[go: up one dir, main page]

EP3500079B1 - Liquid cooling system for an electronic board comprising a cold plate and heat sinks linked to cold plate using flexible links - Google Patents

Liquid cooling system for an electronic board comprising a cold plate and heat sinks linked to cold plate using flexible links Download PDF

Info

Publication number
EP3500079B1
EP3500079B1 EP18211441.3A EP18211441A EP3500079B1 EP 3500079 B1 EP3500079 B1 EP 3500079B1 EP 18211441 A EP18211441 A EP 18211441A EP 3500079 B1 EP3500079 B1 EP 3500079B1
Authority
EP
European Patent Office
Prior art keywords
cold plate
cooling system
liquid cooling
transfer fluid
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18211441.3A
Other languages
German (de)
French (fr)
Other versions
EP3500079A1 (en
Inventor
Marc RAETH
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bull SAS
Original Assignee
Bull SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bull SAS filed Critical Bull SAS
Publication of EP3500079A1 publication Critical patent/EP3500079A1/en
Application granted granted Critical
Publication of EP3500079B1 publication Critical patent/EP3500079B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20763Liquid cooling without phase change
    • H05K7/20772Liquid cooling without phase change within server blades for removing heat from heat source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20254Cold plates transferring heat from heat source to coolant
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20409Outer radiating structures on heat dissipating housings, e.g. fins integrated with the housing

