EP3512420A1 - Improved imaging systems and methods - Google Patents
Improved imaging systems and methodsInfo
- Publication number
- EP3512420A1 EP3512420A1 EP17851600.1A EP17851600A EP3512420A1 EP 3512420 A1 EP3512420 A1 EP 3512420A1 EP 17851600 A EP17851600 A EP 17851600A EP 3512420 A1 EP3512420 A1 EP 3512420A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- ray
- emitting apparatus
- emitter
- sensor
- platform
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 77
- 238000003384 imaging method Methods 0.000 title claims description 75
- 238000005259 measurement Methods 0.000 claims description 29
- 238000004846 x-ray emission Methods 0.000 claims description 25
- 230000007246 mechanism Effects 0.000 claims description 14
- 230000003287 optical effect Effects 0.000 claims description 14
- 238000004891 communication Methods 0.000 claims description 7
- 230000003068 static effect Effects 0.000 claims description 5
- 230000006870 function Effects 0.000 claims description 4
- 230000003213 activating effect Effects 0.000 claims description 3
- 238000005286 illumination Methods 0.000 claims 1
- 238000001931 thermography Methods 0.000 abstract description 7
- 238000011477 surgical intervention Methods 0.000 abstract description 2
- 230000008569 process Effects 0.000 description 25
- 230000005855 radiation Effects 0.000 description 9
- 238000001356 surgical procedure Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 7
- 210000003414 extremity Anatomy 0.000 description 6
- 238000010304 firing Methods 0.000 description 5
- 230000000881 depressing effect Effects 0.000 description 4
- 230000004913 activation Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000007689 inspection Methods 0.000 description 3
- 230000011664 signaling Effects 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 210000003484 anatomy Anatomy 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 230000000994 depressogenic effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000002594 fluoroscopy Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 238000004091 panning Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 210000003423 ankle Anatomy 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000036770 blood supply Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000000326 densiometry Methods 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 210000002683 foot Anatomy 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000002558 medical inspection Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000003032 molecular docking Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 230000000399 orthopedic effect Effects 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000012958 reprocessing Methods 0.000 description 1
- 230000000250 revascularization Effects 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 210000001364 upper extremity Anatomy 0.000 description 1
- 210000000707 wrist Anatomy 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/58—Testing, adjusting or calibrating thereof
- A61B6/582—Calibration
- A61B6/583—Calibration using calibration phantoms
- A61B6/584—Calibration using calibration phantoms determining position of components of the apparatus or device using images of the phantom
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/06—Diaphragms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/40—Arrangements for generating radiation specially adapted for radiation diagnosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/40—Arrangements for generating radiation specially adapted for radiation diagnosis
- A61B6/4064—Arrangements for generating radiation specially adapted for radiation diagnosis specially adapted for producing a particular type of beam
- A61B6/4085—Cone-beams
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/44—Constructional features of apparatus for radiation diagnosis
- A61B6/4405—Constructional features of apparatus for radiation diagnosis the apparatus being movable or portable, e.g. handheld or mounted on a trolley
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/44—Constructional features of apparatus for radiation diagnosis
- A61B6/4417—Constructional features of apparatus for radiation diagnosis related to combined acquisition of different diagnostic modalities
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/44—Constructional features of apparatus for radiation diagnosis
- A61B6/4429—Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/44—Constructional features of apparatus for radiation diagnosis
- A61B6/4429—Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
- A61B6/4452—Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being able to move relative to each other
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/44—Constructional features of apparatus for radiation diagnosis
- A61B6/4429—Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
- A61B6/4458—Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit or the detector unit being attached to robotic arms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/48—Diagnostic techniques
- A61B6/486—Diagnostic techniques involving generating temporal series of image data
- A61B6/487—Diagnostic techniques involving generating temporal series of image data involving fluoroscopy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/54—Control of apparatus or devices for radiation diagnosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/54—Control of apparatus or devices for radiation diagnosis
- A61B6/542—Control of apparatus or devices for radiation diagnosis involving control of exposure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/54—Control of apparatus or devices for radiation diagnosis
- A61B6/545—Control of apparatus or devices for radiation diagnosis involving automatic set-up of acquisition parameters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/54—Control of apparatus or devices for radiation diagnosis
- A61B6/547—Control of apparatus or devices for radiation diagnosis involving tracking of position of the device or parts of the device
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/54—Control of apparatus or devices for radiation diagnosis
- A61B6/548—Remote control of the apparatus or devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/58—Testing, adjusting or calibrating thereof
- A61B6/587—Alignment of source unit to detector unit
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/58—Testing, adjusting or calibrating thereof
- A61B6/588—Setting distance between source unit and detector unit
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/58—Testing, adjusting or calibrating thereof
- A61B6/589—Setting distance between source unit and patient
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21K—TECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
- G21K1/00—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
- G21K1/02—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/20—Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from infrared radiation only
- H04N23/23—Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from infrared radiation only from thermal infrared radiation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/30—Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from X-rays
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05G—X-RAY TECHNIQUE
- H05G1/00—X-ray apparatus involving X-ray tubes; Circuits therefor
- H05G1/02—Constructional details
- H05G1/04—Mounting the X-ray tube within a closed housing
- H05G1/06—X-ray tube and at least part of the power supply apparatus being mounted within the same housing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/10—Safety means specially adapted therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/44—Constructional features of apparatus for radiation diagnosis
- A61B6/4429—Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
- A61B6/4435—Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure
- A61B6/4441—Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure the rigid structure being a C-arm or U-arm
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/46—Arrangements for interfacing with the operator or the patient
- A61B6/461—Displaying means of special interest
- A61B6/465—Displaying means of special interest adapted to display user selection data, e.g. graphical user interface, icons or menus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/46—Arrangements for interfacing with the operator or the patient
- A61B6/467—Arrangements for interfacing with the operator or the patient characterised by special input means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/56—Details of data transmission or power supply, e.g. use of slip rings
Definitions
- This invention relates generally x-ray and fluoroscopic image capture and, in particular, to a versatile, multimode imaging system incorporating a hand-held x-ray emitter operative to capture digital or thermal images of a target; a stage operative to capture static x-ray and dynamic fluoroscopic images of the target; a system for the tracking and positioning of the x-ray emission; a device to automatically limit the field of the x-ray emission; and methods of use.
- thermal imaging can also be a useful tool, particularly for the extremity surgeon. Thermal imaging may be used to help determine if blood supply to an extremity or digit is threatened, and if a revascularization procedure is required. The addition of thermal imaging provides a quick and simple tool to guide intra-operative decisions.
- existing fluoroscopic machines only capture x-ray images, the need to switch between digital and/or thermal image capture devices may create a delay in the completion of the surgery.
- the digital or thermal camera is not a sterile device, forcing the surgeon to either violate the surgical field, take a picture and then scrub back in, or have an assistant take the picture, which can create confusion about image correlation.
- the invention relates to an improved versatile, multimode radiographic systems and methods, allowing the surgeon to operate on a patient without interference, and capture static and dynamic x-rays and other still and video imagery without repositioning equipment, the subject or the surgeon.
- x-ray emitters and detectors are described.
- One variation of a novel emitter allows for portable control of the emitter.
- Such an emitter can be lightweight and extremely maneuverable. Variations include that the portable emitter that is a handheld unit.
- the portable emitter can be affixed to a mounting structure that is either automated/controllable or simply bears the weight of the emitter to prevent the user from constantly holding the emitter.
- the emitter can be designed so that it is releasably coupleable with a mounting structure, which allows improved portability when needed and coupling to a mounting structure when desired.
- the emitter may include both an x-ray emitter along with at least one additional imaging modality such as a digital camera for producing a visual image, a thermal image, and an infrared image of a a patient for the purposes of aiding diagnostic, surgical, and non-surgical interventions.
- additional imaging modality such as a digital camera for producing a visual image, a thermal image, and an infrared image of a a patient for the purposes of aiding diagnostic, surgical, and non-surgical interventions.
- additional imaging modality such as a digital camera for producing a visual image, a thermal image, and an infrared image of a a patient for the purposes of aiding diagnostic, surgical, and non-surgical interventions.
