EP3529492A1 - Hochdruckpumpe für ein kraftstoffeinspritzsystem - Google Patents
Hochdruckpumpe für ein kraftstoffeinspritzsystemInfo
- Publication number
- EP3529492A1 EP3529492A1 EP17778194.5A EP17778194A EP3529492A1 EP 3529492 A1 EP3529492 A1 EP 3529492A1 EP 17778194 A EP17778194 A EP 17778194A EP 3529492 A1 EP3529492 A1 EP 3529492A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- valve
- pressure
- piston
- valve seat
- pressure pump
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000446 fuel Substances 0.000 title description 19
- 238000002347 injection Methods 0.000 title description 7
- 239000007924 injection Substances 0.000 title description 7
- 230000006835 compression Effects 0.000 claims abstract description 21
- 238000007906 compression Methods 0.000 claims abstract description 21
- 239000012530 fluid Substances 0.000 claims abstract description 11
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 11
- 230000003628 erosive effect Effects 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000007789 sealing Methods 0.000 description 5
- 238000009835 boiling Methods 0.000 description 2
- 238000005056 compaction Methods 0.000 description 2
- 238000005429 filling process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000002828 fuel tank Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B1/00—Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
- F04B1/04—Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
- F04B1/0404—Details or component parts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B53/00—Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
- F04B53/10—Valves; Arrangement of valves
Definitions
- the invention relates to a high-pressure pump, in particular for a
- Fuel injection system with a pressure valve.
- the high-pressure pump compresses a fluid, in particular fuel.
- the published patent application DE 2014 10 218 488 A1 discloses a high-pressure pump of a fuel injection system.
- the high-pressure pump serves to convey high-pressure fluid, in particular fuel.
- the known high-pressure pump comprises a volume-variable compression chamber and a pressure valve.
- the pressure valve has a valve surface formed on a high-pressure valve piston and a valve carrier formed on a valve carrier
- Valve seat on.
- the valve face cooperates with the valve seat and thereby opens and closes a hydraulic connection from the compression space to a high pressure bore.
- the high-pressure pump according to the invention reduces the risk of
- the high-pressure pump comprises a variable volume
- the pressure valve has a valve surface formed on a high-pressure valve piston and a valve seat formed on a valve carrier.
- the valve face cooperates with the valve seat and thereby opens and closes a hydraulic connection from the valve seat
- the function of the cavitation volume is the displacement of vapor formation in a region which is far enough away from the valve seat or the valve surface.
- the cavitation volume represents a closed end for the flow when the hydraulic connection is closed
- the cavitation volume is an extension of a piston bore formed in the high-pressure valve piston.
- a Saugventilkolben is longitudinally movably guided, wherein the Saugventilkolben its longitudinal movement opens and closes another hydraulic connection.
- a suction valve is realized, which is arranged to save space, at least partially in the pressure valve.
- the suction valve piston preferably cooperates with a further valve seat formed on the valve carrier. The piston bore and the cavitation volume can thus be manufactured together in one production step.
- the cavitation volume comprises a
- connection channels open directly into the hydraulic connection immediately upstream of the valve seat or the valve surface, so that the area of the valve seat fluidly seen no
- the cavitation volume is designed as a circumferential groove on the high-pressure valve piston, or the cavitation volume comprises a circumferential groove formed on the high-pressure valve piston.
- the circumferential groove is preferably immediately upstream of the
- Valve seat arranged and on the outer surface of the
- High-pressure valve piston formed. As a result, the flow volume upstream of the valve seat is increased and the region of the vapor formation or the closed end displaced away from the valve seat.
- This embodiment can be combined with the previously described, which comprises a blind hole volume.
- the cavitation volume protrudes through a plane defined by the valve seat.
- the cavitation volume is particularly pronounced as a closed end and designed accordingly effective, so that the vapor formation is displaced away from the valve seat.
- individual or all sub-areas - for example, blind hole volume and circumferential groove - protrude through the plane.
- FIG.l shows a longitudinal section of a known from the prior art high-pressure pump, wherein only the essential areas are shown.
- FIG. 2 shows a longitudinal section of a high pressure valve piston of a pressure valve of a high pressure pump according to the invention, wherein only the essential areas are shown.
- FIG 3 shows a longitudinal section of another high-pressure valve piston of a pressure valve of a high pressure pump according to the invention, wherein only the essential areas are shown.
- Fig.l shows a longitudinal section of a high pressure pump 100 of a
- the high-pressure pump 100 is known from the prior art and serves to supply not shown injectors with fuel under high pressure, which can be done directly or via a common rail.
- the housing of the high-pressure pump 100 consists of a cylinder housing 1 and a cylinder head 2 bolted thereto.
- a valve housing 3 is screwed into the cylinder housing 1, which is sealed to the cylinder head 2.
