EP3543537B1 - Pump unit and method for monitoring the liquid situation in a seal assembly in a pump unit - Google Patents
Pump unit and method for monitoring the liquid situation in a seal assembly in a pump unit Download PDFInfo
- Publication number
- EP3543537B1 EP3543537B1 EP18163562.4A EP18163562A EP3543537B1 EP 3543537 B1 EP3543537 B1 EP 3543537B1 EP 18163562 A EP18163562 A EP 18163562A EP 3543537 B1 EP3543537 B1 EP 3543537B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- sensor
- pump assembly
- reading
- temperature
- concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 17
- 239000007788 liquid Substances 0.000 title description 64
- 238000012544 monitoring process Methods 0.000 title description 3
- 238000011156 evaluation Methods 0.000 claims description 76
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 19
- 230000001419 dependent effect Effects 0.000 claims description 17
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 12
- 230000008859 change Effects 0.000 claims description 10
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims description 6
- 238000012423 maintenance Methods 0.000 claims description 6
- 238000012886 linear function Methods 0.000 claims description 4
- 238000002604 ultrasonography Methods 0.000 claims description 4
- 230000003287 optical effect Effects 0.000 claims description 2
- 238000012545 processing Methods 0.000 claims description 2
- 239000002351 wastewater Substances 0.000 claims description 2
- 239000012530 fluid Substances 0.000 claims 11
- 238000010276 construction Methods 0.000 claims 1
- 230000001537 neural effect Effects 0.000 claims 1
- 238000005096 rolling process Methods 0.000 claims 1
- 238000005259 measurement Methods 0.000 description 29
- 230000006870 function Effects 0.000 description 18
- 238000007789 sealing Methods 0.000 description 14
- 238000013528 artificial neural network Methods 0.000 description 4
- 230000000149 penetrating effect Effects 0.000 description 4
- 239000000654 additive Substances 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 238000012935 Averaging Methods 0.000 description 2
- 125000000205 L-threonino group Chemical group [H]OC(=O)[C@@]([H])(N([H])[*])[C@](C([H])([H])[H])([H])O[H] 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000007620 mathematical function Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 239000010865 sewage Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 238000013213 extrapolation Methods 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D13/00—Pumping installations or systems
- F04D13/02—Units comprising pumps and their driving means
- F04D13/06—Units comprising pumps and their driving means the pump being electrically driven
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D13/00—Pumping installations or systems
- F04D13/16—Pumping installations or systems with storage reservoirs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D15/00—Control, e.g. regulation, of pumps, pumping installations or systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D15/00—Control, e.g. regulation, of pumps, pumping installations or systems
- F04D15/0077—Safety measures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D15/00—Control, e.g. regulation, of pumps, pumping installations or systems
- F04D15/0088—Testing machines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/08—Sealings
- F04D29/10—Shaft sealings
- F04D29/106—Shaft sealings especially adapted for liquid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/08—Sealings
- F04D29/10—Shaft sealings
- F04D29/106—Shaft sealings especially adapted for liquid pumps
- F04D29/108—Shaft sealings especially adapted for liquid pumps the sealing fluid being other than the working liquid or being the working liquid treated
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/08—Sealings
- F04D29/10—Shaft sealings
- F04D29/12—Shaft sealings using sealing-rings
- F04D29/126—Shaft sealings using sealing-rings especially adapted for liquid pumps
Definitions
- the invention relates to a pump unit and a method for monitoring or detecting a change in concentration in a liquid reservoir in a sealing arrangement in a pump unit.
- a pump unit with an electric drive motor and at least one impeller connected to the drive motor via a shaft is known, the shaft extending between the drive motor and the impeller through at least one sealing arrangement with a liquid reservoir.
- the object of the invention is to provide an improved pump assembly and a method for monitoring a liquid reservoir in a sealing arrangement of a pump assembly, which makes it possible to reliably detect penetrating liquid in a liquid reservoir.
- the pump assembly has an electric drive motor and at least one impeller connected to the drive motor via a shaft.
- the shaft extends between the drive motor and the impeller through at least one sealing arrangement.
- This sealing arrangement has a liquid reservoir.
- the sealing arrangement preferably has at least two seals, between which the liquid reservoir is formed in the form of a chamber filled with liquid.
- the liquid reserve is used to detect leaks and to prevent water from entering the dry engine compartment.
- the liquid in the chamber can be used for cooling.
- the electric drive motor is in such a configuration preferably designed to run dry. I. E. the sealing arrangement is located between the liquid-filled pump chamber in which the impeller rotates and the electric drive motor located in the dry.
- the pump chamber can in particular be filled with water if the pump assembly is designed to convey water, for example fresh water or waste water.
- At least one concentration sensor for detecting a change in concentration in the liquid reservoir is formed on the liquid reservoir.
- the concentration sensor can for example be designed to detect the concentration of a second liquid in a first liquid of the liquid reservoir, in particular the concentration of water in glycol or vice versa.
- other liquid mixtures can also be used, in particular mixtures of more than two liquids.
- an oil-glycol mixture may contain further additives.
- the concentration sensor is designed to detect changes in an initially set concentration of the various liquids in the liquid reservoir.
- the concentration sensor can be designed in such a way that it is immersed in the liquid or that it detects the concentration without contact from the outside, e.g. through a partition.
- At least one second sensor for detecting at least one further parameter of the liquid reservoir is also arranged on or in the liquid reservoir. Both the concentration sensor and the at least one second sensor are connected to an evaluation device in such a way that the evaluation device receives and can further process the measured values that are recorded by the sensors.
- the evaluation device can be integrated into an electronic control or regulating device arranged directly on the pump assembly, in particular a control device for controlling or regulating the drive motor.
- the evaluation device can be arranged, for example, in an electronics housing of the pump assembly.
- the evaluation device or parts of the evaluation device could also be inserted directly into the sensor or a sensor housing of the first and / or be integrated into the second sensor. It is also conceivable to distribute the functionality of the evaluation device to several electronic units or processors in different components.
- the evaluation device is designed such that it evaluates at least one measured value from the concentration sensor, taking into account at least one measured value recorded by the at least one second sensor.
- the parameter which is detected by the second sensor can be a parameter which characterizes a certain operating state or characterizes changes in the operating states and / or environmental conditions. This makes it possible to compensate or correct the changes in the measured value of the concentration sensor on the basis of the measured values of the at least one second sensor, so that a more precise concentration measurement becomes possible.
- several second sensors can also be provided or a second sensor which detects more than one parameter at the same time.
- the second sensor can detect the temperature and / or the pressure or alternatively or additionally vibrations and / or structure-borne noise.
- the at least one second sensor is preferably a temperature sensor or a sensor which detects at least one temperature-dependent parameter.
- a temperature-dependent parameter can be any parameter which is dependent on the temperature, in particular is proportional to the temperature. Such a temperature-dependent parameter thus enables indirect temperature detection.
- the evaluation device is particularly preferably designed in such a way that it evaluates at least one measured value from the concentration sensor, taking into account at least one temperature measured value or temperature-dependent parameter recorded by the at least one second sensor.
- the evaluation device is designed in such a way that it corrects or compensates for the measured value of the concentration sensor on the basis of the temperature measured value or temperature-dependent parameter that is recorded by the at least second sensor. In this way, the influence of temperature on the concentration measurement can be eliminated. This correction can be based directly on a recorded temperature measurement value or on a parameter which is temperature-dependent, for example a vibration signal. There is a direct or an indirect temperature-dependent compensation.
- the concentration sensor is preferably designed as an ultrasonic sensor, as an optical sensor or as a capacitive sensor.
- an ultrasonic generator for example a piezo element
- a measuring sensor which is preferably also formed by the sound generator or can be integrated with it to form a structural unit.
- the ultrasonic sensor can be a sensor that works according to the reflection principle.
- an ultrasonic sensor can also be used in which a transmitter is arranged on one side and a receiver is arranged on the opposite side, without the signal being reflected on a reflector.
- a first possible consideration of different operating states when detecting changes in concentration by the concentration sensor can take place in such a way that the evaluation device is designed in such a way that it only evaluates a measured value of the concentration sensor if the measured value recorded by the at least one second sensor and in particular a measured temperature value detected by the second sensor is below a predetermined maximum limit value, preferably a predetermined maximum temperature limit value.
- the concentration measurement can be suspended above a certain operating temperature at which reliable measurement results can no longer be expected.
- the evaluation device can be designed in such a way that it evaluates a measured value from the concentration sensor only if the measured value recorded by the at least one second sensor and in particular a temperature measured value recorded by the second sensor is above a predetermined minimum limit value, ie preferably above a specified minimum temperature limit value. For example, it can be ensured that the concentration measurement is completely suspended at temperatures that are too low, at which no error-free measurement result is to be expected.
- the evaluation device is designed such that it outputs an alarm signal based on a measured value recorded by the concentration sensor if this at least one measured value or a characteristic value derived from the measured value reaches a predetermined concentration limit value.
- the evaluation device it is possible for the evaluation device to output a switching or control signal which can be detected by a control device and which can be used to switch off the pump assembly based on this signal in order to prevent further defects.
- the alarm signal it can be determined that the seals in the seal arrangement need to be replaced.
- the evaluation device can be designed in such a way that it can detect a break or complete destruction of a shaft seal on the basis of the magnitude of the change in concentration and / or the speed of the change in concentration and emits an alarm signal when a break in the shaft seal is detected.
- the evaluation device is designed in such a way that it forms at least one characteristic value derived from the measured value of the concentration sensor and a measured value acquired from the at least one second sensor, in particular a temperature measured value.
- a characteristic value can be a measured concentration value corrected for the influence of temperature, ie a measured concentration value which has been corrected in such a way that a temperature-dependent influence on the measurement result has been eliminated or reduced.
- a decision can then be made about the condition of the liquid reservoir; in particular, the characteristic value can be compared with a predetermined limit value for the concentration, and if this limit value is exceeded or undershot, an error signal can be output, which allows maintenance or repair of the Seals signaled.
- the evaluation device can preferably be designed in such a way that, for example, if the temperature is too high and / or too low, which is detected by the second sensor, it suspends a measured value acquisition or measured value evaluation for the concentration.
- the evaluation device is further preferably designed in such a way that, if a measured value acquisition or measured value evaluation is suspended, it bases further processing on the last measured value recorded before the suspension. That is to say, in such a case, the evaluation device outputs, for example, the last permissible measured value recorded as a concentration value.
- the evaluation device can be designed in such a way that the measured values of the concentration sensor are recorded at different points in time and an average value of the recorded measured values is formed as a characteristic value. Short-term fluctuations, which can be attributed to changes in the operating state of the pump unit, for example, can be minimized via the averaging, and only the long-term influences can be taken into account in order to draw conclusions about changes in the liquid reservoir, which make maintenance or repairs to the seals necessary.
- the evaluation device can particularly preferably be designed in such a way that it forms a running average value or an average value over a certain period of time as a characteristic value.
- the specific time span can be, for example, a specific time span preceding the current point in time.
- a running average value or a new average value can be formed as a characteristic value at regular intervals for a specific previous period of time. Long-term changes in the characteristic value can thus be recorded while short-term fluctuations are eliminated due to the averaging.
- the evaluation device is designed in such a way that it reads the measured values of the concentration sensor when forming the average value as a function of the measured values recorded by the at least one second sensor and preferably as a function of the temperature measured values recorded by the second sensor and / or in Weighted as a function of time.
