EP3542052B1 - Wind turbine and method for operating a wind turbine - Google Patents
Wind turbine and method for operating a wind turbine Download PDFInfo
- Publication number
- EP3542052B1 EP3542052B1 EP17788238.8A EP17788238A EP3542052B1 EP 3542052 B1 EP3542052 B1 EP 3542052B1 EP 17788238 A EP17788238 A EP 17788238A EP 3542052 B1 EP3542052 B1 EP 3542052B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- operating characteristic
- power
- range
- speed
- characteristic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/0296—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor to prevent, counteract or reduce noise emissions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/028—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/022—Adjusting aerodynamic properties of the blades
- F03D7/0224—Adjusting blade pitch
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D9/00—Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
- F03D9/20—Wind motors characterised by the driven apparatus
- F03D9/25—Wind motors characterised by the driven apparatus the apparatus being an electrical generator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2270/00—Control
- F05B2270/30—Control parameters, e.g. input parameters
- F05B2270/333—Noise or sound levels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2270/00—Control
- F05B2270/30—Control parameters, e.g. input parameters
- F05B2270/335—Output power or torque
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
Definitions
- the present invention relates to a wind power installation.
- the present invention also relates to a method for parameterizing a wind energy installation and the present invention relates to a method for operating a wind energy installation.
- Wind energy installations are known; they generate electrical power from wind, in particular in order to feed them into an electrical supply network.
- a wind turbine can also be perceived as a nuisance in certain situations. Operating noises from the wind energy installation can be perceived as annoying, particularly when wind energy installations are operated in the vicinity of a populated area.
- wind noise on the rotor blades of the wind energy installation can lead to a more or less loud noise spectrum.
- it can be proposed in certain situations to reduce the speed of the wind energy installation.
- Such structure-borne noise in particular the peak mentioned in the frequency spectrum, can also be reduced during operation by throttling the wind energy installation. But it can there is also the effect that a throttled operation of the wind turbine reduces the overall spectrum and thus makes the peak of the structure-borne noise more dominant. This can even have the effect that such structure-borne sound is perceived by the human ear to be even stronger and thus even more unpleasant.
- Such structure-borne noise with a pronounced peak in the frequency spectrum is also referred to as tonality.
- a speed control is provided in particular, which omits or, if necessary, controls the corresponding rotor speeds as quickly as possible, which stimulate a system resonance.
- a particular problem with such methods is that a decision has to be made as to whether the system should be operated at a lower or higher speed than the speed range to be omitted. If an otherwise desirable operating point lies in the range of the speed to be omitted, such a decision can be difficult and in the worst case lead to a constant change between the next higher and next lower speed.
- German Patent and Trademark Office researched the following prior art in the priority application for the present application: US 2008/0164091 A1 ; US 2012/0139244 A1 ; WO 2012/139584 A1 and WO 2013/097863 A1 .
- the present invention is therefore based on the object of addressing at least one of the problems mentioned.
- a solution is to be proposed which reduces the occurrence or perception of such structure-borne noise.
- At least an alternative solution to previously known solutions is to be proposed.
- a wind power installation according to claim 1 is proposed.
- This has a tower, an aerodynamic rotor and a generator.
- the aerodynamic rotor which has several rotor blades, whereby one would also be sufficient in principle, can be operated with a variable rotor speed and the rotor blades are adjustable in their rotor blade angle.
- the rotor blade angle is generally also referred to as the pitch angle and the adjustment of the rotor blade angle is referred to as the pitch.
- an operating characteristic which indicates a relationship between the rotor speed and the output power.
- the wind energy installation is operated as a function of such an operating characteristic curve in such a way that when the rotor speed sets in, a corresponding output power is set in accordance with the operating characteristic curve.
- a control system is provided for this purpose, which adjusts the output power in accordance with the operating characteristic as a function of the rotor speed.
- An operating characteristic with reduced tonality, which can be selected, is now provided as the operating characteristic. It is selected accordingly if the tonality is to be reduced or limited.
- This tonality-reduced operating characteristic curve is designed in such a way that an excitation of a system resonance of the wind energy installation is reduced in comparison to an operating characteristic curve with optimum performance.
- the operating characteristic with reduced tonality is designed in such a way that it does not omit a speed that stimulates system resonance.
- this tonality-reduced operating characteristic is a continuous characteristic.
- the operating characteristic can be selected from the operating characteristic with reduced tonality, the performance-optimized operating characteristic and a noise-reduced operating characteristic.
- the performance-optimal operating characteristic is the operating characteristic that is designed in such a way that power extraction from the wind is maximized.
- This performance-optimized operating characteristic can be selected in particular if a sound reduction is not fundamentally necessary, or if no disturbing sound is to be expected in the given situation. This can also depend, for example, on the wind direction if this is such, for example, that the wind only carries sound from the wind energy installation into non-populated areas.
- the noise-reduced operating characteristic is designed in such a way that noise emissions from the wind turbine are generally reduced compared to the performance-optimized operating characteristic.
- a sound power spectrum of the sound emissions is reduced here.
- the tonality-reduced operating characteristic is deliberately reduced. This can also mean that the overall noise spectrum is not or only slightly reduced compared to the performance-optimized operating characteristic.
- the wind energy installation can thus easily adjust to the respective circumstances or requirements, while continuous operation or continuous operation is ensured.
- the tonality-reduced operating characteristic has lower output power values in a resonance speed range than the performance-optimal operating characteristic in the same resonance speed range, the tonality-reduced operating characteristic also being constant in the resonance speed range.
- the resonance speed range is thus a range in which the rotor speed lies, which excites the system resonance of the wind energy system.
- the tonality-reduced operating curve is at least somewhat flatter than the performance-optimized operating curve.
- Both operating characteristics indicate the output power as a function of the rotor speed, whereby an equivalent speed could also be used, and the operating characteristic with reduced tonality is correspondingly lowered here. At least one value of the output power at the resonance speed of the tonality-reduced operating characteristic is smaller than in the performance-optimal operating characteristic. However, the operating characteristic with reduced tonality is also constant in the resonance speed range. It is not a singular value of the output power, but the overall range is smaller, but at least one value of the tonality-reduced operating characteristic is lower than the performance-optimized operating characteristic. In this way, too, the tonality can be taken into account in a targeted manner, in that the power is reduced in a targeted manner in the relevant speed range. In this way, forces acting overall at this speed are also reduced and, accordingly, an excitation of the system resonance is also reduced.
- a wind energy installation can in principle also have several installation resonances, but it is assumed here that one installation resonance is dominant and precisely this installation resonance is stimulated less by the proposed measure. At the same time, however, the wind energy installation can be operated with a constant operating characteristic.
- the operating characteristic with reduced tonality is preferably also continuously differentiable in the resonance speed range and increases in a strictly monotonous manner.
- the operating characteristic is thus also after a derivative, i.e. a derivative of the output power according to the rotor speed, continuously.
- a derivative i.e. a derivative of the output power according to the rotor speed
- it increases strictly monotonically, so the output power increases as the rotor speed increases, without there being a falling or constant range.
- the operating characteristic can also be used in a simple manner for controlling the wind energy installation for operation with reduced tonality.
- the tonality-reduced operating characteristic can be divided into a first, second and third rotor speed range.
- the first rotor speed range begins at a starting speed, which designates a rotor speed with which the wind energy installation is started.
- the second rotor speed range has higher speeds than the first rotor speed range and thus follows on from the first rotor speed range.
- the third rotor speed range has even higher speeds than the second rotor range and reaches up to a nominal speed.
- the second rotor speed range includes the resonance rotor speed.
- This partial load range thus extends from the beginning of the first rotor speed range to the end of the third rotor speed range.
- the second rotor speed range is thus a medium range in this partial load range and the resonance speed is located in this medium range.
- the resonance speed or the resonance speed range is thus the speed or the range at which or in which the system resonance is excited.
- the output power of the tonality-reduced operating characteristic curve is lower than the output power of the performance-optimal operating characteristic curve. It is also proposed that the second rotor speed range in particular include or correspond to the resonance speed range.
- the wind energy installation is characterized in that a pitch control is provided which sets the rotor blade angle in accordance with a pitch characteristic as a function of the output power generated in partial load operation.
- the pitch characteristic is dependent on the selected Operating characteristic can be selected from several pitch characteristics. In particular, it is proposed that a separate pitch characteristic be provided for each operating characteristic.
- variable pitch angle is also useful in partial load operation.
- no predetermined constant optimal angle that is to say no fixed part-load angle, is used, but rather it is set according to the respective conditions.
- a corresponding pitch characteristic is selected depending on the selected operating characteristic, that is to say in particular whether a tone-reduced, noise-reduced or performance-optimized operating characteristic is formed.
- the respective pitch characteristic is preferably matched to the respective operating characteristic.
- the operation of the wind energy installation can thus also be adapted aerodynamically to the respective operating characteristic and thus to the respective operating situation.
- the pitch characteristic can be divided into a first, second and third output power range.
- the first output power range begins with an output power which corresponds to an output power at which the wind energy installation is started.
- the second output power range follows this and has correspondingly higher output powers than the first output power range.
- the third output power range has a higher output power than the second output power range and extends up to a maximum output power of the partial load operation or up to a nominal power of the generator.
- the wind energy installation is therefore preferably also divided into three output power ranges. This also enables targeted operation, taking into account various situations, even in partial load operation. For this, too, it was recognized that the use of a single constant rotor blade angle in part load operation can in any case be improved for the implementation of the reduction in tonality.
- an adapted pitch characteristic is specified, which can also be referred to as a pitch characteristic with reduced tonality.
- Such an adapted pitch characteristic preferably has a larger rotor blade angle in the first output power range than a power-optimal pitch characteristic in the same output power range.
- a power-optimal pitch characteristic is one that is proposed for use in connection with a power-optimal operating characteristic.
- the pitch characteristic can be adapted as a function of the selected operating characteristic.
- An adapted pitch characteristic is therefore proposed for this.
- a control of the wind energy installation preferably already contains one or more corresponding pitch characteristics and these can then be selected depending on the selected operating characteristic.
- the adapted pitch characteristic that is to say the pitch characteristic with reduced tonality, has a larger rotor blade angle in the second output power range than a power-optimal pitch characteristic in the same output power range.
- the adapted pitch characteristic is larger in the second output power range, that is to say has a larger rotor blade angle, than a power-optimal pitch characteristic in the same output power range.
- the adapted pitch characteristic curve in the second output power range can have a smaller rotor blade angle than compared with the first output power range. The blade angle is accordingly larger in comparison to the power-optimal pitch characteristic and also or alternatively smaller in comparison to the first output power range.
- the second output power range preferably corresponds to the second rotor speed range. This means in particular that the wind energy installation is always operated in the second rotor speed range when it is operated in the second output power range. In clear terms, these two areas cover the same wind speed range, but without the wind speed being used for the classification for this is expressly included.
- the first, second and third output power ranges preferably correspond to the first, second and third rotor speed ranges, respectively. The explanations given above for the individual areas can thus be applied equally to the pitch characteristics and operating characteristics. In particular, a change between the respective first, second and third range can be made both in the case of the pitch characteristic curve and the operating characteristic curve.
- the pitch angle is also set as a function of the rotor speed and pitch characteristics are correspondingly specified as a function of the rotor speed. It is particularly preferably proposed that the same rotor speed ranges be used as a basis for the pitch characteristic as for the operating characteristic.
- the second output power range have a wind speed range of approximately 4 to 10 meters per second. is equivalent to.
- the second output power range thus relates to a large central range of partial load operation.
- the advantageous change in the characteristic curves can be used here in particular, the application taking place at a good distance from an initial wind speed and also at a good distance upwards from a transition to full-load operation.
- the second rotor speed range be in a range from approximately 20% to 80% of a nominal speed of the rotor. In this way, too, a large middle range of partial operation is provided for the advantages described for this second rotor speed range. Upper and lower border areas can be left out.
- the wind energy installation is preferably characterized in that at least in the second rotor speed range the reduced-tonality operating characteristic has reduced output power values compared to the performance-optimal operating characteristic and that the adapted pitch characteristic has rotor blade angles changed in the same area compared to a performance-optimal pitch characteristic. This at least partially counteracts a deterioration in a performance coefficient that results from a change in the high-speed number. The adjusted pitch characteristic therefore takes this change in the high speed number into account.
- the adapted pitch characteristic can also be changed in the first output power range with respect to the power-optimal pitch characteristic, in which the pitch characteristic has larger blade angles there than the power-optimal pitch characteristic.
- the high-speed speed falls strictly monotonically with increasing wind speed.
- a slope of less than -2 is proposed.
- a value of -3 and -4 can also be considered.
- Values up to -10 are suggested according to one embodiment. This concerns a wind speed normalized to the nominal wind speed.
- the ratio of a high-speed number when using the operating characteristic with reduced tonality to a high-speed number when using an operating characteristic with optimum performance is preferably greater than 1.
- the high-speed number when using the operating characteristic with reduced tone is therefore greater than the corresponding high-speed number when using the operating characteristic with optimum performance.
- a method for parameterizing a wind energy installation is also proposed.
- a wind energy installation with a tower and an aerodynamic rotor is used.
- the aerodynamic rotor can be operated with a variable rotor speed and has several rotor blades each with an adjustable rotor blade angle.
- a generator is provided for generating an electrical output power.
- a performance-optimal operating characteristic is first determined, which indicates a relationship between the rotor speed and the output power.
- the performance-optimized operating characteristic curve is selected in such a way that the wind energy installation emits maximum output power as long as it is operated in accordance with this operating characteristic curve.
- a resonance speed is recorded, which describes a rotor speed that excites a system resonance of the wind energy system.
- a system resonance can be a resonance of the tower, the nacelle or other elements of the wind energy system.
- a resonance for the wind energy installation as a whole also comes into consideration, in which several elements together determine the installation resonance, such as, for example, the tower and the nacelle together.
- an operating characteristic with reduced tonality is determined, which has lower output power values in the resonance speed range compared to the performance-optimal operating characteristic.
- the operating characteristic with reduced tonality is determined in such a way that it is also constant in the resonance speed range.
- an operating characteristic with reduced tonality is determined and not just singular speed power values that are to be specifically controlled or specifically avoided.
- the result of this proposed parameterization is, in particular, the determination of the tonality-reduced operating characteristic.