- a camshaft not shown, is rotatably mounted, which forms the drive of the high-pressure pump 100.
- Camshaft cooperates, guided in a longitudinal direction 90 which is perpendicular to the camshaft.
- valve carrier 10 Within the valve housing 3, in the area facing away from the camshaft, a valve carrier 10 and a valve piece 20, both of substantially cylindrical shape, are braced in the longitudinal direction 90.
- the cylinder head 2 bolted to the cylinder housing 1 and the cylinder housing 1 with the valve housing 3.
- the valve carrier 10 is positioned on an outer circumferential surface 14 within the valve housing 3. Furthermore, the valve carrier 10 acts on a first end face 18 with a first bearing surface 30 of the
- Valve housing 3 and at a second end face 19 with a first sealing surface
- valve piece 20 also acts on a second sealing surface 28 with a second bearing surface 29 of the cylinder head 2 together.
- a compression chamber 6 is formed, which is hydraulically connected via formed in the valve carrier 10 Rudbohrept 13 with an annular space formed in the valve carrier 10.
- the filling holes 13 extend in the direction of the longitudinal axis of the valve carrier 10. Hydraulically, the filling holes 13 and the annular space 12 are an extension of the compression chamber 6, since they are permanently connected thereto.
- valve carrier 10 extends from the annular space 12, a first bore 11 for
- Valve member 20 and there opens into a second bore 21 which is formed in the valve member 20 and which in turn formed in a cylinder head 2 in the
- High-pressure bore 9 opens.
- the high-pressure bore 9 leads either to an unillustrated common rail of the fuel injection system or into one or more injectors, not shown, of the fuel injection system.
- valve carrier 10 Within the valve carrier 10 and the valve member 20 valve functions are realized which open and close a hydraulic connection and another hydraulic connection:
- a high-pressure valve piston 40 which is guided in the first bore 11 and biased by a high-pressure valve spring 42 against the valve carrier 10, opens and closes the hydraulic connection 45 by a on the
- High-pressure valve piston 40 formed valve surface 51 with a on the
- Valve carrier 10 formed valve seat 15 cooperates. The first
- Suction valve piston 41 formed further valve seat 46 opens and closes.
- the low-pressure bore 17 is hydraulically connected at least indirectly to a fuel tank, not shown, or a prefeed pump, not shown, and serves to fill the annular space 12 and compression chamber 6 during the suction cycle of the high-pressure pump 100, or during the
- volume of the compression chamber 6 expands.
- the operation of the high-pressure pump 100 is as follows:
- the camshaft converts due to its cam
- Compression space 6 minimally (similar to the state shown in Fig.l state) and thus the fuel contained therein maximally compressed.
- High pressure valve piston 40 and valve carrier 10 and the hydraulic connection 45 is opened as long as the hydraulically resulting force on the
- High pressure valve piston 40 against the longitudinal direction 90 is greater than the force of the high pressure valve spring 42, i. if the difference between the pressure in
- Annulus 12 and the pressure in the high pressure bore 9 is so large that the resulting hydraulic force on the high pressure valve piston 40 is greater than the spring force of the high pressure valve spring 42.
- the injectors and the common rail are filled with high pressure fuel.
- a rotation of the camshaft now causes the pump piston 5 to move in the longitudinal direction 90. This expands the volume of the
- Compression chamber 6 and the fuel in the compression chamber 6 relaxes and thus also the fuel in the filling holes 13, in the annular space 12, in the first bore 11 and in the piston bore 55.
- With decreasing pressure in the first bore 11 and the hydraulically resulting opening force decreases the high pressure valve piston 40 so that it is pressed with its valve face 51 by the force of the high pressure valve spring 42 in the valve seat 15 and the hydraulic connection 45 within the first bore 11 closes.
- the fuel in the compression chamber 6, in the filling holes 13 and in the annular space 12 can now be further relaxed, without at the same time the pressure in the second bore 21 and the high-pressure bore 9 drops.
- Low pressure hole 17 drops, which is usually about 5 bar. From a certain pressure difference, the hydraulic force in the annular space 12 and the force of the Saugventilfeder 43 on the Saugventilkolben 41 is no longer sufficient to push the Saugventilkolben 41 against the other valve seat 46. The hydraulic force in the low-pressure bore 17 opens the further hydraulic connection between the valve carrier 10 and the Saugventilkolben 41 against the force of the Saugventilfeder 43. Thus, fuel flows over the
- Valve carrier 10 is thereby closed and the filling process terminated.