- Ergonomic controls make acquisition of images easier and faster and a built-in display facilitates easy-to-use control functions.
- the device senses its distance from the subject and will block the activation and discharge of radiation if the x-ray tube is not at a safe distance; i.e., too close to the patient
- the x-ray emitter may be used with any available x-ray detector.
- One option is to mount the emitter in a fixture including a properly aligned detector plate, much like a traditional c-arm, though much smaller and more capable.
- An alternate variation is described herein and includes use of an emitter with a distinct x-ray capture stage, disclosed in detail, which automatically pivots, orients and aligns itself with the emitter to maximize exposure, quality and safety.
- the inventive x-ray stage comprises a statically fixed platform, positioned during the outset of surgery, with an open cavity containing an x-ray sensor, an x-ray sensor positioning system, an emitter tracking system, a shielding system and a control unit.
- the system can utilize an external display monitor or any other method for reviewing the captured image.
- a variation of the improved systems described can include a non-invasive imaging system for examining an object for medical and non-medical inspections.
- a non-invasive imaging system can include an emitting apparatus configured to emit energy; an imaging sensor configured to generate an imaging signal upon the receipt of the energy when the emitting apparatus and imaging sensor are in an operationally aligned position; a platform having an external surface for positioning of the object and comprising at least one positioning mechanism located adjacent to the external surface; at least one positioning mechanism coupled to the imaging sensor allowing for movement of the imaging sensor adjacent to the external surface; at least one position tracking element affixed relative to the platform; where the emitting apparatus is moveable relative to the external surface of the platform; and a control system configured to determine a first coordinate measurement between the at least one position tracking element and the imaging sensor, the control system configured to determine a second coordinate measurement between the emitting apparatus and the at least one position tracking element, where the control system uses the first coordinate measurement and the second coordinate measurement to control actuation of the positioning mechanism moving the imaging sensor into the aligned position during
- a variation of the improvements described herein also includes an improved method for non-invasively imaging an object.
- a method can include moving an emitting apparatus to a location relative to the object; determining a position of the emitting apparatus relative to at least one position tracking element; relaying the position of the emitting apparatus to a motor system that adjusts an imaging sensor into an operative alignment with the emitting apparatus; emitting energy from the emitting apparatus when the imaging sensor is in operative alignment with the emitting apparatus; and transmitting an image signal from the imaging sensor to a display.
- Another variation of the method can include non-invasively imaging an object, by moving an emitting apparatus to a location relative to the object; emitting energy from the emitting apparatus to the object such that the energy is received by an imaging sensor configured to generate an image data; determining a position and orientation of the emitting apparatus relative to at least one position tracking element located in a fixed position relative to the image sensor; adjusting an image data based using the position and orientation of the emitting apparatus; and transmitting the image data to a display.
- Variations of the system can include platforms that have a planar surface allowing for positioning of the object.
- a platform can include a support frame that allows securing of the object over a free-space such that the portion of the object located in the free-space can be viewed or inspected either entirely or substantially around the perimeter of the object.
- the degree of alignment can include any industry specifications that dictate alignment.
- alignment of the systems and methods described herein can include a degree of alignment required to comply with the U.S. Code of Federal Regulations applying to the FOOD AND DRUG ADMINISTRATION DEPARTMENT OF HEALTH AND HUMAN SERVICES (e.g., 21 C.F.R. part 1020 incorporated by reference herein.) E.g., under 21 C.F.R.
- a length nor a width of the x-ray field in the plane of the image receptor (sensor) shall exceed that of the visible area of the image receptor (sensor) by more than 3 percent of the source-to-image receptor distance (SID) and the sum of the excess length and the excess width shall be no greater than 4 percent of the SID and Any error in alignment shall be determined along the length and width dimensions of the x-ray field which pass through the center of the visible area of the image receptor.
- the alignment discussed herein can vary to meet the respective requirements.
- variations of the systems, devices, and methods can include such metrics as obtaining a near orthogonal positioning between an emitter and receptor.
- a minimum or maximum distance between an emitter and receptor can be established by industry standards.
- the stage precisely tracks the position and angle of the x-ray emission, positioning and tilting the embedded sensor exactly to capture a precise, high quality x- ray image.
- the stage uses less power, corrects for any skew or perspective in the emission, allows the subject to remain in place, and allows the surgeon's workflow to continue uninterrupted.
- an x-ray capture stage is statically positioned, with the emitter using the positioning to ensure the emission is only fired when the emission can be positively captured by the active area of the capture stage. Firing is also immediately terminated if acquisition of this positive capture is lost.
- FIGURE 1A depicts an example of an operating room layout for use of the x-ray imaging system in a standard surgery of an extremity case.
- FIGURES IB and 1C depict an alternate example of an operating room layout for use of the imaging system with a specialized operating table that improves access to an area of a patient.
- FIGURE 2 is a simplified, schematic representation of an x-ray emitter according to the invention.
- FIGURE 3 illustrates one embodiment of a control panel for use with an emitter.
- FIGURE 4 shows a safety lockout procedure for an x-ray emitter.
- FIGURE 5 depicts a representative sequence for emitter power management.
- FIGURE 6 illustrates a process by which a device captures concurrent images at the request of a user.
- FIGURE 7 is a drawing that illustrates the overall components of a preferred embodiment of a capture stage.
- FIGURE 8A is an oblique view of a sensor positioning system.
- FIGURE 8B illustrates infrared (IR) positioning tiles.
- FIGURE 9 is diagram that shows x, y movement of a sensor tray viewed from above.
- FIGURE 10A is an oblique diagram showing a band-operated image capture stage.
- FIGURE 10B is a schematic diagram of a band-operated stage with an identification of important components.
- FIGURE 11A is a side view showing a sensor tilt operation.
- FIGURE 1 IB is a side view showing a sensor panning operation.
- FIGURE 12A illustrates an arrangement whereby emitter need not be provided on an image stage platform.
- FIGURE 12B illustrates additional arrangements of the imaging system where a sensor can be configured to capture lateral views by moving above a plane of the table.
- FIGURE 13 is a view of an infrared emission device emitting infrared from 5 points allowing for relative position calculation in 3-dimensional space.
- FIGURE 14 illustrates a safety lockout of the capture stage based upon the disposition of the emitter.
- FIGURE 15 illustrates the capture of a fluoroscopic image.
- FIGURE 16 is a view showing the x-ray emission device with an aperture creating the widest cone.
- FIGURE 17 a view showing the x-ray emission device with an aperture creating a narrow cone.
- FIGURE 18 shows a control unit operative to adjust the aperture and cone.
- FIGURE 19 is a labeled view illustrating relative distances.
- Figure 1A depicts an example of operating room layout for use of an imaging system in a standard surgery of an extremity case.
- the surgeon 102 is operating on the patient's left hand.
- the patient 104 is lying in the supine position with the left upper extremity prepped and draped on a hand table 105 in the abducted position.
- the surgeon sits adjacent to the patient's side while a surgical assistant 106 sits across the hand table adjacent to the patient's head.
- Surgical instruments and equipment are laid out on the back table 108 immediately behind the surgical assistant.
- the imaging system uses x-ray imaging.
- a sterilized x- ray emitter 110 according to the invention is placed on the surgical hand table 105 for use.
- a monitor 112 is positioned on a stand immediately adjacent to the hand table whereby x-ray, fluoroscopic, thermal and digital images can be wirelessly transferred from the x-ray imaging system to the screen for surgeon view.
- the emitter 110 allows the surgeon to hold it with one hand while operating another instrument such as a drill in the other hand.
- a detector stage according to the invention may be placed on or in the table 105 to gather radiographic imagery for storage and/or viewing on an external monitor such as device 112.
- the emitter can be handheld or can be affixed to a mounting structure that is either automated/controllable or simply bears the weight of the emitter to prevent the user from constantly holding the emitter.
- Figure IB illustrates an additional variation of a system including a sensor 706 and an emitter 710 for use with a specialized operating table 300.