- at least two operating characteristics are parameterized, namely the performance-optimized and the speed-reduced one.
- the wind energy installation can then optionally be operated with at least one of these two operating characteristics. If there are no requirements for a reduction in tonality, for example because a suggestion of such tonality is not to be expected anyway or nobody in the vicinity of the wind turbine is disturbed by such tonality, the wind turbine can be operated with the performance-optimized operating characteristic.
- a fundamentally known operating characteristic can also be used as the performance-optimal operating characteristic. Only when there is a need to reduce the tonality can this tonality-reduced operating characteristic be used.
- the wind energy installation is then operated permanently with the operating characteristic curve which is reduced in tone. In principle, there is no provision for constantly switching back and forth between the performance-optimized operating characteristic and the tonal-reduced operating characteristic.
- the detection of the resonance speed take place in such a way that the rotor speed is varied and, for this purpose, a tonality in the vicinity of the wind energy installation is detected.
- the rotor speed at which the tonality has a maximum is then used as the resonance speed. This is preferably done in a predetermined test frequency range, which is in a range between 10 Hz and 100 Hz.
- Tonality is a dominant noise, especially of one frequency.
- the overall sound power of a sound power spectrum is therefore not recorded, but rather the proportion of such a noise of a frequency is specifically considered.
- Such a noise of a frequency increases particularly strongly when the rotor speed has a value with which the wind energy installation is excited in such a way that this noise occurs.
- this is structure-borne noise that is emitted by this wind energy installation as a result of a corresponding movement of the wind energy installation.
- the operating characteristic with reduced tonality can then also be determined.
- An adapted pitch characteristic can then be determined based on this.
- Such an adapted pitch characteristic can also be referred to as a pitch characteristic with reduced tonality because it can be assigned to at least one operating characteristic with reduced tonality.
- the tonality-reduced operating characteristic is preferably determined in such a way that the output power in the resonance speed range, in particular at the resonance speed, is reduced compared to the performance-optimal operating characteristic to such an extent that the tonality recorded in the vicinity of the wind turbine falls below a predetermined limit value.
- the reduction of the output power and the recording of the tonality are preferably repeated or carried out in a continuous process until the value falls below the predetermined limit value.
- a special noise of a frequency is examined, specifically that which occurs at the resonance speed, especially if the resonance speed was recorded as described above.
- the system is thus preferably operated at the resonance speed and the power is reduced until this noise at one frequency falls below the predetermined limit value.
- the operating characteristic with reduced tonality can then be designed in such a way that it has the low value of the generator speed found in this way at this resonance speed.
- the operating characteristic is specified in such a way that it is continuous, in particular continuously differentiable and strictly increasing in a monotonous manner.
- the result is then an operating characteristic that has a low power value at the resonance speed.
- this does not mean that overall much less power is generated than in comparison to the power of the power-optimal operating characteristic at the same speed.
- operation according to an operating characteristic with reduced tonality that is to say the reduction in tonality at all, can also mean an increased or at least not reduced sound power spectrum.
- Operation in which the sound power level is reduced can also mean an increase or at least not a reduction in tonality.
- the ratio of such a dominant noise of a frequency in comparison to the rest of the sound power spectrum is important.
- the wind energy installation has a tower, an aerodynamic rotor and a generator for generating electrical power, as has already been described above in connection with a wind energy installation explained according to the invention.
- an operating characteristic which indicates a relationship between the rotor speed and the output power and the output power is set according to the operating characteristic as a function of the rotor speed.
- An operating characteristic with reduced tonality can be selected as the operating characteristic. This is designed in such a way that an excitation of a system resonance of the wind energy system is reduced compared to a performance-optimized operating characteristic, without, however, a rotational speed that stimulates resonance of these systems being omitted.
- the wind energy installation be operated in such a way as also emerges from the explanations of the embodiments of wind energy installations according to the invention described above. It is preferably also proposed that a wind energy installation according to an embodiment described above is used.
- a switch is made between operating the wind turbine with the reduced-tonality operating characteristic, and operating the wind turbine with the performance-optimized operating characteristic, which is designed in such a way that power extraction from the wind is maximized , and an operation of the wind energy installation with a noise-reduced operating characteristic which is designed in such a way that the sound emissions of the wind energy installation, in particular a sound power spectrum of the sound emissions, are reduced compared to the performance-optimal operating characteristic.
- a performance-optimized operation a tone-reduced operation and a noise-reduced operation.
- the choice is made in such a way that a corresponding operating characteristic is selected.
- operation with reduced tonality and thus an operating characteristic with reduced tonality, is fundamentally different from noise-reduced operation or a noise-reduced operating characteristic.
- a wind energy installation is very fundamentally proposed which satisfies at least one embodiment of a wind energy installation described above and has been parameterized according to an embodiment describing a parameterization and is also or alternatively described with a method according to a described embodiment.
- Figure 1 shows a wind energy installation 100 with a tower 102 and a nacelle 104.
- a rotor 106 with three rotor blades 108 and a spinner 110 is arranged on the nacelle 104.
- the rotor 106 is set in rotation by the wind during operation and thereby drives a generator in the nacelle 104.
- Figure 9 illustrates such a frequency spectrum.
- the sound power level L is plotted purely schematically as a diagram as a function of the frequency f.
- a sound power level is shown schematically with a solid line Line shown.
- An essentially reduced sound power level L 2 and an overall increased sound power level L 3 are also shown schematically for the purpose of explanation.
- the occurrence of resonances and the resulting tonality can be minimized by a clever selection of the operating characteristic, that is, the specification of the electrical output power as a function of the generator speed.
- the resonance and the associated tonality are caused by the generator, the tonality can be minimized particularly effectively by adapting the operating characteristic.
- Figure 2 shows an example of a change in operating characteristics.
- Figure 2 shows three different operating characteristics, i.e. the functional relationship between the electrical output power P of the wind turbine and the rotor speed n.
- a performance-optimal operating characteristic 200 two tone-reduced characteristics 202 and 204 are shown.
- This performance-optimal characteristic curve thus describes how the system is operated in the performance-optimal operating mode when there is no tonality of the system or does not have to be reduced, and thus corresponds to a characteristic curve of the prior art.
- the two tonality-reduced operating characteristics 202 and 204 are proposed.
- the underlying wind turbine there was an increased sound power level in the form of a peak in a frequency range that was particularly excited at a normalized speed in the range of 0.8.
- this normalized speed of 0.8 is here one or the resonance speed.
- the two operating characteristics 202 and 204 with reduced tonality can be used for this purpose.
- Both Operating characteristics 202 and 204 with reduced tonality mean that at the normalized resonance speed of 0.8 the power was reduced by more than 40 percent compared to the optimal operating characteristic.
- the two operating characteristic curves 202 and 204 with reduced tonality differ structurally.
- the tonality-reduced operating characteristic curve 204 already provides smaller powers at the beginning than in the case of the performance-optimal characteristic curve, while the other tonality-reduced characteristic curve 202 initially coincides with the performance-optimal characteristic curve 200 at low speeds.
- both tonality-reduced operating characteristics 202 and 204 are operating characteristics with a continuous profile, which are also steady, continuously differentiable in the resonance speed range and, moreover, are also strictly monotonically increasing.
- the characteristic curves 202 and 204 with reduced tonality can thus basically be used as a basis very similar to the operational control or system regulation, as the performance-optimal operating characteristic 200.
- Figure 3 shows to Figure 2 just another example.
- the critical normalized speed range is also around 0.8.
- a performance-optimized operating characteristic 300 is drawn in, as well as three operating characteristic curves with reduced tonality 302, 304 and 306. All operating characteristic curves with reduced tonality 302, 304 and 306 and, moreover, also those of the Figure 2 are examples of operating characteristics with reduced tonality according to the invention.
- the three tonality-reduced operating characteristics 302, 304 and 306 also lead to a reduction in power to approximately half compared to the performance-optimal operating characteristic at the normalized resonance speed, which is 0.8 here. According to the invention, however, it was also recognized that the here particularly to the Figures 2 and 3 The procedure described can indeed avoid or reduce a tonality that occurs, but by adapting the operating characteristic, the optimum high-speed number range of the rotor blade is left, namely towards higher high-speed numbers. This is illustrated by two examples in the Figures 4 and 5 explained.
- Figure 4 and Figure 5 basically show the progression of the high-speed figures to the corresponding operating characteristics of the Figures 2 or 3, if the pitch characteristics are not adjusted.
- the curves 400, 402 and 404 of the high-speed number ⁇ correspond to the operating characteristics 200, 202 and 204 of FIG Figure 2 .
- a characteristic curve with some measuring points is also drawn in and this characteristic curve reproduces measurements and thus confirms the remaining curves that are calculated or simulated.
- the high-speed number courses 500, 502, 504 and 506 correspond to the operating characteristics 300, 302, 304 and 306 of FIG Figure 3 .
- an optimal high-speed number range ⁇ OPT is also shown.
- the pitch characteristic is considered to be the power that the system actually delivers and can feed into an electrical supply network. There are various ways of doing this Take this output power into consideration, for example, to determine it from the DC voltage intermediate circuit if a full converter concept with a DC voltage intermediate circuit is used. However, a current-voltage measurement at the output terminals of the wind energy installation can also be considered. The output power can therefore also be referred to synonymously as the system power.
- Figures 7 and 8th each show a pitch characteristic 700 or 800 for an optimal performance operating characteristic 200 or 300 according to FIG Figure 2 respectively.
- a partial load angle ⁇ T is drawn in in each case, which designates the blade angle that is used in normal performance-optimal operation as the blade angle in partial load operation.
- Figure 8 shows a course 806 of the blade angle or a pitch characteristic, in which or the course of the pitch angle of the performance-optimal operating characteristic was modified in a somewhat more complex form in order to avoid yield losses.
- the minimum pitch angle is increased up to approx. 6 m / s, in order to then reduce it again to the partial load angle ⁇ T up to approx. 8 m / s.
- the Figures 7 and 8th show the profile of the blade angle as a function of the wind speed V W.
- the blade angle can particularly depend on a rotor speed and can be adjusted as a function of it.
- the respective operating point of the wind energy installation can be easily detected via the rotor speed, for example, and a blade angle can be selected accordingly.
- a blade angle will be set as a function of the wind speed, namely as in FIG Figures 7 or 8th shown.
- the wind speed is not considered for this, at least not exclusively.
- Figure 10 illustrates a possible implementation.
- Operating characteristics 01, 02 and 03 are stored there and you can switch between them via an external signal ext.
- the input variable of these operating characteristics O1, 02 and 03 forms the speed n and a power P results as output values.
- This power P is then to be set for the generator.
- One possibility is to do this at least partially by changing an excitation current, which is indicated by the block I E.
- the result is then an excitation current I E , which can be input directly to the rotor of the generator Gen, at least when the generator is a separately excited synchronous machine. But there are also other possibilities, such as influencing a stator current of the generator.
- pitch characteristics P1, P2 and P3 are stored, between which you can also choose.
- the representation of the Figure 10 is intended to indicate that the same external signal ext is also used for a corresponding selection between the pitch characteristics.
- the selection should be made in such a way that a pitch characteristic P1, P2 or P3 is assigned to the operating characteristic curve O1, 02 or 03 and thus the operating characteristic O1 with the pitch characteristic P1, the operating characteristic 02 with the pitch characteristic P2 and the operating characteristic 03 is operated or used together with the pitch characteristic curve P3.
- the operating characteristic curve O1 can stand for a performance-optimal operating characteristic curve and the operating characteristic curve 02 can stand for an operating characteristic curve with reduced tonality.
- the operating characteristic 03 can, for example, stand for a noise-reduced operating characteristic, or also for an alternative, that is to say further operating characteristic with reduced tonality.
- the structure of the Figure 10 shows that the operating characteristics P1, P2 and P3 receive the power P as an input variable.
- the power P used which forms the output of one of the three pitch characteristics P1, P2 and P3.
- the rotor speed or an equivalent speed can also be used with a correspondingly adapted pitch characteristic, especially when using a gearbox, which is usually better to avoid, however, it ultimately has the same effect, whether the rotor speed of the aerodynamic rotor or a generator speed is used to give just one example.
- the output value of the pitch characteristics P1, P2 and P3 is the blade angle a. This can be given to a respective adjusting motor, which is identified here as motor M, which in turn sets the respective blade angle of the rotor blade B.
Landscapes
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Wind Motors (AREA)
- Control Of Eletrric Generators (AREA)
Description
Die vorliegende Erfindung betrifft eine Windenergieanlage. Die vorliegende Erfindung betrifft auch ein Verfahren zum Parametrieren einer Windenergieanlage und die vorliegende Erfindung betrifft ein Verfahren zum Betreiben einer Windenergieanlage.The present invention relates to a wind power installation. The present invention also relates to a method for parameterizing a wind energy installation and the present invention relates to a method for operating a wind energy installation.
Windenergieanlagen sind bekannt, sie erzeugen elektrische Leistung aus Wind, insbesondere um sie in ein elektrisches Versorgungsnetz einzuspeisen. Neben den Vorzügen der umweltfreundlichen Energieerzeugung kann eine Windenergieanlage in bestimmten Situationen auch als störend empfunden werden. Besonders wenn Windenergieanlagen in der Nähe von besiedeltem Gebiet betrieben werden, können Betriebsgeräusche der Windenergieanlage als störend empfunden werden.Wind energy installations are known; they generate electrical power from wind, in particular in order to feed them into an electrical supply network. In addition to the advantages of environmentally friendly energy generation, a wind turbine can also be perceived as a nuisance in certain situations. Operating noises from the wind energy installation can be perceived as annoying, particularly when wind energy installations are operated in the vicinity of a populated area.
Besonders Windgeräusche an den Rotorblättern der Windenergieanlage können zu einem mehr oder weniger lauten Geräuschspektrum führen. Um ein solches Geräuschspektrum zu verringern und damit die Windenergieanlage leiser zu machen, kann in bestimmten Situationen vorgeschlagen werden, die Drehzahl der Windenergieanlage zu reduzieren.In particular, wind noise on the rotor blades of the wind energy installation can lead to a more or less loud noise spectrum. In order to reduce such a noise spectrum and thus to make the wind energy installation quieter, it can be proposed in certain situations to reduce the speed of the wind energy installation.
