 140 tout en minimisant la quantité d'air prélevé dans la soufflante, car l'air s'écoulant par ce biais ne contribue pas directement à la poussée fournie par la turbomachine 10. Cet objectif est principalement visé lors des phases de croisière (« cruise » en anglais, c'est à le dire le régime permanent).One of the objectives of the control is to define an optimal air flow for the active control, making it possible to limit as much as possible the clearance at the top of the blades 140 while minimizing the quantity of air taken from the fan, because the air flowing in this way does not directly contribute to the thrust provided by the turbomachine 10. This objective is mainly aimed at during the cruising phases (“ cruise ” in English, ie the steady state).

La durée de vie de ces vannes de contrôle est souvent plus basse que celle prévue par les constructeurs. Des solutions ont consisté à renforcer les vannes, en utilisant des matériaux plus résistants, mais le problème n'est que partiellement résolu.The service life of these control valves is often lower than that expected by the manufacturers. Solutions have been to strengthen the valves, using more resistant materials, but the problem is only partially resolved.

Il est aussi connu la demande de brevet référence WO2007/086893 présentant un système pour contrôler le jeu de la pointe d'aube dans des turbomachines.The reference patent application is also known WO2007 / 086893 presenting a system for controlling the blade tip play in turbomachines.

PRESENTATION DE L'INVENTIONPRESENTATION OF THE INVENTION

Comme indiqué en introduction, l'invention concerne les vannes de contrôle 20 de turbomachine 10 et les procédés associés. Les éléments et leurs références indiquées en introduction seront réutilisés pour la description ci-dessous.As indicated in the introduction, the invention relates to the control valves 20 of a turbomachine 10 and the associated methods. The elements and their references indicated in the introduction will be reused for the description below.

Les procédés de commande de la vanne de contrôle 20 comprennent généralement les étapes suivantes mises en œuvre par l'unité de calcul 40 :

  • Une étape E1 de réception des données quantifiant le régime moteur de la turbomachine,
  • Une étape E2 de détermination d'une commande en débit à partir notamment des données quantifiant le régime moteur,
  • Une étape E3 de détermination d'une commande en position à partir de la commande en débit.
The methods for controlling the control valve 20 generally comprise the following steps implemented by the computing unit 40:
  • A step E1 of receiving data quantifying the engine speed of the turbomachine,
  • A step E2 of determining a flow control based in particular on data quantifying the engine speed,
  • A step E3 of determining a position control from the flow control.

La commande en position est destinée à permettre le pilotage de la vanne 20, notamment via un actionneur 30 si ce dernier n'est pas intégré à la vanne 20.The position control is intended to allow the control of the valve 20, in particular via an actuator 30 if the latter is not integrated into the valve 20.

D'autres données interviennent pour la commande en position, notamment les constantes de la fonction de transfert de l'actionneur 30. Ces données, connues, ne concernent pas directement l'invention et ne seront pas détaillées davantage.Other data is involved for the position control, in particular the constants of the transfer function of the actuator 30. These known data do not directly relate to the invention and will not be detailed further.

D'autres étapes interviennent ensuite, comme une étape de pilotage par l'actionneur de la vanne, l'actionneur recevant en entrée la commande en position de l'étape E3. Ces étapes ne concernent pas l'unité de calcul 40 directement.Other steps then take place, such as a step of piloting by the actuator of the valve, the actuator receiving as input the command in position of step E3. These steps do not concern the calculation unit 40 directly.

Il a été observé sur le matériel existant que la durée de vie des vannes de contrôle était plus faible qu'attendue. Comme indiqué dans l'introduction, des actions correctives portant sur la qualité des matériaux ont été lancées mais n'ont pu palier que temporairement et partiellement le problème.On existing equipment, it was observed that the service life of the control valves was shorter than expected. As indicated in the introduction, corrective actions relating to the quality of the materials were launched but could only temporarily and partially alleviate the problem.

Lors d'études plus approfondies, le Demandeur s'est aperçu que la vanne de contrôle 20 oscille autour de sa position d'équilibre. L'amplitude de ces oscillations est faible par rapport à la valeur de la commande, mais la fréquence est élevée par rapport à la réponse thermique du carter 16.During more in-depth studies, the Applicant has noticed that the control valve 20 oscillates around its equilibrium position. The amplitude of these oscillations is small compared to the value of the command, but the frequency is high compared to the thermal response of the housing 16.

Ces oscillations peuvent représenter jusqu'au deux tiers de la course totale de la vanne 20 lors d'un vol et entrainent de ce fait une usure prématurée de la vanne 20.These oscillations can represent up to two-thirds of the total stroke of the valve 20 during a flight and therefore lead to premature wear of the valve 20.

Néanmoins, le Demandeur s'est aussi aperçu que les oscillations ne sont pas dues au flux d'air qui pourrait générer des perturbations mais sont dues à l'étape E2 de détermination de la commande en débit. Or, l'étape E3 de détermination de la commande en position de la vanne suit directement l'étape E2.However, the Applicant has also noticed that the oscillations are not due to the air flow which could generate disturbances but are due to step E2 of determining the flow control. Now, step E3 of determining the control in position of the valve directly follows step E2.

