EP3540853A1 - Antenna with broadband transmitter network - Google Patents
Antenna with broadband transmitter network Download PDFInfo
- Publication number
- EP3540853A1 EP3540853A1 EP19162018.6A EP19162018A EP3540853A1 EP 3540853 A1 EP3540853 A1 EP 3540853A1 EP 19162018 A EP19162018 A EP 19162018A EP 3540853 A1 EP3540853 A1 EP 3540853A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cell
- antenna element
- cells
- antenna
- network
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000010363 phase shift Effects 0.000 claims abstract description 35
- 210000004027 cell Anatomy 0.000 claims description 174
- 210000004460 N cell Anatomy 0.000 claims description 4
- 239000010410 layer Substances 0.000 description 93
- 238000010168 coupling process Methods 0.000 description 21
- 238000005859 coupling reaction Methods 0.000 description 21
- 230000008878 coupling Effects 0.000 description 20
- 230000005540 biological transmission Effects 0.000 description 12
- 238000004804 winding Methods 0.000 description 9
- 230000005855 radiation Effects 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 6
- 239000002313 adhesive film Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000004020 conductor Substances 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 230000005670 electromagnetic radiation Effects 0.000 description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 description 4
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 238000013139 quantization Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- -1 polytetrafluoroethylene Polymers 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000012790 adhesive layer Substances 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/44—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
- H01Q3/46—Active lenses or reflecting arrays
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
- H01Q21/22—Antenna units of the array energised non-uniformly in amplitude or phase, e.g. tapered array or binomial array
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
- H01Q21/061—Two dimensional planar arrays
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
- H01Q21/061—Two dimensional planar arrays
- H01Q21/065—Patch antenna array
Definitions
- the present application relates to the field of transmitting radio antennas ("transmit-array antenna" in English). It is more particularly a broadband transmitter network, for example for applications between 1 and 300 GHz.
- the figure 1 is a schematic side view of a transmitting network antenna.
- Such an antenna typically comprises one or more primary sources 101 (a single source in the example shown) irradiating a transmitting network 103.
- the network 103 comprises a plurality of elementary cells 105, for example arranged in a matrix according to rows and columns.
- Each cell 105 typically comprises a first antenna element 105a disposed on the side of a first face of the network facing the primary source 101, and a second antenna element 105b disposed on the side of a face of the network opposite to the first face.
- Each cell 105 is capable, in transmission, of receiving electromagnetic radiation on its first antenna element 105a and of retransmitting this radiation from its second antenna element 105b with a known phase shift ⁇ , and, in reception, to receive a radiation electromagnetic on his second antenna element 105b and to re-emit this radiation from its first antenna element 105a with the same phase shift ⁇ .
- the characteristics of the beam produced by the antenna depend on the values of the phase shifts introduced by the different cells.
- Transmitter network antennas have the particular advantages of having good energy efficiency, and of being relatively simple, inexpensive, and space-saving, in particular because the transmitter networks are feasible in planar technology, generally on printed circuit.
- the transmitting network is a planar structure comprising a stack of first, second and third conductive layers separated in pairs by dielectric layers.
- Each elementary cell comprises a first conductive pattern formed in the first conductive layer and defining the first antenna element of the cell, and a second conductive pattern formed in the third conductive layer and defining the second antenna element of the cell.
- the second conductive layer forms a ground plane disposed between the first and second antenna elements.
- the coupling between the first and second antenna elements is achieved by means of an insulated conductive via passing through the ground plane and connecting the first antenna element to the second antenna element.
- the value of the phase shift introduced by each cell depends on the geometry of the cell, and in particular on the shape, dimensions, and arrangement of the antenna elements and the cell's coupling via.
- the article entitled " V-band switched beam linearly-polarized transmit-array antenna for wireless backhaul applications "by L. Dussopt et al describes another embodiment of a transmitting network antenna.
- the transmitting network is also a planar structure comprising a stack of first, second and third conductive layers separated in pairs by dielectric layers.
- Each elementary cell comprises a first conductive pattern formed in the first conductive layer and defining the first antenna element of the cell, and a second conductive pattern formed in the third conductive layer and defining the second antenna element of the cell.
- the second conductive layer forms a ground plane disposed between the first and second antenna elements.
- the first and second antenna elements are not connected, the coupling between the first and second elements being achieved by means of a slot formed in the ground plane vis-à-vis the two elements.
- the value of the phase shift introduced by each cell depends on the geometry of the cell, and in particular on the shape, dimensions and arrangement of the antenna elements and the coupling slot of the cell.
- the elementary cells of the network may have a limited number N of configurations (shapes, dimensions and arrangement of the antenna and coupling elements), corresponding to N distinct phase shift values.
- each elementary cell is chosen from one of N distinct configurations, respectively corresponding to N distinct phase shift values, which amounts to quantifying on log 2 (N) bits the phase shift introduced by the cells.
- N log 2 bits the phase shift introduced by the cells.
- the transmitter network is optimized to operate at a center frequency of 61.5 GHz and has a bandwidth at -1 dB ranging from 57 to 66 GHz, ie a relative bandwidth at -1 dB of 15.4%.
- the transmitter network is optimized to operate at a center frequency of 64.3 GHz and has a bandwidth of -3 dB ranging from 58.95 to 68.8 GHz, or a relative bandwidth at -3 dB of 15.4%.
- connection means that, in the cells of the first type, the conductive via is in contact mechanically and electrically with the first and second antenna elements, and "not connected” means that in the cells of the second type, no electrical conductor directly connects the first and second antenna elements, that is to say that no electrical conductor is in contact mechanically and electrically with the first element at the same time antenna and with the second antenna element.
- the second antenna element is at least partially vis-à-vis the first antenna element.
- the first antenna element is coupled to the second antenna element by a slot formed in the second conductive layer, at least partially vis-à-vis the first and second antenna elements.
- the slot formed in the second conductive layer makes it possible to transfer an electromagnetic wave between the first and second antenna elements.
- the network comprises N distinct cell configurations, where N is an integer greater than or equal to 2, the network comprising several cells of each configuration.
- the N cell configurations are chosen so that the N phase shift values introduced respectively by the cells of the N configurations are of the order of 0 °, 360 ° / N, 2 * 360 ° / N, ... * 360 ° / N.
- N is equal to 8.
- the first antenna element is constituted by a continuous conductive pattern and the second antenna element is constituted by a continuous conductive pattern.
- the first antenna element occupies an area greater than 20% of the surface of the cell, and the second antenna element occupies a surface greater than 20% of the cell surface.
- the via passes through an opening formed in the second conductive layer vis-à-vis the first and second antenna elements.
- the via and the opening are arranged so that the via is not in contact with the second conductive layer.
- the first conductive layer is a discontinuous layer such that the first antenna elements of the different cells are isolated from each other and the third conductive layer is a discontinuous layer such that the second antenna elements of different cells are isolated from each other.
- the second conductive layer forms a ground plane common to all the cells of the network.
- Another embodiment provides a transmitting network antenna comprising a transmitting network as defined above, and at least one primary source configured to irradiate one side of the network.
- the antenna is adapted to operate at a frequency between 1 and 300 GHz.
- each primary source is adapted to produce a generally conical beam radiating all or part of the transmitter network.
- Each primary source comprises for example a horn antenna.
- the central axis of each primary source is substantially orthogonal to the mean plane of the network.
- the figure 2 is a schematic and partial sectional view of an example of a transmitter network 203 of a transmitting network antenna according to a first embodiment.
- the network 203 forms a radiating panel operating in transmission, that is to say capable of receiving electromagnetic radiation on a first face of the panel and re-emitting this radiation from a second face of the panel opposite to the first face, or to receive electromagnetic radiation on its second face and to re-emit this radiation from its first face.
- the network 203 comprises a plurality of elementary cells 205, for example arranged in a matrix according to rows and columns. On the figure 2 only two elementary cells 205-I and 205-II have been shown.
- the transmitter network 203 may comprise a much larger number of elementary cells 205, for example of the order of 1000 or more elementary cells.
- the elementary cells 205 of the transmitter network 203 are for example joined.
- the elementary cells 205 have for example all substantially the same dimensions.
- the elementary cells 205 have a square shape on the side substantially equal to half the central working wavelength of the antenna.
- Each cell 205 comprises a first antenna element 205a disposed on the side of a first face of the network 203, for example the face of the network intended to be oriented towards the primary source or sources (not visible on the figure 2 ) of the antenna, and a second antenna element 205b disposed on a face of the network 203 opposite the first face.