Es können aber auch andere Schallquellen vorhanden sein. Es kann nämlich auch Schall durch Schwingungen in den Türmen oder Maschinenhäusern von Windenergieanlagen entstehen, insbesondere bei angeregten Resonanzen. Ein solcher Schall bzw. dadurch entstandener Schall kann auch als Körperschall bezeichnet werden. Erhöhte Schallleistungspegel durch diesen Körperschall treten oftmals in engen Frequenzbändern auf, sind oftmals niederfrequent und werden vom menschlichen Ohr als unangenehm empfunden. In Frequenzspektren tritt dieser Körperschall emittierte Lärm im jeweiligen Frequenzband als Peak auf.However, other sound sources can also be present. This is because sound can also arise from vibrations in the towers or machine houses of wind turbines, in particular when resonances are excited. Such a sound or the sound produced thereby can also be referred to as structure-borne sound. Increased sound power levels due to this structure-borne noise often occur in narrow frequency bands, are often low-frequency and are perceived as unpleasant by the human ear. In frequency spectra, this structure-borne noise appears as a peak in the respective frequency band.
Auch ein solcher Körperschall, besonders der genannte Peak im Frequenzspektrum, kann im Betrieb durch Drosseln der Windenergieanlage reduziert werden. Es kann aber auch der Effekt auftreten, dass ein gedrosselter Betrieb der Windenergieanlage das Gesamtspektrum verringert und den Peak des Körperschalls dadurch dominanter werden lässt. Dadurch kann sogar der Effekt auftreten, dass ein solcher Körperschall vom menschlichen Ohr dadurch noch stärker und damit als noch unangenehmer wahrgenommen wird.Such structure-borne noise, in particular the peak mentioned in the frequency spectrum, can also be reduced during operation by throttling the wind energy installation. But it can there is also the effect that a throttled operation of the wind turbine reduces the overall spectrum and thus makes the peak of the structure-borne noise more dominant. This can even have the effect that such structure-borne sound is perceived by the human ear to be even stronger and thus even more unpleasant.
Ein solcher Körperschall mit einem ausgeprägten Peak im Frequenzspektrum wird auch als Tonhaltigkeit bezeichnet.Such structure-borne noise with a pronounced peak in the frequency spectrum is also referred to as tonality.
Es sind auch Verfahren bekannt, die bekannte Anlagenresonanzen in ihrem Betrieb aussparen. Dazu wird besonders eine Drehzahlregelung vorgesehen, die entsprechende Rotordrehzahlen auslässt bzw. ggf. so schnell wie möglich durchsteuert, die eine Anlagenresonanz anregen. Problematisch bei solchen Verfahren ist besonders, dass eine Entscheidung zu treffen ist, ob die Anlage mit niedrigerer oder höherer Drehzahl als der auszusparende Drehzahlbereich betrieben werden soll. Liegt ein ansonsten wünschenswerter Betriebspunkt im Bereich der auszusparenden Drehzahl, kann eine solche Entscheidung schwierig werden und im ungünstigsten Fall zu einem ständigen Wechsel zwischen der nächsthöheren und nächstniedrigeren Drehzahl führen.There are also known methods that save known system resonances in their operation. For this purpose, a speed control is provided in particular, which omits or, if necessary, controls the corresponding rotor speeds as quickly as possible, which stimulate a system resonance. A particular problem with such methods is that a decision has to be made as to whether the system should be operated at a lower or higher speed than the speed range to be omitted. If an otherwise desirable operating point lies in the range of the speed to be omitted, such a decision can be difficult and in the worst case lead to a constant change between the next higher and next lower speed.
Das Deutsche Patent- und Markenamt hat in der Prioritätsanmeldung zu vorliegender Anmeldung folgenden Stand der Technik recherchiert:
Der vorliegenden Erfindung liegt somit die Aufgabe zu Grunde, zumindest eines der genannten Probleme zu adressieren. Insbesondere soll eine Lösung vorgeschlagen werden, die das Auftreten oder Wahrnehmen solchen Körperschalls reduziert. Zumindest soll gegenüber bisher bekannten Lösungen eine alternative Lösung vorgeschlagen werden.The present invention is therefore based on the object of addressing at least one of the problems mentioned. In particular, a solution is to be proposed which reduces the occurrence or perception of such structure-borne noise. At least an alternative solution to previously known solutions is to be proposed.
Erfindungsgemäß wird eine Windenergieanlage gemäß Anspruch 1 vorgeschlagen. Diese weist einen Turm, einen aerodynamischen Rotor und einen Generator auf. Der aerodynamische Rotor, der mehrere Rotorblätter ausweist, wobei grundsätzlich auch eines reichen würde, ist mit einer veränderlichen Rotordrehzahl betreibbar und die Rotorblätter sind in ihrem Rotorblattwinkel verstellbar. Der Rotorblattwinkel wird generell auch als Pitchwinkel und das Verstellen des Rotorblattwinkels als Pitchen bezeichnet.According to the invention, a wind power installation according to
Zum Betreiben der Windenergieanlage ist eine Betriebskennlinie vorgegeben, die einen Zusammenhang zwischen der Rotordrehzahl und der Ausgangsleistung angibt. Besonders wird die Windenergieanlage in Abhängigkeit einer solchen Betriebskennlinie derart betrieben, dass bei sich einstellender Rotordrehzahl eine entsprechende Ausgangsleistung gemäß der Betriebskennlinie eingestellt wird. Dafür ist eine Steuerung vorgesehen, die die Ausgangsleistung entsprechend der Betriebskennlinie in Abhängigkeit der Rotordrehzahl einstellt. Es wird nun als Betriebskennlinie eine tonhaltigkeitsreduzierte Betriebskennlinie vorgesehen, die auswählbar ist. Sie wird entsprechend dann ausgewählt, wenn die Tonhaltigkeit zu reduzieren oder zu begrenzen ist.To operate the wind energy installation, an operating characteristic is specified which indicates a relationship between the rotor speed and the output power. In particular, the wind energy installation is operated as a function of such an operating characteristic curve in such a way that when the rotor speed sets in, a corresponding output power is set in accordance with the operating characteristic curve. A control system is provided for this purpose, which adjusts the output power in accordance with the operating characteristic as a function of the rotor speed. An operating characteristic with reduced tonality, which can be selected, is now provided as the operating characteristic. It is selected accordingly if the tonality is to be reduced or limited.
Diese tonhaltigkeitsreduzierte Betriebskennlinie ist so ausgelegt, dass eine Anregung einer Anlagenresonanz der Windenergieanlage im Vergleich zu einer leistungsoptimalen Betriebskennlinie reduziert ist. Dabei ist die tonhaltigkeitsreduzierte Betriebskennlinie aber so ausgebildet, dass sie eine dieser anlagenresonanzanregende Drehzahl nicht ausspart. Besonders ist diese tonhaltigkeitsreduzierte Betriebskennlinie eine kontinuierliche Kennlinie.This tonality-reduced operating characteristic curve is designed in such a way that an excitation of a system resonance of the wind energy installation is reduced in comparison to an operating characteristic curve with optimum performance. The operating characteristic with reduced tonality is designed in such a way that it does not omit a speed that stimulates system resonance. In particular, this tonality-reduced operating characteristic is a continuous characteristic.
Erfindungsgemäß wird somit vorgeschlagen, zur Reduzierung oder Begrenzung der Tonhaltigkeit eine andere, aber nicht sprunghafte Betriebskennlinie auszuwählen.According to the invention, it is therefore proposed to select a different, but not abrupt, operating characteristic in order to reduce or limit the tonality.
Vorzugsweise wird vorgeschlagen, dass die Betriebskennlinie auswählbar ist aus der tonhaltigkeitsreduzierten Betriebskennlinie, der leistungsoptimalen Betriebskennlinie und einer schallreduzierten Betriebskennlinie. Die leistungsoptimale Betriebskennlinie ist dabei die Betriebskennlinie, die so ausgelegt ist, dass eine Leistungsentnahme aus dem Wind maximiert wird. Diese leistungsoptimale Betriebskennlinie kann besonders dann ausgewählt werden, wenn eine Schallreduzierung grundsätzlich nicht notwendig ist, oder in der gegebenen Situation kein störender Schall zu erwarten ist. Das kann bspw. auch von der Windrichtung abhängen, wenn diese bspw. so ist, dass der Wind Schall von der Windenergieanlage nur in nicht besiedeltes Gebiet trägt.It is preferably proposed that the operating characteristic can be selected from the operating characteristic with reduced tonality, the performance-optimized operating characteristic and a noise-reduced operating characteristic. The performance-optimal operating characteristic is the operating characteristic that is designed in such a way that power extraction from the wind is maximized. This performance-optimized operating characteristic can be selected in particular if a sound reduction is not fundamentally necessary, or if no disturbing sound is to be expected in the given situation. This can also depend, for example, on the wind direction if this is such, for example, that the wind only carries sound from the wind energy installation into non-populated areas.
Die schallreduzierte Betriebskennlinie ist so ausgelegt, dass Schallemissionen der Windenergieanlage gegenüber der leistungsoptimalen Betriebskennlinie generell reduziert sind. Besonders ist hier ein Schallleistungsspektrum der Schallemissionen reduziert. Dementgegen ist bei der tonhaltigkeitsreduzierten Betriebskennlinie gezielt die Tonhaltigkeit reduziert. Das kann auch bedeuten, dass das Geräuschspektrum insgesamt nicht oder nur geringfügig gegenüber der leistungsoptimalen Betriebskennlinie reduziert ist.The noise-reduced operating characteristic is designed in such a way that noise emissions from the wind turbine are generally reduced compared to the performance-optimized operating characteristic. In particular, a sound power spectrum of the sound emissions is reduced here. In contrast, the tonality-reduced operating characteristic is deliberately reduced. This can also mean that the overall noise spectrum is not or only slightly reduced compared to the performance-optimized operating characteristic.
Durch diese Auswahl zwischen den genannten Betriebskennlinien kann sich somit die Windenergieanlage auf einfache Art und Weise auf die jeweiligen Gegebenheiten oder Anforderungen einstellen, während ein kontinuierlicher Betrieb bzw. eine kontinuierliche Betriebsführung gewährleistet ist.Through this selection between the above-mentioned operating characteristics, the wind energy installation can thus easily adjust to the respective circumstances or requirements, while continuous operation or continuous operation is ensured.
Gemäß einer Ausgestaltung wird vorgeschlagen, dass die tonhaltigkeitsreduzierte Betriebskennlinie in einem Resonanzdrehzahlbereich geringere Werte der Ausgangsleistung aufweist, als die leistungsoptimale Betriebskennlinie in demselben Resonanzdrehzahlbereich, wobei die tonhaltigkeitsreduzierte Betriebskennlinie auch im Resonanzdrehzahlbereich stetig ist. Der Resonanzdrehzahlbereich ist somit ein Bereich, in dem die Rotordrehzahl liegt, die die Anlagenresonanz der Windenergieanlage anregt. Hier verläuft die tonhaltigkeitsreduzierte Betriebskennlinie zumindest etwas flacher als die leistungsoptimale Betriebskennline.According to one embodiment, it is proposed that the tonality-reduced operating characteristic has lower output power values in a resonance speed range than the performance-optimal operating characteristic in the same resonance speed range, the tonality-reduced operating characteristic also being constant in the resonance speed range. The resonance speed range is thus a range in which the rotor speed lies, which excites the system resonance of the wind energy system. Here the tonality-reduced operating curve is at least somewhat flatter than the performance-optimized operating curve.
Beide Betriebskennlinien geben die Ausgangsleistung in Abhängigkeit der Rotordrehzahl an, wobei auch eine äquivalente Drehzahl verwendet werden könnte, und entsprechend ist die tonhaltigkeitsreduzierte Betriebskennlinie hier abgesenkt. Zumindest ist ein Wert der Ausgangsleistung bei der Resonanzdrehzahl der tonhaltigkeitsreduzierten Betriebskennlinie kleiner als bei der leistungsoptimalen Betriebskennlinie. Dabei ist aber die tonhaltigkeitsreduzierte Betriebskennlinie auch im Resonanzdrehzahlbereich stetig. Es wird hier also nicht ein singulärer Wert der Ausgangsleistung, sondern der Bereich insgesamt ist geringer, aber damit ist auch wenigstens ein Wert der tonhaltigkeitsreduzierten Betriebskennlinie geringer als der leistungsoptimierten Betriebskennlinie. Auch damit kann eine gezielte Berücksichtigung der Tonhaltigkeit realisiert werden, indem gezielt in dem betreffenden Drehzahlbereich die Leistung reduziert wird. Damit werden auch insgesamt bei dieser Drehzahl wirkende Kräfte reduziert und entsprechend wird auch eine Anregung der Anlagenresonanz reduziert.Both operating characteristics indicate the output power as a function of the rotor speed, whereby an equivalent speed could also be used, and the operating characteristic with reduced tonality is correspondingly lowered here. At least one value of the output power at the resonance speed of the tonality-reduced operating characteristic is smaller than in the performance-optimal operating characteristic. However, the operating characteristic with reduced tonality is also constant in the resonance speed range. It is not a singular value of the output power, but the overall range is smaller, but at least one value of the tonality-reduced operating characteristic is lower than the performance-optimized operating characteristic. In this way, too, the tonality can be taken into account in a targeted manner, in that the power is reduced in a targeted manner in the relevant speed range. In this way, forces acting overall at this speed are also reduced and, accordingly, an excitation of the system resonance is also reduced.
Eine Windenergieanlage kann grundsätzlich auch mehrere Anlagenresonanzen aufweisen, es wird hier aber davon ausgegangen, dass eine Anlagenresonanz dominant ist und eben diese Anlagenresonanz wird durch die vorgeschlagene Maßnahme geringer angeregt. Gleichwohl kann die Windenergieanlage dabei aber mit einer stetigen Betriebskennlinie betrieben werden.A wind energy installation can in principle also have several installation resonances, but it is assumed here that one installation resonance is dominant and precisely this installation resonance is stimulated less by the proposed measure. At the same time, however, the wind energy installation can be operated with a constant operating characteristic.