- the operating table 300 includes structures 302 that stabilize the patient while allowing increased access around the patient's organs since a portion of the organ is suspended in free space.
- a shell 707 containing the sensor 706 (as discussed below) is coupled to a first boom or arm 716.
- the arm/boom 716 allows for movement of the sensor 706.
- the boom 716 can be automated such that the sensor 706 is coupled directly to a controllable boom 716.
- the emitter 710 is coupled to a second arm or boom 714 that can be affixed to a wall, ceiling or portable frame structure.
- Figure 1C illustrate positioning of the sensor 706 and boom 716 adjacent to a body part of the patient 104 such that the emitter 710 can be positioned as desired by the operator or medical practitioner.
- the boom or arm can also house components of the device, such as a heat sink, power supply, etc. allowing for a more compact and easy to maneuver emitter.
- either boom can be designed with features to aid the physician in performing the procedure.
- the boom can incorporate a locking system so that the physician can position either the sensor 706 and/or emitter 710 and then lock the associated boom into position.
- booms can incorporate memory positioning such that the boom can automatically retract away from the surgical space to a pre-determined location such that it automatically moves out of the way of the physician when performing a procedure.
- memory locations can include the "last location" of the emitter or sensor, such that the system can automatically reposition the components in their last position prior to being moved away from the surgical space.
- Figure 2 is a simplified, schematic representation of an x-ray emitter according to the invention.
- the general configuration of the device is to be hand held, lightweight and extremely portable.
- the device preferably has a rounded, contoured handle to ergonomically fit the surgeon's hand and better direct fluoroscopy, digital and thermal imagery to the extremity and surgical field. Note that the drawing of Figure 2 is not intended to depict any particular ornamental appearance.
- the back of the emitter 110 has a control panel whereby at least three different modes of operation can be activated: fluoroscopic mode, digital picture mode, or infrared thermal imaging mode. Once activated, each mode is controlled in the front of the device by a trigger 202. Pressing the trigger once activates the device to take a single image (i.e., single x-ray or digital picture). Different modes of operation may be activated in different. As one example, holding the trigger 12 down may activate live fluoroscopy, digital video, or infrared thermal imaging.
- Figure 2 also illustrates the emitter 110 as being coupled to a power supply 221.
- the power supply can be a battery 221 located remote from or within the emitter 110.
- the power supply 221 can be coupled via wiring between the emitter 110 and power supply 221.
- the battery 221 can be positioned within the emitter 110 and used in addition to a remote power supply 221 such that the emitter 110 can be disconnected from the external power supply temporarily with the internal battery 221 being used to provide power.
- Figure 3 illustrates one embodiment of the control panel for use with the emitter.
- the control panel is located on the rear of the emission handle and controls the various inputs and outputs of the system.
- the control panel is easily accessible for the user and is ergonomically designed to ease the manipulation of the emitter.
- the control panel comprises a large, clear screen 204 (i.e., LCD or OLED), a control button 302 located on the left of the unit, a control button 304 located on the right of the unit, and a center, clickable toggle button 206 located in the center.
- a large, clear screen 204 i.e., LCD or OLED
- control button 302 located on the left of the unit
- control button 304 located on the right of the unit
- a center, clickable toggle button 206 located in the center.
- Display screen 204 displays images and a digital control panel to control fluoroscopic, digital camera and infrared settings.
- the control panel may include a touch screen.
- Toggle button 206 controls power input in fluoroscopic and infrared modes, and digital zoom in the picture mode.
- the preferred emitter configuration houses a dynamic x-ray collimating cone 210, digital camera lens 212, infrared camera 214 and distance sensor 216.
- the digital and infrared cameras preferable use charge-coupled device (CCD) technology.
- the distance sensor may be infrared, acoustic or other operative technology known to those of skill in the art of proximity and distance measurement.
- the sensor 216 continuously senses its distance from the patient and will block the activation and discharge of radiation if the x-ray tube is too close, for example, if less than 19 centimeters directly from patient.
- the system can include any number of auditory, visual, or tactile indicators to allow a physician or user of the system to determine that the sensor is within an acceptable distance or ready to fire.
- the auditory, visual, and/or tactile indicators are positioned such that the operative state of the system is identifiable without the need for the user to remove his/her focus from the object being examined, in one example, a visible indicator (e.g., one or more LEDs) is positioned on the emitter, which provides clearly distinguishable feedback regarding the distance, alignment, or any other operational conditions of the system.
- the handle 200 tapers to the bottom of the device, which may house high-voltage power supply 218, external charging port 220 and battery docking station 222.
- high voltage from power supply 218 is fed to x-ray generation unit 230 via the high voltage connector assembly 228.
- Power produced by power supply 218 is converted to a suitable input voltage that can be used by the x-ray generation unit 230. This power ranges from 1 kV to 120 kV, but typically ranges between 30 kV to 90 kV in conjunction with clinical application.
- the x-ray generation unit 230 is based upon existing high-voltage emitters, though custom designed for small size required of the instant application.
- a suitable thickness of electrical insulating material surrounds the high voltage power supply 218, connector assembly 228 and the x-ray generation unit 230 to prevent radiation loss and preserve good beam quality. All three components 218, 228, 230 are placed immediately adjacent to each other to minimize high voltage leakage and possible interference with low voltage components in the system. In an alternative embodiment, components 218, 228, 230 may be disposed in an external control unit (not shown).
- a suitable layered combination of silicone rubber and epoxy encapsulates the x- ray generation unit 230 (except where x-rays are emitted into collimator) in order to shield radiation losses and dissipate high temperatures generated by x-ray tube operation. Radiation is produced by the x-ray tube and transmitted via the collimating cone 210 at the head of the device. Fluoroscopic settings including peak kilovoltage (kV), amperage (mA), and digital brightness, which are controlled by the digital control panel on the back of the neck.
- kV peak kilovoltage
- mA amperage
- digital brightness which are controlled by the digital control panel on the back of the neck.
- the digital camera lens 212 and infrared thermal camera 214 are immediately adjacent to the collimating cone 210, and these components are also shielded by insulation.
- the digital camera 214 is controlled by the placing the device in digital mode using the control panel. Pictures are generated via the trigger 202 located on the device handle.
- the infrared thermal camera 214 is controlled by the placing the device in infrared mode using the control panel. Live, infrared thermal imaging is generated by holding the trigger down. Digital x-rays, traditional digital visible and thermal images may be transferred and displayed on the external screen 112 shown in Figure 1. Depending upon the level of cooperation between the emitter and the detector described herein below, x-ray images may be transferred directly to the external monitor for viewing. A memory 233 may be used to store any type of gathered image, and such images may be encrypted upon capture in accordance with co-pending U.S. Patent Application Serial No. 15/466,216, the entire content of which is incorporated herein by reference.
- An audio pickup 235 may be provided for procedure memorialization or other purposes, and the recordings may also be stored in memory 233, optionally in encrypted form as well.
- the device is powered by an external, plugin power supply with external charging port 220.
- the digital display, control interfaces, and trigger are controlled via the control system microprocessor electronic control unit 232 powered by a low voltage power amplifier system 234.
- the low voltage amplifying system 234 and the microprocessor control system 232 are also conveniently located away from the high voltage power supply to further minimize interference.
- Figure 4 shows a process by which the device manages a safety lockout procedure of the x-ray emitter. The process to determine the safety lockout is as follows:
- the user initiates the x-ray emission process by depressing the trigger while in x-ray mode. This could be for either a fluoroscopic or still x-ray image.
- a distance setting is retrieved from the emitter's distance setting database.
- the distance measurement unit is activated and captures the distance between the end of the emitter and the subject directly in front of the emitter. [0061] 406. The distance setting and distance measurements are relayed to the emitter' s ECU Computation unit.
- the ECU Computation unit uses the distance measurement, distance setting and an internal generator offset to determine if the emitter should fire.
- the fire/warn decision at 410 is determined by the ECU and relayed to the hardware units.
- the unit will activate a warning procedure, displaying a message on the LCD panel and activating any lockout warning lights.