- Each cell 205 is able, in transmission, to receive electromagnetic radiation on its first antenna element 205a and to re-emit this radiation from its second antenna element 205b with a known phase shift ⁇ , and, in reception, to receive radiation electromagnetic on its second antenna element 205b and re-emitting this radiation from its first antenna element 205a with the same phase shift ⁇ .
- the characteristics of the beam produced by the antenna depend on the values of the phase shifts ⁇ introduced by the different cells 205.
- the transmitter network 203 of the figure 2 can be made in planar technology, for example on a printed circuit board, or on a substrate made of silicon, quartz, etc.
- the network 203 is made on a printed circuit board, in PCB (Printed Circuit Board) technology.
- PCB Printed Circuit Board
- the network 203 of the figure 2 comprises a stack of three conductive layers (or conductive levels) M1, M2 and M3, respectively called first, second and third conductive layers M1, M2 and M3, separated two by two by layers dielectrics D1 and D2. More particularly, in the example of figure 2 the third conductive layer M3 forms the lower layer of the stack, the dielectric layer D2, called the second dielectric layer, is disposed on and in contact with the upper face of the third conductive layer M3, the second conductive layer M2 is disposed on and in contact with the upper face of the second dielectric layer D2, the dielectric layer D1, called the first dielectric layer, is disposed on and in contact with the upper face of the second conductive layer M2, and the first conductive layer M1 is disposed on and in contact with the upper face of the first dielectric layer D1.
- the conductive layers M1, M2 and M3 are for example metal layers, for example copper.
- Each of the conductive layers M1, M2, M3 has, for example, a thickness of between 1 and 30 ⁇ m, for example of the order of 17 ⁇ m.
- the second dielectric layer D2 consists, for example, of a laminated multilayer film based on polytetrafluoroethylene (PTFE) and ceramic, for example of the type marketed by Rogers under the trade name Duroid®6002.
- PTFE polytetrafluoroethylene
- the second dielectric layer D2 has a thickness of the order of 254 microns.
- the first dielectric layer D1 consists of a stack of a dielectric layer 207 and a dielectric adhesive film 209.
- the adhesive film 209 is placed on and in contact with the upper face of the second conductive layer M2, and the layer 207 is disposed on and in contact with the upper face of the adhesive film 209 (the conductive layer M1 being disposed on and in contact with the upper face of the layer 207).
- the dielectric layer 207 is for example made of a multilayer laminated sheet based on polytetrafluoroethylene (PTFE) and ceramic, for example of the type marketed by Rogers under the trade name Duroid®6002.
- the layer 207 has a thickness of the order of 127 microns.
- the adhesive film 209 is for example an adhesive layer having in particular to fix the layer 207 on the upper face of the layer M2.
- the adhesive film 209 has, for example, a thickness of the order of 100 ⁇ m.
- the layer M2 is printed on the upper face of the second dielectric layer D2 before fixing the layer D1 on the upper face of the layer M2.
- the layers M3 and M1 can be printed respectively on the underside of the layer D2 and on the upper face of the layer 207.
- the transmitter network 203 comprises only three conductive layers M1, M2 and M3, that is to say that it does not comprise any additional conductive layer on the side of the upper face of the conductive layer M1, and that it does not comprises no additional conductive layer on the side of the lower face of the conductive layer M3.
- the first antenna elements 205a of the elementary cells 205 are formed in the upper conductive layer M1
- the second antenna elements 205b of the elementary cells 205 are formed in the lower conductive layer M3.
- the upper antenna element 205a is constituted by a conductive pattern formed in the conductive layer M1.
- the antenna element 205a of each elementary cell 205 is electrically isolated from the antenna elements 205a of the other cells of the network.
- the conductive layer M1 is a discontinuous layer, that is to say that a peripheral band of the conductive material of the layer M1 is withdrawn around each antenna element 205a, separating the antenna element 205a from the neighboring cells.
- the conductive pattern forming the antenna element 205a is for example a continuous or monoblock pattern.
- the conductive pattern forming antenna element 205a occupies, in top view, an area greater than 20% of the surface of cell 205.
- the lower antenna element 205b is constituted by a conductive pattern or conductive pad formed in the conductive layer M3.
- the lower antenna element 205b is disposed at least partly facing the plumb (above) of the upper antenna element 205a.
- the antenna element 205b of each elementary cell 205 is electrically isolated from the antenna elements 205b of the other cells of the network.
- the conductive layer M3 is a discontinuous layer.
- the conductive pattern forming the antenna element 205b is for example a continuous pattern.
- the conductive pattern forming the antenna element 205b occupies an area greater than 20% of the upper surface of the cell 205.
- the intermediate conductive layer M2 forms a ground plane extending continuously over substantially the entire surface of the grating 203.
- the transmitter network 203 of the figure 2 comprises two types of elementary cells 205, type I cells (205-I) and type II cells (205-II).
- Each type I cell comprises a conductive via 211 passing through the dielectric layers D1 and D2 and the intermediate conductive layer M2, the via 211 being arranged to connect the upper antenna element 205a to the lower antenna element 205b.
- connecting here means that the via 211 is in contact mechanically and electrically, by its upper face, with the underside of the antenna element 205a, and, by its underside, with the upper face of the element antenna 205b.
- the conductive via 211 is isolated, that is to say that it is not in electrical contact with the intermediate conductive layer M2.
- the via 211 is arranged to pass through the intermediate conductive layer M2 without touching it, and is thus isolated from the intermediate conductive layer M2.
- the intermediate layer M2 comprises a localized opening 213, for example a circular opening, vis-à-vis the upper antenna elements 205a and lower 205b.
- the via 211 extends vertically from the underside of the antenna element 205a to the upper face of the antenna element 205b (through the dielectric layers D1 and D2), through the opening 213.
- the via 211 makes it possible to transfer the energy between the antenna elements 205a and 205b.
- the conductive via is for example metal, for example copper.
- the conductive layer M2 comprises a localized opening 215.
- the opening 215 has a particular geometry, for example an I-shaped or H-shaped slot (seen from above, not visible on the figure 2 ), disposed at least in part vis-à-vis the antenna elements 205a and 205b of the cell. The opening 215 transfers energy between the antenna elements 205a and 205b.
- the network 203 combines elementary cells in which the coupling between the antenna elements 205a and 205b is achieved by a via (type I) and elementary cells in which the coupling between the antenna elements 205a and 205b is made without via (type II).
- the types of cells I and II have for point common that the intermediate conductive layer M2 comprises an opening arranged either to pass an insulated conductive via M2 layer (in type I cells) or to form a slot with a particular pattern, for example I-shaped or H (in type II cells).
- FIGS. 3A and 3B are equivalent electrical diagrams respectively modeling the behavior of a type I cell and a type II cell of the transmitter network 203 of the figure 2 .
- the antenna element 205a is modeled by a parallel association of a resistor, an inductance and a capacitance between nodes n1 and n2 of the circuit
- the element of Antenna 205b is modeled by an association in parallel of a resistor, an inductance and a capacitance between nodes n3 and n4 of the equivalent circuit.
- the equivalent circuit further comprises a transformer T1 modeling the coupling between a primary source of the antenna and the antenna element 205a of the cell.
- the transformer T1 comprises two magnetically coupled conductive windings, one of the two windings having its two ends respectively connected to the nodes n1 and n2 of the equivalent circuit, and the other winding having its two ends respectively connected to two nodes of an equivalent circuit. (not shown) modeling the primary source.
- Transformer T1 models the transmission of an incident electromagnetic wave W i from the primary source to the antenna element 205a, or of a transmitted electromagnetic wave W t by the cell, of the antenna element 205a to the primary source.
- the equivalent circuit further comprises a transformer T2 modeling the coupling between an external source and the antenna element 205b of the cell.
- the transformer T2 comprises two magnetically coupled conductive windings, one of the two windings having its two ends connected respectively to the nodes n3 and n4 of the equivalent circuit, and the other winding having its two ends respectively connected to two nodes of an equivalent circuit (not shown) modeling the external source.
- the transformer T2 models the transmission of an incident electromagnetic wave W i from the external source to the antenna element 205b, or of a transmitted electromagnetic wave W t from the antenna element 205b to the external source or the propagation space.
- the equivalent circuit comprises an NC coupling network having a first input / output node connected to the node n1, a second input / output node connected to the node n2, a third node of input / output connected to node n3, and a fourth input / output node connected to node n4.