Il s'est ainsi avéré que la commande en débit fournie par l'unité de calcul 40 est très sensible aux oscillations du régime moteur qui varie de quelques pourcents lorsqu'il est en mode de croisière. On définit à présent une valeur de croisière Vc autour de laquelle oscille le régime moteur à une fréquence fo et une amplitude Ao (Ao étant faible devant Vc, typiquement inférieur à 5% de Vc). La fréquence fo est d'environ 1 Hz (variable selon les turbomachines).It has thus been found that the flow control supplied by the computing unit 40 is very sensitive to the oscillations of the engine speed which varies by a few percent when it is in cruising mode. We now define a cruising value Vc around which the engine speed oscillates at a frequency fo and an amplitude Ao (Ao being low compared to Vc, typically less than 5% of Vc). The frequency fo is about 1 Hz (variable depending on the turbomachines).

Comme, en phase de croisière, la commande en position de la vanne 20 est sensiblement proportionnelle au régime moteur, cette oscillation du régime se traduit en une oscillation de la commande de position.Since, in the cruising phase, the position control of the valve 20 is substantially proportional to the engine speed, this oscillation of the speed results in an oscillation of the position control.

Le régime moteur peut notamment être obtenu par des capteurs mesurant la vitesse de rotation de l'arbre de la turbine basse-pression.The engine speed can in particular be obtained by sensors measuring the speed of rotation of the shaft of the low-pressure turbine.

A titre d'illustration, le changement de débit induit par ces oscillations de la commande en position est d'environ 5%. En raison de sa valeur et de sa fréquence, un tel changement n'a aucune utilité physique puisque le temps de réponse thermique du carter 16 est plus lent.By way of illustration, the change in flow rate induced by these oscillations of the position control is approximately 5%. Due to its magnitude and frequency, such a change has no physical utility since the thermal response time of the housing 16 is slower.

L'invention propose alors un procédé de commande comprenant une étape de détermination pour la vanne de contrôle 20 d'une commande en position filtrée des oscillations du régime moteur autour de la valeur de croisière Vc.The invention therefore proposes a control method comprising a step of determining for the control valve 20 a control in the filtered position of the oscillations of the engine speed around the cruising value Vc.

En particulier, le filtrage utilise un filtre passe-bas dont une fréquence de coupure est supérieure à une fréquence associée au temps de réponse thermique du carter, afin de s'assurer que le filtrage ne perturbe pas la fonction de la valve.In particular, the filtering uses a low-pass filter whose cutoff frequency is greater than a frequency associated with the thermal response time of the casing, in order to ensure that the filtering does not disturb the function of the valve.

En effet, l'oscillation de la vanne étant due à une oscillation de la commande en position, un filtrage adapté permet de supprimer le bruit du signal et d'optimiser la gestion de la vanne. La course cumulée de la vanne peut ainsi être divisée par trois sur un vol, ce qui augmente sa durée de vie.Indeed, the oscillation of the valve being due to an oscillation of the control in position, a suitable filtering makes it possible to eliminate the noise of the signal and to optimize the management of the valve. The cumulative stroke of the valve can thus be divided by three on a flight, which increases its service life.

Le filtrage est effectué à l'aide d'un filtre passe bas, dont une fréquence de coupure fc est inférieure à la fréquence des oscillations fo, afin de les atténuer. Plus généralement, la fréquence de coupure fc est choisie pour atténuer les oscillations durant toute la phase de croisière.The filtering is performed using a low pass filter, a cutoff frequency fc of which is lower than the frequency of the oscillations fo, in order to attenuate them. More generally, the cutoff frequency fc is chosen to attenuate the oscillations throughout the cruising phase.

Le filtrage prévu dans le procédé permet de limiter l'influence des oscillations sur la commande en position et ainsi d'améliorer la durée de vie de la vanne 20.The filtering provided in the process makes it possible to limit the influence of the oscillations on the control in position and thus to improve the service life of the valve 20.

Au vu de l'architecture des étapes effectuées dans l'unité de calcul, le filtrage peut être effectué sur des signaux différents mais produit in fine un résultat similaire, à savoir que la commande en position est filtrée des oscillations du régime moteur.In view of the architecture of the steps carried out in the calculation unit, the filtering can be carried out on different signals but ultimately produces a similar result, namely that the position control is filtered from the oscillations of the engine speed.

L'invention s'applique avantageusement aux vannes LPTACC, (c'est-à-dire destinée à alimenter en air le carter pour modifier sa dilatation), mais aussi à tout type de vanne dont l'unité de calcul qui la pilote reçoit en entrée des données relatives au régime moteur et s'applique donc aux vannes dont la position oscille en réponse aux oscillations du régime moteur. Ces vannes contrôlent des flux de fluide, en particulier d'air.The invention applies advantageously to LPTACC valves (that is to say intended to supply the casing with air to modify its expansion), but also to any type of valve including the computer unit which controls it in Input of engine speed data and therefore applies to valves whose position oscillates in response to engine speed oscillations. These valves control the flow of fluid, in particular air.