- the pump piston 5 is now moved by the further rotation of the camshaft, not shown, from its bottom dead center position counter to the longitudinal direction 90 in its upper dead center. This will increase the volume of the
- Compaction space 6 is reduced and compressed with closed valve seat 15 and closed another valve seat 46 of the fuel in the compression chamber 6, filling holes 13, annulus 12, first bore 11 and piston bore 55 to the valve seat 15. The compression takes place until the pressure in the annular space 12, the pressure in the second bore 21 and in the
- High-pressure bore 9 exceeds so far that the hydraulically resulting
- Opening force on the high pressure valve piston 40 against the longitudinal direction 90 is greater than the closing force of the high pressure valve spring 42 and the valve seat 15 and the hydraulic connection 45 opens. Thereafter, the compressed fuel flows from the annulus 12 through the first
- the described operation of the high-pressure pump 100 shows that the volumes upstream of the hydraulic connection 45 per
- Camshaft rotation between a low pressure state and a high pressure state are cyclically loaded. As a result, the local velocities of the fluid undergo major changes in the local environment
- the immediate flow region upstream of the valve seat 15 is a closed end when the pressure valve 101 is closed. Especially with the ends closed, the pressure drops below the pressure Vapor pressure for vapor formation because the fluid does not flow in the direction of the closed end. When opening the hydraulic connection 45 there is thus a risk of cavitation erosion on the valve seat 15
- valve seat 15 adjacent walls, in particular on the valve seat 15 itself, the valve carrier 10 and the high-pressure valve piston 40th
- the object of the invention is to use a valve geometry, which erosion in the valve seat area in almost all operating conditions of
- High-pressure pump 100 avoids, so that in consequence it does not come to the loss of the valve sealing function. This is achieved by forming a cavitation volume upstream of the valve seat 15.
- Cavitation volume 50 the closed end of the flow geometry is moved to a position away from the valve seat 15.
- the essential shortcoming of the cavitation erosion occurring in the valve seat area is eliminated, which consists in the prior art.
- the service life of the pressure valve 101 is increased or the valve function is ensured over the service life of the high-pressure pump 100.
- the cavitation volume 50 comprises a blind hole volume 56 formed in the high-pressure valve piston 40, which constitutes an extension of the piston bore 55 and is designed to be rotationally symmetrical with respect to the valve axis 40a, and three connecting channels 57 designed as bores between them
- Valve surface 51 Preferably, the blind hole volume 56 penetrates a plane defined by the valve surface 51 level E. This protrudes
- the cavitation volume 50 has a shape that is rotationally symmetrical with respect to the valve axis 40 a and is in the form of a circumferential groove 59 a
- the high-pressure valve piston has both a blind hole volume 56 with connecting channels 57 and a groove 59 as cavitation volume 50.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Fuel-Injection Apparatus (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102016220610.9A DE102016220610A1 (de) | 2016-10-20 | 2016-10-20 | Hochdruckpumpe für ein Kraftstoffeinspritzsystem |
PCT/EP2017/073090 WO2018072933A1 (de) | 2016-10-20 | 2017-09-14 | Hochdruckpumpe für ein kraftstoffeinspritzsystem |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3529492A1 true EP3529492A1 (de) | 2019-08-28 |
EP3529492B1 EP3529492B1 (de) | 2021-06-02 |
Family
ID=60009580
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17778194.5A Active EP3529492B1 (de) | 2016-10-20 | 2017-09-14 | Hochdruckpumpe für ein kraftstoffeinspritzsystem |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP3529492B1 (de) |
CN (1) | CN109964032B (de) |
DE (1) | DE102016220610A1 (de) |
WO (1) | WO2018072933A1 (de) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102021204806A1 (de) | 2021-05-11 | 2022-11-17 | Robert Bosch Gesellschaft mit beschränkter Haftung | Hochdruckpumpe zum Verdichten von Kraftstoff |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DD96552A1 (de) * | 1971-05-06 | 1973-03-20 | ||
US3986795A (en) * | 1973-08-22 | 1976-10-19 | Caterpillar Tractor Co. | Fuel injection assembly |
DE2930499A1 (de) * | 1979-07-27 | 1981-02-12 | Bosch Gmbh Robert | Kraftstoff-einspritzpumpe fuer brennkraftmaschinen, insbesondere fuer dieselmotoren |
JPH08144892A (ja) * | 1994-11-18 | 1996-06-04 | Mitsubishi Heavy Ind Ltd | 燃料噴射ポンプの吐出弁 |
DE10013858A1 (de) * | 2000-03-21 | 2001-09-27 | Continental Teves Ag & Co Ohg | Kolbenpumpe mit Ventil-Montageeinheit |