Vorzugsweise ist die tonhaltigkeitsreduzierte Betriebskennlinie auch im Resonanzdrehzahlbereich stetig differenzierbar und streng monoton steigend. Die Betriebskennlinie ist also auch nach einer Ableitung, also einer Ableitung der Ausgangsleistung nach der Rotordrehzahl, stetig. Außerdem ist sie streng monoton steigend, die Ausgangsleistung nimmt also mit Zunahme der Rotordrehzahl zu, ohne dass es einen abfallenden oder gleichbleibenden Bereich gibt. Dadurch kann die Betriebskennlinie auch für den tonhaltigkeitsreduzierten Betrieb auf einfache Art und Weise zur Steuerung der Windenergieanlage dienen. Besonders wird vermieden, dass durch waagerechte oder sogar wieder abfallende Bereiche der Betriebskennlinie für eine umzusetzende Regelung unbestimmte und/oder instabile Bereiche entstehen.The operating characteristic with reduced tonality is preferably also continuously differentiable in the resonance speed range and increases in a strictly monotonous manner. The operating characteristic is thus also after a derivative, i.e. a derivative of the output power according to the rotor speed, continuously. In addition, it increases strictly monotonically, so the output power increases as the rotor speed increases, without there being a falling or constant range. As a result, the operating characteristic can also be used in a simple manner for controlling the wind energy installation for operation with reduced tonality. In particular, it is avoided that undefined and / or unstable areas arise due to horizontal or even falling areas of the operating characteristic for a regulation to be implemented.
Es wird gemäß einer weiteren Ausführungsform vorgeschlagen, dass die tonhaltigkeitsreduzierte Betriebskennlinie in einen ersten, zweiten und dritten Rotordrehzahlbereich eingeteilt werden kann. Dabei beginnt der erste Rotordrehzahlbereich bei einer Startdrehzahl, die eine Rotordrehzahl bezeichnet, mit der die Windenergieanlage gestartet wird. Der zweite Rotordrehzahlbereich weist höhere Drehzahlen auf, als der erste Rotordrehzahlbereich und schließt sich somit an den ersten Rotordrehzahlbereich an. Der dritte Rotordrehzahlbereich weist noch höhere Drehzahlen auf, als der zweite Rotorbereich und reicht bis zu einer Nenndrehzahl heran. Dabei umfasst der zweite Rotordrehzahlbereich die Resonanzrotordrehzahl. Diese drei Rotordrehzahlbereiche und damit auch die Resonanzdrehzahl liegen somit in einem Teillastbetrieb bzw. einem Teillastbereich. Dieser Teillastbereich reicht somit vom Anfang des ersten Rotordrehzahlbereichs bis zum Ende des dritten Rotordrehzahlbereichs. Der zweite Rotordrehzahlbereich ist somit in diesem Teillastbereich ein mittlerer Bereich und in diesem mittleren Bereich ist die Resonanzdrehzahl angesiedelt. Die Resonanzdrehzahl bzw. der Resonanzdrehzahlbereich ist somit die Drehzahl bzw. der Bereich, bei der bzw. bei dem die Anlagenresonanz angeregt wird.According to a further embodiment, it is proposed that the tonality-reduced operating characteristic can be divided into a first, second and third rotor speed range. The first rotor speed range begins at a starting speed, which designates a rotor speed with which the wind energy installation is started. The second rotor speed range has higher speeds than the first rotor speed range and thus follows on from the first rotor speed range. The third rotor speed range has even higher speeds than the second rotor range and reaches up to a nominal speed. The second rotor speed range includes the resonance rotor speed. These three rotor speed ranges and thus also the resonance speed are therefore in a part-load operation or a part-load range. This partial load range thus extends from the beginning of the first rotor speed range to the end of the third rotor speed range. The second rotor speed range is thus a medium range in this partial load range and the resonance speed is located in this medium range. The resonance speed or the resonance speed range is thus the speed or the range at which or in which the system resonance is excited.
Hierzu wird gemäß einer Ausführungsform vorgeschlagen, dass im zweiten Rotordrehzahlbereich die Ausgangsleistung der tonhaltigkeitsreduzierten Betriebskennlinie niedriger ist als die Ausgangsleistung der leistungsoptimalen Betriebskennlinie. Außerdem wird vorgeschlagen, dass der zweite Rotordrehzahlbereich insbesondere den Resonanzdrehzahlbereich umfasst, oder diesem entspricht.For this purpose, it is proposed according to one embodiment that in the second rotor speed range the output power of the tonality-reduced operating characteristic curve is lower than the output power of the performance-optimal operating characteristic curve. It is also proposed that the second rotor speed range in particular include or correspond to the resonance speed range.
Gemäß einer bevorzugten Ausführungsform ist die Windenergieanlage dadurch gekennzeichnet, dass eine Pitchsteuerung vorgesehen ist, die den Rotorblattwinkel entsprechend einer Pitchkennlinie in Abhängigkeit der erzeugten Ausgangsleistung in einem Teillastbetrieb einstellt. Weiterhin ist die Pitchkennlinie in Abhängigkeit der ausgewählten Betriebskennline aus mehreren Pitchkennlinien auswählbar. Besonders wird vorgeschlagen, dass für jede Betriebskennlinie eine eigene Pitchkennlinie vorgesehen ist.According to a preferred embodiment, the wind energy installation is characterized in that a pitch control is provided which sets the rotor blade angle in accordance with a pitch characteristic as a function of the output power generated in partial load operation. Furthermore, the pitch characteristic is dependent on the selected Operating characteristic can be selected from several pitch characteristics. In particular, it is proposed that a separate pitch characteristic be provided for each operating characteristic.
Hierbei wurde erkannt, dass auch im Teillastbetrieb ein veränderlicher Pitchwinkel sinnvoll ist. Es wird somit im Teillastbetrieb kein vorbestimmter konstanter optimaler Winkel, also kein fester Teillastwinkel verwendet, sondern er wird den jeweiligen Bedingungen entsprechend eingestellt.It was recognized here that a variable pitch angle is also useful in partial load operation. Thus, in part-load operation, no predetermined constant optimal angle, that is to say no fixed part-load angle, is used, but rather it is set according to the respective conditions.
Weiterhin wurde erkannt, dass abhängig von der gewählten Betriebskennlinie, also insbesondere ob eine tonhaltigkeitsreduzierte, schallreduzierte oder leistungsoptimale Betriebskennlinie ausgebildet wird, eine entsprechende Pitchkennlinie ausgewählt. Die jeweilige Pitchkennlinie ist dabei vorzugsweise auf die jeweilige Betriebskennlinie abgestimmt. Damit kann der Betrieb der Windenergieanlage auch aerodynamisch auf die jeweilige Betriebskennline und damit an die jeweilige Betriebssituation angepasst werden.Furthermore, it was recognized that depending on the selected operating characteristic, that is to say in particular whether a tone-reduced, noise-reduced or performance-optimized operating characteristic is formed, a corresponding pitch characteristic is selected. The respective pitch characteristic is preferably matched to the respective operating characteristic. The operation of the wind energy installation can thus also be adapted aerodynamically to the respective operating characteristic and thus to the respective operating situation.
Es wurde erkannt, dass durch die Änderung der drehzahlabhängigen Ausgangsleistung im Ergebnis auch bei gleichen Windverhältnissen unterschiedliche Rotordrehzahlen und damit Schnelllaufzahlen im Vergleich bspw. zur leistungsoptimalen Betriebskennlinie auftreten können. Solche Veränderungen besonders der Schnelllaufzahl werden durch die angepasste Pitchkennlinie berücksichtigt.It was recognized that by changing the speed-dependent output power, even with the same wind conditions, different rotor speeds and thus high-speed speeds can occur in comparison, for example, with the performance-optimal operating characteristic. Such changes, especially in the high-speed speed, are taken into account by the adapted pitch characteristic.
Gemäß einer Ausführungsform wird vorgeschlagen, dass die Pitchkennlinie in einen ersten, zweiten und dritten Ausgangsleistungsbereich unterteilt werden kann. Der erste Ausgangsleistungsbereich beginnt dabei bei einer Ausgangsleistung, die einer Ausgangsleistung entspricht, bei der die Windenergieanlage gestartet wird. Der zweite Ausgangsleistungsbereich schließt sich dem an und weist entsprechend höhere Ausgangsleistungen auf, als der erste Ausgangsleistungsbereich. Der dritte Ausgangsleistungsbereich weist höhere Ausgangsleistung auf, als der zweite Ausgangsleistungsbereich und reicht bis zu einer maximalen Ausgangsleistung des Teillastbetriebs bzw. bis zu einer Nennleistung des Generators.According to one embodiment, it is proposed that the pitch characteristic can be divided into a first, second and third output power range. The first output power range begins with an output power which corresponds to an output power at which the wind energy installation is started. The second output power range follows this and has correspondingly higher output powers than the first output power range. The third output power range has a higher output power than the second output power range and extends up to a maximum output power of the partial load operation or up to a nominal power of the generator.
Die Windenergieanlage ist in ihrem Betriebsverhalten im Teillastbetrieb somit vorzugsweise auch in drei Ausgangsleistungsbereiche eingeteilt. Auch damit ist ein gezielter Betrieb unter Berücksichtigung verschiedener Situation selbst im Teillastbetrieb möglich. Auch hierfür wurde erkannt, dass das Verwenden eines einzigen konstanten Rotorblattwinkels im Teillastbetrieb jedenfalls für die Umsetzung der Reduzierung der Tonhaltigkeit verbessert werden kann.In terms of its operating behavior in partial load operation, the wind energy installation is therefore preferably also divided into three output power ranges. This also enables targeted operation, taking into account various situations, even in partial load operation. For this, too, it was recognized that the use of a single constant rotor blade angle in part load operation can in any case be improved for the implementation of the reduction in tonality.
Dazu wird gemäß der einen Ausführungsform zudem vorgeschlagen, dass bei Auswahl der tonhaltigkeitsreduzierten Betriebskennlinie eine angepasste Pitchkennlinie vorgegeben wird, die auch als tonhaltigkeitsreduzierte Pitchkennlinie bezeichnet werden kann. Eine solche angepasste Pitchkennlinie weist vorzugsweise in dem ersten Ausgangsleistungsbereich einen größeren Rotorblattwinkel auf, als eine leistungsoptimale Pitchkennlinie in demselben Ausgangsleistungsbereich. Dabei ist eine leistungsoptimale Pitchkennlinie eine solche, die zur Verwendung im Zusammenhang mit einer leistungsoptimalen Betriebskennlinie vorgeschlagen wird.To this end, according to one embodiment, it is also proposed that when selecting the operating characteristic with reduced tonality, an adapted pitch characteristic is specified, which can also be referred to as a pitch characteristic with reduced tonality. Such an adapted pitch characteristic preferably has a larger rotor blade angle in the first output power range than a power-optimal pitch characteristic in the same output power range. A power-optimal pitch characteristic is one that is proposed for use in connection with a power-optimal operating characteristic.
Es wird somit vorgeschlagen, dass die Pitchkennlinie in Abhängigkeit der ausgewählten Betriebskennlinie angepasst werden kann. Es wird also hierfür eine angepasste Pitchkennlinie vorgeschlagen. Vorzugsweise enthält eine Steuerung der Windenergieanlage bereits eine oder mehrere entsprechende Pitchkennlinien und diese können dann je nach gewählter Betriebskennlinie ausgewählt werden.It is therefore proposed that the pitch characteristic can be adapted as a function of the selected operating characteristic. An adapted pitch characteristic is therefore proposed for this. A control of the wind energy installation preferably already contains one or more corresponding pitch characteristics and these can then be selected depending on the selected operating characteristic.
Außerdem oder alternativ weist die angepasste Pitchkennlinie, also die tonhaltigkeitsreduzierte Pitchkennlinie, in dem zweiten Ausgangsleistungsbereich einen größeren Rotorblattwinkel auf, als eine leistungsoptimale Pitchkennlinie in demselben Ausgangsleistungsbereich.In addition or as an alternative, the adapted pitch characteristic, that is to say the pitch characteristic with reduced tonality, has a larger rotor blade angle in the second output power range than a power-optimal pitch characteristic in the same output power range.
Die angepasste Pitchkennlinie ist dabei im zweiten Ausgangsleistungsbereich größer, weist also einen größeren Rotorblattwinkel auf, als eine leistungsoptimale Pitchkennlinie in demselben Ausgangsleistungsbereich. Außerdem oder alternativ kann die angepasste Pitchkennlinie in den zweiten Ausgangsleistungsbereich einen kleineren Rotorblattwinkel aufweisen, als verglichen mit dem ersten Ausgangsleistungsbereich. Der Blattwinkel ist demnach im Vergleich zur leistungsoptimalen Pitchkennlinie größer und außerdem oder alternativ im Vergleich zum ersten Ausgangsleistungsbereich kleiner.The adapted pitch characteristic is larger in the second output power range, that is to say has a larger rotor blade angle, than a power-optimal pitch characteristic in the same output power range. In addition or as an alternative, the adapted pitch characteristic curve in the second output power range can have a smaller rotor blade angle than compared with the first output power range. The blade angle is accordingly larger in comparison to the power-optimal pitch characteristic and also or alternatively smaller in comparison to the first output power range.
Vorzugsweise entspricht der zweite Ausgangsleistungsbereich dem zweiten Rotordrehzahlbereich. Das bedeutet besonders, dass die Windenergieanlage immer dann, wenn sie im zweiten Ausgangsleistungsbereich betrieben wird, diese auch im zweiten Rotordrehzahlbereich betrieben wird. Anschaulich gesprochen decken diese beiden Bereiche denselben Windgeschwindigkeitsbereich ab, ohne dass aber für die Einteilung die Windgeschwindigkeit dafür ausdrücklich aufgenommen wird. Vorzugsweise entspricht jeweils der erste, zweite und dritte Ausgangsleistungsbereich dem ersten, zweiten bzw. dritten Rotordrehzahlbereich. Die vorstehend gemachten Erläuterungen zu den einzelnen Bereichen können somit jeweils für die Pitchkennlinien und Betriebskennlinien gleichermaßen angewendet werden. Insbesondere kann gleichermaßen ein Wechsel zwischen dem jeweiligen ersten, zweiten und dritten Bereich sowohl bei der Pitchkennlinie als auch der Betriebskennlinie vorgenommen werden.The second output power range preferably corresponds to the second rotor speed range. This means in particular that the wind energy installation is always operated in the second rotor speed range when it is operated in the second output power range. In clear terms, these two areas cover the same wind speed range, but without the wind speed being used for the classification for this is expressly included. The first, second and third output power ranges preferably correspond to the first, second and third rotor speed ranges, respectively. The explanations given above for the individual areas can thus be applied equally to the pitch characteristics and operating characteristics. In particular, a change between the respective first, second and third range can be made both in the case of the pitch characteristic curve and the operating characteristic curve.