Enfin, l'invention peut présenter les caractéristiques suivantes, prises seules ou en combinaison :

  • l'étape de détermination comprend les sous-étapes suivantes :
    • (E1) réception des données quantifiant le régime moteur de la turbomachine,
    • (E2) détermination d'une commande en débit à partir des données quantifiant le régime moteur,
    • (E3) détermination d'une commande en position à partir de la commande en débit, ladite commande en position étant destinée à la vanne de contrôle,
    • (Ef) filtrage de la commande en position issue de l'étape de détermination de la commande en position (E3),
    dans lequel le filtrage est effectué à l'aide d'un filtre passe-bas dont une fréquence de coupure fc est inférieure à une fréquence (fo) des oscillations du régime moteur autour de la valeur de croisière Vc,
  • le filtre est un filtre passe-bas du premier ordre,
  • la vanne de contrôle est destinée à alimenter en air un carter pour modifier sa dilatation et dans lequel la fréquence de coupure fc est supérieure à une fréquence fr associée au temps de réponse thermique du carter,
  • la fréquence de coupure fc est comprise entre 0,05Hz et 0,15Hz,
  • le procédé comprend un sous-procédé de désactivation de l'étape de filtrage Ef mis en œuvre par l'unité de calcul, ledit sous-procédé comprenant les étapes suivantes :
    • (E51) détermination du gradient de la commande en position issue de l'étape de détermination d'une commande en position (E3),
    • (E52) comparaison de ce gradient à un seuil de désactivation Sg,
    • (E53) désactivation du filtre si le gradient est supérieur audit seuil Sg,
  • le procédé comprend un sous-procédé d'activation de l'étape de filtrage Ef mis en œuvre par l'unité de calcul, ledit sous-procédé comprenant les étapes suivantes :
    • (E61) détermination du gradient de la commande en position issue de l'étape de détermination d'une commande en position (E3),
    • (E62) comparaison de ce gradient à un seuil d'activation Sg',
    • (E63) activation du filtre si le gradient est inférieur audit seuil Sg' pendant au moins une durée de confirmation,
  • préférablement l'étape d'activation du filtre (E63) se fait si l'altitude, le régime moteur et le Mach vérifient, en outre, chacun une certaine valeur,
  • l'étape de détermination comprend les sous-étapes suivantes :
    • (E1) réception des données quantifiant le régime moteur de la turbomachine,
    • (Ef) filtrage sur données des données quantifiant le régime moteur issue de l'étape précédente,
    • (E2, E3) détermination d'une commande en position destinée à la vanne de contrôle,
    dans lequel le filtrage est effectué à l'aide d'un filtre passe-bas dont une fréquence de coupure (fc) est inférieure à une fréquence (fo) des oscillations du régime moteur autour de la valeur de croisière (Vc).
Finally, the invention can have the following characteristics, taken alone or in combination:
  • the determination step comprises the following sub-steps:
    • (E1) reception of data quantifying the engine speed of the turbomachine,
    • (E2) determination of a flow control from data quantifying the engine speed,
    • (E3) determining a position command from the flow rate command, said position command being intended for the control valve,
    • (Ef) filtering of the command in position resulting from the step of determining the command in position (E3),
    in which the filtering is carried out using a low-pass filter whose cut-off frequency fc is less than a frequency (fo) of the oscillations of the engine speed around the cruising value Vc,
  • the filter is a first order low pass filter,
  • the control valve is intended to supply a casing with air to modify its expansion and in which the cut-off frequency fc is greater than a frequency fr associated with the thermal response time of the casing,
  • the cut-off frequency fc is between 0.05Hz and 0.15Hz,
  • the method comprises a sub-method for deactivating the filtering step Ef implemented by the computing unit, said sub-method comprising the following steps:
    • (E51) determination of the gradient of the command in position resulting from the step of determining a command in position (E3),
    • (E52) comparison of this gradient with a deactivation threshold Sg,
    • (E53) deactivation of the filter if the gradient is greater than said threshold Sg,
  • the method comprises a sub-method for activating the filtering step Ef implemented by the computing unit, said sub-method comprising the following steps:
    • (E61) determination of the gradient of the command in position resulting from the step of determining a command in position (E3),
    • (E62) comparison of this gradient with an activation threshold Sg ',
    • (E63) activation of the filter if the gradient is less than said threshold Sg 'for at least one confirmation period,
  • preferably the step of activating the filter (E63) is carried out if the altitude, the engine speed and the Mach each further verify a certain value,
  • the determination step comprises the following sub-steps:
    • (E1) reception of data quantifying the engine speed of the turbomachine,
    • (Ef) data filtering of the data quantifying the engine speed from the previous step,
    • (E2, E3) determination of a command in position intended for the control valve,
    in which the filtering is carried out using a low-pass filter of which a cut-off frequency (fc) is less than a frequency (fo) of the oscillations of the engine speed around the cruising value (Vc).

L'invention propose aussi un système de commande d'une vanne de contrôle d'une turbomachine fonctionnant en régime moteur à une valeur de croisière Vc, ladite vanne de contrôle étant destinée à alimenter en air un carter pour modifier sa dilatation, ledit système comprenant une vanne de contrôle et une unité de calcul configurée pour mettre en œuvre le procédé tel que décrit précédemment.The invention also proposes a system for controlling a control valve of a turbomachine operating at engine speed at a cruising value Vc, said control valve being intended to supply air to a casing in order to modify its expansion, said system comprising a control valve and a calculation unit configured to implement the method as described above.

L'unité de calcul comprend une interface de réception de données, un processeur apte à traiter des données, une mémoire (pour stocker des données) et une interface de sortie de données. En particulier, l'unité de calcul comprend un bloc de filtration (typiquement le processeur qui exécute des opérations), qui performe l'opération de filtrage.The calculation unit comprises a data reception interface, a processor capable of processing data, a memory (for storing data) and a data output interface. In particular, the computing unit comprises a filtration unit (typically the processor which executes operations), which performs the filtering operation.

L'invention propose aussi une turbomachine comprenant un système tel que décrit précédemment.The invention also proposes a turbomachine comprising a system as described above.