Definitions

  • the present invention relates to a liquid cooling system for an electronic card comprising at least one calculation processor.
  • Server compute blades generally have electronic boards that give off heat and therefore need to be cooled. Initially, these electronic boards were cooled by air. However, in the case of rack mountable servers, the air circulation is not sufficient to cool the electronic boards.
  • the IBM company has developed a mixed cooling system 1 'of electronic cards 2 dual processors for a supercomputer, which is shown in the figure. figure 1 .
  • a mixed cooling system 1 'of electronic cards 2 dual processors for a supercomputer, which is shown in the figure. figure 1 .
  • Such a system comprises copper pipes 11 ′ containing a heat transfer liquid forming a liquid loop.
  • the rigidity of the copper pipes 11 'does not allow the rapid disassembly of a single processor.
  • the liquid loop ensures cooling of the processors only.
  • the rest of the dissipated power is cooled by convection in the air, which is not optimal for the energy efficiency (PUE, acronym for “ Power Usage Effectiveness ”) of the supercomputer.
  • PUE Energy Efficiency
  • the applicant has also developed a mixed 1 "cooling system (illustrated on figure 3 ) in which the electronic boards 2 are cooled by means of a cold aluminum plate 11 in which a coolant circulates, the cold plate 11 being interfaced with all the low and medium electronic components to be cooled, that is to say say all the components of an electronic card 3 excluding the high electronic components (typically processors and memory modules).
  • Processors 23 (not visible on the figure 3 ) are the most restrictive components to cool (because they must remain accessible) and also the most dissipative. They cannot be interfaced with the cold plate 11 directly. In order to ensure thermal contact with the processors 23, each of them is interfaced with an intermediate heat sink 16 with heat pipes 160 (illustrated on figure 2 ).
  • phase change two-phase heat sink 16 (generally referred to in English by the terms " Heat Spreader CPU "), which conducts the heat from the processors 23 to the cold plate 11.
  • the part of the heat pipes 160 in contact with the copper slab which interfaces the processor 23 constitutes the evaporator 162, while that in contact with the interface with the cold plate 11 constitutes the condenser 163.
  • a cooling system for an electronic card which is entirely liquid, comprising a cold plate supplied with heat transfer fluid via a water path internal to the cold plate, and a cold plate.
  • plurality of heat sinks connected in flexible connections with the water path internal to the cold plate.
  • These flexible connections form a flexible network coupled to the network of rigid channels of the cold plate supplied with heat transfer fluid (typically glycol water), thus allowing the supply of heat transfer fluid to the heat sinks.
  • heat transfer fluid typically glycol water
  • the coolant must be brought as close as possible to the heat source.
  • the Applicant has specifically developed a single-phase heat sink comprising a cooling unit made of thermally conductive material which can be supplied with heat transfer fluid.
  • the heat source formed by the processor will therefore be directly interfaced with this cooling unit (also designated in the examples by the term “water block ”) supplied with heat transfer fluid taken from the cold plate.
  • this cooling unit also designated in the examples by the term “water block ” supplied with heat transfer fluid taken from the cold plate.
  • the cooling system according to the invention thus makes it possible to guarantee the cooling of all the components of the electronic card, and this by liquid means whatever the nature of the electronic components: the low and medium components by the cold plate and the so-called components. highs such as processors and memory modules by single phase cooling block heat sinks.
  • low and medium electronic components is meant, within the meaning of the present invention, any component of the electronic card having a height less than a threshold height, below which it can be cooled by the cooling circuit of the cold plate.
  • the low and medium electronic components it is generally a power supply or a voltage regulator.
  • high electronic components is meant, within the meaning of the present invention, any component of the electronic card which is not cooled by the cooling circuit of the cold plate because they must remain accessible without dismantling the cold plate.
  • electronic components requiring rapid maintenance such as processors or memory modules.
  • the cooling system according to the invention due to its structure with cooling units connected in flexible connections with the cooling circuit of the cold plate, allows great flexibility for the disassembly of processors and guarantees reliable connections after a large number of disassembly operation cycles. A seal at 10 bars is guaranteed by the cooling system according to the invention, including after several dismantling operations.
  • the cooling system according to the invention due to its structure with cooling units connected in flexible links with the cooling circuit of the cold plate, allows the installation of a plurality of heat sinks in series or in parallel, for example six in number.
  • the heat sink of the cooling system according to the invention must moreover itself comply with a size constraint defined by the size of the processors and by the space available on the cold plates to judiciously distribute the cooling fluid.
  • the heat sink of the cooling system according to the invention also makes it possible to meet the constraints of mass production, because of its simplicity of manufacture and of assembly by flexible connections with the cold plate.
  • the middle part of the cooling block has a slot.
  • the heat transfer fluid when it arrives in the cooling unit, passes through a very fine thin slit or blade, which allows its equitable distribution in the exchange surface through the fins.
  • the shape of this distributor and its distance from the fins are studied so as to obtain the largest possible Reynolds number in the space available.
  • it will be chosen to orient the slot of the intermediate part of the cooling unit perpendicular to the direction of the fins, so as to maximize the coefficient of exchange between the fluid and the solid surface of the fins.
  • the intermediate part of the cooling block cooling may consist of a distribution plate in which the through slot is made.
  • the distribution plate may be in the substantially form of a rectangular parallelepiped, one of the sides of which is provided with a step which fits into the part of the peripheral zone of the zone of. main heat exchange is located under the input connector without covering the part of the peripheral area under said output connector.