- measured concentration values in operating states which allow a more precise measurement of the concentration to be expected, are weighted more heavily in the formation of the average than measured values in operating states of the pump assembly, which allow more imprecise measurements to be expected.
- the operating states are represented by the measured value recorded by the second sensor.
- these can be operating states at different temperatures or different temperatures of the liquid reservoir, which are detected directly or indirectly by the second sensor, as described above.
- measured concentration values in temperature ranges that enable more precise concentration detection can be weighted higher than measured concentration values which were recorded at other temperatures.
- measured values from more recent times can be weighted more heavily than measurements made some time ago.
- a temporal acquisition is also possible in such a way that in the event that, for example, a measured value acquisition or measured value evaluation is suspended when the temperature is too high or too low, the last measured value before the suspension is used. At the same time, if necessary, a warning or information signal can be output that a correct measurement could not be carried out for a longer period of time.
- the evaluation device can particularly preferably be designed in such a way that measured values, i. H. Concentration measured values that are recorded at a lower temperature are weighted more heavily when forming the average value than measured values that are recorded at a higher temperature. This is done, for example, according to a linear function or an inverse sigmoid function. However, other mathematical functions can also be used to accomplish this. In principle, for example, monotonically decreasing functions can be used in specific temperature intervals, such as the aforementioned linear functions and inverse sigmoid functions. However, it is also possible to use monotonically increasing functions in certain temperature ranges, in particular at very low temperatures that are close to the freezing point. For example, a monotonically falling function can be used in a higher temperature range and a monotonically increasing function in a lower temperature range.
- the higher weighting of the measured values recorded at low temperature is particularly preferred when using an ultrasonic sensor, since at low temperatures the changes in concentration lead to a greater change in the speed of sound through the medium, which results in a higher measurement accuracy. At higher temperatures, the speed differences become smaller, so that greater measurement inaccuracies can occur in these areas.
- the evaluation device can have a neural network for evaluating the at least one measured value.
- a neural network has the advantage that a learning evaluation is possible, which continuously adapts to changes in the operating states and environmental conditions, which means the evaluation of the measured value from the concentration sensor can be continuously improved and the accuracy increased.
- the concentration sensor and the at least one second sensor can be integrated into one sensor module.
- the concentration sensor is an ultrasonic sensor and the at least one second sensor is a temperature sensor.
- an integrated sensor unit can be created, which as a whole can easily be integrated into a pump unit.
- the at least one third sensor which is designed to detect an operating state of the pump assembly.
- this at least one third sensor can be designed in such a way that it detects whether the pump assembly is in operation or not.
- the at least one third sensor can be, for example, a vibration or structure-borne noise sensor.
- the operating state and, in particular, whether the pump assembly is switched on or off can be very easily detected from a vibration or structure-borne noise signal.
- the evaluation device is preferably designed in such a way that it evaluates the signal from the concentration sensor only in predetermined operating states, for example when the pump assembly is switched off. This can improve the measurement result. For example, air bubbles can occur in the liquid reservoir during operation, which falsify the measurement result.
- This can be detected by arranging a third sensor in the manner described so that, for example, a signal from the concentration sensor can only be evaluated in such Operating states take place in which no impairment of the measurement result is to be expected.
- the liquid reservoir is preferably filled with a liquid mixture containing oil or glycol.
- the liquid mixture can contain a mixture of glycol and water.
- the concentration sensor and the evaluation device are preferably designed to detect the concentration of water in the liquid reservoir, so that penetration of the water can be detected and thus a warning message can be generated if the seal facing the pump chamber becomes leaky.
- the pump unit is particularly preferably a water pump unit and more preferably a sewage pump unit.
- Such pump units can be designed as submersible pumps and it is important that the engine compartment in which the dry-running electric drive motor is arranged is reliably sealed.
- the evaluation device is designed in such a way that, on the basis of the evaluation of the measured values of the concentration sensor, it calculates or predicts a time span until the next maintenance of the pump assembly is due.
- Maintenance is understood to mean, for example, the replacement of a seal, that is to say a shaft seal.
- the evaluation device or a control device connected to the evaluation device can estimate the point in time for the next due maintenance. This can be done on the basis of an extrapolation based on the previously recorded measurements of the concentration sensor. For example, starting from essentially constant measured values, there can be a sudden increase, which indicates that the seal must be replaced in the near future. Here can be an exponential There is a tendency which can be taken into account by the evaluation device and a connected control device.
- the subject matter of the invention is also a method for detecting a change in concentration in a liquid reservoir in a sealing arrangement in a pump assembly, in which at least one measured value from a concentration sensor arranged on the liquid reservoir is dependent on at least one further parameter of the liquid reservoir and preferably dependent on the temperature or a temperature-dependent parameter of the liquid reservoir is evaluated.
- a temperature influence on the measurement result of a concentration sensor can be compensated. This can be done in the manner described above with reference to the pump assembly.
- the preceding description of the pump assembly is described.
- the method sequences described there or method sequences resulting from the design of the pump assembly are also preferably the subject of the method according to the invention.
- the evaluation of the at least one measured value of the concentration sensor is particularly preferably suspended if the temperature of the liquid reservoir is above an upper limit value or below a lower limit value. In this way it can be ruled out that measured values, which were recorded under ambient conditions which do not allow precise measurement, are taken into account in the recording of the concentration.
- an average value is particularly preferably formed during the evaluation from a plurality of measured values from the concentration sensor, the individual Measured values are further preferably weighted differently as a function of a further parameter and preferably as a function of the temperature recorded in each case and / or as a function of time.
- measured values that were recorded at a lower temperature, as described above with reference to the pump assembly can be weighted higher.
- the pump unit according to the invention which is exemplified in Figures 1 and 2 is shown, is designed as a submersible pump unit.
- the pump unit has an electrical one in a known manner Drive motor 2 with an attached pump housing 4.
- the pump housing 4 has an inlet opening 6 and a radial pressure port 8 on its underside.
- the inside of the pump housing 4 contains, in a known manner, a pump space in which an impeller (not shown here) rotates.
- the impeller is non-rotatably connected to the drive shaft or shaft 14 of the drive motor 6.
- the shaft 14 is non-rotatably connected to the rotor 16 of the drive motor, which rotates in a known manner inside the stator 18.
- the drive motor 6 is designed as a dry-running motor, ie the interior of the drive motor 2 is completely sealed from the pump chamber in the interior of the pump housing 4, for which purpose the shaft 14 is passed through a sealing arrangement 20.
- the sealing arrangement 20 has a liquid reservoir 22 inside a chamber delimited by a sealing housing 24.
- the sealing arrangement 20 also has two seals 26 and 28, which are designed as shaft seals and through which the shaft 14 is passed in a sealing manner.
- the seal 26 forms a first seal which faces the pump housing 4, while the seal 28 forms a second seal which faces the drive motor 2.
- the liquid reservoir 22 is located between the first seal 26 and the second seal 28. If the first seal 26 should now fail, liquid penetrates from the pump housing 4 into the interior of the liquid reservoir 22, which can be detected. As expected, the first seal 26 will wear out sooner than the second seal 28, as a result of which the wear of the seal can be recognized before liquid from the liquid reservoir 22 into the interior of the drive motor 2 penetrates.
- the structure of the liquid reservoir 22 is explained in more detail below with reference to FIG Fig. 3 described.
- the liquid reservoir 22 can preferably be filled with a liquid mixture which contains oil or glycol, in particular with a glycol-water mixture. In addition to glycol and water, the mixture can also contain other additives or additives. If water penetrates into the liquid reservoir 22 from the pump space inside the pump housing 4 through the first seal 26, the glycol-water concentration in the liquid reservoir 22 changes is used.
- the concentration sensor 30 extends into the interior of the chamber in which the liquid reservoir 22 is located.
- a second sensor 32 is arranged on the seal housing 24, which in this case is designed as a temperature sensor.
- the second sensor 32 can, however, also be designed as a combined sensor which detects several parameters, for example temperature and pressure and / or vibrations.
- a vibration sensor 33 can be integrated as a third sensor in the second sensor.
- the vibration sensor 33 is used to detect whether the pump assembly is in operation or not.
- Both the concentration sensor 30 and the second sensor 32 are connected to an evaluation device 34.
- the output signals of the vibration sensor 33 are also evaluated by the evaluation device 34 in order, for example, to suspend the evaluation of the other sensor in the event of excessive vibrations.
- the evaluation device 34 can be part of control or regulation electronics 36 in the interior of the electronics housing 10 (see FIG Fig. 2 ), which controls the drive motor 2.
- the concentration sensor 30 is designed as an ultrasonic sensor, as it is based on Fig. 4 described will.
- the concentration sensor 30 has a transmitting / receiving unit 38 which transmits an ultrasonic signal into the interior of the liquid reservoir 22 to an opposite wall 40. The signal is reflected on the wall 40 and sent back to the transceiver unit 38, at which the signal is received again.
- the transmitting / receiving unit 38 is connected to the evaluation device 34, which can detect the signal transit time of the ultrasonic signal between the transmitting / receiving unit 38 and the wall 40.
- the speed of sound of the liquid reservoir 22 changes as a function of the concentration, so that changes in the concentration can be detected by the evaluation unit 34 from the transit time and thus the speed of the signal in the liquid reservoir 22.
- the transmitting / receiving unit 38 can be designed as a piezo element, for example.
- Fig. 5 signal curves for the signal speed within the liquid reservoir 22 for four different concentrations conc0, concl, conc2 and conc3 are shown.
- the speed u plotted against the temperature T It can be seen that the speed differences between the individual concentrations decrease with increasing temperature T. I. E. the measuring accuracy of the concentration decreases with increasing temperature. Exact measurement is no longer possible above a temperature limit value Tg. Therefore, it is provided according to the invention that the evaluation device 34 preferably suspends the evaluation of the measurement result of the concentration sensor 30 when the temperature Tg is exceeded.
- a sewage pump is usually not operated continuously but at intervals. The temperature rises during operation.
- the concentration measurement or evaluation of the measured value of the concentration sensor 30 is then carried out by the evaluation device 34 only carried out for measurements at temperatures below the temperature limit value Tg.
- the determination of the concentration in the liquid reservoir 22 can be carried out by the evaluation device 34, for example, on the basis of FIG Fig. 6 described manner.
- a current concentration C i is recorded by the concentration sensor 30 and a current temperature T i is recorded by the temperature sensor 32 as input variables.
- step S1 it is checked whether the current temperature value T is below a limit value T thres (corresponds to T g ). If this is the case (Y), in step S2 a corrected concentration value C out is determined as a function of the measured concentration values C i , the measured temperature values T i and the time t i .
- the concentration C out can be determined as a weighted average value of a multiplicity of concentrations C i measured over a longer period of time, in particular as a running average.
- the weighting can be time-dependent and / or temperature-dependent.
- the weighting is preferably carried out in such a way that measurements at low temperatures are weighted more heavily than measurements at higher temperatures. This can take place according to a linear function or also an inverse sigmoid function or other suitable mathematical function.
- step S3 If it should be determined in step S1 that the temperature T i is above the set temperature limit value T thres (N), it is checked in step S3 whether the period t since the last determination of a concentration value C out is less than a predetermined interval t interval . If this is the case (Y), C out is set to the last determined value in step A1. If it is determined in step S3 that the time interval t is equal to or greater than the specified interval t interval (N), the concentration value C out is set to the last determined value in step A2 and a warning message is issued at the same time that no current measurement or concentration determination is possible.