- the emitter will begin the x-ray generation and emission process, signaling all internal and external components.
- the projected cone from the x-ray emitter varies in size based on the distance to the target.
- the invention allows managed control over the cone size based on the distance of the x-ray emission device from a sensor positioned on the stage.
- Figure 16 illustrates a simplified rendition of an applicable x-ray source, which includes an anode 1602 and cathode 1604.
- the anode typically includes a tungsten or molybdenum target 1606.
- High voltage across the anode and cathode causes x rays to be produced at the target, which forms a cone 1608 that exits through an aperture 1610 in casing 1612.
- One aspect of the invention includes a telescoping chamber positioned in the direction of the aperture and sensor.
- the distance from the x-ray source to the output aperture can be increased or decreased by rotating the exterior chamber along a threaded interior mount. Moving the aperture closer to the source creates a wider angle, while moving it farther from the source reduces the angle, as shown in Figure 17.
- a control unit 1802 in the hand-held emitter controls the telescoping aperture. Based upon the process below, the control unit 1802 rotates a threaded shaft 1804, whereupon the threads engages with grooves 1806 in telescoping chamber 1602, causing aperture 1610 to toward and away from the x-ray source.
- the control methodology is as follows. First, the distance between the device's x-ray origin and the x-ray sensor is calculated. If the distance is outside an acceptable range of x-ray emission then no x-rays will be emitted.
- the aperture will be automatically moved into place.
- the distance between the x-ray origin and the aperture (d a ) is then calculated and the control unit rotates the aperture chamber to the correct distance.
- R s represents the radius of the x-ray emission as it contacts the sensor
- the control unit then allows the x-ray emission device to emit an x-ray which projects a cone at an angle ⁇ onto the sensor.
- the device also preferably includes the capability to intelligently conserve power by utilizing the inertial measurement unit (IMU), distance sensor unit, as well as the operator initiated command inputs.
- IMU inertial measurement unit
- the various durations for the power stages of the unit are user configurable so that the device can match the user's specific style and cadence.
- the systems and methods described herein can also use multiple sensors for error correction and/or to improve positioning. For example, if an emitter and detector/sensor are in a given position and the system loses tracking of one or more sensors on the platform ordinarily the loss in tracking might cause a reduction in the frames per second (FPS) of the output image.
- the emitter can include one or more inertial measurement units that can track movement of the emitter to adjust the intervening frame especially when needed.
- the IMU will then be used to adjust the intervening frames to increase the FPS of the output.
- the IMU can be used in place of or in addition to sensors on the platform.
- the user initiates the power sequence on the device by pushing a physical button (i.e., 208 in Figure 2) on the emitter. This engages the device's electronics and moves the device into ON mode.
- a physical button i.e., 208 in Figure 2
- [0081] 510 The user initiates an x-ray capture by depressing the trigger 202 on the emitter. Assuming that all other safety checks are cleared, this further engages the power supply and emits the stream of x-ray photons at the subject until a state of 511, at which time the emission is complete. The user can continue to emit x-ray photons indefinitely at 510', 51 ⁇ , however, as the device returns to READY mode.
- the device After a duration of t2 during which time the emitter has not been fired, the device will automatically power itself down to the STANDBY level at 520. [0083] As shown with points 508, 522, 524, the device will follow the above timings to transition the device from the ON stages and finally to the OFF stage as the various durations elapse without positive engagement to maintain or change the power state. By utilizing these steps, the device can conserve power while maintaining in a ready state without any interaction from the user.
- Figure 6 illustrates a process by which the device captures concurrent images at the request of the user. Using the settings on the emitter's control screen, or by specifying a concurrent capture in the control unit, the emitter will initiate a process to capture any combination of x-ray, traditional digital and/or thermal images. The process to capture the images is as follows:
- the user initiates the capture sequence on the device by pulling the trigger of the emitter. This begins the capture process and concurrent imaging process for whatever grouping of sensors is enabled.
- the emitter immediately engages the X-Ray standby mode, preparing to fire the x-ray generator.
- the traditional camera component focuses on the desired subject. This preferably occurs as soon as the trigger is depressed.
- the thermal camera Concurrently, if enabled, the thermal camera is powered on and begins its start sequence. This also preferably occurs as soon as the trigger is depressed.
- the digital imaging camera captures a traditional image of the subject.
- the image is preferably automatically transferred to the control unit for display on an external monitor.
- the thermal camera captures a thermal image of the subject.
- the image is preferably automatically transferred to the control unit for display on an external monitor.
- the x-ray unit will fire an emission, generating an x-ray image in the sensor.
- the image is preferably automatically transferred to the control unit for display on an external monitor.
- the x-ray system will charge, verify safety, and discharge the x-ray only after all other systems have executed to minimize operational interference.
- the emitter described herein must be used in conjunction with an x-ray detector to gather radiographic imagery.
- the emitter is not limited in terms of detector technology, and may be used with any available flat-panel detector, even film. However, given fully portable nature of the emitter, steps should taken to ensure that the emitter is properly oriented with respect to the detector to gather clear imagery while avoiding spurious or unwanted x-ray emissions.
- One option is to mount the emitter in a fixture including a properly aligned detector plate, much like a traditional c-arm though much smaller and more capable.
- a preferred option, however, is to use the emitter with the x-ray capture stages described below, one of which includes an embedded sensor that automatically pivots, orients and aligns itself with the emitter to maximize exposure quality and safety.
- the preferred x-ray capture stage includes a statically fixed platform, positioned during the outset of surgery, with an interior cavity containing an x-ray sensor, an x-ray sensor positioning system, an emitter tracking system, a shielding system and a control unit.
- the x-ray capture stage is adapted to receive an x-ray emission from a separate emitter device, including the portable, hand-held unit described herein.
- the x-ray capture stage preferably also incorporates wireless (or wired) communications capabilities enabling review of a captured x-ray or fluoroscopic image to reviewed on an external display monitor or any other arrangement for the captured image including external storage.
- stage tracks the emission and simply locks out the x-ray firing if it is not in line.
- a tracking stage embodiment also permits or locks out emission in accordance with alignment, but also precisely tracks the position and angle of the x-ray emission, positioning and tilting the embedded sensor to capture a precise, high quality x-ray image. This arrangement uses less power, corrects for any skew or perspective in the emission and allows the subject to remain in place, thereby enabling the surgeon's workflow to continue uninterrupted and capture x-rays without repositioning equipment, the subject or the surgeon.
- Figure 7 is a simplified view of a preferred embodiment of the x-ray capture stage, which includes a platform 702 with a hollow cavity including the embedded sensor 706.
- the stage might have legs 703 and be used as a table.
- the stage might be wrapped in a bag and positioned underneath a patient.
- the platform 702 can be wrapped in a sterile drape and surgical procedures can be performed upon a platform such as table 105 in Figure 1.
- the capture stage cooperates with a separate x-ray emission device 710.
- a separate x-ray emission device 710 There are a number of different configurations and implementations of the x-ray emission device besides the hand held unit described in detail above, including wall-mounted, armature- mounted, and floor-mounted. Any implementation is compatible with the operative x-ray stage as long as the electronic systems of the emitter can communicate with the interface of the operative x-ray stage central control unit to provide for pivoting, orientation or alignment.
- the platform 702 is in electrical communication with a central control unit 704.
- a display monitor 712 electronically connected to the control unit 704, which may be used to both display images and provide overall system control.
- a user will interact with the emitter 710; however, in some cases, a user may interact with the central control unit 704 directly to manipulate images, setup specific capture scenarios, control parameters or adjust other settings.
- the system may also use a tablet, mobile phone or any other display device electronically connected to the central control unit for display purposes.
- the central control unit 704 and display may be combined in a single device, such as a laptop computer or other mobile computing device.
- the central control unit can be electronically connected to multiple display units for educational or other purposes.
- Figure 8A is an oblique view of an x-ray capture stage according to the invention.
- the stage comprises is a hollow, sealed, shell that is roughly 20" x 30", although the overall size of the invention can be changed to conform to other surgical applications.