PRESENTATION DES FIGURESPRESENTATION OF FIGURES

D'autres caractéristiques, buts et avantages de l'invention ressortiront de la description qui suit, qui est purement illustrative et non limitative, et qui doit être lue en regard des dessins annexés, sur lesquels :

  • La figure la illustre l'architecture globale d'une turbomachine,
  • La figure 1b illustre l'architecture globale des éléments de contrôle du débit prélevé sur la veine secondaire et envoyé vers le carter en regard des aubes de turbines selon l'état de la technique,
  • La figure 2 illustre par étapes un mode de mise en œuvre de l'invention,
  • La figure 3 illustre l'architecture en schéma-bloc d'un procédé d'activation ou de désactivation du filtre, complémentaire du mode de mise en œuvre de la figure 2,
  • Les figures 4 et 5 illustrent par étapes d'autres modes de mise en œuvre de l'invention.
Other characteristics, aims and advantages of the invention will emerge from the following description, which is purely illustrative and non-limiting, and which should be read in conjunction with the accompanying drawings, in which:
  • Figure la illustrates the overall architecture of a turbomachine,
  • The figure 1b illustrates the overall architecture of the flow control elements taken from the secondary stream and sent to the casing facing the turbine blades according to the state of the art,
  • The figure 2 illustrates in stages one mode of implementation of the invention,
  • The figure 3 illustrates the block diagram architecture of a process for activating or deactivating the filter, complementary to the mode of implementation of the figure 2 ,
  • The figures 4 and 5 illustrate in stages other embodiments of the invention.

DESCRIPTION DETAILLEEDETAILED DESCRIPTION

Plusieurs modes de mise en œuvre vont être à présent décrits.Several modes of implementation will now be described.

Premier mode de mise en œuvreFirst mode of implementation

Dans un premier mode de mise en œuvre présenté en figure 2 , l'étape de filtrage Ef est appliquée à la commande en position issue de l'étape E3, de sorte que l'on obtienne en sortie une commande en position filtrée.In a first mode of implementation presented in figure 2 , the filtering step Ef is applied to the command in position resulting from step E3, so that a command in filtered position is obtained at the output.

L'avantage d'un tel filtrage en fin de procédé est qu'il est facilement implémentable sur les logiciels des appareils en service et qu'il ne remet pas en cause l'intégrité du code déjà existant : son intégration dans un logiciel embarqué est ainsi simplifiée.The advantage of such filtering at the end of the process is that it is easily implemented on the software of the devices in service and that it does not call into question the integrity of the already existing code: its integration into an on-board software is thus simplified.

Dans un mode préférentiel, le filtrage est effectué avec un filtre passe bas du premier ordre, possédant une unique fréquence de coupure fc.In a preferred mode, the filtering is carried out with a first order low pass filter, having a single cutoff frequency fc.

Le choix du type de filtre est fondé sur le fait que les fréquences à supprimer sont bien plus élevées que le comportement nominal de la logique.The choice of the type of filter is based on the fact that the frequencies to be suppressed are much higher than the nominal behavior of the logic.

Il est techniquement réalisable de mettre un filtre d'ordre deux ou supérieur mais pour limiter l'impact en matière de temps de calcul, on privilégiera les filtres les plus simples.It is technically feasible to put a filter of order two or higher, but to limit the impact in terms of computation time, the simplest filters will be preferred.

La détermination de la fréquence de coupure fc est une condition importante pour obtenir un filtrage efficace ne ralentissant pas de façon rédhibitoire le procédé de commande.Determining the cutoff frequency fc is an important condition for obtaining effective filtering that does not cripple the control process.

Le temps de réponse du filtre a été choisi par un compromis entre deux contraintes. En effet, ce temps de réponse doit être suffisamment élevé pour supprimer un maximum d'oscillations sans pour autant ralentir le système dans des proportions inacceptables d'un point de vue de la réponse thermique du carter. En effet, une fréquence trop basse viendrait filtrer la valeur nominale de la commande et la vanne de contrôle 20 resterait quasiment immobile.The response time of the filter was chosen by a compromise between two constraints. Indeed, this response time must be high enough to eliminate a maximum of oscillations without slowing down the system to unacceptable proportions from the point of view of the thermal response of the casing. In fact, too low a frequency would filter the nominal value of the control and the control valve 20 would remain virtually stationary.

Des tests sur moteur permettent de définir la réponse thermique du carter et d'obtenir un temps de réponse caractéristique (et sa fréquence associée). Dans la mesure où la réponse thermique du carter est généralement différente en différents points, le cas le plus contraignant est choisi pour délimiter le temps de réponse minimal (c'est-à-dire la fréquence maximale à laquelle la fréquence de coupure doit rester inférieure). Dans la mesure où une fréquence fr associée au temps de réponse le plus contraignant du carter 16 (c'est-à-dire le temps de réponse le plus faible parmi les mesures effectuées sur le carter 16) est généralement nettement plus faible que la fréquence fo des oscillations, on peut s'assurer que la fréquence de coupure fc soit supérieure à la fréquence fr associée au temps de réponse du carter 16 sans que cela n'introduise des contraintes trop fortes sur la fréquence fc.Motor tests are used to define the thermal response of the crankcase and obtain a characteristic response time (and its associated frequency). Since the thermal response of the crankcase is generally different at different points, the most restrictive case is chosen to delimit the minimum response time (i.e. the maximum frequency at which the cut-off frequency must remain below ). Insofar as a frequency fr associated with the most restrictive response time of the housing 16 (that is to say the weakest response time among the measurements taken on the housing 16) is generally significantly lower than the frequency fo oscillations, it is possible to ensure that the cut-off frequency fc is greater than the frequency fr associated with the response time of the housing 16 without this introducing excessively strong stresses on the frequency fc.