  • fins and preferably straight fins, will be used for the support plate of the cooling unit.
  • the straight fins may have a thickness of 0.2 mm and be spaced from each other by a distance of 0.4 mm.
  • the distance between 2 fins is preferably also 0.2 mm.
  • fins makes it possible on the one hand to increase the exchange surface, and on the other hand to increase the turbulence of the flow in order to improve the heat exchange coefficient.
  • the straight fins make it possible to create a flow by jet (known under the name in English " liquid-jet ”) and to obtain turbulent flow regimes even with very low velocities and pressure losses.
  • the liquid cooling system according to the invention therefore makes it possible to combine a high heat exchange surface and an optimized convective coefficient at the center of the processor by virtue of its flow by a centered jet. It also makes it possible to obtain a reduction in the hydraulic diameter and the passage sections, which offers greater speed to the fluid and thus the convective exchanges are improved. This type of flow also makes it possible to center the peak of the convective heat transfer, unlike longitudinal flows, which do not optimize the exchange as close as possible to the processor.
  • the figure 4 schematically shows an embodiment of a liquid cooling system 1 according to the invention comprising three heat sinks 12.
  • the figure 4 shows more particularly the distribution of the heat transfer fluid 112 in a secondary network of flexible secondary channels 1111 through the heat sinks 12.
  • the complete assembly of the liquid cooling system 1 according to the invention on an electronic card 2 comprising three processors 23 (visible on the figure 5 ) is shown in the photograph of the figure 8 .
  • the electronic card 2 comprises, in addition to the processors 23, a plurality of low and medium electronic components 22 (visible by transparency on the figure 5 ) fixed on a support 21.
  • the figure 8 shows that the liquid cooling system according to the invention comprises on the one hand a cold plate 11 having external dimensions substantially equal to those of said support of the electronic card 2 so that it covers the entirety of the support 21 and of the components low electronics and means 22 which are attached thereto, and on the other hand three heat sinks 12 each comprising a main heat exchange zone 121 (visible on the figure 6 ) able to come to rest against a processor 23.
  • the cold plate 11 can advantageously be a plate made of a thermally conductive material such as aluminum. It includes a primary cooling circuit 110 (visible on the simulation of the figure 8 ) with main channels 1101 inside which circulates a heat transfer fluid 112 such as glycol water. The supply of heat transfer fluid 112 into the cold plate 11 is carried out via an inlet connector 113 and the outlet of the heat transfer fluid 112 from the cold plate 11 is made via an outlet connector 114.
  • a primary cooling circuit 110 visible on the simulation of the figure 8
  • main channels 1101 inside which circulates a heat transfer fluid 112 such as glycol water.
  • the supply of heat transfer fluid 112 into the cold plate 11 is carried out via an inlet connector 113 and the outlet of the heat transfer fluid 112 from the cold plate 11 is made via an outlet connector 114.
  • the figure 5 also shows how the liquid cooling system 1 according to the invention is associated with the primary cooling circuit 110 of the cold plate, thanks to single-phase heat sinks 12 (also visible on the figure 4 ) and a secondary circuit 111 of flexible secondary channels 1111 connected to the main channels 1101 of the primary circuit 110 by elbow connectors 1112 screwed into the cold plate 11.
  • the structure of the heat sink of the cooling system according to the invention is therefore such that the cooling unit is supplied by the heat transfer fluid 112 circulating in said cold plate 11.
  • the figure 6 is a schematic exploded view of an embodiment of a heat sink 12 usable in a liquid cooling system 1 according to the invention.
  • the heat sink that can be used in the context of the invention comprises a cooling unit 120 made of thermally conductive material comprising a lower part constituting a main heat exchange zone 121, an intermediate part 122 called the distribution part and an upper part 123 connected to the cold plate 11.
  • a through slot 8 is located in the intermediate part 122 to evenly distribute the flow of the heat transfer fluid 112 from the upper part 123 in the form of a jet centered towards a support plate 9 located in the main heat exchange zone 121.
  • This support plate 9 and comprising a hollow central part with a zone provided with fins 910 (the fins are not visible on the fig.6 ) to generate turbulence in the flow regime of said coolant 112 and a peripheral zone 911 to the zone provided with fins 910 to collect the coolant 112 and direct it towards said outlet connector 6.
  • fins 910 will be used for the support plate of the cooling unit, and preferably: straight fins.
  • the straight fins may have a thickness of 0.2 mm and be spaced from each other by a distance of 0.4 mm.
  • the through slot 8 is perpendicular to the direction of the fins 910.
  • the intermediate part 122 consists of a distribution plate 7 in which the through slot 8 is formed.
  • the distribution plate 7 is in the substantially form of a rectangular parallelepiped with one of the sides is provided with a step 71 fitting into the part of the peripheral zone 911 of the main heat exchange zone 121 located under the input connector 5, without covering the part of the peripheral zone 911 located under the output connector 6.
  • the processors will be 10 ° C less hot than if the known cooling system of the prior art shown in FIG. figure 3 (heat pipe system: see also figure 2 ) with heat pipes. Thanks to the liquid cooling system according to the invention, it is therefore possible to cool more powerful processors.
  • EXAMPLE 1 hydraulic simulation of the cooling system according to the invention with 3 cooling blocks (as shown in FIGS. 4 to 7).
  • the pressure drop target for blade balancing is 70kPa.
  • the calculated value of the overall pressure drop of the cold plate is of the order of 75Kpa, which is close to the target value.
  • EXAMPLE 2 thermal simulation of the cooling system according to the invention with 3 cooling blocks (as represented in FIGS. 4 to 7).
  • the figure 11 shows the result of a numerical simulation of the heating of the heat transfer fluid in the primary cooling circuit of the cold plate
  • the figure 12 shows the result of the temperature field of the cold plate (view from below).
  • Heat sources are applied directly to the cold plate at the location of the middle and bottom components.
  • the result of the simulation gives a plate temperature at the interface with each of the components (medium and low).