- the determination of the concentration C out (estimated or corrected concentration) based on the temperature T i and the measured measured concentration value C i could also take place in another way, for example using a neural network.
- a neural network could adapt to changes in the ambient and operating conditions and adapt the correction of the measured concentration value C i as a function of the temperature in a learning manner.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Control Of Non-Positive-Displacement Pumps (AREA)
Description
Die Erfindung betrifft ein Pumpenaggregat sowie ein Verfahren zum Überwachen bzw. Detektieren einer Konzentrationsänderung in einer Flüssigkeitsvorlage in einer Dichtungsanordnung in einem Pumpenaggregat.The invention relates to a pump unit and a method for monitoring or detecting a change in concentration in a liquid reservoir in a sealing arrangement in a pump unit.
Bei Kreiselpumpenaggregaten mit trockenlaufendem elektrischen Antriebsmotor ist es erforderlich, den Pumpenraum mit dem darin rotierenden Laufrad gegenüber dem Antriebsmotor abzudichten. Dazu ist die Antriebswelle durch eine Dichtungsanordnung hindurchgeführt. Dabei ist es bekannt, zwei voneinander beabstandete Dichtungen mit einer dazwischenliegenden Flüssigkeitsvorlage zu verwenden. Derartige Flüssigkeitsvorlagen können beispielsweise mit Öl oder einem Glykol-Wasser-Gemisch gefüllt sein. Versagt nun die erste, dem Pumpenraum zugewandte Dichtung, dringt das zu fördernde Medium, beispielsweise Wasser in die Flüssigkeitsvorlage ein. Es ist wünschenswert, dies frühzeitig erfassen zu können, um die Dichtung ersetzen zu können. Bei Ölvorlagen sind Sensoren bekannt, welche eindringendes Wasser erkennen können. Bei Verwendung eines Glykol-Wasser-Gemisches in der Flüssigkeitsvorlage ist es jedoch deutlich schwieriger, eindringendes Wasser detektieren zu können. Hierzu ist es erforderlich eine Änderung der Wasserkonzentration zu erfassen. Aufgrund der sich ändernden Betriebsbedingungen und Umgebungsbedingungen ist dies nicht immer ohne Weiteres möglich.In the case of centrifugal pump units with a dry-running electric drive motor, it is necessary to seal the pump chamber with the impeller rotating in it from the drive motor. For this purpose, the drive shaft is passed through a sealing arrangement. It is known to use two spaced apart seals with a liquid reservoir in between. Such liquid reservoirs can be filled with oil or a glycol-water mixture, for example. If the first seal facing the pump chamber fails, the medium to be conveyed, for example water, penetrates the liquid reservoir. It is desirable to be able to detect this early on in order to be able to replace the seal. In the case of oil reservoirs, sensors are known which can detect penetrating water. If a glycol-water mixture is used in the liquid reservoir, however, it is much more difficult to detect penetrating water. For this it is necessary to record a change in the water concentration. Due to the changing operating and environmental conditions, this is not always easily possible.
Aus
Aus der
Es ist Aufgabe der Erfindung, ein verbessertes Pumpenaggregat sowie ein Verfahren zur Überwachung einer Flüssigkeitsvorlage in einer Dichtungsanordnung eines Pumpenaggregates bereitzustellen, welche es zuverlässig ermöglichen, eindringende Flüssigkeit in einer Flüssigkeitsvorlage zu erfassen.The object of the invention is to provide an improved pump assembly and a method for monitoring a liquid reservoir in a sealing arrangement of a pump assembly, which makes it possible to reliably detect penetrating liquid in a liquid reservoir.
Diese Ausgabe wird gelöst durch ein Pumpenaggregat mit den in Anspruch 1 angegebenen Merkmalen sowie durch ein Verfahren zum Detektieren einer Konzentrationsänderung in einer Flüssigkeitsvorlage mit den in Anspruch 21 angegebenen Merkmalen. Bevorzugte Ausführungsformen ergeben sich aus den zugehörigen Unteransprüchen, der nachfolgenden Beschreibung sowie den beigefügten Figuren.This issue is achieved by a pump assembly with the features specified in
Das erfindungsgemäße Pumpenaggregat weist einen elektrischen Antriebsmotor und zumindest ein über eine Welle mit dem Antriebsmotor verbundenes Laufrad auf. Dabei erstreckt sich die Welle zwischen dem Antriebsmotor und dem Laufrad durch zumindest eine Dichtungsanordnung hindurch. Diese Dichtungsanordnung weist eine Flüssigkeitsvorlage auf. Dazu weist die Dichtungsanordnung bevorzugt zumindest zwei Dichtungen auf, zwischen welchen die Flüssigkeitsvorlage in Form einer mit Flüssigkeit gefüllten Kammer ausgebildet ist. Die Flüssigkeitsvorlage dient der Erkennung von Leckagen und dem Verhindern des direkten Eindringens von Wasser in den trockenen Motorraum. Darüber hinaus kann die Flüssigkeit in der Kammer der Kühlung dienen. Der elektrische Antriebsmotor ist bei einer solchen Ausgestaltung vorzugsweise trockenlaufend ausgebildet. D. h. die Dichtungsanordnung befindet sich zwischen dem mit Flüssigkeit gefüllten Pumpenraum, in welchem das Laufrad rotiert, und dem im Trockenen gelegenen elektrischen Antriebsmotor. Der Pumpenraum kann insbesondere mit Wasser gefüllt sein, wenn das Pumpenaggregat zum Fördern von Wasser, beispielsweise Frischwasser oder Abwasser ausgebildet ist.The pump assembly according to the invention has an electric drive motor and at least one impeller connected to the drive motor via a shaft. The shaft extends between the drive motor and the impeller through at least one sealing arrangement. This sealing arrangement has a liquid reservoir. For this purpose, the sealing arrangement preferably has at least two seals, between which the liquid reservoir is formed in the form of a chamber filled with liquid. The liquid reserve is used to detect leaks and to prevent water from entering the dry engine compartment. In addition, the liquid in the chamber can be used for cooling. The electric drive motor is in such a configuration preferably designed to run dry. I. E. the sealing arrangement is located between the liquid-filled pump chamber in which the impeller rotates and the electric drive motor located in the dry. The pump chamber can in particular be filled with water if the pump assembly is designed to convey water, for example fresh water or waste water.
Erfindungsgemäß ist an der Flüssigkeitsvorlage zumindest ein Konzentrationssensor zum Detektieren einer Konzentrationsänderung in der Flüssigkeitsvorlage ausgebildet. Der Konzentrationssensor kann beispielsweise dazu ausgebildet sein die Konzentration einer zweiten Flüssigkeit in einer ersten Flüssigkeit der Flüssigkeitsvorlage zu detektieren, insbesondere die Konzentration von Wasser in Glykol oder umgekehrt. Es können jedoch auch andere Flüssigkeitsmischungen Verwendung finden, insbesondere Mischungen von mehr als zwei Flüssigkeiten. So sind in einem Öl-Glykol-Gemisch gegebenenfalls weitere Additive enthalten. Der Konzentrationssensor ist dazu ausgebildet, Änderungen einer anfänglich eingestellten Konzentration der verschiedenen Flüssigkeiten in der Flüssigkeitsvorlage zu detektieren. Der Konzentrationssensor kann so ausgebildet sein, dass er in die Flüssigkeit eintaucht oder die Konzentration berührungslos von außen detektiert, z.B. durch eine Trennwand hindurch. Erfindungsgemäß ist an oder in der Flüssigkeitsvorlage darüber hinaus zumindest ein zweiter Sensor zum Detektieren zumindest eines weiteren Parameters der Flüssigkeitsvorlage angeordnet. Sowohl der Konzentrationssensor als auch der zumindest eine zweite Sensor sind mit einer Auswerteeinrichtung derart verbunden, dass die Auswerteeinrichtung die Messwerte, welche von den Sensoren erfasst werden, empfängt und weiterverarbeiten kann.According to the invention, at least one concentration sensor for detecting a change in concentration in the liquid reservoir is formed on the liquid reservoir. The concentration sensor can for example be designed to detect the concentration of a second liquid in a first liquid of the liquid reservoir, in particular the concentration of water in glycol or vice versa. However, other liquid mixtures can also be used, in particular mixtures of more than two liquids. For example, an oil-glycol mixture may contain further additives. The concentration sensor is designed to detect changes in an initially set concentration of the various liquids in the liquid reservoir. The concentration sensor can be designed in such a way that it is immersed in the liquid or that it detects the concentration without contact from the outside, e.g. through a partition. According to the invention, at least one second sensor for detecting at least one further parameter of the liquid reservoir is also arranged on or in the liquid reservoir. Both the concentration sensor and the at least one second sensor are connected to an evaluation device in such a way that the evaluation device receives and can further process the measured values that are recorded by the sensors.
Die Auswerteeinrichtung kann in eine direkt am Pumpenaggregat angeordnete elektronische Steuer- bzw. Regeleinrichtung, insbesondere eine Steuereinrichtung zur Steuerung bzw. Regelung des Antriebsmotors integriert sein. Dazu kann die Auswerteeinrichtung beispielsweise in einem Elektronikgehäuse des Pumpenaggregates angeordnet sein. Es ist jedoch auch möglich die Auswerteeinrichtung als ein separates Elektronikbauteil auszubilden oder aber weiter entfernt von der Sensoreinrichtung oder dem Pumpenaggregat anzuordnen, beispielsweise als cloud- oder netzwerkimplementierte Auswerteeinrichtung. Die Auswerteeinrichtung oder Teile der Auswerteeinrichtung könnten auch direkt in den Sensor bzw. ein Sensorgehäuse des ersten und/oder zweiten Sensors integriert sein. Auch ist es denkbar, die Funktionalität der Auswerteeinrichtung auf mehrere elektronische Einheiten bzw. Prozessoren in verschiedenen Komponenten zu verteilen.The evaluation device can be integrated into an electronic control or regulating device arranged directly on the pump assembly, in particular a control device for controlling or regulating the drive motor. For this purpose, the evaluation device can be arranged, for example, in an electronics housing of the pump assembly. However, it is also possible to design the evaluation device as a separate electronic component or to arrange it further away from the sensor device or the pump assembly, for example as a cloud or network-implemented evaluation device. The evaluation device or parts of the evaluation device could also be inserted directly into the sensor or a sensor housing of the first and / or be integrated into the second sensor. It is also conceivable to distribute the functionality of the evaluation device to several electronic units or processors in different components.