Gemäß einer Alternative wird der Pitchwinkel ebenfalls in Abhängigkeit der Rotordrehzahl eingestellt und entsprechend werden jeweils Pitchkennlinien in Abhängigkeit der Rotordrehzahl vorgegeben. Hierbei wird besonders bevorzugt vorgeschlagen, dass dieselben Rotordrehzahlbereiche für die Pitchkennlinie wie für die Betriebskennlinie zugrundegelegt werden.According to an alternative, the pitch angle is also set as a function of the rotor speed and pitch characteristics are correspondingly specified as a function of the rotor speed. It is particularly preferably proposed that the same rotor speed ranges be used as a basis for the pitch characteristic as for the operating characteristic.
Gemäß einer Ausschaltung wird vorgeschlagen, dass der zweite Ausgangsleistungsbereich einen Windgeschwindigkeitsbereich von etwa 4 bis 10 Meter pro Sekunde. entspricht. Der zweite Ausgangsleistungsbereich betrifft somit einen großen mittleren Bereich des Teillastbetriebs. Hier kann besonders die vorteilhafte Veränderung der Kennlinien angewendet werden, wobei die Anwendung in einem guten Abstand von einer Anlaufwindgeschwindigkeit erfolgt und ebenfalls nach oben hin in einem guten Abstand zu einem Übergang zum Volllastbetrieb liegt.According to one elimination, it is proposed that the second output power range have a wind speed range of approximately 4 to 10 meters per second. is equivalent to. The second output power range thus relates to a large central range of partial load operation. The advantageous change in the characteristic curves can be used here in particular, the application taking place at a good distance from an initial wind speed and also at a good distance upwards from a transition to full-load operation.
Außerdem oder alternativ wird vorgeschlagen, dass der zweite Rotordrehzahlbereich in einem Bereich von etwa 20% bis 80% einer Nenndrehzahl des Rotors liegt. Auch hierdurch wird für diesen zweiten Rotordrehzahlbereich ein großer mittlerer Bereich des Teilbetriebs für die beschriebenen Vorteile vorgesehen. Grenzbereiche nach oben und unten können hierbei ausgespart werden.In addition or as an alternative, it is proposed that the second rotor speed range be in a range from approximately 20% to 80% of a nominal speed of the rotor. In this way, too, a large middle range of partial operation is provided for the advantages described for this second rotor speed range. Upper and lower border areas can be left out.
Vorzugsweise ist die Windenergieanlage dadurch gekennzeichnet, dass wenigstens in dem zweiten Rotordrehzahlbereich die tonhaltigkeitsreduzierte Betriebskennlinie gegenüber der leistungsoptimalen Betriebskennlinie reduzierte Werte der Ausgangsleistung aufweist und dass die angepasste Pitchkennlinie in demselben Bereich gegenüber einer leistungsoptimalen Pitchkennlinie geänderte Rotorblattwinkel aufweist. Dadurch wird einer Verschlechterung eines Leistungsbeiwertes, die sich durch eine Veränderung der Schnelllaufzahl ergibt, zumindest teilweise entgegengewirkt. Die angepasste Pitchkennlinie berücksichtigt somit diese Veränderung der Schnelllaufzahl.The wind energy installation is preferably characterized in that at least in the second rotor speed range the reduced-tonality operating characteristic has reduced output power values compared to the performance-optimal operating characteristic and that the adapted pitch characteristic has rotor blade angles changed in the same area compared to a performance-optimal pitch characteristic. This at least partially counteracts a deterioration in a performance coefficient that results from a change in the high-speed number. The adjusted pitch characteristic therefore takes this change in the high speed number into account.
Ergänzend kann die angepasste Pitchkennlinie auch in dem ersten Ausgangsleistungsbereich gegenüber der leistungsoptimalen Pitchkennlinie verändert werden, in dem die Pitchkennlinie dort größere Blattwinkel aufweist, als die leistungsoptimale Pitchkennlinie.In addition, the adapted pitch characteristic can also be changed in the first output power range with respect to the power-optimal pitch characteristic, in which the pitch characteristic has larger blade angles there than the power-optimal pitch characteristic.
Durch die Vergrößerung der Blattwinkel kann besonders auch eine Verbesserung der Aerodynamik erreicht werden.By increasing the blade angle, an improvement in aerodynamics can also be achieved.
Gemäß einer Ausführungsform wird vorgeschlagen, dass bei der Verwendung der tonhaltigkeitsreduzierten Betriebskennlinie im Bereich von Windgeschwindigkeiten ab einer Startwindgeschwindigkeit wenigstens bis zu einer halben Nennwindgeschwindigkeit die Schnelllaufzahl mit steigender Windgeschwindigkeit streng monoton fallend ist. Insbesondere wird eine Steigung von weniger als -2 vorgeschlagen. Es kommt also bspw. auch ein Wert von -3 und -4 in Betracht. Werte bis -10 werden gemäß einer Ausführungsform vorgeschlagen. Dies betrifft eine auf die Nennwindgeschwindigkeit normierte Windgeschwindigkeit.According to one embodiment, it is proposed that when using the tonality-reduced operating characteristic in the range of wind speeds from a starting wind speed at least up to half the nominal wind speed, the high-speed speed falls strictly monotonically with increasing wind speed. In particular, a slope of less than -2 is proposed. For example, a value of -3 and -4 can also be considered. Values up to -10 are suggested according to one embodiment. This concerns a wind speed normalized to the nominal wind speed.
Vorzugsweise ist das Verhältnis einer Schnelllaufzahl bei Verwendung der tonhaltigkeitsreduzierten Betriebskennlinie zu einer Schnelllaufzahl bei Verwendung einer leistungsoptimalen Betriebskennlinie größer als 1. Die Schnelllaufzahl bei Verwendung der tonhaltigkeitsreduzierten Betriebskennlinie ist somit jeweils größer als die entsprechende Schnelllaufzahl bei Verwendung der leistungsoptimalen Betriebskennlinie.The ratio of a high-speed number when using the operating characteristic with reduced tonality to a high-speed number when using an operating characteristic with optimum performance is preferably greater than 1. The high-speed number when using the operating characteristic with reduced tone is therefore greater than the corresponding high-speed number when using the operating characteristic with optimum performance.
Erfindungsgemäß wird auch ein Verfahren zum Parametrieren einer Windenergieanlage vorgeschlagen. Auch hier wird eine Windenergieanlage mit einem Turm und einem aerodynamischen Rotor zugrundegelegt. Der aerodynamische Rotor ist mit einer veränderlichen Rotordrehzahl betreibbar und weist mehrere Rotorblätter jeweils mit einem verstellbaren Rotorblattwinkel auf. Außerdem ist ein Generator zum Erzeugen einer elektrischen Ausgangsleistung vorgesehen.According to the invention, a method for parameterizing a wind energy installation is also proposed. Here, too, a wind energy installation with a tower and an aerodynamic rotor is used. The aerodynamic rotor can be operated with a variable rotor speed and has several rotor blades each with an adjustable rotor blade angle. In addition, a generator is provided for generating an electrical output power.
Zum Parametrieren wird zunächst eine leistungsoptimale Betriebskennlinie bestimmt, die einen Zusammenhang zwischen der Rotordrehzahl und der Ausgangsleistung angibt. Dabei ist die leistungsoptimale Betriebskennlinie so gewählt, dass die Windenergieanlage maximale Ausgangsleistung abgibt, solange sie entsprechend dieser Betriebskennlinie betrieben wird.For parameterization, a performance-optimal operating characteristic is first determined, which indicates a relationship between the rotor speed and the output power. The performance-optimized operating characteristic curve is selected in such a way that the wind energy installation emits maximum output power as long as it is operated in accordance with this operating characteristic curve.
Außerdem wird eine Resonanzdrehzahl erfasst, die eine Rotordrehzahl beschreibt, die eine Anlagenresonanz der Windenergieanlage anregt. Auch hier kann eine solche Anlagenresonanz eine Resonanz des Turmes, der Gondel oder anderer Elemente der Windenergieanlage sein. Es kommt auch eine Resonanz für die Windenergieanlage insgesamt in Betracht, bei der mehrere Elemente zusammen die Anlagenresonanz bestimmen, wie bspw. der Turm und die Gondel zusammen.In addition, a resonance speed is recorded, which describes a rotor speed that excites a system resonance of the wind energy system. Here, too, such a system resonance can be a resonance of the tower, the nacelle or other elements of the wind energy system. A resonance for the wind energy installation as a whole also comes into consideration, in which several elements together determine the installation resonance, such as, for example, the tower and the nacelle together.
Weiterhin wird eine tonhaltigkeitsreduzierte Betriebskennlinie bestimmt, die im Resonanzdrehzahlbereich gegenüber der leistungsoptimalen Betriebskennlinie niedrigere Werte der Ausgangsleistung aufweist. Die tonhaltigkeitsreduzierte Betriebskennlinie wird dabei so bestimmt, dass sie auch im Resonanzdrehzahlbereich stetig ist. Es wird also tatsächlich eine tonhaltigkeitsreduzierte Betriebskennlinie bestimmt und nicht lediglich singuläre Drehzahlleistungswerte, die gezielt anzusteuern oder gezielt zu vermeiden sind.Furthermore, an operating characteristic with reduced tonality is determined, which has lower output power values in the resonance speed range compared to the performance-optimal operating characteristic. The operating characteristic with reduced tonality is determined in such a way that it is also constant in the resonance speed range. In fact, an operating characteristic with reduced tonality is determined and not just singular speed power values that are to be specifically controlled or specifically avoided.
Das Ergebnis dieser vorgeschlagenen Parametrierung ist besonders das Bestimmen der tonhaltigkeitsreduzierten Betriebskennlinie. Insgesamt werden aber wenigstens zwei Betriebskennlinien parametriert, nämlich die leistungsoptimale und die drehzahlreduzierte. Die Windenergieanlage kann dann wahlweise zumindest mit einer dieser beiden Betriebskennlinien betrieben werden. Sofern keine Anforderungen einer Reduzierung einer Tonhaltigkeit gestellt sind, weil bspw. eine Anregung einer solchen Tonhaltigkeit ohnehin nicht zu erwarten ist oder sich in der Nähe der Windenergieanlage niemand durch eine solche Tonhaltigkeit gestört fühlt, kann die Windenergieanlage mit der leistungsoptimalen Betriebskennlinie betrieben werden. Hierbei kann als leistungsoptimale Betriebskennlinie auch eine grundsätzlich bekannte Betriebskennlinie verwendet werden. Erst wenn der Bedarf für eine Reduzierung der Tonhaltigkeit besteht, kann diese tonhaltigkeitsreduzierte Betriebskennlinie verwendet werden. Vorzugsweise wird aber die Windenergieanlage dann dauerhaft mit der tonhaltigkeitsreduzierten Betriebskennlinie betrieben. Es ist grundsätzlich nicht vorgesehen, ständig zwischen leistungsoptimaler Betriebskennlinie und tonhaltigkeitsreduzierter Betriebskennlinie hin und her zu schalten.The result of this proposed parameterization is, in particular, the determination of the tonality-reduced operating characteristic. Overall, however, at least two operating characteristics are parameterized, namely the performance-optimized and the speed-reduced one. The wind energy installation can then optionally be operated with at least one of these two operating characteristics. If there are no requirements for a reduction in tonality, for example because a suggestion of such tonality is not to be expected anyway or nobody in the vicinity of the wind turbine is disturbed by such tonality, the wind turbine can be operated with the performance-optimized operating characteristic. In this case, a fundamentally known operating characteristic can also be used as the performance-optimal operating characteristic. Only when there is a need to reduce the tonality can this tonality-reduced operating characteristic be used. Preferably, however, the wind energy installation is then operated permanently with the operating characteristic curve which is reduced in tone. In principle, there is no provision for constantly switching back and forth between the performance-optimized operating characteristic and the tonal-reduced operating characteristic.
Vorzugsweise wird eine Windenergieanlage gemäß wenigstens einer der vorstehend beschriebenen Ausführungsformen parametriert. Dabei wird wenigstens ein Element der folgenden Liste parametriert:
- die leistungsoptimale Pitchkennlinie,
- die angepasste Pitchkennlinie,
- der erste Rotordrehzahlbereich,
- der zweite Rotordrehzahlbereich,
- der dritte Rotordrehzahlbereich,
- der erste Ausgangsleistungsbereich,
- der zweite Ausgangsleistungsbereich,
- der dritte Ausgangsleistungsbereich und
- die schallreduzierte Betriebskennlinie.
- the performance-optimized pitch curve,
- the adjusted pitch curve,
- the first rotor speed range,
- the second rotor speed range,
- the third rotor speed range,
- the first output power range,
- the second output power range,
- the third output power range and
- the noise-reduced operating characteristic.
All diese Elemente sind bereits oben im Zusammenhang mit Ausführungsformen der Windenergieanlage beschrieben worden und es wird vorgeschlagen, die Parametrierung genau so vorzunehmen, dass das herauskommt, was oben im Zusammenhang mit wenigstens einer Ausführungsform der Windenergieanlage beschrieben wurde.All these elements have already been described above in connection with embodiments of the wind energy installation and it is proposed to undertake the parameterization precisely in such a way that what emerges is what has been described above in connection with at least one embodiment of the wind energy installation.
Gemäß einer Ausführungsform wird vorgeschlagen, dass das Erfassen der Resonanzdrehzahl so erfolgt, dass die Rotordrehzahl variiert wird und dazu eine Tonhaltigkeit in der Umgebung der Windenergieanlage erfasst wird. Als Resonanzdrehzahl wird dann die Rotordrehzahl verwendet, bei der die Tonhaltigkeit ein Maximum aufweist. Das erfolgt vorzugswiese in einem vorbestimmten Testfrequenzbereich, der in einem Bereich zwischen 10Hz und 100 Hz liegt.According to one embodiment, it is proposed that the detection of the resonance speed take place in such a way that the rotor speed is varied and, for this purpose, a tonality in the vicinity of the wind energy installation is detected. The rotor speed at which the tonality has a maximum is then used as the resonance speed. This is preferably done in a predetermined test frequency range, which is in a range between 10 Hz and 100 Hz.