Ces conditions sur la fréquence de coupure garantissent les performances du système.These conditions on the cutoff frequency guarantee the performance of the system.

La fréquence fo des micro-oscillations a également été estimée, ce qui a permis de déterminer une borne inférieure du temps de réponse, et donc une borne supérieure pour la fréquence de coupure fc.The frequency fo of the micro-oscillations was also estimated, which made it possible to determine a lower limit of the response time, and therefore an upper limit for the cut-off frequency fc.

Par exemple, en fonction de la fréquence fo, on choisit une fréquence de coupure fc entre 0,05 et 0,15 Hz, ou encore 0,08 et 0,12 Hz ou de façon plus large entre 0,01 et 0,20Hz. Pour mémoire, la fréquence fo est aux alentours de 1Hz, qui est assez éloignée des bornes supérieures précédentes pour assurer un filtrage efficace. Pour des fréquences de coupure fc dans ce dernier intervalle, on est assuré d'avoir des temps de réponse inférieurs à ceux du carter 16.For example, depending on the frequency fo, we choose a cutoff frequency fc between 0.05 and 0.15 Hz, or even 0.08 and 0.12 Hz or more broadly between 0.01 and 0.20Hz . As a reminder, the frequency fo is around 1 Hz, which is far enough from the previous upper bounds to ensure effective filtering. For cut-off frequencies fc in the latter interval, it is ensured to have response times lower than those of the housing 16.

Malgré tout, l'ajout du filtre ralentit quelque peu le système et il ne doit être préférablement appliqué qu'en phases de vol pertinentes. On ne souhaite dans ce cas appliquer ce filtrage qu'en condition de vol de croisière, c'est-à-dire lorsque le régime moteur est en régime permanent (régime auquel on observe les oscillations à la fréquence fo).However, the addition of the filter slows down the system somewhat and it should preferably only be applied in relevant flight phases. In this case, it is only desirable to apply this filtering in cruising flight conditions, that is to say when the engine speed is in steady state (speed at which the oscillations are observed at the frequency fo).

Une condition d'application du filtre est tout d'abord lié au régime de croisière. Pour cela, on vérifie trois indicateurs :

  • Le régime moteur,
  • Le Mach (c'est-à-dire le rapport de la vitesse locale dans un fluide sur la vitesse du son dans ce même fluide),
  • L'altitude.
A condition of filter application is firstly related to cruising speed. For this, we check three indicators:
  • The engine speed,
  • The Mach (i.e. the ratio of the local speed in a fluid to the speed of sound in this same fluid),
  • The altitude.

Plusieurs valeurs liées à ces indicateurs sont prédéterminées pour caractériser une phase de croisière. Si la phase de croisière est confirmée, alors l'étape de filtrage peut être activée.Several values linked to these indicators are predetermined to characterize a cruising phase. If the cruise phase is confirmed, then the filtering step can be activated.

En outre, lorsque le système demande une réaction rapide de la vanne de contrôle 20, on souhaite que la commande ne soit pas ralentie par un filtre (par exemple une action du pilote, lors de décollage ou d'atterrissage ou par exemple un brusque changement d'environnement).In addition, when the system requests a rapid reaction from the control valve 20, it is desired that the control is not slowed down by a filter (for example an action of the pilot, during take-off or landing or for example a sudden change environment).

Préférablement, le procédé comprend complémentairement un sous-procédé de désactivation du filtre. La figure 3 représente un schéma bloc indiquant les différentes étapes de ce sous-procédé.Preferably, the method additionally comprises a sub-method for deactivating the filter. The figure 3 represents a block diagram indicating the different steps of this sub-process.

Dans une étape E51, on détermine le gradient entre deux instants (c'est-à-dire la variation entre deux valeurs à deux instants d'un signal numérique) de la commande en position issue de l'étape E3. Il ne s'agit donc pas de la commande filtrée. Pour cela, plusieurs blocs retard en cascade peuvent être utilisés (le nombre de trois est lié à la logique interne de l'unité de calcul 40, pour laquelle le taux d'itération est de 0,240s, soit de 0,720s pour les trois itérations).In a step E51, the gradient between two instants (that is to say the variation between two values at two instants of a digital signal) of the position control resulting from step E3 is determined. It is therefore not the filtered order. For this, several cascade delay blocks can be used (the number of three is linked to the internal logic of the calculation unit 40, for which the iteration rate is 0.240s, or 0.720s for the three iterations ).

Dans une étape E52, ce gradient est comparé à une valeur seuil de désactivation Sg. Plus précisément, pour s'affranchir des questions de signes, on compare la valeur absolue de ce gradient à la valeur seuil de désactivation Sg.In a step E52, this gradient is compared with a deactivation threshold value Sg. More precisely, to get rid of questions of signs, the absolute value of this gradient is compared with the deactivation threshold value Sg.

Enfin, dans une étape E53, on désactive l'étape de filtrage Ef si le gradient est supérieur ou égal audit seuil Sg.Finally, in a step E53, the filtering step Ef is deactivated if the gradient is greater than or equal to said threshold Sg.