Die Auswerteeinrichtung ist erfindungsgemäß so ausgestaltet, dass sie eine Auswertung zumindest eines Messwertes des Konzentrationssensors unter Berücksichtigung zumindest eines von dem zumindest einen zweiten Sensor erfassten Messwertes vornimmt. Dies hat den Vorteil, dass Änderungen des Betriebszustandes, welche einen Einfluss auf den Messwert des Konzentrationssensors haben und dessen Messergebnis verfälschen können, erfasst und berücksichtigt bzw. kompensiert werden können. So kann der Parameter, welcher von dem zweiten Sensor erfasst wird, ein Parameter sein, welcher einen bestimmten Betriebszustand kennzeichnet oder Veränderungen der Betriebszustände und/oder Umgebungsbedingungen kennzeichnet. Dies ermöglicht es, die Änderungen des Messwertes des Konzentrationssensors auf Grundlage der Messwerte des zumindest einen zweiten Sensors zu kompensieren bzw. zu korrigieren, sodass eine exaktere Konzentrationsmessung möglich wird. Es ist zu verstehen, dass auch mehrere zweite Sensoren vorgesehen sein können oder ein zweiter Sensor, welcher mehr als einen Parameter gleichzeitig erfasst. So kann der zweite Sensor beispielsweise die Temperatur und/oder den Druck oder auch alternativ oder zusätzlich Vibrationen und/oder Körperschall erfassen.According to the invention, the evaluation device is designed such that it evaluates at least one measured value from the concentration sensor, taking into account at least one measured value recorded by the at least one second sensor. This has the advantage that changes in the operating state, which have an influence on the measured value of the concentration sensor and can falsify its measurement result, can be recorded and taken into account or compensated. Thus, the parameter which is detected by the second sensor can be a parameter which characterizes a certain operating state or characterizes changes in the operating states and / or environmental conditions. This makes it possible to compensate or correct the changes in the measured value of the concentration sensor on the basis of the measured values of the at least one second sensor, so that a more precise concentration measurement becomes possible. It is to be understood that several second sensors can also be provided or a second sensor which detects more than one parameter at the same time. For example, the second sensor can detect the temperature and / or the pressure or alternatively or additionally vibrations and / or structure-borne noise.
Bevorzugt ist der zumindest eine zweite Sensor ein Temperatursensor oder ein Sensor, welcher zumindest einen temperaturabhängigen Parameter erfasst. Ein solcher temperaturabhängiger Parameter kann ein beliebiger Parameter sein, welcher von der Temperatur abhängig ist, insbesondere proportional zu der Temperatur ist. Ein solcher temperaturabhängiger Parameter ermöglicht somit eine indirekte Temperaturerfassung.The at least one second sensor is preferably a temperature sensor or a sensor which detects at least one temperature-dependent parameter. Such a temperature-dependent parameter can be any parameter which is dependent on the temperature, in particular is proportional to the temperature. Such a temperature-dependent parameter thus enables indirect temperature detection.
Besonders bevorzugt ist die Auswerteeinrichtung so ausgestaltet, dass sie eine Auswertung zumindest eines Messwertes des Konzentrationssensors unter Berücksichtigung zumindest eines von dem zumindest einen zweiten Sensor erfassten Temperaturmesswertes oder temperaturabhängigen Parameters vornimmt. Insbesondere ist die Auswerteinrichtung, wie vorangehend schon beschrieben, so ausgebildet, dass sie den Messwert des Konzentrationssensors auf Grundlage des Temperaturmesswertes oder temperaturabhängigen Parameters, welcher von dem zumindest zweiten Sensor erfasst wird, korrigiert bzw. kompensiert. So kann der Temperatureinfluss auf die Konzentrationsmessung eliminiert werden. Dabei kann dieser Korrektur direkt ein erfasster Temperaturmesswert oder aber ein Parameter, welcher temperaturabhängig ist, beispielsweise ein Vibrationssignal, zugrundegelegt werden. So erfolgt eine direkte oder eine indirekte temperaturabhängige Kompensation.The evaluation device is particularly preferably designed in such a way that it evaluates at least one measured value from the concentration sensor, taking into account at least one temperature measured value or temperature-dependent parameter recorded by the at least one second sensor. In particular, as already described above, the evaluation device is designed in such a way that it corrects or compensates for the measured value of the concentration sensor on the basis of the temperature measured value or temperature-dependent parameter that is recorded by the at least second sensor. In this way, the influence of temperature on the concentration measurement can be eliminated. This correction can be based directly on a recorded temperature measurement value or on a parameter which is temperature-dependent, for example a vibration signal. There is a direct or an indirect temperature-dependent compensation.
Der Konzentrationssensor ist bevorzugt als Ultraschallsensor, als optischer Sensor oder als kapazitiver Sensor ausgebildet. Bei einem Ultraschallsensor ist vorzugsweise ein Ultraschallerzeuger, beispielsweise ein Piezoelement so ausgebildet und an der Flüssigkeitsvorlage angeordnet, dass er ein Ultraschallsignal in die Flüssigkeitsvorlage hineinsendet, welches dann an einer gegenüberliegenden Wandung reflektiert wird. Das reflektierte Signal wird von einem Messaufnehmer, welcher vorzugsweise ebenfalls von dem Schallerzeuger gebildet oder aber mit diesem zu einer Baueinheit integriert sein kann, aufgenommen. Bei Veränderung der Konzentration ändert sich die Schallgeschwindigkeit und damit das empfangene reflektierte Ultraschallsignal, sodass Konzentrationsänderungen von der Auswerteeinrichtung festgestellt werden können. Die Schallgeschwindigkeit ist nicht nur von der Konzentration sondern ebenfalls von der Temperatur des Mediums abhängig, weshalb es bevorzugt ist, mit Hilfe des zumindest einen zweiten Sensors die Temperatur zu erfassen und darüber eine Kompensation des erfassten Ultraschallsignals vorzunehmen.The concentration sensor is preferably designed as an ultrasonic sensor, as an optical sensor or as a capacitive sensor. In the case of an ultrasonic sensor, an ultrasonic generator, for example a piezo element, is preferably designed and arranged on the liquid reservoir such that it sends an ultrasonic signal into the liquid reservoir, which is then reflected on an opposite wall. The reflected signal is picked up by a measuring sensor, which is preferably also formed by the sound generator or can be integrated with it to form a structural unit. When the concentration changes, the speed of sound changes and thus the received reflected ultrasound signal changes, so that changes in concentration can be determined by the evaluation device. The speed of sound is not only dependent on the concentration but also on the temperature of the medium, which is why it is preferred to use the at least one second sensor to detect the temperature and use it to compensate for the detected ultrasound signal.
So kann der Ultraschallsensor, wie vorangehend beschrieben, ein nach dem Reflexionsprinzip arbeitender Sensor sein. Alternativ kann jedoch auch ein Ultraschallsensor eingesetzt werden, bei welchem an einer Seite ein Sender und an einer entgegengesetzten Seite ein Empfänger angeordnet ist, ohne dass das Signal an einem Reflektor reflektiert wird.Thus, as described above, the ultrasonic sensor can be a sensor that works according to the reflection principle. Alternatively, however, an ultrasonic sensor can also be used in which a transmitter is arranged on one side and a receiver is arranged on the opposite side, without the signal being reflected on a reflector.
Eine erste mögliche Berücksichtigung verschiedener Betriebszustände bei der Erfassung von Konzentrationsänderungen durch den Konzentrationssensor kann in der Weise erfolgen, dass die Auswerteeinrichtung so ausgestaltet ist, dass sie eine Auswertung eines Messwertes des Konzentrationssensors nur vornimmt, wenn der von dem zumindest einen zweiten Sensor erfasste Messwert und insbesondere ein von dem zweiten Sensor erfasster Temperaturmesswert unterhalb eines vorgegebenen maximalen Grenzwertes, vorzugsweise eines vorgegebenen maximalen Temperaturgrenzwertes liegt. D. h. beispielsweise kann die Konzentrationsmessung oberhalb einer bestimmten Betriebstemperatur, bei welcher keine zuverlässigen Messergebnisse mehr erwartet werden können, ausgesetzt werden.A first possible consideration of different operating states when detecting changes in concentration by the concentration sensor can take place in such a way that the evaluation device is designed in such a way that it only evaluates a measured value of the concentration sensor if the measured value recorded by the at least one second sensor and in particular a measured temperature value detected by the second sensor is below a predetermined maximum limit value, preferably a predetermined maximum temperature limit value. I. E. For example, the concentration measurement can be suspended above a certain operating temperature at which reliable measurement results can no longer be expected.
Alternativ oder zusätzlich kann die Auswerteeinrichtung derart ausgebildet sein, dass sie eine Auswertung eines Messwertes des Konzentrationssensors nur vornimmt, wenn der von dem zumindest einen zweiten Sensor erfasste Messwert und insbesondere ein von dem zweiten Sensor erfasster Temperaturmesswert oberhalb eines vorgegebenen minimalen Grenzwertes, d. h. vorzugsweise oberhalb eines vorgegebenen minimalen Temperaturgrenzwertes liegt. So kann beispielsweise sichergestellt werden, dass die Konzentrationsmessung bei zu niedrigen Temperaturen, bei welchen kein fehlerfreies Messergebnis zu erwarten ist, vollständig ausgesetzt wird.Alternatively or additionally, the evaluation device can be designed in such a way that it evaluates a measured value from the concentration sensor only if the measured value recorded by the at least one second sensor and in particular a temperature measured value recorded by the second sensor is above a predetermined minimum limit value, ie preferably above a specified minimum temperature limit value. For example, it can be ensured that the concentration measurement is completely suspended at temperatures that are too low, at which no error-free measurement result is to be expected.
Gemäß einer möglichen Ausführungsform der Erfindung ist die Auswerteeinrichtung derart ausgebildet, dass sie auf Grundlage eines von dem Konzentrationssensor erfassten Messwertes ein Alarmsignal ausgibt, wenn dieser zumindest eine Messwert oder ein von dem Messwert abgeleiteter Kennwert einen vorbestimmten Konzentrationsgrenzwert erreicht. Zusätzlich ist es möglich, dass die Auswerteeinrichtung ein Schalt- bzw. Steuersignal ausgibt, welches von einer Steuereinrichtung erfasst werden kann und dazu genutzt werden kann, basierend auf diesem Signal das Pumpenaggregat abzuschalten, um weitere Defekte zu verhindern. Auf Grundlage des Alarmsignals kann festgestellt werden, dass ein Austausch der Dichtungen in der Dichtungsanordnung erforderlich ist. Insbesondere kann die Auswerteeinrichtung so ausgebildet sein, dass sie z.B. auf Grundlage der Größe der Konzentrationsänderung und/oder der Geschwindigkeit der Konzentrationsänderung einen Bruch bzw. eine vollständige Zerstörung einer Wellendichtung detektieren kann und bei entsprechender Erfassung eines Bruches der Wellendichtung ein Alarmsignal ausgibt.According to a possible embodiment of the invention, the evaluation device is designed such that it outputs an alarm signal based on a measured value recorded by the concentration sensor if this at least one measured value or a characteristic value derived from the measured value reaches a predetermined concentration limit value. In addition, it is possible for the evaluation device to output a switching or control signal which can be detected by a control device and which can be used to switch off the pump assembly based on this signal in order to prevent further defects. On the basis of the alarm signal, it can be determined that the seals in the seal arrangement need to be replaced. In particular, the evaluation device can be designed in such a way that it can detect a break or complete destruction of a shaft seal on the basis of the magnitude of the change in concentration and / or the speed of the change in concentration and emits an alarm signal when a break in the shaft seal is detected.