Die Tonhaltigkeit ist ein dominantes Geräusch besonders einer Frequenz. Es wird somit nicht die Schallleistung eines Schallleistungsspektrums insgesamt erfasst, sondern gezielt der Anteil eines solchen Geräusches einer Frequenz betrachtet. Ein solches Geräusch einer Frequenz nimmt dann besonders stark zu, wenn die Rotordrehzahl einen Wert aufweist, mit dem die Windenergieanlage so angeregt wird, dass dieses Geräusch entsteht. Insbesondere ist dies ein Körperschall, der durch eine entsprechende Bewegung der Windenergieanlage von dieser Windenergieanlage abgegeben wird.Tonality is a dominant noise, especially of one frequency. The overall sound power of a sound power spectrum is therefore not recorded, but rather the proportion of such a noise of a frequency is specifically considered. Such a noise of a frequency increases particularly strongly when the rotor speed has a value with which the wind energy installation is excited in such a way that this noise occurs. In particular, this is structure-borne noise that is emitted by this wind energy installation as a result of a corresponding movement of the wind energy installation.
Basierend auf einer so erfassten Resonanzdrehzahl kann dann auch die tonhaltigkeitsreduzierte Betriebskennlinie bestimmt werden. Darauf basierend kann dann eine angepasste Pitchkennlinie bestimmt werden. Eine solche angepasste Pitchkennlinie kann auch als tonhaltigkeitsreduzierte Pitchkennlinie bezeichnet werden, weil sie zumindest einer tonhaltigkeitsreduzierten Betriebskennlinie zugeordnet werden kann.Based on a resonance speed recorded in this way, the operating characteristic with reduced tonality can then also be determined. An adapted pitch characteristic can then be determined based on this. Such an adapted pitch characteristic can also be referred to as a pitch characteristic with reduced tonality because it can be assigned to at least one operating characteristic with reduced tonality.
Vorzugsweise erfolgt das Bestimmen der tonhaltigkeitsreduzierte Betriebskennlinie so, dass die Ausgangsleistung im Resonanzdrehzahlbereich, insbesondere bei der Resonanzdrehzahl, gegenüber der leistungsoptimalen Betriebskennlinie soweit reduziert wird, dass die in der Umgebung der Windenergieanlage aufgenommenen Tonhaltigkeit einen vorbestimmten Grenzwert unterschreitet. Vorzugsweise wird das Reduzieren der Ausgangsleistung und Aufnehmen der Tonhaltigkeit solange wiederholt bzw. in einem kontinuierlichen Prozess vorgenommen, bis der vorbestimmte Grenzwert unterschritten wird.The tonality-reduced operating characteristic is preferably determined in such a way that the output power in the resonance speed range, in particular at the resonance speed, is reduced compared to the performance-optimal operating characteristic to such an extent that the tonality recorded in the vicinity of the wind turbine falls below a predetermined limit value. The reduction of the output power and the recording of the tonality are preferably repeated or carried out in a continuous process until the value falls below the predetermined limit value.
Auch hier wird somit ein spezielles Geräusch einer Frequenz untersucht, nämlich besonders jenes, welches sich bei der Resonanzdrehzahl einstellt, besonders wenn die Resonanzdrehzahl wie vorstehend beschrieben aufgenommen wurde. Vorzugsweise wird somit die Anlage mit der Resonanzdrehzahl betrieben und die Leistung solange reduziert, bis dieses Geräusch mit der einen Frequenz den vorbestimmten Grenzwert unterschreitet. Die tonhaltigkeitsreduzierte Betriebskennlinie kann dann so ausgelegt werden, dass sie bei dieser Resonanzdrehzahl den so gefundenen niedrigen Wert der Generatordrehzahl aufweist. Dabei wird die Betriebskennlinie aber so vorgegeben, dass sie stetig ist, insbesondere stetig differenzierbar und streng monoton steigend. Das Ergebnis ist dann eine Betriebskennlinie, die bei der Resonanzdrehzahl einen geringen Leistungswert aufweist. Das bedeutet aber nicht, dass dadurch insgesamt viel weniger Leistung erzeugt wird, als im Vergleich zur Leistung der leistungsoptimalen Betriebskennlinie bei derselben Drehzahl. Vielmehr stellt sich ein anderer Betriebspunkt ein. Durch eine streng monoton steigende Betriebskennlinie wird sich ein Betriebspunkt höherer Drehzahl einstellen. Es ist auch zu beachten, dass ein Betrieb gemäß einer tonhaltigkeitsreduzierten Betriebskennlinie, also überhaupt die Reduktion der Tonhaltigkeit, auch ein erhöhtes oder zumindest nicht reduziertes Schallleistungsspektrum bedeuten kann. Auch kann ein Betrieb, bei dem der Schallleistungspegel reduziert ist eine Erhöhung oder zumindest Nichtreduzierung der Tonhaltigkeit bedeuten. Für die Tonhaltigkeit bzw. das Wahrnehmen eines Geräusches einer isolierten Frequenz, insbesondere das Verhältnis eines solchen dominanten Geräusches einer Frequenz im Vergleich zum restlichen Schallleistungsspektrum von Bedeutung.Here, too, a special noise of a frequency is examined, specifically that which occurs at the resonance speed, especially if the resonance speed was recorded as described above. The system is thus preferably operated at the resonance speed and the power is reduced until this noise at one frequency falls below the predetermined limit value. The operating characteristic with reduced tonality can then be designed in such a way that it has the low value of the generator speed found in this way at this resonance speed. In this case, however, the operating characteristic is specified in such a way that it is continuous, in particular continuously differentiable and strictly increasing in a monotonous manner. The result is then an operating characteristic that has a low power value at the resonance speed. However, this does not mean that overall much less power is generated than in comparison to the power of the power-optimal operating characteristic at the same speed. Rather, a different operating point is established. A strictly monotonously increasing operating characteristic will result in an operating point of higher speed. It should also be noted that operation according to an operating characteristic with reduced tonality, that is to say the reduction in tonality at all, can also mean an increased or at least not reduced sound power spectrum. Operation in which the sound power level is reduced can also mean an increase or at least not a reduction in tonality. For the tonality or the perception of a noise of an isolated frequency, in particular the ratio of such a dominant noise of a frequency in comparison to the rest of the sound power spectrum is important.
Erfindungsgemäß wird auch Verfahren zum Betreiben einer Windenergieanlage vorgeschlagen. Auch hier weist die Windenenergieanlage einen Turm, einen aerodynamischen Rotor und einen Generator zum Erzeugen elektrischer Leistung auf, wie oben bereits im Zusammenhang mit einer erfindungsgemäß erläuterten Windenergieanlage beschrieben wurde.According to the invention, a method for operating a wind energy installation is also proposed. Here, too, the wind energy installation has a tower, an aerodynamic rotor and a generator for generating electrical power, as has already been described above in connection with a wind energy installation explained according to the invention.
Zum Betreiben der Windenergieanlage wird eine Betriebskennlinie vorgegeben, die einen Zusammenhang zwischen der Rotordrehzahl und der Ausgangsleistung angibt und die Ausgangsleistung entsprechend der Betriebskennlinie in Abhängigkeit der Rotordrehzahl eingestellt wird. Dabei ist als Betriebskennlinie eine tonhaltigkeitsreduzierte Betriebskennlinie auswählbar. Diese ist so ausgelegt, dass eine Anregung einer Anlagenresonanz der Windenergieanlage gegenüber einer leistungsoptimalen Betriebskennlinie reduziert ist, ohne dass aber eine dieser Anlagen resonanzanregende Drehzahl ausgespart wird. Insbesondere wird vorgeschlagen, dass die Windenergieanlage so betrieben wird, wie sich auch aus den Erläuterungen der vorstehend beschriebenen Ausführungsformen erfindungsgemäßer Windenergieanlagen ergibt. Vorzugsweise wird auch vorgeschlagen, dass eine Windenergieanlage gemäß einer vorstehend beschriebenen Ausführungsform verwendet wird.To operate the wind energy installation, an operating characteristic is specified which indicates a relationship between the rotor speed and the output power and the output power is set according to the operating characteristic as a function of the rotor speed. An operating characteristic with reduced tonality can be selected as the operating characteristic. This is designed in such a way that an excitation of a system resonance of the wind energy system is reduced compared to a performance-optimized operating characteristic, without, however, a rotational speed that stimulates resonance of these systems being omitted. In particular, it is proposed that the wind energy installation be operated in such a way as also emerges from the explanations of the embodiments of wind energy installations according to the invention described above. It is preferably also proposed that a wind energy installation according to an embodiment described above is used.
Gemäß einer bevorzugten Ausführungsform wird vorgeschlagen, dass in Abhängigkeit einer externen Vorgabe oder einer Tageszeit umgeschaltet wird zwischen einem Betrieb der Windenergieanlage mit der tonhaltigkeitsreduzierten Betriebskennlinie, einem Betrieb der Windenergieanlage mit der leistungsoptimalen Betriebskennlinie, die so ausgelegt ist, dass eine Leistungsentnahme aus dem Wind maximiert wird, und einem Betrieb der Windenergieanlage mit einer schallreduzierten Betriebskennlinie, die so ausgelegt ist, dass Schallemissionen der Windenergieanlage, besonders ein Schallleistungsspektrum der Schallemissionen, gegenüber der leistungsoptimalen Betriebskennlinie reduziert werden. Es kann somit zwischen einem leistungsoptimalen Betrieb, einem tonhaltigkeitsreduzierten Betrieb und einem schallreduzierten Betrieb gewählt werden. Die Wahl erfolgt so, dass eine entsprechende Betriebskennlinie ausgewählt wird. Auch hier ist nochmal zu betonen, dass sich ein tonhaltigkeitsreduzierter Betrieb und damit eine tonhaltigkeitsreduzierte Betriebskennlinie von einem schallreduzierten Betrieb bzw. einer schallreduzierten Betriebskennlinie grundsätzlich unterscheidet.According to a preferred embodiment, it is proposed that, depending on an external specification or a time of day, a switch is made between operating the wind turbine with the reduced-tonality operating characteristic, and operating the wind turbine with the performance-optimized operating characteristic, which is designed in such a way that power extraction from the wind is maximized , and an operation of the wind energy installation with a noise-reduced operating characteristic which is designed in such a way that the sound emissions of the wind energy installation, in particular a sound power spectrum of the sound emissions, are reduced compared to the performance-optimal operating characteristic. It is thus possible to choose between a performance-optimized operation, a tone-reduced operation and a noise-reduced operation. The choice is made in such a way that a corresponding operating characteristic is selected. Here, too, it should be emphasized once again that operation with reduced tonality, and thus an operating characteristic with reduced tonality, is fundamentally different from noise-reduced operation or a noise-reduced operating characteristic.
Außerdem wird ganz grundsätzlich eine Windenergieanlage vorgeschlagen, die wenigstens einer vorstehend beschriebenen Ausführungsform einer Windenergieanlage genügt und gemäß einer eine Parametrierung beschreibenden Ausführungsform parametriert wurde und außerdem oder alternativ mit einem Verfahren gemäß einer beschriebenen Ausführungsform beschrieben wird.In addition, a wind energy installation is very fundamentally proposed which satisfies at least one embodiment of a wind energy installation described above and has been parameterized according to an embodiment describing a parameterization and is also or alternatively described with a method according to a described embodiment.
Die Erfindung wird nun nachfolgend beispielhaft anhand von Ausführungsformen unter Bezugnahme auf die begleitenden Figuren näher beschrieben.
Figur 1- zeigt eine Windenergieanlage in einer perspektivischen Darstellung.
Figuren 2 und 3- zeigen jeweils ein Diagramm mit unterschiedlichen Betriebskennlinien.
Figuren 4 und 5- zeigen jeweils ein Diagramm mit unterschiedlichen Verläufen von Schnelllaufzahlen.
Figur 6- zeigt ein Diagramm mit Verläufen unterschiedlicher Leistungsbeiwerte.
- Figuren 7 und 8
- zeigen jeweils ein Diagramm mit unterschiedlichen Pitchkennlinien.
- Figur 9
- zeigt schematisch ein Diagramm eines Schallleistungspegels.
Figur 10- zeigt schematisch eine Regelungsstruktur zur Umsetzung einer Regelung gemäß einer Ausführungsform der Erfindung.
- Figure 1
- shows a wind turbine in a perspective illustration.
- Figures 2 and 3
- each show a diagram with different operating characteristics.
- Figures 4 and 5
- each show a diagram with different courses of high-speed numbers.
- Figure 6
- shows a diagram with different performance coefficients.
- Figures 7 and 8
- each show a diagram with different pitch characteristics.
- Figure 9
- shows schematically a diagram of a sound power level.
- Figure 10
- shows schematically a control structure for implementing a control according to an embodiment of the invention.
Erfindungsgemäß wurde erkannt, dass beim Betrieb von Windenergieanlagen nicht nur Schall entsteht, der durch die Umströmung des Rotorblattes verursacht wird, sondern es kann auch Schall durch Schwingungen in den Türmen oder Maschinenhäusern oder anderen Elementen entstehen, insbesondere bei Resonanzen. Erhöhte Schallleistungspegel durch diesen Körperschall treten oftmals in engen Frequenzbändern auf, sind oftmals niederfrequent und werden vom menschlichen Ohr als unangenehm empfunden. In Frequenzspektren tritt dieser körperschallinduzierte Lärm im jeweiligen Frequenzband als Peak auf und wird mit einem Tonhaltigkeitszuschlag in der Schallemissionsbewertung der Windenergieanlage berücksichtigt.According to the invention, it was recognized that the operation of wind turbines not only generates sound caused by the flow around the rotor blade, but also sound caused by vibrations in the towers or machine houses or other elements, especially in the case of resonances. Increased sound power levels due to this structure-borne noise often occur in narrow frequency bands, are often low-frequency and are perceived as unpleasant by the human ear. In frequency spectra, this structure-borne noise-induced noise appears as a peak in the respective frequency band and is taken into account with a tonality allowance in the sound emission assessment of the wind turbine.