- the CN circuit models the coupling between the antenna elements 205a and 205b of the cell.
- the coupling network CN comprises a series association of two inductors connecting the node n1 to the node n3, and a capacitance having a first electrode connected to the midpoint between the two inductances and a second electrode connected to the nodes n2 and n4.
- the coupling network CN comprises a transformer consisting of two magnetically coupled windings, the first winding having its ends respectively connected to the nodes n1 and n2 and the second winding having its ends respectively connected to the nodes n3 and n4.
- the elementary cells of the network may have a limited number N of configurations (shapes, dimensions and arrangement of the antenna and coupling elements), corresponding to N distinct phase shift values, where N is an integer greater than or equal to 2.
- N is an integer greater than or equal to 2.
- each elementary cell is chosen from one of N distinct configurations, respectively corresponding to N distinct phase shift values, which amounts to quantifying on log 2 (N) bits the phase shift introduced by the cells.
- the cells of the same configuration are identical to the manufacturing dispersions, and the transmitting network may comprise several cells of each configuration. For example, N is an integer greater than or equal to 4, and of the N cell configurations, several are type I (via-coupled) and several are type II (non-via coupled).
- the N cell configurations are preferably chosen so that the N phase shift values introduced respectively by the cells of the N configurations are of the order of 0 °, 360 ° / N, 2 * 360 ° / N, ... ( N-1) * 360 ° / N.
- the figure 4 is a perspective view illustrating in more detail an embodiment of the elementary cells of the network.
- the number N of distinct cell configurations is set to 8, a 3-bit quantization of the phase shift value introduced by the cells, with relative phase shift values of the 8 cell configurations respectively of the order of 0 °, 45 °, 90 °, 135 °, 180 °, 225 °, 270 ° and 315 °.
- the cells have been optimized for operation at a center frequency of 141 GHz.
- the cells UC1, UC2 and UC3 are of type II (coupling without via) and the cells UC4, UC5, UC6, UC7 and UC8 are of type I (via coupling).
- the antenna elements 205a and 205b of the cell each have a pattern corresponding to a solid plate of rectangular shape.
- the antenna element 205a is of the same size as the antenna element 205b and is disposed entirely opposite the antenna element 205b.
- the antenna element 205a is of the same shape and dimensions as the antenna element 205b, and is placed entirely opposite the antenna element 205b.
- the coupling slot 215 is I-shaped.
- the cells UC1, UC2 and UC3 differ from each other by the dimensions of their antenna elements 205a and 205b and / or their Coupling slot 215. This adjusts the response of each cell to obtain the necessary phase states.
- the antenna elements 205a and 205b of the cell are each in the form of a solid plate having straight edges and at least one rounded or more generally curvilinear edge.
- the antenna element 205a is of the same shape and dimensions as the antenna element 205b, and is placed at least partially vis-à- screw of the antenna element 205b.
- the cells UC4, UC5, UC6 and UC7 differ from one another by the shapes and / or dimensions of their antenna elements 205a and 205b and / or by the diameter of their circular opening 213 formed in the conductive layer M2 or by the diameter of their conductive via 211.
- the antenna elements 205a and 205b each have the shape of a rectangular plate having a U-shaped opening in its central part.
- the antenna element 205a is of the same dimensions as the antenna element 205b, and is placed entirely opposite the antenna element 205b.
- the elementary cells of type I and II can be formed from all other easily industrializable units, it being understood that one can, to obtain the desired phase shifts, vary one or more of the following parameters: the shape of the elements antenna 205a and 205b, the dimensions of the opening 213 or 215 formed in the conductive layer M2, the dimensions of the antenna elements 205a and / or 205b, the dimensions of the via conductor 211 or the slot 215, etc.
- FIG. 5A and 5B illustrate the frequency response of the elementary cells UC1, UC2, UC3, UC4, UC5, UC6, UC7 and UC8 of the example of FIG. figure 4 .
- the Figure 5A illustrates the evolution, as a function of the frequency F of the incident wave (in abscissa, in GHz), of the amplitude of the transmission coefficient S 21 (in ordinate, in dB) of each cell.
- the Figure 5A more particularly comprises eight curves C1, C2, C3, C4, C5, C6, C7 and C8 representing the evolution of the amplitude of the transmission coefficient respectively for the eight configurations of elementary cells UC1, UC2, UC3, UC4, UC5, UC6, UC7 and UC8 of the example of the figure 4 .
- the Figure 5B illustrates the evolution, as a function of the frequency F of the incident wave (in abscissa, in GHz), of the phase of the transmission coefficient S 21 (ordered in degrees) of each cell.
- the Figure 5B more particularly comprises eight curves D1, D2, D3, D4, D5, D6, D7 and D8 representing the evolution of the phase of the transmission coefficient respectively for the eight configurations of elementary cells UC1, UC2, UC3, UC4, UC5, UC6 , UC7 and UC8 of the example of the figure 4 .
- the -1 dB bandwidth of the transmitter network has a width of the order of 29 GHz, for a central working frequency of the order of 141 GHz, a relative bandwidth of about 20%.
- the Figure 5B illustrates the respective phase shifts introduced by the different cells.
- the cell UC2 curve D2
- the cell UC3 curve D3 introduces a relative phase shift (with respect to the phase shift introduced by the cell UC2) by approximately 45 °
- the UC4 cell introduces a relative phase shift of about 90 °
- the UC7 cell introduces a relative phase shift of about 135 °
- the UC8 cell introduces a relative phase shift of about 180 °
- the UC5 cell introduces a Relative phase shift of about 225 °
- the UC6 cell introduces a relative phase shift of about 270 °
- the UC1 cell introduces a relative phase shift of about 315 °.
- This solution is particularly suitable for producing antennas intended to operate at frequencies between 80 GHz and 200 GHz, but can be used more generally at other frequencies, for example to produce antennas intended to operate at frequencies between 1 and 300 GHz.
- type II (non-via-coupled) cells may include cells similar to this which has been described in relation to the figure 2 , but having no slot in the ground plane M2 vis-a-vis the antenna elements 205a and 205b.
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
L'invention concerne un réseau transmetteur (203) comprenant une pluralité de cellules, chaque cellule étant adaptée à transmettre un signal radio en introduisant dans ce signal un déphasage, ladite pluralité de cellules comportant des cellules d'un premier type (205-I) et des cellules d'un deuxième type (205-II), dans lequel :le réseau comprend un empilement de première (M1), deuxième (M2) et troisième (M3) couches conductrices séparées deux à deux par des couche diélectriques (D1, D2) ;chaque cellule comprend un premier élément d'antenne (205a) formé dans la première couche conductrice (M1) et un deuxième élément d'antenne (205b) formé dans la troisième couche conductrice (M3) ;dans chaque cellule du premier type, le premier élément d'antenne est connecté au deuxième élément d'antenne par un via (211) traversant la deuxième couche conductrice ; etdans chaque cellule du deuxième type, le premier élément d'antenne n'est pas connecté au deuxième élément d'antenne.The invention relates to a transmitter network (203) comprising a plurality of cells, each cell being adapted to transmit a radio signal by introducing into this signal a phase shift, said plurality of cells comprising cells of a first type (205-I). and cells of a second type (205-II), wherein: the network comprises a stack of first (M1), second (M2) and third (M3) conductive layers separated in pairs by dielectric layers (D1, D2); each cell comprises a first antenna element (205a) formed in the first conductive layer (M1) and a second antenna element (205b) formed in the third conductive layer (M3); in each cell of the first type the first antenna element is connected to the second antenna element via a via (211) passing through the second conductive layer; andin each cell of the second type, the first antenna element is not connected to the second antenna element.
Description
La présente demande concerne le domaine des antennes radio à réseau transmetteur ("transmit-array antenna" en langue anglaise). Elle vise plus particulièrement un réseau transmetteur large bande, par exemple pour des applications entre 1 et 300 GHz.The present application relates to the field of transmitting radio antennas ("transmit-array antenna" in English). It is more particularly a broadband transmitter network, for example for applications between 1 and 300 GHz.
La
Les caractéristiques du faisceau produit par l'antenne, et notamment sa forme (ou gabarit) et sa direction centrale (ou direction de pointage), dépendent des valeurs des déphasages introduits par les différentes cellules.The characteristics of the beam produced by the antenna, and in particular its shape (or template) and its central direction (or pointing direction), depend on the values of the phase shifts introduced by the different cells.