A titre d'exemple, on choisit une valeur seuil qui est comprise entre 0,5 et 2,5% par seconde, c'est-à-dire qu'à une seconde d'intervalle, la commande varie entre 0,5 et 2,5% de sa valeur d'origine. Sur le schéma, la valeur du seuil est de 1% pour 0,72 seconde, soit 1,4% par seconde. Un intervalle de 1 et 2% par seconde peut aussi convenir.By way of example, we choose a threshold value which is between 0.5 and 2.5% per second, that is to say that at one second interval, the command varies between 0.5 and 2.5% of its original value. In the diagram, the threshold value is 1% for 0.72 seconds, or 1.4% per second. An interval of 1 and 2% per second may also be suitable.

Un gradient supérieur au seuil Sg signifie qu'il ne s'agit pas d'une micro-oscillation qui est détectée, mais bien d'un changement pertinent pour le système qui peut avoir un impact sur le carter 16.A gradient greater than the threshold Sg means that it is not a micro-oscillation which is detected, but a relevant change for the system which can have an impact on the housing 16.

Ainsi, dès que la vanne est davantage sollicitée, le filtrage s'arrête et le système récupère son fonctionnement classique. Dans ce sous-procédé de désactivation, la valeur analysée est le gradient de commande et non pas la mesure physique donnée par les capteurs : la solution tiendrait compte du filtrage (puisque la commande en position a été filtrée) et serait trop lente.Thus, as soon as the valve is used more, the filtering stops and the system recovers its classic operation. In this deactivation sub-process, the value analyzed is the control gradient and not the physical measurement given by the sensors: the solution would take filtering into account (since the control in position has been filtered) and would be too slow.

La réactivation (ou activation) de l'étape de filtrage se fait aussi sous condition à l'aide d'un autre sous-procédé, aussi représenté en figure 3 . The reactivation (or activation) of the filtering step is also done under condition using another sub-process, also represented in figure 3 .

Dans des étapes E61, E62 similaires aux étapes E51 et E52 respectivement, on compare le gradient à une valeur seuil d'activation Sg'.In steps E61, E62 similar to steps E51 and E52 respectively, the gradient is compared with an activation threshold value Sg ′.

La valeur seuil d'activation Sg' peut être identique ou non à la valeur seuil de désactivation Sg. Si on souhaite que l'activation du filtre se fasse plus sélectivement, on peut fixer la valeur seuil Sg' inférieure à la valeur seuil Sg. En figure 3 , on a Sg=Sg'.The activation threshold value Sg 'may or may not be identical to the deactivation threshold value Sg. If it is desired that the activation of the filter be done more selectively, the threshold value Sg 'can be set lower than the threshold value Sg. In figure 3 , we have Sg = Sg '.

Dans une étape E63, on active l'étape Ef de filtrage si le gradient reste inférieur au seuil Sg' pendant une durée de confirmation T fixée. La durée de confirmation T est comprise entre deux et huit secondes (T=5s sur la figure 3 ), voire 4 et 6 secondes.In a step E63, the filtering step Ef is activated if the gradient remains below the threshold Sg ′ for a fixed confirmation period T. The confirmation time T is between two and eight seconds (T = 5s on the figure 3 ), or even 4 and 6 seconds.

Les conditions additionnelles de la phase de croisière (Mach, altitude et régime moteur) sont aussi analysées ici.The additional conditions of the cruising phase (Mach, altitude and engine speed) are also analyzed here.

L'étape E63 est abusivement représentée sur la figure 3 , puisque le bloc dessiné sort une condition d'activation, qui est ensuite préférablement combinée aux autres conditions d'activation pour effectivement activer le filtre.Step E63 is improperly represented on the figure 3 , since the drawn block outputs an activation condition, which is then preferably combined with the other activation conditions to effectively activate the filter.

Si les trois conditions additionnelles sont réunies (régime moteur à une certaine valeur, Mach à une certaine valeur et altitude à une certaine valeur), alors le filtre peut être ré-enclenché.If the three additional conditions are met (engine speed at a certain value, Mach at a certain value and altitude at a certain value), then the filter can be re-engaged.

Ainsi, on s'assure que le système est stable et que le moteur est en régime de croisière avant de réactiver l'étape Ef de filtrage et de supprimer les oscillations.Thus, it is ensured that the system is stable and that the engine is at cruising speed before reactivating the filtering step Ef and eliminating the oscillations.

Deuxième mode de mise en œuvreSecond mode of implementation

Dans un deuxième mode de mise en œuvre présenté en figure 4 , l'étape de filtrage Ef est appliquée aux données du régime moteur issues de l'étape E1, de sorte que l'on obtienne à nouveau en sortie une commande en position filtrée. L'étape de détermination d'une commande en débit E2 se fait alors à partir des données filtrées relatives au régime moteur.In a second mode of implementation presented in figure 4 , the filtering step Ef is applied to the engine speed data from step E1, so that a command in the filtered position is again obtained at the output. The step of determining a flow rate control E2 is then carried out on the basis of the filtered data relating to the engine speed.

Un tel filtrage au début du procédé de calcul de la commande en position permet d'éviter le traitement de données avec du bruit.Such filtering at the start of the method for calculating the position command makes it possible to avoid processing data with noise.

Dans un tel mode de mise en œuvre, le filtrage est préférablement intégré en fait dans l'étape E2 de détermination d'une commande en débit.In such an implementation mode, the filtering is preferably integrated in fact in the step E2 of determining a flow control.

Des modes de réalisation avec des seuils d'activation et de désactivation peuvent aussi être mis en œuvre.Embodiments with activation and deactivation thresholds can also be implemented.