- the shell creates a cavity 800 housing an x-ray detection sensor 706 operative to capture an x-ray emission from an x-ray emitter. Suitable x-ray sensors are available from a variety of commercial manufacturers.
- the sensor 706 is attached to a motorized movement system used to pan and tilt the sensor within the cavity. This motorized system ensures that the sensor is precisely positioned for maximum image quality and capture view.
- the x-ray sensor 706 is preferably mounted to a movable tray 802 that travels under controlled movement within the cavity 800.
- the tray and sensor can move in the x- y direction and tilt along both axes as described below.
- Figure 9 is a diagram of a capture stage seen from above.
- the sensor 706 in tray 802 is mounted to translate on a series of motorized rails 720, 722, allowing the sensor to position itself anywhere along the x and y axis within the shell.
- At least one of the x and y tracks may be a threaded rod, for example, each being driven by a motor for precise lateral movement of the tray 802 in the x and y dimensions.
- the x-y movement of the tray may be controlled with bands 1002, 1004 in Figure 10A.
- bands 1002, 1004 are precisely controlled by rods 1006, 1008, causing tray supports 1110, 1112 to translate tray 808.
- rods 1006, 1008 causing tray supports 1110, 1112 to translate tray 808.
- tray supports 902, 904 are depicted in Figure 9, single supports 1110, 1112 may alternatively be used as shown in Figure 10A.
- FIGURE 10B is a schematic diagram of a band-operated stage with an identification of important components.
- the X-ray detector is shown at 1030, and the detector carrier is depicted at 1032.
- This particular embodiment is driven by an H-shaped belt 1040. Items 1042 and 1044 are small and large offset bearings, respectively.
- the belt is driven by motors 1050, 1052.
- the stage housing is shown at 1060, and power is brought in via cable 1062.
- the detector tilt motors are indicated at 1070, 1072.
- IR positioning tiles and IR emitters described with reference to Figure 8B, are shown at 850 and 852, respectively.
- the typical IR emitters described herein are active beacons since they actively emit a signal or energy that is received by the emitter to aid in determining a position of the emitter.
- additional variations of the methods, systems and devices described herein can include passive markings or objects to aid in determining orientation of the emitter.
- the systems, devices and method can include camera or emitter that simply record a specific pattern (e.g., a QR symbol or some unique object in the surgical area such as a clock, table, fixture, etc.). The system will then rely on a computer to use these patterns in place of, or in combination with, IR beacons to determine a position of the emitter. In this latter case, the emitter position is calculated by the computer or other processing unit.
- the upper cover of the platform or shell is covered with a radiolucent material (i.e., 1018 in Figure 10A).
- the lower base of the platform i.e., 1020 in Figure 10A
- an x-ray absorbing material such as lead. This coating prevents the excess x-rays from penetrating through the field and being absorbed by the operator of the emitter. This x-ray absorbing undercoating also prevents excess x-ray emission from bouncing off the floor and scattering throughout the facility.
- the sides of the platform may be constructed from a radio-opaque material as well.
- Figures 11 A, 11B are diagrams that show a pan and tilt mechanism.
- the sensor tray 802 is positioned within the cavity and the sensor 706 is tilted around the y-axis.
- the sensor tray 802 is tilted along both the x-axis and the y- axes.
- This panning and tilting allows the sensor to be precisely positioned to capture an x- ray image while minimizing the distortion created by the offset angle of the emission device. That is, the capture stage and x-ray emitter are coordinated to minimize skew and maximize capture of both x-ray and fluoroscopic images.
- the user does not need to reposition the subject to get a clear, usable x-ray or fluoroscopic image.
- a plurality of position tracking implements 830 may be mounted to the ends or corners of the tray. While these implements may be used in all four corners, only one is necessary for accurate triangulation. These implements may be based upon ultrasonic tone generation or infrared emission. In these embodiments, acoustic or infrared signals generated in the platform are detected by the emitter device, causing the sensor to translate and tilt to maximize capture.
- a further embodiment may utilize magnetic position and orientation sensors and detectors of the type used in surgical navigation to orient the tray and x-ray sensor.
- the emitters 830 are used to measure the distance from a point 810 on the handheld unit 710 to three (or more) fixed points 830 attached the stage. These distances are depicted as Di, D 2 and D 3 in Figure 8A. Based upon these distances, the system employs a tracking method to precisely locate a center point 801 on the sensor 706 and angle ( ⁇ 5 ) of the emission from the source to the platform.
- a tracking method to precisely locate a center point 801 on the sensor 706 and angle ( ⁇ 5 ) of the emission from the source to the platform.
- An exemplary implementation of this tracking system would include a combination of infrared sensors within the platform and the hand-held unit, as well as a gyroscope in the stage and hand-held unit to detect the angle ⁇ 5.
- the positioning of the detector uses a number of sensors in concert.
- the system enters a ready state.
- the infrared beacons on the corners of the table illuminate.
- the positioning tracking camera on the hand-held unit immediately starts analyzing the infrared spectrum captured within a 140-degree field of view.
- the camera is searching for patterns of infrared light.
- Each corner 830 has a specific pattern that determines which corner of the stage the infrared camera in the handheld unit is looking at.
- an IR positioning emitter tile 850 sits at each corner of the operative or clinical stage.
- the diagram is an example of four unique tiles.
- These tiles contain a number of infrared emitters 852, usually five individual emitters, arranged in a specific pattern. Each tile contains a different pattern of the five IR emitters.
- the IR positioning camera captures and analyses the IR emissions from the tiles. Because each tile has a unique pattern, the camera is able to determine its exact position in relation to the table. Additionally, because each tile has a unique pattern of multiple lights, the system can determine the exact position from the tile in XYZ space.
- the IR emitters can flash in a syncopated manner.
- By modulating the frequency of the flashes it is possible to add an additional uniqueness signature to each tile, allowing patterns to repeat in a scenario with a large number of tiles.
- the camera can triangulate its position in space relative to each corner. By using the triangulation data, as well as the orientation data from the IMU unit on the emitter, the system can determine the center point of the emission.
- the stage will then move the center point to that area of the stage and tilt the detector to be as perpendicular to the emission as possible. While the sensor is moving itself into position, the collimator on the emitter adjust the output of the beam to insure that it is illuminating the detector panel only.
- the position information from the combination of the sensors 830 is routed through the control unit (i.e., 704 in Figure 7), which interpolates the raw sensor data into an aim point on the platform.
- the platform then moves the sensor tray 802 to the specified point.
- the platform then tilts the sensor into the correct orientation ( ⁇ 5 ) to remove as much skew as possible.
- the x-ray source in emitter 710 emits radiation with respect to an axis 803
- the goal is to place the axis 803 as close as possible to the center point 801 of the sensor, with the plane of the sensor being as perpendicular as possible to the axis 201 to minimize skew.
- FIG. 12A and 13 illustrate an alternative system and method of position calculation that removes the dependency of having position emitters embedded in the table.
- the position of the x-ray emitter in relation to the capture stage and x-ray detection sensor can be calculated based on external position emitters.
- the emitter can be purely hand-held to allow a practitioner to move the emitter in free-space.
- the emitter can be moveable with (or coupleable to) a support structure that maintains the emitter in position relative to the object without requiring the physician to continuously hold the emitter.
- the external positional emission device(s) are installed onto a fixed location and contain a series of infrared emitters. This emission device releases infrared patterns from 5 sides of a cubic object 1202 resulting in infrared energy being sent out from slightly different origins.
- the emission position control unit will receive the relative positions of the x-ray emission device ([xhi, yhi, zhi]). Using these relative positions, the emission position control unit calculates the position of the x-ray emission device relative to the stage ( Figure 13), resulting in [xhi-xsi, yhi-ysi, zhi-zsi]. This operation is performed for each infrared emission device (i), which can then be used to deduce the margin of error.
- the stage After the stage applies the position along with the other pieces of data as mentioned in the original filing, the stage moves and rotates the x-ray sensor plate into the correct position to capture the x-ray image.