Les antennes à réseau transmetteur ont notamment pour avantages d'avoir une bonne efficacité énergétique, et d'être relativement simples, peu onéreuses, et peu encombrantes, notamment grâce au fait que les réseaux transmetteurs sont réalisables en technologie planaire, généralement sur circuit imprimé.Transmitter network antennas have the particular advantages of having good energy efficiency, and of being relatively simple, inexpensive, and space-saving, in particular because the transmitter networks are feasible in planar technology, generally on printed circuit.
L'article intitulé "
L'article intitulé "
De façon classique, pour limiter la complexité et maximiser la bande passante d'un réseau transmetteur, les cellules élémentaires du réseau peuvent avoir un nombre N limité de configurations (formes, dimensions et disposition des éléments d'antenne et de couplage), correspondant à N valeurs de déphasage distinctes. Autrement dit, à la conception du réseau, chaque cellule élémentaire est choisie parmi l'une des N configurations distinctes, correspondant respectivement à N valeurs de déphasage distinctes, ce qui revient à quantifier sur log2(N) bits le déphasage introduit par les cellules. Par exemple, dans l'article susmentionné de C. Jouanlanne et al., les cellules élémentaires peuvent avoir N = 8 configurations distinctes, ce qui correspond à une quantification sur 3 bits du déphasage introduit par les cellules, et, dans l'article susmentionné de L. Dussopt et al., les cellules élémentaires peuvent avoir N = 7 configurations distinctes, ce qui correspond à une quantification sur 2,8 bits du déphasage introduit par les cellules.In a conventional way, to limit the complexity and maximize the bandwidth of a transmitting network, the elementary cells of the network may have a limited number N of configurations (shapes, dimensions and arrangement of the antenna and coupling elements), corresponding to N distinct phase shift values. In other words, at the design of the network, each elementary cell is chosen from one of N distinct configurations, respectively corresponding to N distinct phase shift values, which amounts to quantifying on log 2 (N) bits the phase shift introduced by the cells. . For example, in the aforementioned article by C. Jouanlanne et al., The elementary cells may have N = 8 distinct configurations, which corresponds to a 3-bit quantization of the phase shift introduced by the cells, and in the aforementioned article of L. Dussopt et al., elementary cells can have N = 7 configurations distinct, which corresponds to a 2.8-bit quantization of the phase shift introduced by the cells.
Dans l'article susmentionné de C. Jouanlanne et al., le réseau transmetteur est optimisé pour fonctionner à une fréquence centrale de 61,5 GHz et présente une bande passante à -1 dB allant de 57 à 66 GHz, soit une bande passante relative à -1 dB de 15,4 %.In the aforementioned article by C. Jouanlanne et al., The transmitter network is optimized to operate at a center frequency of 61.5 GHz and has a bandwidth at -1 dB ranging from 57 to 66 GHz, ie a relative bandwidth at -1 dB of 15.4%.
Dans l'article susmentionné de L. Dussopt et al., le réseau transmetteur est optimisé pour fonctionner à une fréquence centrale de 64,3 GHz et présente une bande passante à -3 dB allant de 58,95 à 68,8 GHz, soit une bande passante relative à -3 dB de 15,4 %.In the aforementioned article by L. Dussopt et al., The transmitter network is optimized to operate at a center frequency of 64.3 GHz and has a bandwidth of -3 dB ranging from 58.95 to 68.8 GHz, or a relative bandwidth at -3 dB of 15.4%.
Il serait souhaitable de pouvoir améliorer au moins en partie certains aspects des antennes à réseau transmetteur connues.It would be desirable to be able to at least partially improve certain aspects of the known transmitting network antennas.
En particulier, il serait souhaitable de pouvoir disposer d'un réseau transmetteur apte à fonctionner à des fréquences plus élevées que les réseaux transmetteurs connus, et/ou présentant une bande passante relative plus étendue que les réseaux transmetteurs connus, tout en limitant le nombre de couches métalliques utilisées et en prenant en considération les limites de fabrication des technologies choisies.In particular, it would be desirable to have a transmitting network capable of operating at higher frequencies than known transmitter networks, and / or having a greater relative bandwidth than known transmitter networks, while limiting the number of transmitters. metal layers used and taking into consideration the manufacturing limitations of the technologies chosen.
Ainsi, un mode de réalisation prévoit un réseau transmetteur comprenant une pluralité de cellules, chaque cellule étant adaptée à transmettre un signal radio en introduisant dans ce signal un déphasage, ladite pluralité de cellules comportant des cellules d'un premier type et des cellules d'un deuxième type, dans lequel :
- le réseau comprend un empilement de première, deuxième et troisième couches conductrices séparées deux à deux par des couches diélectriques ;
- chaque cellule comprend un premier élément d'antenne formé dans la première couche conductrice et un deuxième élément d'antenne formé dans la troisième couche conductrice ;
- dans chaque cellule du premier type, le premier élément d'antenne est connecté au deuxième élément d'antenne par un via traversant la deuxième couche conductrice ; et
- dans chaque cellule du deuxième type, le premier élément d'antenne n'est pas connecté au deuxième élément d'antenne.
- the network comprises a stack of first, second and third conductive layers separated two by two by dielectric layers;
- each cell comprises a first antenna element formed in the first conductive layer and a second antenna element formed in the third conductive layer;
- in each cell of the first type, the first antenna element is connected to the second antenna element by a via passing through the second conductive layer; and
- in each cell of the second type, the first antenna element is not connected to the second antenna element.
Comme indiqué précédemment, on entend par "connecté" que, dans les cellules du premier type, le via conducteur est en contact mécaniquement et électriquement avec les premier et deuxième éléments d'antenne, et on entend par "n'est pas connecté" que, dans les cellules du deuxième type, aucun conducteur électrique ne relie directement les premier et deuxième éléments d'antenne, c'est-à-dire qu'aucun conducteur électrique n'est en contact mécaniquement et électriquement à la fois avec le premier élément d'antenne et avec le deuxième élément d'antenne.As indicated above, the term "connected" means that, in the cells of the first type, the conductive via is in contact mechanically and electrically with the first and second antenna elements, and "not connected" means that in the cells of the second type, no electrical conductor directly connects the first and second antenna elements, that is to say that no electrical conductor is in contact mechanically and electrically with the first element at the same time antenna and with the second antenna element.
Selon un mode de réalisation, dans chaque cellule, le deuxième élément d'antenne est au moins partiellement en vis-à-vis du premier élément d'antenne.According to one embodiment, in each cell, the second antenna element is at least partially vis-à-vis the first antenna element.
Selon un mode de réalisation, dans chaque cellule du deuxième type, le premier élément d'antenne est couplé au deuxième élément d'antenne par une fente formée dans la deuxième couche conductrice, au moins partiellement en vis-à-vis des premier et deuxième éléments d'antenne.According to one embodiment, in each cell of the second type, the first antenna element is coupled to the second antenna element by a slot formed in the second conductive layer, at least partially vis-à-vis the first and second antenna elements.
La fente formée dans la deuxième couche conductrice permet de transférer une onde électromagnétique entre les premier et deuxième éléments d'antenne.The slot formed in the second conductive layer makes it possible to transfer an electromagnetic wave between the first and second antenna elements.
Selon un mode de réalisation, le réseau comprend N configurations de cellules distinctes, où N est un entier supérieur ou égal à 2, le réseau comprenant plusieurs cellules de chaque configuration.According to one embodiment, the network comprises N distinct cell configurations, where N is an integer greater than or equal to 2, the network comprising several cells of each configuration.
Selon un mode de réalisation, les N configurations de cellules sont choisies de façon que les N valeurs de déphasages introduites respectivement par les cellules des N configurations soient de l'ordre de 0°, 360°/N, 2*360°/N, ...*360°/N.According to one embodiment, the N cell configurations are chosen so that the N phase shift values introduced respectively by the cells of the N configurations are of the order of 0 °, 360 ° / N, 2 * 360 ° / N, ... * 360 ° / N.
Selon un mode de réalisation, N est égal à 8.According to one embodiment, N is equal to 8.
Selon un mode de réalisation, dans chaque cellule, le premier élément d'antenne est constitué par un motif conducteur continu et le deuxième élément d'antenne est constitué par un motif conducteur continu.According to one embodiment, in each cell, the first antenna element is constituted by a continuous conductive pattern and the second antenna element is constituted by a continuous conductive pattern.