Troisième mode de mise en œuvreThird mode of implementation

Il est aussi envisageable d'appliquer l'étape de filtrage à la commande en débit issue de l'étape E2. L'étape de détermination de la commande en position E3 se fait alors à partir d'une donnée de commande en débit filtrée. Ce mode de réalisation est illustré en figure 5 . It is also conceivable to apply the filtering step to the flow control resulting from step E2. The step of determining the command in position E3 is then carried out on the basis of filtered flow control data. This embodiment is illustrated in figure 5 .

Des modes de réalisation avec des seuils d'activation et de désactivation peuvent aussi être mis en œuvre.Embodiments with activation and deactivation thresholds can also be implemented.

Claims (12)

  1. A method for controlling a valve (20) for monitoring a turbomachine, said valve being intended to monitor the clearance between a turbine blade and a casing by injection of air on the casing, the turbomachine operating in engine speed at a cruise value (Vc) and oscillating about its cruise value (Vc),
    the method being implemented by a calculation unit (40), and
    being characterized in that it comprises a step of determining, for the monitoring valve (20), a position command, filtered from the oscillations of the engine speed about the cruise value (Vc).
  2. The method according to claim 1, wherein the filtering is carried out using a low-pass filter whose cutoff frequency (fc) is greater than a frequency (fr) associated with the thermal response time of the casing (16).
  3. The method according to claim 1 or 2, wherein the determination step comprises the following sub-steps:
    - (E1) receiving data quantifying the engine speed of the turbomachine,
    - (E2) determining a flow rate command from the data quantifying the engine speed,
    - (E3) determining a position command from the flow rate command, said position command being intended for the monitoring valve,
    - (Ef) Filtering the position command resulting from the step of determining the position command (E3).
  4. The method according to claim 2 or 3, wherein the low-pass filter is a first-order filter.
  5. The method according to any one of claims 2 to 4, wherein said monitoring valve (20) is intended to supply air to the inside of a casing (16) in order to modify its expansion.
  6. The method according to any one of claims 2 to 5, wherein the cutoff frequency (fc) is comprised between 0.05Hz and 0.15Hz.
  7. The method according to any one of claims 2 to 6 comprising a sub-method for deactivating the command filtering step (Ef), implemented by the calculation unit (40), said sub-method comprising the following steps:
    - (E51) determining the gradient of the position command resulting from the step of determining a position command (E3),
    - (E52) comparing this gradient with a deactivation threshold (Sg),
    - (E53) deactivating the filter if the gradient is greater than said threshold (Sg).
  8. The method according to any one of claims 2 to 7, comprising a sub-method for activating the filtering step (Ef) implemented by the calculation unit (40), said sub-method comprising the following steps:
    - (E61) determining the gradient of the position command resulting from the step of determining a position command (E3),
    - (E62) comparing this gradient with an activation threshold (Sg'),
    - (E63) activating the filter if the gradient is smaller than said threshold (Sg') during at least one confirmation period (T), and preferably if the altitude, the engine speed and the Mach also each verify a certain value.
  9. The method according to claim 2, wherein the determination step comprises the following sub-steps:
    - (E1) receiving data quantifying the engine speed of the turbomachine,
    - (Ef) data-filtering the data quantifying the engine speed resulting from the preceding step,
    - (E2, E3) determining a position command intended for the monitoring valve (20).
  10. The method according to any one of claims 1 to 9, wherein the filtering is carried out using a low-pass filter whose cutoff frequency (fc) is less than a frequency (fo) of the engine speed oscillations about the cruise value (Vc).
  11. A system for controlling a valve (20) for monitoring a turbomachine operating in engine speed at a cruise value (Vc), said monitoring valve (20) being intended to supply air to a casing (16) in order to modify its expansion, said system comprising a monitoring valve and a calculation unit (40), comprising a filtration block filtering engine speed oscillations about the cruise value (Vc), the calculation unit (40) being configured to implement the method according to any one of claims 1 to 10, the filtration block implementing the filtering step.
  12. A turbomachine comprising a system according to claim 11.
EP17811651.3A 2016-11-22 2017-11-22 Method for controlling a turbomachine valve Active EP3545175B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1661340A FR3059042B1 (en) 2016-11-22 2016-11-22 METHOD FOR CONTROLLING A TURBOMACHINE VALVE
PCT/FR2017/053207 WO2018096264A1 (en) 2016-11-22 2017-11-22 Method for controlling a turbomachine valve

Publications (2)

Publication Number Publication Date
EP3545175A1 EP3545175A1 (en) 2019-10-02
EP3545175B1 true EP3545175B1 (en) 2020-12-30

Family

ID=58347515

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17811651.3A Active EP3545175B1 (en) 2016-11-22 2017-11-22 Method for controlling a turbomachine valve

Country Status (6)

Country Link
US (1) US10995628B2 (en)
EP (1) EP3545175B1 (en)
CN (1) CN110050106B (en)
CA (1) CA3044429A1 (en)
FR (1) FR3059042B1 (en)
WO (1) WO2018096264A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3097063B1 (en) 2019-06-10 2021-05-28 Safran Aircraft Engines Method for determining a predictive model of a pressure ratio for a double-flow turbomachine