Gemäß einer weiteren bevorzugten Ausführungsform ist die Auswerteeinrichtung derart ausgebildet, dass sie zumindest einen von dem Messwert des Konzentrationssensors und einen von dem zumindest einen zweiten Sensor erfassten Messwert, insbesondere einem Temperaturmesswert abgeleiteten Kennwert bildet. Ein solcher Kennwert kann ein um den Temperatureinfluss korrigierter Konzentrationsmesswert sein, d. h. ein Konzentrationsmesswert, welcher so korrigiert wurde, dass ein temperaturabhängiger Einfluss auf das Messergebnis beseitigt bzw. verringert wurde. Auf Grundlage eines solchen Kennwertes kann dann über den Zustand der Flüssigkeitsvorlage entschieden werden, insbesondere kann der Kennwert mit einem vorgegebenen Grenzwert für die Konzentration verglichen werden und bei Über- bzw. Unterschreiten dieses Grenzwertes kann ein Fehlersignal ausgegeben werden, welches eine Wartung bzw. Reparatur der Dichtungen signalisiert.According to a further preferred embodiment, the evaluation device is designed in such a way that it forms at least one characteristic value derived from the measured value of the concentration sensor and a measured value acquired from the at least one second sensor, in particular a temperature measured value. Such a characteristic value can be a measured concentration value corrected for the influence of temperature, ie a measured concentration value which has been corrected in such a way that a temperature-dependent influence on the measurement result has been eliminated or reduced. On the basis of such a characteristic value, a decision can then be made about the condition of the liquid reservoir; in particular, the characteristic value can be compared with a predetermined limit value for the concentration, and if this limit value is exceeded or undershot, an error signal can be output, which allows maintenance or repair of the Seals signaled.
So kann vorzugsweise die Auswerteeinrichtung so ausgebildet sein, dass sie beispielsweise bei zu hoher und/oder zu niedriger Temperatur, welche von dem zweiten Sensor erfasst wird, eine Messwerterfassung bzw. Messwertauswertung für die Konzentration aussetzt. Dabei ist die Auswerteeinrichtung weiter bevorzugt so ausgebildet, dass sie bei einem Aussetzen einer Messwerterfassung oder Messwertauswertung den letzten vor dem Aussetzen erfassten Messwert einer weiteren Verarbeitung zugrunde legt. Das heißt, die Auswerteeinrichtung gibt in solch einem Fall beispielsweise den letzten zulässig erfassten Messwert als Konzentrationswert aus.Thus, the evaluation device can preferably be designed in such a way that, for example, if the temperature is too high and / or too low, which is detected by the second sensor, it suspends a measured value acquisition or measured value evaluation for the concentration. The evaluation device is further preferably designed in such a way that, if a measured value acquisition or measured value evaluation is suspended, it bases further processing on the last measured value recorded before the suspension. That is to say, in such a case, the evaluation device outputs, for example, the last permissible measured value recorded as a concentration value.
Gemäß einer weiteren bevorzugten Ausführungsform kann die Auswerteeinrichtung so ausgebildet sein, dass die Messwerte des Konzentrationssensors zu verschiedenen Zeitpunkten erfasst und einen Durchschnittswert der erfassten Messwerte als Kennwert bildet. Über die Durchschnittswertbildung können kurzfristige Schwankungen, welche beispielsweise auf Änderungen des Betriebszustandes des Pumpenaggregates zurückzuführen sind, minimiert werden und es können lediglich die langfristigen Einflüsse berücksichtigt werden, um auf Veränderungen der Flüssigkeitsvorlage, welche eine Wartung bzw. Reparaturen der Dichtungen erforderlich macht, zu schließen.According to a further preferred embodiment, the evaluation device can be designed in such a way that the measured values of the concentration sensor are recorded at different points in time and an average value of the recorded measured values is formed as a characteristic value. Short-term fluctuations, which can be attributed to changes in the operating state of the pump unit, for example, can be minimized via the averaging, and only the long-term influences can be taken into account in order to draw conclusions about changes in the liquid reservoir, which make maintenance or repairs to the seals necessary.
Besonders bevorzugt kann die Auswerteeinrichtung dabei so ausgebildet sein, dass sie einen laufenden Durchschnittswert oder einen Durchschnittswert über eine bestimmte Zeitspanne als Kennwert bildet. Dabei kann die bestimmte Zeitspanne beispielsweise eine vom aktuellen Zeitpunkt zurückliegende bestimmte Zeitspanne sein. So kann beispielsweise für eine bestimmte zurückliegende Zeitspanne ausgehend vom aktuellen Zeitpunkt ein laufender Durchschnittswert oder in regelmäßigen Abständen ein neuer Durchschnittswert als Kennwert gebildet werden. Es können so langfristige Veränderungen des Kennwertes erfasst werden, während kurzfristige Schwankungen aufgrund der Durchschnittswertbildung eliminiert werden.The evaluation device can particularly preferably be designed in such a way that it forms a running average value or an average value over a certain period of time as a characteristic value. In this case, the specific time span can be, for example, a specific time span preceding the current point in time. For example, starting from the current point in time, a running average value or a new average value can be formed as a characteristic value at regular intervals for a specific previous period of time. Long-term changes in the characteristic value can thus be recorded while short-term fluctuations are eliminated due to the averaging.
Gemäß einer weiteren bevorzugten Ausführungsform der Erfindung ist die Auswerteeinrichtung derart ausgebildet, dass sie die Messwerte des Konzentrationssensors bei der Bildung des Durchschnittswertes in Abhängigkeit der von dem zumindest einen zweiten Sensor erfassten Messwerte und bevorzugt in Abhängigkeit der von dem zweiten Sensor erfassten Temperaturmesswerte und/oder in Abhängigkeit der Zeit gewichtet. So können beispielsweise Konzentrationsmesswerte in Betriebszuständen, welche eine genauere Messung der Konzentration erwarten lassen, bei der Durchschnittswertbildung höher gewichtet werden als Messwerte in Betriebszuständen des Pumpenaggregates, welche ungenauere Messungen erwarten lassen. Die Betriebszustände werden dabei durch den von dem zweiten Sensor erfassten Messwert repräsentiert. Insbesondere können dies Betriebszustände bei unterschiedlichen Temperaturen bzw. unterschiedliche Temperaturen der Flüssigkeitsvorlage sein, welche von dem zweiten Sensor wie oben beschrieben direkt oder indirekt erfasst werden. So können Konzentrationsmesswerte in Temperaturbereichen, welche eine genauere Konzentrationserfassung ermöglichen, höher gewichtet werden als Konzentrationsmesswerte, welche bei anderen Temperaturen erfasst wurden. Ferner können beispielsweise Messwerte aus jüngerer Zeit höher gewichtet werden als länger zurückliegende Messungen. Darüber hinaus ist eine zeitliche Erfassung auch in der Weise möglich, dass für den Fall, dass beispielsweise bei zu hoher oder niedriger Temperatur eine Messwerterfassung bzw. Messwertauswertung ausgesetzt wird, der letzte Messwert vor dem Aussetzen genutzt wird. Gleichzeitig kann gegebenenfalls ein Warn- oder Hinweissignal ausgegeben werden, dass für längere Zeit keine korrekte Messung durchgeführt werden konnte.According to a further preferred embodiment of the invention, the evaluation device is designed in such a way that it reads the measured values of the concentration sensor when forming the average value as a function of the measured values recorded by the at least one second sensor and preferably as a function of the temperature measured values recorded by the second sensor and / or in Weighted as a function of time. Thus, for example, measured concentration values in operating states, which allow a more precise measurement of the concentration to be expected, are weighted more heavily in the formation of the average than measured values in operating states of the pump assembly, which allow more imprecise measurements to be expected. The operating states are represented by the measured value recorded by the second sensor. In particular, these can be operating states at different temperatures or different temperatures of the liquid reservoir, which are detected directly or indirectly by the second sensor, as described above. In this way, measured concentration values in temperature ranges that enable more precise concentration detection can be weighted higher than measured concentration values which were recorded at other temperatures. Furthermore, for example, measured values from more recent times can be weighted more heavily than measurements made some time ago. In addition, a temporal acquisition is also possible in such a way that in the event that, for example, a measured value acquisition or measured value evaluation is suspended when the temperature is too high or too low, the last measured value before the suspension is used. At the same time, if necessary, a warning or information signal can be output that a correct measurement could not be carried out for a longer period of time.
Besonders bevorzugt kann die Auswerteeinrichtung derart ausgebildet sein, dass Messwerte, d. h. Konzentrationsmesswerte, welche bei niedrigerer Temperatur erfasst werden bei der Bildung des Durchschnittswertes höher gewichtet werden als Messwerte, welche bei einer höheren Temperatur erfasst werden. Dies erfolgt beispielsweise gemäß einer linearen Funktion oder einer umgekehrten Sigmoidfunktion. Es sind jedoch auch andere mathematische Funktionen anwendbar, um dies zu erreichen. Grundsätzlich können beispielsweise monoton fallende Funktionen in bestimmten Temperaturintervallen verwendet werden, wie beispielsweise die zuvor genannten linearen Funktionen und umgekehrten Sigmoidfunktion. Es ist jedoch auch möglich, in bestimmten Temperaturbereichen monoton steigende Funktionen einzusetzen, insbesondere bei sehr niedrigen Temperaturen, die nahe dem Gefrierpunkt liegen. So kann vorzugsweise in einem höheren Temperaturbereich eine monoton fallende und in einem niedrigeren Temperaturbereich eine monoton steigende Funktion zum Einsatz kommen.The evaluation device can particularly preferably be designed in such a way that measured values, i. H. Concentration measured values that are recorded at a lower temperature are weighted more heavily when forming the average value than measured values that are recorded at a higher temperature. This is done, for example, according to a linear function or an inverse sigmoid function. However, other mathematical functions can also be used to accomplish this. In principle, for example, monotonically decreasing functions can be used in specific temperature intervals, such as the aforementioned linear functions and inverse sigmoid functions. However, it is also possible to use monotonically increasing functions in certain temperature ranges, in particular at very low temperatures that are close to the freezing point. For example, a monotonically falling function can be used in a higher temperature range and a monotonically increasing function in a lower temperature range.
Die höhere Gewichtung der bei niedriger Temperatur erfassten Messwerte ist insbesondere bei Verwendung eines Ultraschallsensors bevorzugt, da bei niedrigen Temperaturen die Konzentrationsänderungen zu einer größeren Veränderung der Schallgeschwindigkeit durch das Medium führen, woraus eine höhere Messgenauigkeit resultiert. Bei höheren Temperaturen werden die Geschwindigkeitsunterschiede kleiner, sodass in diesen Bereichen größere Messungenauigkeiten gegeben sein können.The higher weighting of the measured values recorded at low temperature is particularly preferred when using an ultrasonic sensor, since at low temperatures the changes in concentration lead to a greater change in the speed of sound through the medium, which results in a higher measurement accuracy. At higher temperatures, the speed differences become smaller, so that greater measurement inaccuracies can occur in these areas.
Alternativ oder zusätzlich kann die Auswerteeinrichtung ein neuronales Netzwerk zur Auswertung des zumindest einen Messwertes aufweisen. Ein solches neuronales Netzwerk hat den Vorteil, dass eine lernende Auswertung möglich ist, welche sich laufend an Veränderungen der Betriebszustände und Umgebungsbedingungen anpasst, wodurch die Auswertung des Messwertes von dem Konzentrationssensor laufend verbessert und in der Genauigkeit erhöht werden kann.Alternatively or additionally, the evaluation device can have a neural network for evaluating the at least one measured value. Such a neural network has the advantage that a learning evaluation is possible, which continuously adapts to changes in the operating states and environmental conditions, which means the evaluation of the measured value from the concentration sensor can be continuously improved and the accuracy increased.