Bei der Resonanzfrequenz fR ist ein Peak LP vorhanden, der eine Tonhaltigkeit zeigt. Dabei ist zu erkennen, dass sich dieser Peak LP als noch deutlicher zeigt, wenn der Schallleistungspegel insgesamt verringert ist, wie das bei dem verringerten Schallleistungspegel L2 der Fall ist. Umgekehrt kann die Dominanz des Peaks bei dem erhöhten Schallleistungspegel L3 abnehmen.At the resonance frequency f R there is a peak L P which shows tonality. It can be seen here that this peak L P shows itself to be even clearer when the sound power level is reduced overall, as is the case with the reduced sound power level L 2 . Conversely, the dominance of the peak can decrease with the increased sound power level L 3.
Erfindungsgemäß wurde nun erkannt, dass das Auftreten von Resonanzen und der daraus resultierenden Tonhaltigkeit durch eine geschickte Auswahl der Betriebskennlinie, also der Vorgabe der elektrischen Ausgangsleistung in Abhängigkeit der Generatordrehzahl, minimiert werden kann. In dem Fall, dass die Resonanz und die damit verbundene Tonhaltigkeit durch den Generator verursacht wird, kann die Tonhaltigkeit durch Anpassung der Betriebskennlinie besonders effektiv minimiert werden.According to the invention, it has now been recognized that the occurrence of resonances and the resulting tonality can be minimized by a clever selection of the operating characteristic, that is, the specification of the electrical output power as a function of the generator speed. In the event that the resonance and the associated tonality are caused by the generator, the tonality can be minimized particularly effectively by adapting the operating characteristic.
Für den Fall, dass Tonhaltigkeit an der Anlage auftritt und reduziert werden muss, werden die beiden tonhaltigkeitsreduzierten Betriebskennlinien 202 und 204 vorgeschlagen. Bei der zugrundeliegenden Windenergieanlage lag ein erhöhter Schallleistungspegel in Form eines Peaks in einem Frequenzbereich vor, der besonders bei einer normierten Drehzahl im Bereich von 0,8 angeregt wurde. Somit ist diese normierte Drehzahl von 0,8 hier eine bzw. die Resonanzdrehzahl.In the event that tonality occurs in the system and has to be reduced, the two tonality-reduced
Zur Vermeidung dieser Tonhaltigkeit wird somit vorgeschlagen, die Leistungsaufnahme des Generators in diesem Drehzahlbereich zu reduzieren. Dazu können die beiden tonhaltigkeitsreduzierten Betriebskennlinien 202 und 204 verwendet werden. Mit beiden tonhaltigkeitsreduzierten Betriebskennlinien 202 und 204 wird erreicht, dass bei der normierten Resonanzdrehzahl von 0,8 die Leistung im Vergleich zur leistungsoptimalen Betriebskennlinie um über 40 Prozent reduziert wurde. Dabei unterscheiden sich die beiden tonhaltigkeitsreduziert Betriebskennlinien 202 und 204 strukturell. Die tonhaltigkeitsreduzierte Betriebskennlinie 204 sieht bereits am Anfang kleinere Leistungen vor, als bei der leistungsoptimalen Kennlinie, während die andere tonhaltigkeitsreduziert Kennlinie 202 bei kleinen Drehzahlen zunächst mit der leistungsoptimalen Kennlinie 200 übereinstimmt. In jedem Fall sind aber beide tonhaltigkeitsreduzierten Betriebskennlinien 202 und 204 Betriebskennlinien mit kontinuierlichem Verlauf, die auch im Bereich der Resonanzdrehzahl stetig, stetig differenzierbar und im Übrigen auch streng monoton steigend sind. Die tonhaltigkeitsreduzierte Kennlinien 202 und 204 können somit dem Grunde nach ganz ähnlich der Betriebssteuerung bzw. Anlagenregelung zugrundegelegt werden, wie die leistungsoptimale Betriebskennlinie 200.To avoid this tonality, it is proposed to reduce the power consumption of the generator in this speed range. The two
Auch die drei tonhaltigkeitsreduzierten Betriebskennlinien 302, 304 und 306 führen bei der normierten Resonanzdrehzahl, die hier 0,8 beträgt, zu einer Verringerung der Leistung auf etwa die Hälfte im Vergleich zur leistungsoptimalen Betriebskennlinie. Erfindungsgemäß wurde aber auch erkannt, dass durch die hier besonders zu den
Die Rotorblätter drehen sich bei den vorgeschlagenen tonhaltigkeitsreduzierten Betriebskennlinien bei gleicher Windgeschwindigkeit nämlich schneller als bisher, also schneller als bei Verwendung der jeweils gezeigten leistungsoptimalen Betriebskennlinie. Dazu wurde erkannt, dass sich die axiale Induktion in der Rotorblattebene erhöht, was typischerweise zu verringerten Leistungsbeiwerten führt. Es wurde somit erkannt, dass somit zunächst, ohne weitere Lösungsvorschläge, die in den
Für den Fall der
Es ist somit jeweils ein teilweise deutlicher Abfall des Leistungsbeiwertes bis zur Windgeschwindigkeit von etwa 10 Metern pro Sekunde festzustellen. Um diesen Ertragsverlust teilweise oder sogar komplett zu kompensieren, wird daher außerdem vorgeschlagen, neben der Betriebskennlinie auch die Pitchkennlinie zu modifizieren. Es wurde somit auch erkannt, dass ein wichtiger Aspekt ist, dass mit der Änderung der Betriebskennlinie auch eine Änderung der Pitchkennlinie vorgenommen wird. Als Pitchkennlinie wird der in der Anlagensteuerung hinterlegte Zusammenhang zwischen der elektrischen Ausgangsleistung Pel und dem Pitchwinkel der Rotorblätter bezeichnet. Als elektrische Ausgangsleistung wird die Leistung angesehen, die die Anlage tatsächlich abgibt und in ein elektrisches Versorgungsnetz einspeisen kann. Dabei kommen verschiedene Möglichkeiten der Erfassung dieser Ausgangsleistung in Betracht, wie bspw. diese aus dem Gleichspannungszwischenkreis zu bestimmen, wenn ein Vollumrichterkonzept mit Gleichspannungszwischenkreis verwendet wird. Es kommt aber auch eine Strom-Spannungsmessung an den Ausgangsklemmen der Windenergieanlage in Betracht. Die Ausgangsleistung kann daher auch synonym als Anlagenleistung bezeichnet werden.In each case, a significant drop in the performance coefficient up to a wind speed of around 10 meters per second can be observed. In order to partially or even completely compensate for this loss of yield, it is therefore also proposed to modify the pitch characteristic in addition to the operating characteristic. It was thus also recognized that an important aspect is that the change in the operating characteristic also changes the pitch characteristic. The relationship between the electrical output power P el and the pitch angle of the rotor blades stored in the system control is referred to as the pitch characteristic. The electrical output power is considered to be the power that the system actually delivers and can feed into an electrical supply network. There are various ways of doing this Take this output power into consideration, for example, to determine it from the DC voltage intermediate circuit if a full converter concept with a DC voltage intermediate circuit is used. However, a current-voltage measurement at the output terminals of the wind energy installation can also be considered. The output power can therefore also be referred to synonymously as the system power.
Es wird daher nun vorgeschlagen, die Pitchkennlinie anzupassen, um zu vermeiden, dass bei der vorliegenden Anhebung der Schnelllaufzahlen im Betrieb mit dem erfindungsgemäßen Kennlinien mit Ertragungsverlusten der Windenergieanlage zu rechnen ist. Wichtig für die vorliegende Erfindung, zumindest für eine Ausführungsform, ist somit, eine neue Betriebskennlinie als auch eine neue Pitchkennlinie vorzuschlagen, nämlich insbesondere eine tonhaltigkeitsreduzierte Betriebskennlinie und eine dazu angepasste Pitchkennlinie, die auch als tonhaltigkeitsreduzierte Pitchkennlinie bezeichnet werden kann.It is therefore now proposed to adapt the pitch characteristic in order to avoid that with the present increase in the high-speed figures during operation with the characteristic according to the invention, yield losses of the wind energy installation are to be expected. It is therefore important for the present invention, at least for one embodiment, to propose a new operating characteristic as well as a new pitch characteristic, namely in particular an operating characteristic with reduced tonality and a pitch characteristic adapted to it, which can also be referred to as a pitch characteristic with reduced tonality.
In der
Die
Außerdem sind drei Pitchkennlinien P1, P2 und P3 hinterlegt, zwischen denen ebenfalls ausgewählt werden kann. Die Darstellung der
Die Struktur der
Ggf. kann es vorteilhaft sein, zwischen der Leistungseinstellung des Generators durch die jeweilige Betriebskennlinie einerseits und der Verstellung des Blattwinkels durch die entsprechende Pitchkennlinie andererseits eine unterschiedliche Dynamik vorzusehen, um ein stabiles Verhalten sicherzustellen. Bei der in
Claims (15)
- A wind power installation (100) with- a tower (102),- an aerodynamic rotor (106), wherein the aerodynamic rotor (106)- can be operated with a variable rotor speed (n) and- has a number of rotor blades (108) respectively with an adjustable rotor blade angle (α),- a generator (Gen) for generating an electrical output power,wherein- for operating the wind power installation (100) an operating characteristic (200, 202, 204, 300, 302, 304, 306), which indicates a relationship between the rotor speed (n) and the output power (P), is specified and- a controller, which sets the output power (P) in a way corresponding to the operating characteristic (200, 202, 204, 300, 302, 304, 306) in dependence on the rotor speed (n), is provided, wherein- selectable as the operating characteristic (200, 202, 204, 300, 302, 304, 306) is a reduced-tonality operating characteristic (202, 204, 302, 304, 306), which is designed such that an excitation of a system resonance of the wind power installation (100) is reduced as compared with an optimum-power operating characteristic (200, 300), without however excluding a speed (2) that excites this system resonance and characterized in that- it is provided with a pitch control, which sets the rotor blade angle (α) in dependence on the generated output power in partial-load operation in a way corresponding to a pitch characteristic (700, 702, 800, 806), and wherein the pitch characteristic (700, 702, 800, 806) is adapted in dependence on the selected operating characteristic (200, 202, 204, 300, 302, 304, 306), in particular is selectable from a number of pitch characteristics (700, 702, 800, 806), in particular a dedicated pitch characteristic is provided for each operating characteristic.
- The wind power installation (100) as claimed in claim 1,
characterized in that
the operating characteristic (200, 202, 204, 300, 302, 304, 306) is at least selectable from- the reduced-tonality operating characteristic (202, 204, 302, 304, 306),- the optimum-power characteristic (200, 300), which is designed such that taking power from the wind is maximized, and- the reduced-sound operating characteristic, which is designed such that sound emissions of the wind power installation (100), particularly a sound power range of the power emissions, is/are reduced as compared with the optimum-power operating characteristic (200, 300). - The wind power installation (100) as claimed in claim 1 or 2,
characterized in that- the reduced-tonality operating characteristic (202, 204, 302, 304, 306) has lower values of the output power (P) in a resonance speed range of a rotor speed (n) exciting a system resonance of the wind power installation (100) than the optimum-power operating characteristic (200, 300) in the same resonance speed range,and wherein the reduced-tonality operating characteristic (202, 204, 302, 304, 306) is also steady in the resonance speed range, wherein in particular even in the resonance speed range, the reduced-tonality operating characteristic (202, 204, 302, 304, 306) is continuously differentiable and strictly monotonously rising. - The wind power installation (100) as claimed in one of the preceding claims, characterized in that- the reduced-tonality operating characteristic (202, 204, 302, 304, 306) can be divided into a first, second and third rotor speed range and- the first rotor speed range begins at a starting speed, which denotes a rotor speed with which the wind power installation (100) is started,- the second rotor speed range has higher rotational speeds (n) than the first rotor speed range and- the third rotor speed range has higher rotational speeds (n) than the second rotor speed range and extends up to a rated speed, and wherein- the second rotor speed range comprises the resonance rotor speed and- in the second rotor speed range the output power (P) of the reduced-tonality operating characteristic (202, 204, 302, 304, 306) is lower than the output power (P) of the optimum-power operating characteristic (200, 300), wherein- the second rotor speed range in particular comprises the resonance speed range, or corresponds to it.
- The wind power installation (100) as claimed in one of the preceding claims, characterized in that- a or the pitch characteristic (700, 702, 800, 806) can be divided into a first, second and third output power range and- the first output power range begins at a generator power (P) which corresponds to an output power (P) with which the wind power installation (100) is started,- the second output power range has higher output powers (P) than the first output power range and- the third output power range has higher output powers (P) than the second output power range and extends up to a maximum output power (P) of partial-load operation or up to a rated power of the generator (Gen), and wherein- when selecting the reduced-tonality operating characteristic (202, 306), an adapted pitch characteristic (702, 806) is specified, and- the adapted pitch characteristic (702, 806) has a greater rotor blade angle (α) in the first output power range than an optimum-power pitch characteristic (700, 800) in the same output power range and/or- the adapted pitch characteristic (702, 806) has a greater rotor blade angle (α) in the second output power range than an optimum-power pitch characteristic (700, 800) in the same output power range, and/or the adapted pitch characteristic (806) has a smaller rotor blade angle (α) in the second output power range than in the first output power range, wherein in particular- at least the second output power range corresponds to the second rotor speed range, and further in in particular- the second output power range corresponds to a wind speed range of approximately 4 to 10 m/s and/or- the second rotor speed range lies in the range of approximately 20% to 80% of the rated speed of the rotor (106).