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB620318A (en) * 1946-09-25 1949-03-23 Harold William Shaw An improved failure indicator for gas-turbine engines
US4304093A (en) * 1979-08-31 1981-12-08 General Electric Company Variable clearance control for a gas turbine engine
US4573358A (en) * 1984-10-22 1986-03-04 Westinghouse Electric Corp. Turbine blade vibration detection apparatus
US5012420A (en) * 1988-03-31 1991-04-30 General Electric Company Active clearance control for gas turbine engine
US6231306B1 (en) * 1998-11-23 2001-05-15 United Technologies Corporation Control system for preventing compressor stall
US6195982B1 (en) * 1998-12-30 2001-03-06 United Technologies Corporation Apparatus and method of active flutter control
US6487491B1 (en) * 2001-11-21 2002-11-26 United Technologies Corporation System and method of controlling clearance between turbine engine blades and case based on engine components thermal growth model
US7079957B2 (en) * 2003-12-30 2006-07-18 General Electric Company Method and system for active tip clearance control in turbines
US7465145B2 (en) * 2005-03-17 2008-12-16 United Technologies Corporation Tip clearance control system
US7650777B1 (en) * 2008-07-18 2010-01-26 General Electric Company Stall and surge detection system and method
FR2939170B1 (en) * 2008-11-28 2010-12-31 Snecma DETECTION OF ANOMALY IN AN AIRCRAFT ENGINE.
FR2997443B1 (en) * 2012-10-31 2015-05-15 Snecma CONTROL UNIT AND METHOD FOR CONTROLLING THE AUBES TOP SET
US9266618B2 (en) * 2013-11-18 2016-02-23 Honeywell International Inc. Gas turbine engine turbine blade tip active clearance control system and method
GB201507881D0 (en) * 2015-05-08 2015-06-24 Rolls Royce Plc Turbine tip clearance

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20190368368A1 (en) 2019-12-05
CA3044429A1 (en) 2018-05-31
FR3059042A1 (en) 2018-05-25
EP3545175A1 (en) 2019-10-02
WO2018096264A1 (en) 2018-05-31
CN110050106A (en) 2019-07-23
US10995628B2 (en) 2021-05-04
CN110050106B (en) 2022-02-08
FR3059042B1 (en) 2020-07-17

Similar Documents

Publication Publication Date Title
EP1607584B1 (en) Control system and method to control the air flow in a gas turbine
FR3007460A1 (en) METHOD AND SYSTEM FOR STARTING AN AIRCRAFT TURBOMACHINE BY REAL TIME REGULATION OF AIR FLOW.
EP2486244B1 (en) System for controlling the angular position of stator blades and method for optimising said angular position
FR3007461A1 (en) METHOD AND SYSTEM FOR STARTING AN AIRCRAFT TURBOMACHINE
EP3850202B1 (en) Method for controlling a turbomachine comprising an electric motor
FR2996254A1 (en) METHOD FOR MONITORING A PUSH FAULT OF AN AIRCRAFT TURBOJET ENGINE
CA2896695C (en) Method and device for detecting frost in the air intake of a turbine engine
EP2864616B1 (en) Method for adjusting a reference value of a parameter that influences the thrust of a gas turbine engine
EP2633169B1 (en) Method of controlling a turbomachine
WO2022112028A1 (en) Method for controlling a turbine engine comprising an electric motor
CA2950347A1 (en) Method and device for control of a thrust of a turbojet engine
EP2989311B1 (en) Method and device for fuel control of a turbomachine
EP3545175B1 (en) Method for controlling a turbomachine valve
EP3959427B1 (en) Method for regulating a turbomachine comprising a temporary power-increasing device
WO2021140292A1 (en) Control method and unit for controlling the clearance of a high-pressure turbine to reduce the effect of egt overshoot
FR2978994A1 (en)
WO2020152425A1 (en) Method for monitoring the operating state of a system for positioning variable-geometry members of a turbomachine
FR3043432A1 (en) METHOD AND DEVICE FOR ADJUSTING SET VALUES OF A PLURALITY OF VARIABLE GEOMETRIES DETERMINED OF A TURBOMACHINE
FR3040069A1 (en) METHOD FOR DETECTING INCREASE IN THE REGIMEN OF A LOW PRESSURE TURBINE OF A REACTOR OF AN AIRCRAFT DURING A CRUISE PHASE, AND DEVICE AND METHOD FOR CONTROLLING THE AIR FLOW RATE OF A LOW PRESSURE TURBINE ASSOCIATED
FR2960914A1 (en) Method for regulating flow of fuel to be injected into combustion chamber of turbomachine of aeroplane, involves correcting setpoint position of metering valve based on difference between measurement value and set point
FR3078362A1 (en) METHOD AND CONTROL UNIT FOR STEERING THE GAME OF A HIGH PRESSURE TURBINE
FR3029570A1 (en) DEVICE AND METHOD FOR CONTROLLING AN ENGINE OPERATING A PUSH MEASUREMENT
FR2965300A1 (en) Method for controlling turbomachine of engine i.e. turboshaft engine, of helicopter by electronic control unit, involves realizing maintenance test by one of two application software modules when aircraft is in ground
FR3097897A1 (en) Method and control system for starting from the ground a bypass turbojet of an aircraft in the presence of tail wind
FR3087258A1 (en) COMPRESSED AIR SUPPLY DEVICE FOR AN AIRCRAFT AND METHOD OF USING SAME

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190621

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201015

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1350120

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017030643

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210330

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1350120

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210330

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210430

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210430

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017030643

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

26N No opposition filed

Effective date: 20211001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211122

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201230

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20171122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20241022

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20241023

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20241022

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20241022

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20241022

Year of fee payment: 8