Selon un mode de réalisation, dans chaque cellule, le premier élément d'antenne occupe une surface supérieure à 20 % de la surface de la cellule, et le deuxième élément d'antenne occupe une surface supérieure à 20 % de la surface de la cellule.According to one embodiment, in each cell, the first antenna element occupies an area greater than 20% of the surface of the cell, and the second antenna element occupies a surface greater than 20% of the cell surface. .
Selon un mode de réalisation, dans chaque cellule de type I, le via passe par une ouverture formée dans la deuxième couche conductrice en vis-à-vis des premier et deuxième éléments d'antenne.According to one embodiment, in each type I cell, the via passes through an opening formed in the second conductive layer vis-à-vis the first and second antenna elements.
Selon un mode de réalisation, dans chaque cellule de type I, le via et l'ouverture sont agencés de façon que le via ne soit pas en contact avec la deuxième couche conductrice.According to one embodiment, in each type I cell, the via and the opening are arranged so that the via is not in contact with the second conductive layer.
Selon un mode de réalisation, la première couche conductrice est une couche discontinue telle que les premiers éléments d'antenne des différentes cellules soient isolés les uns des autres et la troisième couche conductrice est une couche discontinue telle que les deuxièmes éléments d'antenne des différentes cellules soient isolés les uns des autres.According to one embodiment, the first conductive layer is a discontinuous layer such that the first antenna elements of the different cells are isolated from each other and the third conductive layer is a discontinuous layer such that the second antenna elements of different cells are isolated from each other.
Selon un mode de réalisation, la deuxième couche conductrice forme un plan de masse commun à toutes les cellules du réseau.According to one embodiment, the second conductive layer forms a ground plane common to all the cells of the network.
Un autre mode de réalisation prévoit une antenne à réseau transmetteur comprenant un réseau transmetteur tel que défini ci-dessus, et au moins une source primaire configurée pour irradier une face du réseau.Another embodiment provides a transmitting network antenna comprising a transmitting network as defined above, and at least one primary source configured to irradiate one side of the network.
Selon un mode de réalisation, l'antenne est adaptée à fonctionner à une fréquence comprise entre 1 et 300 GHz.According to one embodiment, the antenna is adapted to operate at a frequency between 1 and 300 GHz.
Ces caractéristiques et avantages, ainsi que d'autres, seront exposés en détail dans la description suivante de modes de réalisation particuliers faite à titre non limitatif en relation avec les figures jointes parmi lesquelles :
- la
figure 1 , précédemment décrite, est une vue de côté schématique d'une antenne à réseau transmetteur ; - la
figure 2 est une vue en coupe schématique et partielle d'un exemple d'un réseau transmetteur d'une antenne à réseau transmetteur selon un mode de réalisation ; - les
figures 3A et 3B sont des schémas électriques équivalents modélisant le comportement de deux types de cellules élémentaires d'un réseau transmetteur d'une antenne à réseau transmetteur selon un mode de réalisation ; - la
figure 4 est une vue en perspective illustrant différentes configurations que peuvent prendre les cellules élémentaires d'un réseau transmetteur d'une antenne à réseau transmetteur selon un mode de réalisation ; et - les
figures 5A et 5B illustrent respectivement l'évolution en fréquence de l'amplitude et de la phase du coefficient de transmission des différentes cellules élémentaires de lafigure 4 .
- the
figure 1 , previously described, is a schematic side view of a transmitting array antenna; - the
figure 2 is a schematic and partial sectional view of an example of a transmitting network of a transmitting network antenna according to one embodiment; - the
Figures 3A and 3B are equivalent electrical diagrams modeling the behavior of two types of elementary cells of a transmitting network of a transmitting network antenna according to one embodiment; - the
figure 4 is a perspective view illustrating different configurations that the elementary cells of a transmitting network of a transmitting network antenna can take according to one embodiment; and - the
Figures 5A and 5B respectively illustrate the evolution in frequency of the amplitude and phase of the transmission coefficient of the different elementary cells of thefigure 4 .
De mêmes éléments ont été désignés par de mêmes références dans les différentes figures et, de plus, les diverses figures ne sont pas tracées à l'échelle. Par souci de clarté, seuls les éléments utiles à la compréhension des modes de réalisation décrits ont été représentés et sont détaillés.The same elements have been designated by the same references in the various figures and, in addition, the various figures are not drawn to scale. For the sake of clarity, only the elements useful for understanding the described embodiments have been shown and are detailed.
En particulier, on va décrire ci-après des modes de réalisation d'un réseau transmetteur pour antenne à réseau transmetteur. La structure et le fonctionnement de la (des) source(s) primaire(s) de l'antenne, destinée(s) à irradier le réseau transmetteur, ne seront toutefois pas détaillés, les modes de réalisation décrits étant compatibles avec toutes ou la plupart des sources primaires d'irradiation pour antenne à réseau transmetteur connues. A titre d'exemple, chaque source primaire est adaptée à produire un faisceau de forme générale conique irradiant tout ou partie du réseau transmetteur. Chaque source primaire comprend par exemple une antenne cornet. A titre d'exemple, l'axe central de chaque source primaire est sensiblement orthogonal au plan moyen du réseau.In particular, embodiments of a transmitting network for transmitting network antenna will be described below. The structure and operation of the primary source (s) of the antenna, intended to irradiate the transmitting network, however, will not be detailed, the described embodiments being compatible with all or the most of the primary sources of irradiation for known transmitting array antennas. For example, each primary source is adapted to produce a generally conical beam radiating all or part of the transmitter network. Each primary source comprises for example a horn antenna. As for example, the central axis of each primary source is substantially orthogonal to the mean plane of the network.
Par ailleurs, les procédés de fabrication des réseaux transmetteurs décrits ne seront pas détaillés, la réalisation des structures décrites étant à la portée de l'homme du métier à partir des indications de la présente description, par exemple en utilisant des techniques usuelles de fabrication de circuits imprimés.Furthermore, the manufacturing methods of the described transmission networks will not be detailed, the realization of the structures described being within the abilities of the skilled person from the indications of the present description, for example using standard techniques of manufacturing printed circuits.
Dans la description qui suit, lorsque l'on fait référence à des qualificatifs de position absolue, tels que les termes "avant", "arrière", "haut", "bas", "gauche", "droite", etc., ou relative, tels que les termes "dessus", "dessous", "supérieur", "inférieur", etc., ou à des qualificatifs d'orientation, tels que les termes "horizontal", "vertical", etc., il est fait référence à l'orientation des figures, étant entendu que, en pratique, les dispositifs décrits peuvent être orientés différemment. Sauf précision contraire, les expressions "approximativement", "sensiblement", et "de l'ordre de" signifient à 10 % près, de préférence à 5 % près ou, lorsqu'il s'agit de valeurs angulaires, à 10° près, de préférence à 5° près.In the description which follows, when reference is made to absolute position qualifiers, such as the terms "before", "backward", "up", "down", "left", "right", etc., or relative, such as the terms "above", "below", "upper", "lower", etc., or with qualifiers for orientation, such as the terms "horizontal", "vertical", etc., it is referred to the orientation of the figures, it being understood that, in practice, the devices described may be oriented differently. Unless otherwise specified, the expressions "approximately", "substantially", and "of the order of" mean within 10%, preferably within 5% or, in the case of angular values, within 10 degrees , preferably within 5 °.