- Figure 12B illustrates a variation where an emitter 710 can apply energy to a sensor/detector 706 that is configured to move as discussed herein but can also move to enable a lateral image.
- the sensor/detector 706 moves outside of the center X axis of the table 105 to capture lateral views of the patient 104.
- variations of the sensor 706 can include configurations where the table is non-planar and is configured to receive the sensor 706 above a plan in which the patient is positioned.
- Fig. 12B also illustrates an additional concept where multiple detectors 706 are used as described herein. In such a variation, the sensors 706 would be moved as described herein, but the sensor having the best operational alignment would be used to generate a signal.
- FIG. 14 illustrates the process by which the device manages the safety lockout of the emitter and captures an x-ray image, with the numbers corresponding to the numbers in Figure 14:
- [0121] User initiates the capture process by signaling through the emission device 110, typically by depressing a trigger.
- the emitter sends a data packet (D) to the controller containing the request for capture, the distance measurements (dl, d2, ...) and the angle of the emitter.
- the Controller validates that the emitter is in a safe orientation.
- the Controller If the Controller discovers that the emitter is not in a safe, valid orientation, the controller sends an error message to the emitter. This prevents the emitter from firing and signals to the user that there is a problem. [0124] 3.
- the stage positions the sensor in accordance with the position of the emitter. The stage will tilt the sensor so that it is in the correct orientation to capture a clear image. The orientation will be as close to the complementary angle of the emission as possible.
- the stage then sends a confirmation message to the controller after the position has been established.
- the controller forwards the start message to the emitter.
- the emitter will then execute any additional safety or preparation tasks. If the emitter believes the environment is safe to fire, the emitter will then fire the x-ray.
- the emitter fires a pulse of x-ray photons at the stage for the requested amount of time.
- the stage will rapidly and constantly update the position and angle of the sensor to optically stabilize the x-ray image.
- the sensor captures the emission of x-ray photons from the emitter and builds an image.
- control unit then cleans up the image from the sensor using a variety of know optical enhancement techniques. If applicable, the control unit will leverage the stored movement data from the emitter to further enhance the output.
- Figure 15 illustrates the process by which the device captures a fluoroscopic image.
- the process for capturing a fluoroscopic image is very similar to capturing a static x-ray image; however, the fluoroscopic process will repeat several emissions and image captures to create a moving image.
- the process to insure the safe emission as well as capture the fluoroscopic image with the numbers corresponding to the numbers in Figure 15:
- [0136] User initiates the capture process by signaling through the emission handle, usually by depressing a trigger.
- the emitter sends a data packet (D) to the controller containing the request for capture, the distance measurements (dl, d2, ...) and the angle of the emitter.
- the Controller validates that the emitter is in a safe orientation.
- Controller If the Controller discovers that the emitter is not in a safe, valid orientation, the controller sends an error message to the emitter. This prevents the emitter from firing and signals the user that there is a problem.
- the stage positions the sensor in accordance with the position of the emitter.
- the stage will tilt the sensor so that it is in the correct orientation to capture a clear image.
- the orientation will be as close to the complementary angle of the emission as possible.
- the stage then sends a confirmation message to the controller after the positioning.
- the controller forwards the start message to the emitter.
- the emitter will then execute any additional safety or preparation tasks.
- the emitter will repeat the following steps while the emitter device continues to request additional fluoroscopic frames, as follows:
- the emitter fires a pulse of x-ray photons at the stage for the requested amount of time.
- the emitter constantly streams any updates to the position and angle to the central controller. If at any time during the fluoroscopic process, the operative stage detects the emission is not aimed at the stage, the stage will send a termination signal to the emission device and skip directly to step 9.
- the controller records these positional updates and relays them to the stage.
- the stage rapidly and continuously updates the position and angle of the sensor to optically stabilize the x-ray image.
- the sensor captures the emission of x-ray photons from the emitter and builds an image.
- the sensor immediately transfers the image to the control unit. At this time, a brief cleanup process is executed and the image is displayed on the external viewing device. This fluoroscopic frame is saved to memory.
- control unit "cleans up" the stored frames from the sensor using a variety of known enhancement techniques. If applicable, the control unit will also apply any stored movement data from the emitter to further enhance the output. The control unit will then combine the fluoroscopic frames into a single video for repeated playback.
- the above process allows the user to see a live fluoroscopic view of the subject in real time.
- the device can create a high quality, single fluoroscopic video for display and review at a later time.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Heart & Thoracic Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Optics & Photonics (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Biomedical Technology (AREA)
- Public Health (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Automation & Control Theory (AREA)
- Robotics (AREA)
- Toxicology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Engineering & Computer Science (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Cameras In General (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
Abstract
Description
Claims
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662394909P | 2016-09-15 | 2016-09-15 | |
US201662394956P | 2016-09-15 | 2016-09-15 | |
US201762471191P | 2017-03-14 | 2017-03-14 | |
US201762504876P | 2017-05-11 | 2017-05-11 | |
PCT/US2017/051774 WO2018053262A1 (en) | 2016-09-15 | 2017-09-15 | Improved imaging systems and methods |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3512420A1 true EP3512420A1 (en) | 2019-07-24 |
EP3512420A4 EP3512420A4 (en) | 2020-04-22 |
EP3512420B1 EP3512420B1 (en) | 2023-06-14 |
Family
ID=61558905
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17851600.1A Active EP3512420B1 (en) | 2016-09-15 | 2017-09-15 | Systems for improved imaging |
Country Status (5)
Country | Link |
---|---|
US (5) | US10076302B2 (en) |
EP (1) | EP3512420B1 (en) |
JP (1) | JP6727423B2 (en) |
ES (1) | ES2952771T3 (en) |
WO (1) | WO2018053262A1 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3512420B1 (en) | 2016-09-15 | 2023-06-14 | OXOS Medical, Inc. | Systems for improved imaging |
EP3534795B1 (en) | 2016-11-04 | 2021-01-13 | Hologic, Inc. | Medical imaging device |
KR102592905B1 (en) * | 2016-12-21 | 2023-10-23 | 삼성전자주식회사 | X-ray image capturing apparatus and controlling method thereof |
JP6932950B2 (en) * | 2017-03-10 | 2021-09-08 | 株式会社島津製作所 | X-ray fluoroscopy equipment |
EP3829444A4 (en) * | 2018-08-01 | 2022-05-18 | OXOS Medical, Inc. | Improved imaging systems and methods |
CN108852398A (en) * | 2018-09-14 | 2018-11-23 | 驰马特天健医疗科技(北京)有限公司 | Medical dynamic X-ray machine imaging device and system |
US11172908B2 (en) * | 2019-07-30 | 2021-11-16 | GE Precision Healthcare LLC | Method and systems for correcting x-ray detector tilt in x-ray imaging |
US11530995B2 (en) | 2019-09-12 | 2022-12-20 | Orthoscan, Inc. | Mini C-arm imaging system with stepless collimation |
JP7384712B2 (en) * | 2020-03-06 | 2023-11-21 | 富士フイルム株式会社 | Radiation intensity estimation device, radiation intensity estimation device operating method, radiation intensity estimation device operating program, radiography system |