Gemäß einer möglichen Ausführungsform der Erfindung können der Konzentrationssensor und der zumindest eine zweite Sensor in eine Sensorbaueinheit integriert sein. Dies gilt insbesondere dann, wenn es sich bei dem Konzentrationssensor um einen Ultraschallsensor und bei dem zumindest einen zweiten Sensor um einen Temperatursensor handelt. So kann eine integrierte Sensorbaueinheit geschaffen werden, welche als Ganzes leicht in ein Pumpenaggregat integriert werden kann. Insbesondere ist es auch möglich, gemeinsame elektrische Anschlüsse sowohl für den Konzentrationssensor und den zumindest einen zweiten Sensor zu nutzen und gegebenenfalls auch die Datenübertragung über gemeinsame Leitungen durchzuführen.According to a possible embodiment of the invention, the concentration sensor and the at least one second sensor can be integrated into one sensor module. This applies in particular when the concentration sensor is an ultrasonic sensor and the at least one second sensor is a temperature sensor. In this way, an integrated sensor unit can be created, which as a whole can easily be integrated into a pump unit. In particular, it is also possible to use common electrical connections both for the concentration sensor and the at least one second sensor and, if necessary, to carry out the data transmission via common lines.
Gemäß einer weiteren möglichen Ausführungsform der Erfindung ist zumindest ein dritter Sensor vorhanden, welcher ausgebildet ist, einen Betriebszustand des Pumpenaggregates zu erfassen. Insbesondere kann dieser zumindest eine dritte Sensor so ausgebildet sein, dass er erfasst, ob das Pumpenaggregat im Betrieb ist oder nicht. Dazu kann der zumindest eine dritte Sensor beispielsweise ein Vibrations- oder Körperschallsensor sein. An einem Vibrations- oder Körperschallsignal lässt sich sehr leicht der Betriebszustand detektieren und insbesondere, ob das Pumpenaggregat ein- oder ausgeschaltet ist. Die Auswerteeinrichtung ist dabei bevorzugt so ausgebildet, dass sie eine Auswertung des Signals des Konzentrationssensors nur in vorbestimmten Betriebszuständen, beispielsweise wenn das Pumpenaggregat ausgeschaltet ist, vornimmt. Dies kann das Messergebnis verbessern. Beispielsweise können Luftblasen in der Flüssigkeitsvorlage während des Betriebs auftreten, welche das Messergebnis verfälschen. Dies kann durch die Anordnung eines dritten Sensors in der beschriebenen Weise erfasst werden, so dass z.B. die Auswertung eines Signals des Konzentrationssensors nur in solchen Betriebszuständen erfolgt, in denen keine Beeinträchtigung des Messergebnisses zu erwarten ist.According to a further possible embodiment of the invention, there is at least one third sensor which is designed to detect an operating state of the pump assembly. In particular, this at least one third sensor can be designed in such a way that it detects whether the pump assembly is in operation or not. For this purpose, the at least one third sensor can be, for example, a vibration or structure-borne noise sensor. The operating state and, in particular, whether the pump assembly is switched on or off can be very easily detected from a vibration or structure-borne noise signal. The evaluation device is preferably designed in such a way that it evaluates the signal from the concentration sensor only in predetermined operating states, for example when the pump assembly is switched off. This can improve the measurement result. For example, air bubbles can occur in the liquid reservoir during operation, which falsify the measurement result. This can be detected by arranging a third sensor in the manner described so that, for example, a signal from the concentration sensor can only be evaluated in such Operating states take place in which no impairment of the measurement result is to be expected.
Wie oben beschrieben ist die Flüssigkeitsvorlage vorzugsweise mit einer Öl- oder Glykol enthaltenen Flüssigkeitsmischung gefüllt. Insbesondere kann die Flüssigkeitsmischung eine Mischung von Glykol und Wasser enthalten. Der Konzentrationssensor und die Auswerteeinrichtung sind bevorzugt zum Erfassen der Konzentration von Wasser in der Flüssigkeitsvorlage ausgebildet, sodass Eindringen des Wassers detektiert werden kann und somit eine Warnmeldung erzeugt werden kann, wenn die dem Pumpenraum zugewandte Dichtung undicht wird.As described above, the liquid reservoir is preferably filled with a liquid mixture containing oil or glycol. In particular, the liquid mixture can contain a mixture of glycol and water. The concentration sensor and the evaluation device are preferably designed to detect the concentration of water in the liquid reservoir, so that penetration of the water can be detected and thus a warning message can be generated if the seal facing the pump chamber becomes leaky.
Besonders bevorzugt ist das Pumpenaggregat ein Wasserpumpenaggregat und weiter bevorzugt ein Abwasserpumpenaggregat. Solche Pumpenaggregate können als Tauchpumpen ausgebildet sein und es ist wichtig, dass der Motorraum, in welchem der trockenlaufende elektrische Antriebsmotor angeordnet ist, zuverlässig abgedichtet ist.The pump unit is particularly preferably a water pump unit and more preferably a sewage pump unit. Such pump units can be designed as submersible pumps and it is important that the engine compartment in which the dry-running electric drive motor is arranged is reliably sealed.
Gemäß einer weiteren möglichen Ausführungsform ist die Auswerteeinrichtung derart ausgebildet, dass sie auf Grundlage der Auswertung der Messwerte des Konzentrationssensors eine Zeitspanne bis zur nächsten fälligen Wartung des Pumpenaggregates berechnet bzw. voraussagt. Dabei ist unter Wartung beispielsweise der Austausch einer Dichtung, das heißt einer Wellendichtung, zu verstehen. Die Auswerteeinrichtung oder eine mit der Auswerteeinrichtung verbundene Steuereinrichtung kann den Zeitpunkt für die nächste fällige Wartung abschätzen. Dies kann auf Basis einer Extrapolation basierend auf den zuvor erfassten Messungen des Konzentrationssensors erfolgen. Beispielsweise kann es von im Wesentlichen konstanten Messwerten ausgehend einen plötzlichen Anstieg geben, welcher darauf hindeutet, dass in naher Zukunft die Dichtung zu tauschen ist. Hier kann eine exponentielle Tendenz vorliegen, welche von der Auswerteeinrichtung und einer verbundenen Steuereinrichtung berücksichtigt werden kann.According to a further possible embodiment, the evaluation device is designed in such a way that, on the basis of the evaluation of the measured values of the concentration sensor, it calculates or predicts a time span until the next maintenance of the pump assembly is due. Maintenance is understood to mean, for example, the replacement of a seal, that is to say a shaft seal. The evaluation device or a control device connected to the evaluation device can estimate the point in time for the next due maintenance. This can be done on the basis of an extrapolation based on the previously recorded measurements of the concentration sensor. For example, starting from essentially constant measured values, there can be a sudden increase, which indicates that the seal must be replaced in the near future. Here can be an exponential There is a tendency which can be taken into account by the evaluation device and a connected control device.
Neben dem beschriebenen Pumpenaggregat ist Gegenstand der Erfindung ferner ein Verfahren zum Detektieren einer Konzentrationsänderung in einer Flüssigkeitsvorlage in einer Dichtungsanordnung in einem Pumpenaggregat, bei welchem zumindest ein Messwert eines an der Flüssigkeitsvorlage angeordneten Konzentrationssensors in Abhängigkeit zumindest eines weiteren Parameters der Flüssigkeitsvorlage und bevorzugt in Abhängigkeit der Temperatur oder eines temperaturabhängigen Parameters der Flüssigkeitsvorlage ausgewertet wird. Auf diese Weise kann insbesondere ein Temperatureinfluss auf das Messergebnis eines Konzentrationssensors kompensiert werden. Dies kann in der oben anhand des Pumpenaggregates beschriebenen Weise erfolgen. Bezüglich bevorzugter Verfahrensschritte wird auf die vorangehende Beschreibung des Pumpenaggregates beschrieben. Dort beschriebene Verfahrensabläufe bzw. sich aus der Ausgestaltung des Pumpenaggregates ergebene Verfahrensabläufe sind ebenfalls bevorzugt Gegenstand des erfindungsgemäßen Verfahrens.In addition to the pump assembly described, the subject matter of the invention is also a method for detecting a change in concentration in a liquid reservoir in a sealing arrangement in a pump assembly, in which at least one measured value from a concentration sensor arranged on the liquid reservoir is dependent on at least one further parameter of the liquid reservoir and preferably dependent on the temperature or a temperature-dependent parameter of the liquid reservoir is evaluated. In this way, in particular, a temperature influence on the measurement result of a concentration sensor can be compensated. This can be done in the manner described above with reference to the pump assembly. With regard to preferred method steps, the preceding description of the pump assembly is described. The method sequences described there or method sequences resulting from the design of the pump assembly are also preferably the subject of the method according to the invention.
Besonders bevorzugt wird bei dem erfindungsgemäßen Verfahren die Auswertung des zumindest einen Messwertes des Konzentrationssensors ausgesetzt, wenn die Temperatur der Flüssigkeitsvorlage oberhalb eines oberen Grenzwertes oder unterhalb eines unteren Grenzwertes liegt. So kann ausgeschlossen werden, dass Messwerte, welche bei Umgebungsbedingungen, welche keine genaue Messung ermöglichen, aufgenommen wurden, bei der Konzentrationserfassung berücksichtigt werden.In the method according to the invention, the evaluation of the at least one measured value of the concentration sensor is particularly preferably suspended if the temperature of the liquid reservoir is above an upper limit value or below a lower limit value. In this way it can be ruled out that measured values, which were recorded under ambient conditions which do not allow precise measurement, are taken into account in the recording of the concentration.
Besonders bevorzugt wird bei dem erfindungsgemäßen Verfahren bei der Auswertung aus einer Mehrzahl von Messwerten des Konzentrationssensors ein Durchschnittswert gebildet, wobei die einzelnen Messwerte weiter bevorzugt in Abhängigkeit eines weiteren Parameters und bevorzugt in Abhängigkeit der jeweils erfassten Temperatur und/oder in Abhängigkeit der Zeit unterschiedlich gewichtet werden. Insbesondere können Messwerte, welche bei niedrigerer Temperatur erfasst wurden, wie es oben anhand des Pumpenaggregates beschrieben wurde, höher gewichtet werden.In the method according to the invention, an average value is particularly preferably formed during the evaluation from a plurality of measured values from the concentration sensor, the individual Measured values are further preferably weighted differently as a function of a further parameter and preferably as a function of the temperature recorded in each case and / or as a function of time. In particular, measured values that were recorded at a lower temperature, as described above with reference to the pump assembly, can be weighted higher.
Nachfolgend wird die Erfindung beispielhaft anhand der beigefügten Figuren beschrieben. In diesen zeigt:
- Fig. 1
- eine perspektivische Ansicht eines erfindungsgemäßen Pumpenaggregates,
- Fig. 2
- eine Schnittansicht des Antriebsmotors des Pumpenaggregates gemäß
Fig. 1 , - Fig. 3
- eine vergrößerte Schnittansicht der Dichtungsanordnung an dem Antriebsmotor gemäß
Fig. 2 , - Fig. 4
- schematisch die Konzentrationsmessung mittels Ultraschall,
- Fig. 5
- die Schallgeschwindigkeit in der Flüssigkeitsvorlage in Abhängigkeit der Temperatur für verschiedene Konzentrationen, und
- Fig. 6
- schematisch den Ablauf einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens.