La
Chaque cellule 205 comprend un premier élément d'antenne 205a disposé du côté d'une première face du réseau 203, par exemple la face du réseau destinée à être orientée vers la ou les sources primaires (non visibles sur la
Chaque cellule 205 est apte, en émission, à recevoir un rayonnement électromagnétique sur son premier élément d'antenne 205a et à réémettre ce rayonnement depuis son deuxième élément d'antenne 205b avec un déphasage φ connu, et, en réception, à recevoir un rayonnement électromagnétique sur son deuxième élément d'antenne 205b et à réémettre ce rayonnement depuis son premier élément d'antenne 205a avec le même déphasage φ.Each
Les caractéristiques du faisceau produit par l'antenne, et notamment sa forme (ou gabarit) et sa direction centrale (ou direction de pointage), dépendent des valeurs des déphasages φ introduits par les différentes cellules 205.The characteristics of the beam produced by the antenna, and in particular its shape (or template) and its central direction (or pointing direction), depend on the values of the phase shifts φ introduced by the
Le réseau transmetteur 203 de la
Le réseau 203 de la
Les couches conductrices M1, M2 et M3 sont par exemple des couches métalliques, par exemple en cuivre. Chacune des couches conductrices M1, M2, M3 a par exemple une épaisseur comprise entre 1 et 30 µm, par exemple de l'ordre de 17 µm. La deuxième couche diélectrique D2 est par exemple constituée d'une feuille multicouches laminée à base de polytétrafluoroéthylène (PTFE) et de céramique, par exemple du type commercialisé par la société Rogers sous la dénomination commerciale Duroid®6002. A titre d'exemple, la deuxième couche diélectrique D2 présente une épaisseur de l'ordre de 254 µm. Dans l'exemple représenté, la première couche diélectrique D1 est constituée d'un empilement d'une couche diélectrique 207 et d'un film de colle diélectrique 209. Le film de colle 209 est disposé sur et en contact avec la face supérieure de la deuxième couche conductrice M2, et la couche 207 est disposée sur et en contact avec la face supérieure du film de colle 209 (la couche conductrice M1 étant disposée sur et en contact avec la face supérieure de la couche 207). La couche diélectrique 207 est par exemple constituée d'une feuille multicouches laminée à base de polytétrafluoroéthylène (PTFE) et de céramique, par exemple du type commercialisé par la société Rogers sous la dénomination commerciale Duroid®6002. A titre d'exemple, la couche 207 présente une épaisseur de l'ordre de 127 µm. Le film de colle 209 est par exemple une couche adhésive ayant notamment pour fonction de fixer la couche 207 sur la face supérieure de la couche M2. Le film de colle 209 a par exemple une épaisseur de l'ordre de 100 pm. A titre d'exemple, la couche M2 est imprimée sur la face supérieure de la deuxième couche diélectrique D2 avant fixation de la couche D1 sur la face supérieure de la couche M2. Les couches M3 et M1 peuvent quant à elles être imprimées respectivement sur la face inférieure de la couche D2 et sur la face supérieure de la couche 207. Dans l'exemple de la
Dans l'exemple de la
Dans chaque cellule élémentaire 205, l'élément d'antenne supérieur 205a est constitué par un motif conducteur formé dans la couche conductrice M1. Par motif, il est entendu que la forme que prend la couche conductrice présente des particularités géométriques données. L'élément d'antenne 205a de chaque cellule élémentaire 205 est isolé électriquement des éléments d'antenne 205a des autres cellules du réseau. Autrement dit, la couche conductrice M1 est une couche discontinue, c'est-à-dire qu'une bande périphérique du matériau conducteur de la couche M1 est retirée autour de chaque élément d'antenne 205a, séparant l'élément d'antenne 205a des cellules voisines. Dans chaque cellule élémentaire 205, le motif conducteur formant l'élément d'antenne 205a est par exemple un motif continu ou monobloc. A titre d'exemple, le motif conducteur formant l'élément d'antenne 205a occupe, en vue de dessus, une surface supérieure à 20 % de la surface de la cellule 205.In each
Dans chaque cellule élémentaire 205, l'élément d'antenne inférieur 205b est constitué par un motif conducteur ou plot conducteur formé dans la couche conductrice M3. L'élément d'antenne inférieur 205b est disposé au moins en partie en vis-à-vis (à l'aplomb) de l'élément d'antenne supérieur 205a. L'élément d'antenne 205b de chaque cellule élémentaire 205 est isolé électriquement des éléments d'antenne 205b des autres cellules du réseau. Autrement dit, la couche conductrice M3 est une couche discontinue. Dans chaque cellule élémentaire 205, le motif conducteur formant l'élément d'antenne 205b est par exemple un motif continu. A titre d'exemple, le motif conducteur formant l'élément d'antenne 205b occupe une surface supérieure à 20 % de la surface supérieure de la cellule 205.In each
Dans l'exemple de la
Selon un aspect d'un mode de réalisation, le réseau transmetteur 203 de la
Chaque cellule de type I comprend un via conducteur 211 traversant les couches diélectriques D1 et D2 et la couche conductrice intermédiaire M2, le via 211 étant agencé de manière à connecter l'élément d'antenne supérieur 205a à l'élément d'antenne inférieur 205b. Par connecter, on entend ici que le via 211 est en contact mécaniquement et électriquement, par sa face supérieure, avec la face inférieure de l'élément d'antenne 205a, et, par sa face inférieure, avec la face supérieure de l'élément d'antenne 205b. Le via conducteur 211 est isolé, c'est-à-dire qu'il n'est pas en contact électrique avec la couche conductrice intermédiaire M2. Autrement dit, le via 211 est agencé de manière à traverser la couche conductrice intermédiaire M2 sans la toucher, et est ainsi isolé de la couche conductrice intermédiaire M2. Plus particulièrement, dans l'exemple représenté, dans chaque cellule élémentaire de type I, la couche intermédiaire M2 comprend une ouverture localisée 213, par exemple une ouverture circulaire, en vis-à-vis des éléments d'antenne supérieur 205a et inférieur 205b. Le via 211 s'étend verticalement depuis la face inférieure de l'élément d'antenne 205a jusqu'à la face supérieure de l'élément d'antenne 205b (à travers les couches diélectriques D1 et D2), en passant par l'ouverture 213. Le via 211 permet de transférer l'énergie entre les éléments d'antenne 205a et 205b. Le via conducteur est par exemple en métal, par exemple en cuivre.Each type I cell comprises a conductive via 211 passing through the dielectric layers D1 and D2 and the intermediate conductive layer M2, the via 211 being arranged to connect the
Dans les cellules 205 de type II, il n'est pas prévu de via 211 traversant les couches diélectriques D1 et D2 et la couche conductrice M2, et l'élément d'antenne supérieur 205a de la cellule n'est pas connecté à l'élément d'antenne inférieur 205b de la cellule. Autrement dit, aucun élément électriquement conducteur ne relie directement l'élément d'antenne 205a de la cellule à l'élément d'antenne 205b de la cellule. A titre d'exemple, dans chaque cellule 205 de type II, la couche conductrice M2 comprend une ouverture localisée 215. L'ouverture 215 a une géométrie particulière, par exemple une fente en forme de I ou de H (en vue de dessus, non visible sur la
Ainsi, dans le mode de réalisation de la
Les
Dans les deux types de cellules, l'élément d'antenne 205a est modélisé par une association en parallèle d'une résistance, d'une inductance et d'une capacité entre des noeuds n1 et n2 du circuit, et l'élément d'antenne 205b est modélisé par une association en parallèle d'une résistance, d'une inductance et d'une capacité entre des noeuds n3 et n4 du circuit équivalent.In both cell types, the
Dans les deux types de cellules, le circuit équivalent comprend en outre un transformateur T1 modélisant le couplage entre une source primaire de l'antenne et l'élément d'antenne 205a de la cellule. Le transformateur T1 comprend deux enroulements conducteurs couplés magnétiquement, l'un des deux enroulements ayant ses deux extrémités connectées respectivement aux noeuds n1 et n2 du circuit équivalent, et l'autre enroulement ayant ses deux extrémités connectées respectivement à deux noeuds d'un circuit équivalent (non représenté) modélisant la source primaire. Le transformateur T1 modélise la transmission d'une onde électromagnétique incidente Wi de la source primaire vers l'élément d'antenne 205a, ou d'une onde électromagnétique transmise Wt par la cellule, de l'élément d'antenne 205a vers la source primaire.In both types of cells, the equivalent circuit further comprises a transformer T1 modeling the coupling between a primary source of the antenna and the
Dans les deux types de cellules, le circuit équivalent comprend de plus un transformateur T2 modélisant le couplage entre une source externe et l'élément d'antenne 205b de la cellule. Le transformateur T2 comprend deux enroulements conducteurs couplés magnétiquement, l'un des deux enroulements ayant ses deux extrémités connectées respectivement aux noeuds n3 et n4 du circuit équivalent, et l'autre enroulement ayant ses deux extrémités connectées respectivement à deux noeuds d'un circuit équivalent (non représenté) modélisant la source externe. Le transformateur T2 modélise la transmission d'une onde électromagnétique incidente Wi de la source externe vers l'élément d'antenne 205b, ou d'une onde électromagnétique transmise Wt de l'élément d'antenne 205b vers la source externe ou dans l'espace de propagation.In both types of cells, the equivalent circuit further comprises a transformer T2 modeling the coupling between an external source and the
De plus, dans les deux types de cellules, le circuit équivalent comprend un réseau de couplage CN ayant un premier noeud d'entrée/sortie connecté au noeud n1, un deuxième noeud d'entrée/sortie connecté au noeud n2, un troisième noeud d'entrée/sortie connecté au noeud n3, et un quatrième noeud d'entrée/sortie connecté au noeud n4. Le circuit CN modélise le couplage entre les éléments d'antenne 205a et 205b de la cellule.Moreover, in both types of cells, the equivalent circuit comprises an NC coupling network having a first input / output node connected to the node n1, a second input / output node connected to the node n2, a third node of input / output connected to node n3, and a fourth input / output node connected to node n4. The CN circuit models the coupling between the
Dans les cellules de type I (couplage par via), il existe une connexion électrique directe entre les éléments d'antenne 205a et 205b. Le réseau de couplage CN comprend une association en série de deux inductances reliant le noeud n1 au noeud n3, et une capacité ayant une première électrode connectée au point milieu entre les deux inductances et une deuxième électrode connectée aux noeuds n2 et n4.In type I cells (via coupling), there is a direct electrical connection between the
Dans les cellules de type II (couplage sans via), il n'existe pas de connexion électrique directe entre les éléments d'antenne 205a et 205b. Le réseau de couplage CN comprend un transformateur constitué de deux enroulements couplés magnétiquement, le premier enroulement ayant ses extrémités connectées respectivement aux noeuds n1 et n2 et le deuxième enroulement ayant ses extrémités connectées respectivement aux noeuds n3 et n4.In type II (non-via) cells, there is no direct electrical connection between the
Les essais réalisés ont montré que le fait de combiner des cellules à couplage par via et des cellules à couplage sans via dans un même réseau transmetteur permet d'atteindre des fréquences de fonctionnement plus élevées et/ou d'obtenir des bandes passantes plus étendues que lorsqu'un seul type de cellule est utilisé. En particulier, combiner les deux topologies permet de s'affranchir des limites et des tolérances de fabrication d'une technologie de réalisation fixée et donc d'atteindre des bandes passantes plus étendues que lorsqu'un seul type de cellule est utilisé.Tests have shown that combining via-coupled cells and non-via-coupled cells in the same transmitter network can achieve higher operating frequencies and / or higher bandwidths than when only one type of cell is used. In particular, combining the two topologies makes it possible to overcome the limitations and manufacturing tolerances of a fixed embodiment technology and thus to achieve greater bandwidths than when only one type of cell is used.