US20220280125A1 (en) * | 2021-03-02 | 2022-09-08 | Carestream Health, Inc. | X-ray bed |
US11382582B1 (en) | 2021-08-02 | 2022-07-12 | Oxos Medical, Inc. | Imaging systems and methods |
KR102378300B1 (en) * | 2021-08-05 | 2022-03-25 | 주식회사 포스콤 | X-ray device |
EP4472516A1 (en) | 2022-03-22 | 2024-12-11 | OXOS Medical, Inc. | Improved imaging systems and methods |
CN114531767B (en) * | 2022-04-20 | 2022-08-02 | 深圳市宝润科技有限公司 | Visual X-ray positioning method and system for handheld X-ray machine |
KR102629703B1 (en) * | 2022-11-28 | 2024-01-29 | 제이피아이헬스케어 주식회사 | Apparatus for cone beam computed tomography including thermo camera and the opesration method thereof |
Family Cites Families (74)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4041296A1 (en) | 1990-02-16 | 1991-08-22 | Siemens Ag | PRIMARY RADIATION |
JPH09508048A (en) | 1994-11-21 | 1997-08-19 | フィリップス エレクトロニクス エヌ ベー | X-ray inspection system consisting of beam diaphragm |
DE19631136A1 (en) | 1996-08-01 | 1998-02-05 | Siemens Ag | Radiological and angiographic X-ray system with motor-driven detector |
US5991362A (en) | 1996-11-15 | 1999-11-23 | Xre Corporation | Adjustable opening X-ray mask |
US6078036A (en) | 1998-05-06 | 2000-06-20 | Intraop Medical, Inc. | Laser soft docking system for medical treatment system |
US6266142B1 (en) | 1998-09-21 | 2001-07-24 | The Texas A&M University System | Noncontact position and orientation measurement system and method |
US6490475B1 (en) | 2000-04-28 | 2002-12-03 | Ge Medical Systems Global Technology Company, Llc | Fluoroscopic tracking and visualization system |
US6447164B1 (en) * | 2000-09-07 | 2002-09-10 | Ge Medical Systems Global Technology Company, Llc | X-ray imaging system with viewable beam angulation adjustment |
JP2002143139A (en) * | 2000-11-15 | 2002-05-21 | Fuji Photo Film Co Ltd | Portable radiographic system and radiographic image detector to be used for the system |
US6439769B1 (en) * | 2001-03-16 | 2002-08-27 | Ge Medical Systems Global Technology Company, Llc | Automated receptor tracking to diagnostic source assembly |
US6702459B2 (en) * | 2001-04-11 | 2004-03-09 | The Uab Research Foundation | Mobile radiography system and process |
US6935779B2 (en) * | 2002-11-29 | 2005-08-30 | Ge Medical Systems Global Technology Company, Llc | Method and apparatus for aligning an X-ray source and detector at various source to image distances |
US7190991B2 (en) | 2003-07-01 | 2007-03-13 | Xenogen Corporation | Multi-mode internal imaging |
WO2005019863A2 (en) * | 2003-08-21 | 2005-03-03 | Global Security Devices Ltd. | Method of detecting concealed objects |
DE10344364B4 (en) | 2003-09-24 | 2007-06-14 | Siemens Ag | Method for positioning a mobile X-ray detector unit of an X-ray system, X-ray system and mobile X-ray detector unit |
US7286639B2 (en) | 2003-12-12 | 2007-10-23 | Ge Medical Systems Global Technology Company, Llc | Focal spot sensing device and method in an imaging system |
JP4632409B2 (en) | 2004-07-22 | 2011-02-16 | キヤノン株式会社 | Image forming apparatus, image forming method, and program |
US20080020332A1 (en) | 2004-12-30 | 2008-01-24 | David Lavenda | Device, System And Method For Operating A Digital Radiograph |
JP4764098B2 (en) | 2005-08-10 | 2011-08-31 | キヤノン株式会社 | X-ray imaging apparatus and control method thereof |
US7280635B2 (en) | 2005-12-01 | 2007-10-09 | Thomas Louis Toth | Processes and apparatus for managing low kVp selection and dose reduction and providing increased contrast enhancement in non-destructive imaging |
US20070232885A1 (en) | 2006-03-03 | 2007-10-04 | Thomas Cook | Medical imaging examination review and quality assurance system and method |
US7627084B2 (en) | 2007-03-30 | 2009-12-01 | General Electric Compnay | Image acquisition and processing chain for dual-energy radiography using a portable flat panel detector |
JP5209935B2 (en) * | 2007-10-23 | 2013-06-12 | キヤノン株式会社 | X-ray imaging apparatus, control method for X-ray imaging apparatus, program, and storage medium |
EP2211721B1 (en) * | 2007-11-19 | 2019-07-10 | Pyronia Medical Technologies, Inc. | Patient positioning system and methods for diagnostic radiology and radiotherapy |
US8941070B2 (en) | 2008-11-19 | 2015-01-27 | General Electric Company | Portable digital image detector positioning apparatus |
JP5816095B2 (en) | 2009-01-09 | 2015-11-18 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | Imaging system gantry |
DE102009031400A1 (en) | 2009-07-01 | 2011-01-05 | Siemens Aktiengesellschaft | Device and method for computer-assisted 2D navigation |
WO2011038236A2 (en) | 2009-09-25 | 2011-03-31 | Ortho Kinematics, Inc. | Systems and devices for an integrated imaging system with real-time feedback loops and methods therefor |
JP2011092612A (en) | 2009-11-02 | 2011-05-12 | Konica Minolta Medical & Graphic Inc | Radiographic system |
FR2953119B1 (en) * | 2009-12-01 | 2012-07-27 | Gen Electric | MOBILE BASE AND X-RAY APPARATUS MOUNTED ON SUCH A MOBILE BASE |
US8694075B2 (en) | 2009-12-21 | 2014-04-08 | General Electric Company | Intra-operative registration for navigated surgical procedures |
WO2011139712A2 (en) * | 2010-04-26 | 2011-11-10 | David Chang | Medical emitter/detector imaging/alignment system and method |
US8621213B2 (en) | 2010-06-08 | 2013-12-31 | Merge Healthcare, Inc. | Remote control of medical devices using instant messaging infrastructure |
US9044191B2 (en) | 2010-06-29 | 2015-06-02 | Fujifilm Corporation | Radiographic image capturing apparatus |
JP2012066062A (en) * | 2010-08-24 | 2012-04-05 | Fujifilm Corp | Radiographic image capturing system and radiographic image capturing method |
EP2628030B1 (en) | 2010-10-15 | 2019-11-06 | American Science & Engineering, Inc. | Remotely-aligned arcuate detector array for high energy x-ray imaging |
US10285656B2 (en) * | 2010-10-18 | 2019-05-14 | Carestream Health, Inc. | X-ray imaging system and method |
US9406411B2 (en) | 2011-02-08 | 2016-08-02 | Accuray Incorporated | Automatic calibration for device with controlled motion range |
US8821015B2 (en) | 2011-03-08 | 2014-09-02 | Carestream Health, Inc. | Alignment apparatus for X-ray imaging system |
US8824638B2 (en) | 2011-08-17 | 2014-09-02 | General Electric Company | Systems and methods for making and using multi-blade collimators |
EP2955510B1 (en) | 2011-11-25 | 2018-02-21 | Aribex, Inc. | X-ray distance indicator and related methods |
US20130182829A1 (en) * | 2012-01-17 | 2013-07-18 | Aribex, Inc. | Alignment systems |
JP5695595B2 (en) | 2012-03-27 | 2015-04-08 | 株式会社リガク | X-ray measuring device |
JP2015514549A (en) | 2012-04-24 | 2015-05-21 | ポータビジョン・メディカル・エルエルシー | Mobile imaging system and method |
US9788810B2 (en) | 2015-06-25 | 2017-10-17 | Portavision Medical Llc | System and method for X-ray imaging alignment |
US10842461B2 (en) | 2012-06-21 | 2020-11-24 | Globus Medical, Inc. | Systems and methods of checking registrations for surgical systems |
US9433395B2 (en) | 2012-07-12 | 2016-09-06 | Samsung Electronics Co., Ltd. | X-ray imaging apparatus and method for controlling X-ray imaging apparatus |
CN104619254B (en) | 2012-08-17 | 2018-09-11 | 皇家飞利浦有限公司 | The vision adjustment based on camera of removable x-ray imaging system |
US9903827B2 (en) * | 2012-08-17 | 2018-02-27 | Koninklijke Philips N.V. | Handling misalignment in differential phase contrast imaging |
RU2640566C2 (en) * | 2012-08-27 | 2018-01-09 | Конинклейке Филипс Н.В. | Personal and automatic correction of x-ray system based on optical detection and interpretation of three-dimensional scene |
EP2903526B1 (en) | 2012-10-02 | 2017-09-13 | Carestream Health, Inc. | Rapid frame-rate wireless imaging |
KR102045424B1 (en) | 2012-11-12 | 2019-12-03 | 삼성디스플레이 주식회사 | X-ray generator, x-ray detector and method for taking x-ray images using the same |
CA2896873A1 (en) | 2012-12-31 | 2014-07-03 | Mako Surgical Corp. | System for image-based robotic surgery |
EP2767236A1 (en) * | 2013-02-15 | 2014-08-20 | Koninklijke Philips N.V. | X-ray collimator size and position adjustment based on pre-shot |
KR102351633B1 (en) | 2013-03-14 | 2022-01-13 | 씽크 써지컬, 인크. | Systems and methods for monitoring a surgical procedure with critical regions |
US9898782B1 (en) | 2013-06-28 | 2018-02-20 | Winklevoss Ip, Llc | Systems, methods, and program products for operating exchange traded products holding digital math-based assets |