- Fig. 1
- a perspective view of a pump unit according to the invention,
- Fig. 2
- a sectional view of the drive motor of the pump assembly according to
Fig. 1 , - Fig. 3
- an enlarged sectional view of the seal arrangement on the drive motor according to FIG
Fig. 2 , - Fig. 4
- schematically the concentration measurement by means of ultrasound,
- Fig. 5
- the speed of sound in the liquid reservoir as a function of the temperature for different concentrations, and
- Fig. 6
- schematically the sequence of a preferred embodiment of the method according to the invention.
Das erfindungsgemäße Pumpenaggregat, welches beispielhaft in
Das Pumpengehäuse 4 beinhaltet in seinem Inneren in bekannter Weise einen Pumpenraum, in welchem ein Laufrad (hier nicht gezeigt) rotiert. Das Laufrad ist drehfest mit der Antriebswelle bzw. Welle 14 des Antriebsmotors 6 verbunden. Im Antriebsmotor 2 ist die Welle 14 drehfest mit dem Rotor 16 des Antriebsmotors verbunden, welcher in bekannter Weise im Inneren des Stators 18 rotiert. Der Antriebsmotor 6 ist als trockenlaufender Motor ausgebildet, d. h. der Innenraum des Antriebsmotors 2 ist gegenüber dem Pumpenraum im Inneren des Pumpengehäuses 4 vollständig gedichtet, wozu die Welle 14 durch eine Dichtungsanordnung 20 hindurchgeführt ist. Die Dichtungsanordnung 20 weist eine Flüssigkeitsvorlage 22 im Inneren einer von einem Dichtungsgehäuse 24 begrenzten Kammer auf. Die Dichtungsanordnung 20 weist darüber hinaus zwei Dichtungen 26 und 28 auf, welche als Wellendichtungen ausgebildet sind und durch welche die Welle 14 dichtend hindurchgeführt ist. Die Dichtung 26 bildet eine erste Dichtung, welche dem Pumpengehäuse 4 zugewandt ist, während die Dichtung 28 eine zweite Dichtung bildet, welche dem Antriebsmotor 2 zugewandt ist. Zwischen der ersten Dichtung 26 und der zweiten Dichtung 28 ist die Flüssigkeitsvorlage 22 gelegen. Wenn nun die erste Dichtung 26 versagen sollte, dringt Flüssigkeit aus dem Pumpengehäuse 4 in das Innere der Flüssigkeitsvorlage 22 ein, was erfasst werden kann. Erwartungsgemäß wird die erste Dichtung 26 eher verschleißen als die zweite Dichtung 28, wodurch der Verschleiß der Dichtung erkannt werden kann, bevor Flüssigkeit aus der Flüssigkeitsvorlage 22 in das Innere des Antriebsmotors 2 eindringt. Der Aufbau der Flüssigkeitsvorlage 22 wird nachfolgend näher anhand von
Die Flüssigkeitsvorlage 22 kann bevorzugt mit einer Flüssigkeitsmischung, welche Öl oder Glykol enthält, insbesondere mit einer Glykol-Wasser-Mischung gefüllt sein. Dabei kann die Mischung außer Glykol und Wasser noch weitere Zusatzstoffe bzw. Additive enthalten. Wenn aus dem Pumpenraum im Inneren des Pumpengehäuses 4 durch die erste Dichtung 26 Wasser in die Flüssigkeitsvorlage 22 eindringt, ändert sich die Glykol-Wasser-Konzentration in der Flüssigkeitsvorlage 22. Dies wird durch einen Konzentrationssensor 30 erfasst, welcher in das Dichtungsgehäuse 24 der Dichtungsanordnung 20 eingesetzt ist. Der Konzentrationssensor 30 erstreckt sich in das Innere der Kammer, in welcher sich die Flüssigkeitsvorlage 22 befindet. Zusätzlich ist an dem Dichtungsgehäuse 24 ein zweiter Sensor 32 angeordnet, welcher in diesem Fall als Temperatursensor ausgebildet ist. Der zweite Sensor 32 kann jedoch auch als kombinierter Sensor ausgebildet sein, welche mehrere Parameter, beispielsweise Temperatur und Druck und/oder Vibrationen erfasst. So kann, wie in
Der Konzentrationssensor 30 ist in diesem Ausführungsbeispiel als Ultraschallsensor ausgebildet, wie er anhand von
In
Die Konzentrationsbestimmung in der Flüssigkeitsvorlage 22 kann von der Auswerteeinrichtung 34 beispielsweise in der anhand von
Wenn im Schritt S1 festgestellt werden sollte, dass die Temperatur Ti über dem gesetzten Temperaturgrenzwert Tthres liegt (N) wird im Schritt S3 geprüft, ob der Zeitraum t seit der letzten Bestimmung eines Konzentrationswertes Cout kleiner als ein vorgegebenes Intervall tintervall ist. Ist dies der Fall (Y) wird im Schritt A1 Cout auf den letzten bestimmten Wert gesetzt. Wenn im Schritt S3 festgestellt wird, dass das Zeitintervall t gleich oder größer dem vorgegebenen Intervall tintervall ist (N) wird im Schritt A2 der Konzentrationswert Cout auf dem letzten bestimmten Wert gesetzt und gleichzeitig eine Warnmeldung ausgegeben, dass keine aktuelle Messung bzw. Konzentrationsbestimmung möglich ist.If it should be determined in step S1 that the temperature T i is above the set temperature limit value T thres (N), it is checked in step S3 whether the period t since the last determination of a concentration value C out is less than a predetermined interval t interval . If this is the case (Y), C out is set to the last determined value in step A1. If it is determined in step S3 that the time interval t is equal to or greater than the specified interval t interval (N), the concentration value C out is set to the last determined value in step A2 and a warning message is issued at the same time that no current measurement or concentration determination is possible.
Alternativ könnte die Bestimmung der Konzentration Cout (geschätzte bzw. korrigierte Konzentration) basierend auf der Temperatur Ti und dem gemessenen Konzentrationsmesswert Ci auch auf andere Weise erfolgen, beispielsweise unter Verwendung eines neuronalen Netzwerkes. Ein solches neuronales Netzwerk könnte sich an Veränderungen der Umgebungs- und Betriebsbedingungen anpassen und in lernender Weise die Korrektur des Konzentrationsmesswertes Ci in Abhängigkeit der Temperatur anpassen.Alternatively, the determination of the concentration C out (estimated or corrected concentration) based on the temperature T i and the measured measured concentration value C i could also take place in another way, for example using a neural network. Such a neural network could adapt to changes in the ambient and operating conditions and adapt the correction of the measured concentration value C i as a function of the temperature in a learning manner.
Auch andere Algorithmen oder Verfahren können zur Anwendung kommen, um die Konzentrationsmesswerte Ci temperaturabhängig zu korrigieren bzw. anzupassen, um den Temperatureinfluss aus der Konzentrationsmessung zu verringern bzw. zu eliminieren.Other algorithms or methods can also be used to correct or adapt the measured concentration values C i as a function of temperature in order to reduce or eliminate the temperature influence from the concentration measurement.
- 22
- - Antriebsmotor- drive motor
- 44th
- - Pumpengehäuse- pump housing
- 66th
- - Eintrittsöffnung- Entrance opening
- 88th
- - Druckstutzen- pressure port
- 1010
- - Elektronikgehäuse- electronics housing
- 1212th
- - Anschlussleitung- connecting cable
- 1414th
- - Welle- Wave
- 1616
- - Rotor- rotor
- 1818th
- - Stator- stator
- 2020th
- - Dichtungsanordnung- Seal arrangement
- 2222nd
- - Flüssigkeitsvorlage- Liquid reserve
- 2424
- - Dichtungsgehäuse- Seal housing
- 2626th
- - erste Dichtung- first seal
- 2828
- - zweite Dichtung- second seal
- 3030th
- - Konzentrationssensor- concentration sensor
- 3232
- - zweiter Sensor/Temperatursensor- second sensor / temperature sensor
- 3333
- dritter Sensor/Vibrationssensorthird sensor / vibration sensor
- 3434
- - Auswerteeinrichtung- Evaluation device
- 3636
- - Steuerelektronik- control electronics
- 3838
- - Sende/Empfangseinheit- Transmitter / receiver unit
- 4040
- - Wandung- wall
- Tg, TthresTg, Tthres
- - Temperaturgrenzwert- temperature limit
- tt
- - Zeit- Time
- TT
- - Temperatur- temperature
- CC.
- - Konzentration- concentration
Claims (23)
- A pump assembly with an electrical drive motor (2) and with at least one impeller which is connected to the drive motor (2) via a shaft (14), wherein the shaft extends between the drive motor (2) and the impeller through at least one seal arrangement (20) with a fluid reservoir (22),
characterised in that
at least one concentration sensor (30) for detecting a concentration change in the fluid reservoir (22) and at least one second sensor (32) for detecting at least one further parameter (22) of the fluid reservoir (22) are arranged on the fluid reservoir (22), said sensors being connected to an evaluation device (34), and that the evaluation device (34) is designed in a manner such that it carries out an evaluation of at least one reading of the concentration sensor (30) whilst taking into account at least one reading which is detected by the second sensor (32). - A pump assembly according to claim 1, characterised in that the at least one second sensor is a temperature sensor (32) or a sensor which detects at least one temperature-dependent parameter.
- A pump assembly according to claim 1 or 2, characterised in that the evaluation device (34) is designed in a manner such that it carries out an evaluation of at least one reading of the concentration sensor (30) whilst taking into account at least one temperature reading or temperature-dependent parameter, which is detected by the second sensor (32).
- A pump assembly according to one of the preceding claims, characterised in that the concentration sensor (30) is an ultrasound sensor, an optical sensor or a capacitive sensor.
- A pump assembly according to one of the preceding claims, characterised in that the evaluation device (34) is designed in a manner such that it only carries out an evaluation of a reading of the concentration sensor (30) when the reading which is detected by the at least one second sensor (32) and in particular a temperature reading which is detected by the second sensor lies below a defined maximal limit value.
- A pump assembly according to one of the preceding claims, characterised in that the evaluation device (34) is designed in a manner such that it only carries out an evaluation of a reading of the concentration sensor (30) when the reading which is detected by the at least one second sensor (32) and in particular a temperature reading which is detected by the second sensor lies above a defined minimal limit value.
- A pump assembly according to one of the preceding claims, characterised in that the evaluation device (34) is designed in a manner such that given the skipping of a reading acquisition or reading evaluation, it takes the last reading which was detected before the skipping as a basis for the further processing.
- A pump assembly according to one of the preceding claims, characterised in that the evaluation device (34) is designed in a manner such that it outputs an alarm signal on the basis of a reading which is detected by the concentration sensor (32), if this at least one reading or a characteristic value which is derived from the reading reaches a predefined concentration limit value.
- A pump assembly according to one of the preceding claims, characterised in that the evaluation device (34) is designed in a manner such that it forms at least one characteristic value which is derived from the reading of the concentration sensor (30) and from a reading, in particular a temperature reading, which is detected by the at least one second sensor (32).
- A pump assembly according to one of the preceding claims, characterised in that the evaluation device (34) is designed in a manner such that it detects readings of the concentration sensor (30) at different points in time and forms an average value of the detected readings as a characteristic value.
- A pump assembly according to claim 10, characterised in that the evaluation device (34) is designed in a manner such that it forms a rolling average value or an average value over a certain time span, as a characteristic value.