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

La présente invention concerne un système de refroidissement liquide d'une carte électronique comprenant au moins un processeur de calcul.The present invention relates to a liquid cooling system for an electronic card comprising at least one calculation processor.

Les lames de calcul pour serveur comportent généralement des cartes électroniques qui dégagent de la chaleur et doivent donc être refroidies. Initialement, ces cartes électroniques étaient refroidies par de l'air. Toutefois, dans le cas de serveurs montables sur bâti, la circulation d'air n'est pas suffisante pour refroidir les cartes électroniques.Server compute blades generally have electronic boards that give off heat and therefore need to be cooled. Initially, these electronic boards were cooled by air. However, in the case of rack mountable servers, the air circulation is not sufficient to cool the electronic boards.

Pour résoudre ce problème, des systèmes de refroidissement fluidiques ont été développés.To solve this problem, fluidic cooling systems have been developed.

Parmi les solutions connues de refroidissement de cartes électroniques, la société IBM a mis au point un système de refroidissement mixte 1' de cartes électroniques 2 double processeurs pour supercalculateur, qui est représenté sur la figure 1. Un tel système comporte des tuyaux en cuivre 11' contenant un liquide caloporteur formant une boucle liquide. Toutefois, la rigidité des tuyaux en cuivre 11' ne permet pas le démontage rapide d'un unique processeur. En outre, la boucle liquide assure le refroidissement des processeurs uniquement. Le reste de la puissance dissipée est refroidie par convection dans l'air, ce qui n'est pas optimal pour l'efficacité énergétique (PUE, acronyme désignant en anglais « Power Usage Effectiveness ») du supercalculateur.Among the known solutions for cooling electronic cards, the IBM company has developed a mixed cooling system 1 'of electronic cards 2 dual processors for a supercomputer, which is shown in the figure. figure 1 . Such a system comprises copper pipes 11 ′ containing a heat transfer liquid forming a liquid loop. However, the rigidity of the copper pipes 11 'does not allow the rapid disassembly of a single processor. In addition, the liquid loop ensures cooling of the processors only. The rest of the dissipated power is cooled by convection in the air, which is not optimal for the energy efficiency (PUE, acronym for “ Power Usage Effectiveness ”) of the supercomputer.

D'autres fabricants de cartes électroniques proposent des systèmes de refroidissement liquides dédiés uniquement aux processeurs. Ces derniers intègrent un dissipateur thermique, une pompe intégrée et un échangeur pour extraire les calories. Bien entendu, de tels dispositifs ne sont pas compatibles à des systèmes de plus grande échelle comme les supercalculateurs pour raison d'encombrement.Other electronic card manufacturers offer liquid cooling systems dedicated only to processors. These integrate a heat sink, an integrated pump and an exchanger to extract the calories. Of course, such devices are not compatible with larger scale systems such as supercomputers for reasons of space.