Pour limiter la complexité et maximiser la bande passante du réseau transmetteur, les cellules élémentaires du réseau peuvent avoir un nombre N limité de configurations (formes, dimensions et disposition des éléments d'antenne et de couplage), correspondant à N valeurs de déphasage distinctes, où N est un entier supérieur ou égal à 2. Autrement dit, à la conception du réseau, chaque cellule élémentaire est choisie parmi l'une de N configurations distinctes, correspondant respectivement à N valeurs de déphasage distinctes, ce qui revient à quantifier sur log2(N) bits le déphasage introduit par les cellules. Les cellules d'une même configuration sont identiques aux dispersions de fabrication près, et le réseau transmetteur peut comprendre plusieurs cellules de chaque configuration. A titre d'exemple, N est un entier supérieur ou égal à 4, et, parmi les N configurations de cellules, plusieurs sont de type I (à couplage par via) et plusieurs sont de type II (à couplage sans via). Les N configurations de cellules sont de préférence choisies de façon que les N valeurs de déphasages introduites respectivement par les cellules des N configurations soient de l'ordre de 0°, 360°/N, 2*360°/N, ... (N-1)*360°/N.To limit the complexity and maximize the bandwidth of the transmitting network, the elementary cells of the network may have a limited number N of configurations (shapes, dimensions and arrangement of the antenna and coupling elements), corresponding to N distinct phase shift values, where N is an integer greater than or equal to 2. In other words, at the design of the network, each elementary cell is chosen from one of N distinct configurations, respectively corresponding to N distinct phase shift values, which amounts to quantifying on log 2 (N) bits the phase shift introduced by the cells. The cells of the same configuration are identical to the manufacturing dispersions, and the transmitting network may comprise several cells of each configuration. For example, N is an integer greater than or equal to 4, and of the N cell configurations, several are type I (via-coupled) and several are type II (non-via coupled). The N cell configurations are preferably chosen so that the N phase shift values introduced respectively by the cells of the N configurations are of the order of 0 °, 360 ° / N, 2 * 360 ° / N, ... ( N-1) * 360 ° / N.
La
Dans cet exemple, les cellules UC1, UC2 et UC3 sont de type II (couplage sans via) et les cellules UC4, UC5, UC6, UC7 et UC8 sont de type I (couplage par via).In this example, the cells UC1, UC2 and UC3 are of type II (coupling without via) and the cells UC4, UC5, UC6, UC7 and UC8 are of type I (via coupling).
Dans chacune des cellules de type II UC1, UC2 et UC3, les éléments d'antenne 205a et 205b de la cellule présentent chacun un motif correspondant à une plaque pleine de forme rectangulaire. De plus, dans chacune des cellules UC1, UC2 et UC3, l'élément d'antenne 205a est de même dimension que l'élément d'antenne 205b et est disposé entièrement en vis-à-vis de l'élément d'antenne 205b. Autrement dit, dans chacune des cellules UC1, UC2 et UC3, l'élément d'antenne 205a est de même forme et de mêmes dimensions que l'élément d'antenne 205b, et est placé entièrement en vis-à-vis de l'élément d'antenne 205b. Dans chacune des cellules UC1, UC2 et UC3, la fente de couplage 215 est en forme de I. Les cellules UC1, UC2 et UC3 diffèrent les unes des autres par les dimensions de leurs éléments d'antennes 205a et 205b et/ou de leur fente de couplage 215. Ceci permet d'ajuster la réponse de chaque cellule pour obtenir les états de phase nécessaires.In each of the type II cells UC1, UC2 and UC3, the
Dans chacune des cellules de type I UC4, UC5, UC6 et UC7, les éléments d'antenne 205a et 205b de la cellule ont chacun la forme d'une plaque pleine présentant des bords rectilignes et au moins un bord arrondi ou plus généralement curviligne. De plus, dans chacune des cellules UC4, UC5, UC6 et UC7, l'élément d'antenne 205a est de même forme et de mêmes dimensions que l'élément d'antenne 205b, et est placé au moins partiellement en vis-à-vis de l'élément d'antenne 205b. Les cellules UC4, UC5, UC6 et UC7 diffèrent les unes des autres par les formes et/ou dimensions de leurs éléments d'antennes 205a et 205b et/ou par le diamètre de leur ouverture circulaire 213 formée dans la couche conductrice M2 ou par le diamètre de leur via conducteur 211.In each of the type I cells UC4, UC5, UC6 and UC7, the
Dans la cellule de type I UC8, les éléments d'antenne 205a et 205b ont chacun la forme d'une plaque rectangulaire comportant une ouverture en forme de U dans sa partie centrale. De plus, l'élément d'antenne 205a est de mêmes dimensions que l'élément d'antenne 205b, et est placé entièrement en vis-à-vis de l'élément d'antenne 205b.In the type I cell UC8, the
Plus généralement, les cellules élémentaires de type I et II peuvent être formées à partir de tous autres motifs facilement industrialisables, étant entendu que l'on pourra, pour obtenir les déphasages souhaités, faire varier un ou plusieurs des paramètres suivants : la forme des éléments d'antenne 205a et 205b, les dimensions de l'ouverture 213 ou 215 formée dans la couche conductrice M2, les dimensions des éléments d'antenne 205a et/ou 205b, les dimensions du via conducteur 211 ou de la fente 215, etc.More generally, the elementary cells of type I and II can be formed from all other easily industrializable units, it being understood that one can, to obtain the desired phase shifts, vary one or more of the following parameters: the shape of the
Les
La
La
Comme cela apparaît sur la
La
Ainsi, le mode de réalisation décrit en relation avec la
Cette solution est tout particulièrement adaptée à la réalisation d'antennes destinées à fonctionner à des fréquences comprises entre 80 GHz et 200 GHz, mais peut être utilisées plus généralement à d'autres fréquences, par exemple pour réaliser des antennes destinées à fonctionner à des fréquences comprises entre 1 et 300 GHz.This solution is particularly suitable for producing antennas intended to operate at frequencies between 80 GHz and 200 GHz, but can be used more generally at other frequencies, for example to produce antennas intended to operate at frequencies between 1 and 300 GHz.