- A pump assembly according to claim 10 or 11, characterised in that the evaluation device (34) is designed in a manner such that on forming the average value, it weights the readings of the concentration sensor (30) in dependence on the readings which are detected by the second sensor (32) and preferably in dependence on the temperature readings which are detected by the at least one second sensor (32) and/or in dependence on the time.
- A pump assembly according to claim 12, characterised in that the evaluation device (34) is designed in a manner such that on forming the average value, readings which are detected at a lower temperature are weighted higher than readings which are detected at a higher temperature, wherein this is preferably effected according to a linear function or an inverse Sigmoid function.
- A pump assembly according to one of the preceding claims, characterised in that the evaluation device (34) comprises a neuronal network for evaluating the at least one reading.
- A pump assembly according to one of the preceding claims, characterised in that the concentration sensor (30) and the at least one second sensor (32) are integrated in a sensor construction unit.
- A pump assembly according to one of the preceding claims, characterised by at least one third sensor (33) which is designed to detect an operating state of the pump assembly.
- A pump assembly according to one of the preceding claims, characterised in that the fluid reservoir (22) is filled with a fluid mixture which contains oil or glycol.
- A pump assembly according to one of the preceding claims, characterised in that the concentration sensor (30) and the evaluation device (34) are designed for detecting the concentration of water in the fluid reservoir.
- A pump assembly according to one of the preceding claims, characterised in that the pump assembly is a waste water pump assembly.
- A pump assembly according to one of the preceding claims, characterised in that the evaluation device (34) is designed in a manner such that it computes or predicts a time interval until the next due maintenance of the pump assembly on the basis of the evaluation of the readings of the concentration sensor (30).
- A method for detecting a concentration change in a fluid reservoir (22) in a seal arrangement (20) in a pump assembly, concerning which at least one reading of a concentration sensor (30) which is arranged on the fluid reservoir (22) is evaluated in dependence on at least one further parameter of the fluid reservoir and preferably in dependence on the temperature of or on a temperature-dependent parameter of the fluid reservoir (22).
- A method according to claim 21, characterised in that the evaluation of the at least one reading is skipped if the temperature lies above an upper limit value or below a lower limit value.
- A method according to claim 21 or 22, characterised in that on evaluation, an average value is formed from a plurality of readings of the concentration sensor (30), wherein the individual readings are weighted differently depending on a further parameter and preferably in dependence on the respectively detected temperature and/or in dependence on time.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18163562.4A EP3543537B1 (en) | 2018-03-23 | 2018-03-23 | Pump unit and method for monitoring the liquid situation in a seal assembly in a pump unit |
US16/361,525 US11143190B2 (en) | 2018-03-23 | 2019-03-22 | Pump assembly having an impeller, a motor, and a shaft, with the shaft passing from the motor to the impeller through a fluid reservoir and a seal arrangemnet with a tration |
CN201910227128.4A CN110296099B (en) | 2018-03-23 | 2019-03-25 | Pump assembly and method for monitoring a liquid portion in a sealing structure in a pump assembly |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18163562.4A EP3543537B1 (en) | 2018-03-23 | 2018-03-23 | Pump unit and method for monitoring the liquid situation in a seal assembly in a pump unit |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3543537A1 EP3543537A1 (en) | 2019-09-25 |
EP3543537B1 true EP3543537B1 (en) | 2022-01-05 |
Family
ID=61763861
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18163562.4A Active EP3543537B1 (en) | 2018-03-23 | 2018-03-23 | Pump unit and method for monitoring the liquid situation in a seal assembly in a pump unit |
Country Status (3)
Country | Link |
---|---|
US (1) | US11143190B2 (en) |
EP (1) | EP3543537B1 (en) |
CN (1) | CN110296099B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102021211874A1 (en) | 2021-10-21 | 2023-04-27 | Vitesco Technologies GmbH | Method and device for detecting an expected formation of ice within a washing system of a vehicle |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113250990B (en) * | 2021-07-14 | 2021-10-08 | 亿昇(天津)科技有限公司 | Compressor detection device, compressor and detection method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6379127B1 (en) | 2000-09-29 | 2002-04-30 | Lawrence Pumps, Inc. | Submersible motor with shaft seals |
WO2017221217A1 (en) * | 2016-06-24 | 2017-12-28 | Caprari S.P.A. | Electric pump with explosion-proof leak detector |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3370542A (en) * | 1965-10-21 | 1968-02-27 | Dresser Ind | Temperature detection device |
US4264452A (en) * | 1978-09-22 | 1981-04-28 | E. I. Du Pont De Nemours And Company | Pump seal flush |
US5173019A (en) * | 1991-08-05 | 1992-12-22 | American Gage And Machine Company | Pump including secondary containment with alarm system |
US5494299A (en) * | 1994-02-22 | 1996-02-27 | Evironamics Corporation | Temperature and pressure resistant rotating seal construction for a pump |
US5746435A (en) * | 1994-09-30 | 1998-05-05 | Arbuckle; Donald P. | Dual seal barrier fluid leakage control method |
DK172996B1 (en) * | 1997-05-27 | 1999-11-01 | Apv Fluid Handling Horsens As | Centrifugal pump with shaft seal |
US6626436B2 (en) * | 1997-08-20 | 2003-09-30 | Crane John Inc | Monitoring seal system |
DE10196874B4 (en) * | 2000-10-16 | 2012-04-26 | Sievers Instruments, Inc. | Pulse-flow analyzer for analyzing the total amount of organically bound carbon |
US10260388B2 (en) * | 2006-11-16 | 2019-04-16 | General Electric Company | Sensing system and method |
US20130272898A1 (en) * | 2012-04-17 | 2013-10-17 | Schlumberger Technology Corporation | Instrumenting High Reliability Electric Submersible Pumps |
US9321026B2 (en) * | 2012-10-31 | 2016-04-26 | Chevron Phillips Chemical Company Lp | System and method for seal flush |
EP2992216B1 (en) * | 2013-04-29 | 2017-12-13 | Services Pétroliers Schlumberger | Proximity sensor system for electric submersible pumps |
CN205207212U (en) * | 2015-12-03 | 2016-05-04 | 中广核研究院有限公司 | Flow protection controlling means is revealed to reactor coolant pump bearing seal |
-
2018
- 2018-03-23 EP EP18163562.4A patent/EP3543537B1/en active Active
-
2019
- 2019-03-22 US US16/361,525 patent/US11143190B2/en active Active
- 2019-03-25 CN CN201910227128.4A patent/CN110296099B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6379127B1 (en) | 2000-09-29 | 2002-04-30 | Lawrence Pumps, Inc. | Submersible motor with shaft seals |
WO2017221217A1 (en) * | 2016-06-24 | 2017-12-28 | Caprari S.P.A. | Electric pump with explosion-proof leak detector |
Non-Patent Citations (2)
Title |
---|
"Ultrasonic flow meter ", WIKIPEDIA, 27 November 2017 (2017-11-27), XP093135011, Retrieved from the Internet <URL:https://en.wikipedia.org/w/index.php?title=Ultrasonic_flow_meter&oldid=812347856> |
ANONYMOUS: "Wilo-EMU KS.../KS...Ex", EINBAU- UND BETRIEBSANLEITUNG, WILO, 1 January 2011 (2011-01-01), XP093135019 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102021211874A1 (en) | 2021-10-21 | 2023-04-27 | Vitesco Technologies GmbH | Method and device for detecting an expected formation of ice within a washing system of a vehicle |
DE102021211874B4 (en) | 2021-10-21 | 2024-07-11 | Vitesco Technologies GmbH | Method and device for detecting expected ice formation within a vehicle washing system |
Also Published As
Publication number | Publication date |
---|---|
US11143190B2 (en) | 2021-10-12 |
CN110296099A (en) | 2019-10-01 |
EP3543537A1 (en) | 2019-09-25 |
US20190293073A1 (en) | 2019-09-26 |
CN110296099B (en) | 2020-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102015215302A1 (en) | Automatic lubrication system for a bearing and method for operating an automatic lubrication system | |
EP2730906B1 (en) | Device and method for monitoring the state of a roller bearing | |
DE102011015154B4 (en) | Method for monitoring an electric motor-driven fuel pump and fuel delivery unit with a fuel pump | |
DE102009022107A1 (en) | Method and device for determining the operating point of a work machine | |
EP3298266B1 (en) | Device for measuring the injection rate and measuring method | |
DE102012000055A1 (en) | Device for controlling an electric oil pump | |
EP3543537B1 (en) | Pump unit and method for monitoring the liquid situation in a seal assembly in a pump unit | |
EP2630372B1 (en) | Device for monitoring a pump | |
EP1029160A1 (en) | Method and device for monitoring and/or determining motor oil quality | |
EP2258949A1 (en) | Method for recording characteristic values, in particular values, in particular of parameters of a centrifugal pump powered by an electric motor integrated into an assembly | |
DE102010037379A1 (en) | Pump arrangement with integrated vibration measurement | |
EP3242035B1 (en) | Method for operating at least one pump unit of a plurality of pump units | |
DE19958384A1 (en) | Process for detecting a faulty sensor | |
EP0742372B1 (en) | Monitoring system for detecting cavitation intensity | |
DE102004039836B4 (en) | Method and device for detecting a fuel input into the lubricating oil of an internal combustion engine | |
DE102010027999B4 (en) | Method and device for detecting cavitation on hydraulic systems and devices | |
DE112017008001T5 (en) | Monitoring device, monitoring method and program | |
DE102022120965A1 (en) | METHOD OF PREDICTING ROTOR TEMPERATURE FOR AN ELECTRIC MOTOR | |
WO2019077093A1 (en) | Method and system for evaluating an operating state of a watercraft | |
DE102006032648A1 (en) | Diagnostic system for monitoring condition and detecting operation deterioration and failures in e.g. centrifugal pump, has evaluation unit determining and evaluating degradation index from deviations between actual and target parameters | |
DE102011084906A1 (en) | Method for monitoring pump for transporting liquid in industrial plant for production of e.g. cosmetic, involves detecting air bubble or froth in pump liquid by capacitive and/or conductive sensor arranged into housing portion | |
DE102018200651A1 (en) | Method for the self-diagnosis of the mechanical and / or hydraulic condition of a centrifugal pump | |
EP2246580A1 (en) | Control of the lubricant supply of a sliding bearing and device for same | |
DE102016222706A1 (en) | Fault diagnosis for a fuel pump | |
DE60005803T2 (en) | METHOD AND DEVICE FOR TRANSMISSION OPTIMIZATION AND SELF-DIAGNOSIS FUNCTION |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20200319 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20210303 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20210816 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1460833 Country of ref document: AT Kind code of ref document: T Effective date: 20220115 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502018008377 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20220105 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220105 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220105 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220105 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220505 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220405 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220105 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220105 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220105 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220405 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220105 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220105 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220406 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220105 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220505 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 502018008377 Country of ref document: DE Ref country code: DE Ref legal event code: R082 Ref document number: 502018008377 Country of ref document: DE |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220105 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220105 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220105 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220105 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220105 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220105 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220105 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
26 | Opposition filed |
Opponent name: WILO SE Effective date: 20221005 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220105 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20220331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220323 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220331 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220323 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220331 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220105 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220105 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220105 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240320 Year of fee payment: 7 Ref country code: GB Payment date: 20240320 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1460833 Country of ref document: AT Kind code of ref document: T Effective date: 20230323 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20180323 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240329 Year of fee payment: 7 Ref country code: FR Payment date: 20240328 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230323 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230323 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220105 |