WO2015018629A1 (en) | 2013-08-05 | 2015-02-12 | Koninklijke Philips N.V. | Tube alignment functionality for mobile radiography systems |
KR102233319B1 (en) * | 2014-01-20 | 2021-03-29 | 삼성전자주식회사 | A method for tracing a region of interest, a radiation imaging apparatus, a method for controlling the radiation imaging apparatus and a radiographic method |
US9730656B2 (en) | 2014-03-07 | 2017-08-15 | Elwha Llc | Systems, devices, and methods for lowering dental x-ray dosage including feedback sensors |
US9566040B2 (en) | 2014-05-14 | 2017-02-14 | Swissray Asia Healthcare Co., Ltd. | Automatic collimator adjustment device with depth camera and method for medical treatment equipment |
KR102340197B1 (en) | 2015-02-03 | 2021-12-16 | 삼성전자주식회사 | X ray apparatus and method of oprating the same |
JP6687394B2 (en) | 2016-01-18 | 2020-04-22 | キヤノンメディカルシステムズ株式会社 | X-ray diagnostic device and X-ray detector |
US10835199B2 (en) | 2016-02-01 | 2020-11-17 | The University Of North Carolina At Chapel Hill | Optical geometry calibration devices, systems, and related methods for three dimensional x-ray imaging |
US20170277831A1 (en) | 2016-03-25 | 2017-09-28 | Evan Ruff | System and method for generating, storing and accessing secured medical imagery |
EP3235430B1 (en) * | 2016-04-19 | 2019-06-12 | Agfa Nv | Radiation image capturing system and method |
AU2017257887B2 (en) | 2016-04-27 | 2019-12-19 | Biomet Manufacturing, Llc. | Surgical system having assisted navigation |
EP3512420B1 (en) | 2016-09-15 | 2023-06-14 | OXOS Medical, Inc. | Systems for improved imaging |
US10478149B2 (en) | 2017-02-21 | 2019-11-19 | Siemens Healthcare Gmbh | Method of automatically positioning an X-ray source of an X-ray system and an X-ray system |
EP4371519A3 (en) | 2017-06-09 | 2024-07-24 | MAKO Surgical Corp. | Tools for positioning workpieces with surgical robots |
EP3545846B1 (en) | 2018-03-26 | 2021-03-10 | Siemens Healthcare GmbH | Adjusting a collimator of an x-ray source |
EP3829444A4 (en) | 2018-08-01 | 2022-05-18 | OXOS Medical, Inc. | Improved imaging systems and methods |
US11337761B2 (en) | 2019-02-07 | 2022-05-24 | Stryker European Operations Limited | Surgical systems and methods for facilitating tissue treatment |
US20200289207A1 (en) | 2019-03-12 | 2020-09-17 | Micro C, LLC | Method of fluoroscopic surgical registration |
US11317978B2 (en) | 2019-03-22 | 2022-05-03 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
-
2017
- 2017-09-15 EP EP17851600.1A patent/EP3512420B1/en active Active
- 2017-09-15 JP JP2019515234A patent/JP6727423B2/en active Active
- 2017-09-15 US US15/706,018 patent/US10076302B2/en active Active
- 2017-09-15 ES ES17851600T patent/ES2952771T3/en active Active
- 2017-09-15 WO PCT/US2017/051774 patent/WO2018053262A1/en unknown
- 2017-09-26 US US15/716,099 patent/US11006921B2/en active Active
-
2021
- 2021-03-15 US US17/201,981 patent/US11647976B2/en active Active
-
2023
- 2023-04-06 US US18/296,562 patent/US12133758B2/en active Active
-
2024
- 2024-08-27 US US18/816,751 patent/US20240415484A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
JP6727423B2 (en) | 2020-07-22 |
EP3512420B1 (en) | 2023-06-14 |
US20210290197A1 (en) | 2021-09-23 |
US10076302B2 (en) | 2018-09-18 |
WO2018053262A1 (en) | 2018-03-22 |
US12133758B2 (en) | 2024-11-05 |
US20240415484A1 (en) | 2024-12-19 |
US20180070910A1 (en) | 2018-03-15 |
ES2952771T3 (en) | 2023-11-06 |
US20180070911A1 (en) | 2018-03-15 |
EP3512420A4 (en) | 2020-04-22 |
US11647976B2 (en) | 2023-05-16 |
US11006921B2 (en) | 2021-05-18 |
US20230240640A1 (en) | 2023-08-03 |
JP2019528900A (en) | 2019-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12133758B2 (en) | Imaging systems and methods | |
US12097065B2 (en) | Imaging systems and methods | |
US11931193B2 (en) | Imaging systems and methods | |
US9655587B2 (en) | Handheld X-ray system interface with tracking feature | |
US9239300B2 (en) | X-ray system and method for generating 3D image data | |
US20200289208A1 (en) | Method of fluoroscopic surgical registration | |
US20230414185A1 (en) | Imaging systems and methods | |
WO2023183854A1 (en) | Improved imaging systems and methods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190408 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20200325 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: A61B 5/05 20060101AFI20200319BHEP Ipc: H05G 1/56 20060101ALI20200319BHEP Ipc: H05G 1/30 20060101ALI20200319BHEP Ipc: A61B 6/00 20060101ALI20200319BHEP Ipc: A61B 5/055 20060101ALI20200319BHEP Ipc: A61B 5/06 20060101ALI20200319BHEP Ipc: A61B 6/06 20060101ALI20200319BHEP Ipc: A61B 6/02 20060101ALI20200319BHEP Ipc: A61B 6/10 20060101ALN20200319BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20210218 |
|
RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: OXOS MEDICAL, INC. |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: A61B 6/10 20060101ALN20221215BHEP Ipc: G21K 1/02 20060101ALI20221215BHEP Ipc: H04N 5/32 20060101ALI20221215BHEP Ipc: H05G 1/06 20060101ALI20221215BHEP Ipc: A61B 6/06 20060101ALI20221215BHEP Ipc: H05G 1/56 20060101ALI20221215BHEP Ipc: H05G 1/30 20060101ALI20221215BHEP Ipc: A61B 6/00 20060101ALI20221215BHEP Ipc: A61B 6/02 20060101ALI20221215BHEP Ipc: A61B 5/06 20060101ALI20221215BHEP Ipc: A61B 5/055 20060101ALI20221215BHEP Ipc: A61B 5/05 20060101AFI20221215BHEP |
|
INTG | Intention to grant announced |
Effective date: 20230109 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602017070288 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1578620 Country of ref document: AT Kind code of ref document: T Effective date: 20230715 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20230614 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230614 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230914 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2952771 Country of ref document: ES Kind code of ref document: T3 Effective date: 20231106 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1578620 Country of ref document: AT Kind code of ref document: T Effective date: 20230614 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230614 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230614 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230614 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230614 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230614 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230915 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230614 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230614 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231014 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230614 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230614 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230614 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231016 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231014 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230614 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230614 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230614 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230614 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602017070288 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230614 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230614 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230915 |
|
26N | No opposition filed |
Effective date: 20240315 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20230930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230614 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230915 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230614 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230915 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230930 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230915 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230930 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240820 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240821 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240820 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240820 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230614 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230614 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20241001 Year of fee payment: 8 |