Des modes de réalisation particuliers ont été décrits. Diverses variantes et modifications apparaîtront à l'homme de l'art. En particulier, les modes de réalisation décrits ne se limitent pas aux exemples de réalisation des cellules de type I et II décrits en relation avec les
On notera en particulier que les cellules de type II (à couplage sans via) peuvent inclure des cellules similaires à ce qui a été décrit en relation avec la
Par ailleurs, les modes de réalisation décrits ne se limitent pas aux exemples de dimensions et de matériaux mentionnés dans la présente demande.Furthermore, the embodiments described are not limited to the examples of dimensions and materials mentioned in the present application.
Claims (10)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1852200A FR3079075B1 (en) | 2018-03-14 | 2018-03-14 | BROADBAND TRANSMITTER ARRAY ANTENNA |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3540853A1 true EP3540853A1 (en) | 2019-09-18 |
EP3540853B1 EP3540853B1 (en) | 2021-10-20 |
Family
ID=62948202
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19162018.6A Active EP3540853B1 (en) | 2018-03-14 | 2019-03-11 | Antenna with broadband transmitter network |
Country Status (3)
Country | Link |
---|---|
US (1) | US10720716B2 (en) |
EP (1) | EP3540853B1 (en) |
FR (1) | FR3079075B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110739548A (en) * | 2019-10-14 | 2020-01-31 | 南京理工大学 | High Gain Low Profile Transmissive Array Antenna |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2018421974B2 (en) * | 2018-05-04 | 2022-03-31 | Telefonaktiebolaget Lm Ericsson (Publ) | A cavity-backed antenna element and array antenna arrangement |
FR3104353B1 (en) | 2019-12-05 | 2021-11-05 | Commissariat Energie Atomique | Wireless transmitter performing frequency multiplexing of channels |
WO2021117313A1 (en) * | 2019-12-12 | 2021-06-17 | 株式会社ソニー・インタラクティブエンタテインメント | Multi-layer printed circuit board and electronic apparatus |
FR3105610B1 (en) * | 2019-12-18 | 2021-12-17 | Commissariat Energie Atomique | Reconfigurable antenna with transmitter network with monolithic integration of elementary cells |
FR3105613B1 (en) * | 2019-12-18 | 2021-12-17 | Commissariat Energie Atomique | Elementary cell of a transmitting network |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4192212B2 (en) * | 2004-01-28 | 2008-12-10 | 日本電波工業株式会社 | Microstrip line type planar array antenna |
US9190738B2 (en) * | 2010-04-11 | 2015-11-17 | Broadcom Corporation | Projected artificial magnetic mirror |
US10741914B2 (en) * | 2015-02-26 | 2020-08-11 | University Of Massachusetts | Planar ultrawideband modular antenna array having improved bandwidth |
-
2018
- 2018-03-14 FR FR1852200A patent/FR3079075B1/en not_active Expired - Fee Related
-
2019
- 2019-03-11 EP EP19162018.6A patent/EP3540853B1/en active Active
- 2019-03-12 US US16/351,414 patent/US10720716B2/en active Active
Non-Patent Citations (4)
Title |
---|
ANTONIO CLEMENTE ET AL: "Design of a reconfigurable transmit-array at X-band frequencies", ANTENNA TECHNOLOGY AND APPLIED ELECTROMAGNETICS (ANTEM), 2012 15TH INTERNATIONAL SYMPOSIUM ON, IEEE, 25 June 2012 (2012-06-25), pages 1 - 4, XP032219584, ISBN: 978-1-4673-0290-6, DOI: 10.1109/ANTEM.2012.6262295 * |
JONATHAN Y LAU ET AL: "Design and characterization of a 6 * 6 planar reconfigurable transmitarray", ANTENNAS AND PROPAGATION (EUCAP), 2010 PROCEEDINGS OF THE FOURTH EUROPEAN CONFERENCE ON, IEEE, PISCATAWAY, NJ, USA, 12 April 2010 (2010-04-12), pages 1 - 5, XP031705795, ISBN: 978-1-4244-6431-9 * |
KAOUACH H ET AL: "X-band transmit-arrays with linear and circular polarization", ANTENNAS AND PROPAGATION (EUCAP), 2010 PROCEEDINGS OF THE FOURTH EUROPEAN CONFERENCE ON, IEEE, PISCATAWAY, NJ, USA, 12 April 2010 (2010-04-12), pages 1 - 5, XP031706079, ISBN: 978-1-4244-6431-9 * |
SAEED I LATIF ET AL: "Study of the microtrip patch or ring as a cell element for a transmit-array with slotted ground plane", ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM (APSURSI), 2010 IEEE, IEEE, PISCATAWAY, NJ, USA, 11 July 2010 (2010-07-11), pages 1 - 4, XP032145346, ISBN: 978-1-4244-4967-5, DOI: 10.1109/APS.2010.5560959 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110739548A (en) * | 2019-10-14 | 2020-01-31 | 南京理工大学 | High Gain Low Profile Transmissive Array Antenna |
Also Published As
Publication number | Publication date |
---|---|
US20190288403A1 (en) | 2019-09-19 |
US10720716B2 (en) | 2020-07-21 |
FR3079075A1 (en) | 2019-09-20 |
EP3540853B1 (en) | 2021-10-20 |
FR3079075B1 (en) | 2020-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3540853B1 (en) | Antenna with broadband transmitter network | |
EP3057130B1 (en) | Rf transmission device with built-in electromagnetic wave reflector | |
EP3392959B1 (en) | Elementary cell of a transmitter network for a reconfigurable antenna | |
EP0399524B1 (en) | Structure for the realisation of circuits and components, applied to microwave frequencies | |
EP3073569B1 (en) | Compact butler matrix , planar bi-dimensional beam-former, and planar antenna with such a butler matrix | |
EP2656438B1 (en) | Radio cell with two phase states for transmit array | |
EP0667984B1 (en) | Monopolar wire-plate antenna | |
CA2687161C (en) | Dual polarization planar emitting element and network antenna comprising such emitting element | |
EP2571098B1 (en) | Reconfigurable radiating phase-shifter cell based on resonances, slots and complementary microstrips | |
EP2710676B1 (en) | Radiating element for an active array antenna consisting of elementary tiles | |
FR2763177A1 (en) | FILTER EMPLOYING A FREQUENCY SELECTIVITY SURFACE AND ANTENNA USING THE SAME | |
FR2743199A1 (en) | RECEIVING AND / OR TRANSMITTING MICROWAVE PLANE NETWORK ANTENNA AND ITS APPLICATION TO THE RECEPTION OF GEOSTATIONARY TELEVISION SATELLITES | |
EP4012834B1 (en) | Antenna source for an array antenna with direct radiation, radiating panel and antenna comprising a plurality of antenna sources | |
CA2869648A1 (en) | Compact, polarizing power distributor, network of several distributors, compact radiating element and flat antenna comprising such a distributor | |
FR2751471A1 (en) | WIDE-BAND RADIATION DEVICE WHICH MAY BE MULTIPLE POLARIZATION | |
WO2002054538A1 (en) | Multiband antenna for mobile appliances | |
EP0493190A1 (en) | Stacked microstrip microwave antenna | |
EP3840124B1 (en) | Antenna with leaky wave in afsiw technology | |
FR2552273A1 (en) | Omnidirectional microwave antenna | |
CA2808511C (en) | Flat antenna for a terminal operating in dual circular polarisation, airborne terminal and satellite telecommunication system featuring at least one antenna | |
FR2736212A1 (en) | BALUN COUPLER INTEGRATED MICROWAVE, ESPECIALLY FOR DIPOLE ANTENNA | |
EP4087060A1 (en) | Antenna cell with transmitter network | |
FR2835972A1 (en) | REMOVAL OF MUTUAL COUPLING BETWEEN ANTENNA ELEMENTS OF A NETWORK ANTENNA | |
FR3151432A1 (en) | POLARIZING CELL, TRANSMITTER NETWORK AND RADIO TRANSMITTING AND RECEIVING ANTENNAS | |
FR2544554A1 (en) | Radiating element or receiver of left and right circularly polarised microwave signals and plane antenna comprising an array of such elements juxtaposed |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190311 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20210706 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602019008415 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1440679 Country of ref document: AT Kind code of ref document: T Effective date: 20211115 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20211020 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1440679 Country of ref document: AT Kind code of ref document: T Effective date: 20211020 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220120 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220220 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220221 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220120 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220121 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602019008415 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20220721 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20220331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220311 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220331 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220311 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240321 Year of fee payment: 6 Ref country code: GB Payment date: 20240318 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20190311 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240320 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 |