JP4174199B2 (ja) * | 2001-08-28 | 2008-10-29 | ヤンマー株式会社 | 燃料噴射装置 |
JP3912206B2 (ja) * | 2002-07-05 | 2007-05-09 | 株式会社日立製作所 | 筒内直接燃料噴射装置用燃料ポンプ |
JP2005147096A (ja) * | 2003-11-19 | 2005-06-09 | Yanmar Co Ltd | 燃料噴射ポンプのデリベリバルブ |
DE10357612A1 (de) * | 2003-12-10 | 2005-07-07 | Robert Bosch Gmbh | Ventilanordnung, insbesondere Einlassventil einer Hochdruck-Kraftstoffpumpe |
DE102004027825A1 (de) * | 2004-02-11 | 2005-09-01 | Robert Bosch Gmbh | Hochdruckpumpe, insbesondere für eine Kraftstoffeinspritzeinrichtung einer Brennkraftmaschine |
DE102010003886A1 (de) * | 2010-04-13 | 2011-10-13 | Robert Bosch Gmbh | Hochdruckpumpe |
DE102014218488A1 (de) | 2014-09-15 | 2016-03-17 | Robert Bosch Gmbh | Verfahren zum Nitrieren eines Bauteils eines Kraftstoffeinspritzsystems |
-
2016
- 2016-10-20 DE DE102016220610.9A patent/DE102016220610A1/de not_active Withdrawn
-
2017
- 2017-09-14 WO PCT/EP2017/073090 patent/WO2018072933A1/de unknown
- 2017-09-14 CN CN201780065350.8A patent/CN109964032B/zh active Active
- 2017-09-14 EP EP17778194.5A patent/EP3529492B1/de active Active
Also Published As
Publication number | Publication date |
---|---|
CN109964032B (zh) | 2021-10-01 |
WO2018072933A1 (de) | 2018-04-26 |
CN109964032A (zh) | 2019-07-02 |
DE102016220610A1 (de) | 2018-04-26 |
EP3529492B1 (de) | 2021-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CH703376A1 (de) | Hubkolbenpumpe für kryogene Flüssigkeiten. | |
DE4141670A1 (de) | Hydraulisch angetriebene membranpumpe mit membranhubbegrenzung | |
EP1411238A1 (de) | Druckbegrenzungsventil für ein Kraftstoffeinspritzsystem | |
WO2008015071A1 (de) | Dicht- und führungseinrichtung für einen kolben einer kolbenpumpe | |
DE2028603A1 (de) | ||
EP1403509B1 (de) | Druckbegrenzungseinrichtung sowie Kraftstoffsystem mit einer solchen Druckbegrenzungseinrichtung | |
EP1910720A1 (de) | Spülventil für einen hydraulischen kreislauf | |
WO2018091306A1 (de) | Betriebsverfahren einer kolbenpumpe sowie kolbenpumpe | |
EP3199815B1 (de) | Kreiselpumpe | |
EP2156050B1 (de) | Druckverstärkungssystem für mindestens einen kraftstoffinjektor | |
CH464451A (de) | Hydraulische Schliessvorrichtung, insbesondere für Spritzgiessmaschinen | |
EP3004622A1 (de) | Hochdruckpumpe für ein kraftstoffeinspritzsystem | |
EP3529492B1 (de) | Hochdruckpumpe für ein kraftstoffeinspritzsystem | |
WO2005124153A1 (de) | Hochdruckpumpe für eine kraftstoffeinspritzeinrichtung einer brennkraftmaschine | |
DE4102364A1 (de) | Kolbenpumpe | |
DE1503309A1 (de) | Zahnradmotor | |
DE102007038530A1 (de) | Kraftstoffhochdruckpumpe | |
EP0347582A2 (de) | Einspritzpumpe für Brennkraftmaschinen | |
EP2304220A1 (de) | Hochdruckpumpe | |
EP2256332B1 (de) | Kraftstoffinjektor mit Druckverstärkerkolben | |
DE102013226953B4 (de) | Hochdruckpumpe mit einem Ventilstück | |
DE10305783A1 (de) | Kolbenmembranpumpe mit ölseitiger Bedarfssteuerung | |
DE102010044824B4 (de) | Ventil | |
EP1798415B1 (de) | Hochdruckpumpe | |
DE2445696A1 (de) | Hochdruckplungerpumpe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190520 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ROBERT BOSCH GMBH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 502017010562 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: F04B0001040000 Ipc: F04B0001040400 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F04B 1/0404 20200101AFI20210211BHEP Ipc: F04B 53/10 20060101ALI20210211BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20210322 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1398681 Country of ref document: AT Kind code of ref document: T Effective date: 20210615 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502017010562 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210902 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210602 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210902 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210903 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211004 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502017010562 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
26N | No opposition filed |
Effective date: 20220303 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210930 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20210914 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210914 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210914 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210914 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210930 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210930 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20170914 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1398681 Country of ref document: AT Kind code of ref document: T Effective date: 20220914 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220914 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20241126 Year of fee payment: 8 |