- The wind power installation (100) as claimed in one of the preceding claims,
characterized in that
at least in the second rotor speed range, the reduced-tonality operating characteristic (202, 204, 302, 304, 306) has reduced values of the output power (P) as compared with the optimum-power operating characteristic (200, 300) and the adapted pitch characteristic (702, 806) has in the same range changed rotor blade angles (α) as compared with an optimum-power pitch characteristic (700, 800), in order to at least partially counteract a worsening of a power coefficient that occurs due to changing a tip speed ratio (λ), wherein optionally the adapted pitch characteristic (702, 806) is also changed as compared with the optimum-power pitch characteristic (700, 800) in the first output power range, in that it has greater rotor blade angles (α) there than the optimum-power pitch characteristic (700, 800), wherein in particular
when using the reduced-tonality operating characteristic (202, 204, 302, 304, 306) in the range of wind speeds (Vw) from a starting wind speed at least up to half the rated wind speed, the tip speed ratio (λ) is strictly monotonously descending with increasing wind speed, in particular with a slope of less than -2, in the case of a wind speed normalized to the rated wind speed, in particular of -2 to -10, preferably of -2 to -4. - The wind power installation (100) as claimed in one of the preceding claims,
characterized in that
the ratio of a tip speed ratio (λ) when using the reduced-tonality operating characteristic (202, 204, 302, 304, 306) to a tip speed ratio (λ) when using an optimum-power operating characteristic (200, 300) is greater than 1. - A method for parameterizing a wind power installation (100) with a tower (102) and an aerodynamic rotor (106), wherein the aerodynamic rotor (106) can be operated with a variable rotor speed (n) and has a number of rotor blades (108) respectively with an adjustable rotor blade angle (α), and with a generator (Gen) for generating an electrical output power (P),
comprising the steps of- determining an optimum-power operating characteristic (200, 300), which indicates a relationship between the rotor speed (n) and the output power (P), wherein the optimum-power operating characteristic (200, 300) is chosen such that the wind power installation (100) delivers maximum output power (P) as long as it is operated in a way corresponding to this operating characteristic (200, 300),- recording a resonance speed, which describes a rotor speed (n) that excites a system resonance of the wind power installation (100),- establishing a resonance speed range around the resonance speed (n),- determining a reduced-tonality operating characteristic (202, 204, 302, 304, 306) that has lower values of the output power (P) in the resonance speed range as compared with the optimum-power operating characteristic (200, 300), wherein the reduced-tonality operating characteristic (202, 204, 302, 304, 306) is also steady in the resonance speed range and- adapting a pitch characteristic (700, 702, 800, 802) in dependence on the selected operating characteristic (200, 202, 204, 300, 302, 304, 306), wherein a pitch control is provided which sets the rotor blade angle (α) in accordance with a pitch characteristic (700, 702, 800, 806) in dependence on the generated output power in a partial-load operation. - The method as claimed in claim 8,
characterized in that
a wind power installation (100) as claimed in one of claims 1 to 7 is parameterized, thereby establishing at least one from the list comprising- the optimum-power pitch characteristic (700, 800),- the first rotor speed range,- the second rotor speed range,- the third rotor speed range,- the first output power range,- the second output power range,- the third output power range and- the reduced-sound operating characteristic. - The method as claimed in claim 8 or 9,
characterized in that
the recording of the resonance speed takes place by varying the rotor speed (n) and recording a related tonality in the vicinity of the wind power installation (100) and the rotor speed (n) at which the tonality has a maximum is used as the resonance speed, in particular in a predetermined test frequency range, which lies in a range between 10 Hz and 100 Hz. - The method as claimed in one of claims 8 to 10,
characterized in that
the reduced-tonality operating characteristic (202, 204, 302, 304, 306) is determined such that the output power (P) in the resonance speed range, in particular at the resonance speed, is reduced as compared with the optimum-power operating characteristic (200, 300) to the extent that a or the tonality recorded in the vicinity of the wind power installation (100) goes below a predetermined limit value, in particular in that the process of reducing the output power (P) and recording the tonality is repeated until it goes below the predetermined limit value. - A method for operating a wind power installation (100) with a tower (102) and an aerodynamic rotor (106), wherein the aerodynamic rotor (106) can be operated with a variable rotor speed (n) and has a number of rotor blades (108) respectively with an adjustable rotor blade angle (α), and with a generator (Gen) for generating an electrical output power (P), wherein- an operating characteristic (200, 202, 204, 300, 302, 304, 306), which indicates a relationship between the rotor speed (n) and the output power (P), is specified for operating the wind power installation (100), and- the output power (P) is set in dependence on the rotor speed in a way corresponding to the operating characteristic (200, 202, 204, 300, 302, 304, 306), wherein- selectable as the operating characteristic (200, 202, 204, 300, 302, 304, 306) is a reduced-tonality operating characteristic (202, 204, 302, 304, 306), which is designed such that an excitation of a system resonance of the wind power installation (100) is reduced as compared with an optimum-power operating characteristic (200, 300), without however excluding a speed (n) that excites this system resonance and wherein- depending on the selected operating characteristic (200, 202, 204, 300, 302, 304, 306), a pitch characteristic (700, 702, 800, 806) is adapted, wherein a pitch control sets the rotor blade angle (α) according to a pitch characteristic (700, 702, 800, 806) in dependence on the generated output power in a partial-load operation.
- The method as claimed in claim 12,
characterized in that
the wind power installation (100) has been parameterized by a method as claimed in one of claims 8 to 12 and/or in that a wind power installation (100) as claimed in one of claims 1 to 11 is used. - The method as claimed in claim 12 or 13,
characterized in that
in dependence on an external specification or a time of day, switching takes place between,- operation of the wind power installation (100) with the reduced-tonality operating characteristic (202, 204, 302, 304, 306),- operation of the wind power installation (100) with the optimum-power operating characteristic (200, 300), which is designed such that taking power from the wind is maximized, and- operation of the wind power installation (100) with a reduced-sound operating characteristic, which is designed such that sound emissions of the wind power installation (100), particularly a sound power range of the sound emissions, is/are reduced as compared with the optimum-power operating characteristic (200, 300). - The wind power installation (100) as claimed in one of claims 1 to 7,
characterized in that
it has been parameterized by a method as claimed in one of claims 8 to 11 and/or is operated by a method as claimed in one of claims 12 to 14.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102016121978.9A DE102016121978A1 (en) | 2016-11-16 | 2016-11-16 | Wind energy plant and method for operating a wind energy plant |
PCT/EP2017/077271 WO2018091241A1 (en) | 2016-11-16 | 2017-10-25 | Wind turbine and method for operating a wind turbine |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3542052A1 EP3542052A1 (en) | 2019-09-25 |
EP3542052B1 true EP3542052B1 (en) | 2021-08-25 |
Family
ID=60164724
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17788238.8A Active EP3542052B1 (en) | 2016-11-16 | 2017-10-25 | Wind turbine and method for operating a wind turbine |
Country Status (11)
Country | Link |
---|---|
US (1) | US11035343B2 (en) |
EP (1) | EP3542052B1 (en) |
JP (1) | JP2019534417A (en) |
KR (1) | KR20190085037A (en) |
CN (1) | CN109996957B (en) |
BR (1) | BR112019008563A2 (en) |
CA (1) | CA3039580A1 (en) |
DE (1) | DE102016121978A1 (en) |
DK (1) | DK3542052T3 (en) |
RU (1) | RU2019118303A (en) |
WO (1) | WO2018091241A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102016106590A1 (en) * | 2016-04-11 | 2017-10-12 | Wobben Properties Gmbh | Method for operating a wind energy plant |
WO2018046068A1 (en) * | 2016-09-07 | 2018-03-15 | Vestas Wind Systems A/S | Predicting wind turbine noise |
DE102018005329A1 (en) * | 2018-07-05 | 2020-01-09 | Senvion Gmbh | Method and control for operating a plurality of wind energy plants |
EP3722595A1 (en) | 2019-04-09 | 2020-10-14 | Siemens Gamesa Renewable Energy A/S | Controller for a wind turbine |
CN110671265B (en) * | 2019-10-24 | 2020-11-06 | 合肥鼎优电气有限公司 | Anti-resonance control method and device for wind driven generator |
EP3916219B1 (en) * | 2020-05-26 | 2024-06-19 | Wobben Properties GmbH | Method for controlling a wind energy system |
CN116547451A (en) * | 2020-10-27 | 2023-08-04 | 维斯塔斯风力系统集团公司 | Reducing noise emissions from wind turbines |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4700081A (en) | 1986-04-28 | 1987-10-13 | United Technologies Corporation | Speed avoidance logic for a variable speed wind turbine |
JP2515750B2 (en) * | 1986-07-31 | 1996-07-10 | ヤマハ発動機株式会社 | Wind power generator control method |
JP2004293527A (en) | 2003-03-28 | 2004-10-21 | Ebara Corp | Windmill device and wind power generation device |
DE102004054608B4 (en) | 2004-09-21 | 2006-06-29 | Repower Systems Ag | Method for controlling a wind turbine and wind turbine with a rotor |
US8021110B2 (en) * | 2007-01-05 | 2011-09-20 | General Electric Company | Tonal emission control for wind turbines |
GB2466649B (en) | 2008-12-30 | 2014-01-29 | Hywind As | Blade pitch control in a wind turbine installation |
US7945350B2 (en) | 2009-07-07 | 2011-05-17 | General Electric Company | Wind turbine acoustic emission control system and method |
CN103080538B (en) | 2010-04-19 | 2016-01-27 | 乌本产权有限公司 | For running the method for wind energy plant |
WO2012139584A1 (en) * | 2011-04-15 | 2012-10-18 | Vestas Wind Systems A/S | A method for adapting wind turbine power production to a power demand |
US8258643B2 (en) * | 2011-10-11 | 2012-09-04 | General Electric Company | Method and system for control of wind turbines |
US9453499B2 (en) | 2011-12-30 | 2016-09-27 | Vestas Wind Systems A/S | Wind turbine generator with adaptive locked speed operation |
US20130189105A1 (en) * | 2012-01-20 | 2013-07-25 | Laurent Bonnet | Vibration absorbing device for a wind turbine and method of absorbing vibrations in a wind turbine |
US20130259684A1 (en) * | 2012-03-28 | 2013-10-03 | General Electric Company | Systems and methods for attenuating noise in a wind turbine |
WO2014048583A1 (en) | 2012-09-28 | 2014-04-03 | Siemens Aktiengesellschaft | Method and arrangement for controlling a wind turbine |
US10408194B2 (en) * | 2016-02-25 | 2019-09-10 | General Electric Company | Acoustic damping system for a wind turbine tower |
-
2016
- 2016-11-16 DE DE102016121978.9A patent/DE102016121978A1/en not_active Withdrawn
-
2017
- 2017-10-25 US US16/461,305 patent/US11035343B2/en active Active
- 2017-10-25 EP EP17788238.8A patent/EP3542052B1/en active Active
- 2017-10-25 DK DK17788238.8T patent/DK3542052T3/en active
- 2017-10-25 RU RU2019118303A patent/RU2019118303A/en not_active Application Discontinuation
- 2017-10-25 CA CA3039580A patent/CA3039580A1/en not_active Abandoned
- 2017-10-25 BR BR112019008563A patent/BR112019008563A2/en not_active Application Discontinuation
- 2017-10-25 KR KR1020197016985A patent/KR20190085037A/en not_active Withdrawn
- 2017-10-25 CN CN201780070967.9A patent/CN109996957B/en active Active
- 2017-10-25 JP JP2019519369A patent/JP2019534417A/en active Pending
- 2017-10-25 WO PCT/EP2017/077271 patent/WO2018091241A1/en unknown
Also Published As
Publication number | Publication date |
---|---|
JP2019534417A (en) | 2019-11-28 |
KR20190085037A (en) | 2019-07-17 |
EP3542052A1 (en) | 2019-09-25 |
DK3542052T3 (en) | 2021-10-04 |
CN109996957B (en) | 2021-07-20 |
CN109996957A (en) | 2019-07-09 |
US11035343B2 (en) | 2021-06-15 |
CA3039580A1 (en) | 2018-05-24 |
BR112019008563A2 (en) | 2019-07-09 |
US20200063713A1 (en) | 2020-02-27 |
RU2019118303A3 (en) | 2020-12-17 |
RU2019118303A (en) | 2020-12-17 |
WO2018091241A1 (en) | 2018-05-24 |
DE102016121978A1 (en) | 2018-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3542052B1 (en) | Wind turbine and method for operating a wind turbine | |
EP1792075B1 (en) | Method for controlling a wind power plant and corresponding wind power plant | |
EP2017473B1 (en) | Wind farm with increased revolution speed | |
EP1892412B1 (en) | Method for operating wind farms | |
DE102010014165A1 (en) | Dynamic inertia control | |
DE19844258A1 (en) | Wind turbine | |
EP3443223B1 (en) | Method for operating a wind turbine | |
EP3548737B1 (en) | Wind turbine and method for operating a wind turbine | |
EP2464862A2 (en) | Wind power plant having an adjustable power reserve | |
EP3512064B1 (en) | Control of a wind turbine by changing rotation rate parameters | |
EP3735532A1 (en) | Operation of a wind power plant during a storm | |
EP3810924B1 (en) | Reduced power operation of a wind turbine | |
EP2284974A1 (en) | Method for operating and regulating a wind energy assembly and method for providing control power with wind energy assembly | |
EP3740671B1 (en) | Wind turbine and method for controlling a wind turbine | |
EP3555461B1 (en) | Method for operating a wind turbine and device for the open-loop and/or closed-loop control of a wind turbine and corresponding wind turbine having a rotor and a generator driven by the rotor for generating electrical power | |
DE102006040970A1 (en) | Method for operating a wind energy plant | |
EP4064555A1 (en) | Wind turbine and method for controlling a wind turbine | |
EP4306795A1 (en) | Method for optimizing a rotor blade of a wind turbine | |
EP3842633B1 (en) | Method for operating a wind turbine, wind turbine and wind farm | |
DE102011086988B3 (en) | Method for avoiding resonance states in reactive power compensation or overcompensation of wind turbine, involves varying adjustment of capacitor when unwanted resonance states exist in reactive power compensation or overcompensation | |
EP3891384A1 (en) | Method for operating at least one wind turbine, and device therefor | |
EP3990774A1 (en) | Rotor for a wind turbine, wind turbine and associated method | |
WO2020007629A1 (en) | Method and control system for operating a plurality of wind turbines | |
EP4310323A1 (en) | Method for adjusting the noise emissions of a wind turbine | |
EP4306796A1 (en) | Method for influencing the noise emission of a wind turbine rotor blade |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190617 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20210512 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502017011321 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN Ref country code: AT Ref legal event code: REF Ref document number: 1424048 Country of ref document: AT Kind code of ref document: T Effective date: 20210915 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20210930 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211125 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211227 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211125 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211126 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502017011321 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20211031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211025 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211031 |
|
26N | No opposition filed |
Effective date: 20220527 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211025 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20171025 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1424048 Country of ref document: AT Kind code of ref document: T Effective date: 20221025 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221025 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20241023 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20241107 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20241023 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20241024 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20241025 Year of fee payment: 8 |