Le demandeur a mis au point, par ailleurs, un système de refroidissement 1" mixte (illustré sur la figure 3) dans lequel les cartes électroniques 2 sont refroidies par l'intermédiaire d'une plaque froide 11 en aluminium dans laquelle circule un liquide caloporteur, la plaque froide 11 étant interfacée avec tous les composants électroniques bas et moyens à refroidir, c'est-à-dire l'ensemble des composants d'une carte électronique 3 à l'exclusion des composants électroniques hauts (typiquement les processeurs et les barrettes mémoires). Les processeurs 23 (non visibles sur la figure 3) sont les composants les plus contraignants à refroidir (car ils doivent rester accessibles) et aussi les plus dissipatifs. Ils ne peuvent pas être interfacés avec la plaque froide 11 directement. Afin d'assurer le contact thermique avec les processeurs 23, chacun d'eux est interfacé avec un dissipateur thermique intermédiaire 16 à caloducs 160 (illustré sur la figure 2). Il s'agit d'un dissipateur thermique 16 diphasique à changement de phase (généralement désigné en anglais par les termes « Heat Spreader CPU »), qui conduit la chaleur des processeurs 23 vers la plaque froide 11. La partie des caloducs 160 en contact avec la dalle en cuivre qui interface le processeur 23 constitue l'évaporateur 162, tandis que celle en contact avec l'interface avec la plaque froide 11 constitue le condenseur 163. Cette solution est décrite de manière plus détaillée dans les demandes de brevet européen EP 2770809 et EP 2770810 appartenant au Demandeur.The applicant has also developed a mixed 1 "cooling system (illustrated on figure 3 ) in which the electronic boards 2 are cooled by means of a cold aluminum plate 11 in which a coolant circulates, the cold plate 11 being interfaced with all the low and medium electronic components to be cooled, that is to say say all the components of an electronic card 3 excluding the high electronic components (typically processors and memory modules). Processors 23 (not visible on the figure 3 ) are the most restrictive components to cool (because they must remain accessible) and also the most dissipative. They cannot be interfaced with the cold plate 11 directly. In order to ensure thermal contact with the processors 23, each of them is interfaced with an intermediate heat sink 16 with heat pipes 160 (illustrated on figure 2 ). This is a phase change two-phase heat sink 16 (generally referred to in English by the terms " Heat Spreader CPU "), which conducts the heat from the processors 23 to the cold plate 11. The part of the heat pipes 160 in contact with the copper slab which interfaces the processor 23 constitutes the evaporator 162, while that in contact with the interface with the cold plate 11 constitutes the condenser 163. This solution is described in more detail in the patent applications. European EP 2770809 and EP 2770810 belonging to the Applicant.

Cette solution de refroidissement des processeurs à l'aide de caloducs présente également des inconvénients, et en particulier :

  • des limites thermiques spécifiques aux caloducs : l'écoulement à l'intérieur d'un caloduc est diphasique et est régi par cinq limites en termes d'écoulement, de viscosité, d'ébullition, d'entrainement, de capillarité) qui dépendent des dimensions des caloducs et de la puissance à évacuer.
  • des limites mécaniques : l'augmentation du nombre de caloducs entraine une augmentation de la rigidité de l'ensemble. Or, afin de compenser les écarts de tolérances il est indispensable que le dissipateur se déforme suffisamment.
  • un nombre élevé d'interfaces thermiques amovibles : des contacts thermiques doivent être assurés entre la plaque froide et le dissipateur thermique d'une part, et entre le dissipateur thermique et le processeur. Ces contacts thermiques sont dans la solution actuelle mise en place par le demandeur garantis par l'utilisation de graisse conductrice, présentant l'inconvénient de générer un gradient de température élevé.
  • la complexité et le coût de la solution globale : les surfaces d'échanges solide/fluide sont actuellement au niveau de la plaque froide. La complexité de celle-ci au niveau des dissipateurs thermiques augmente considérablement les usinages dans la plaque froide et ainsi le coût de fabrication.
This solution for cooling processors using heat pipes also has drawbacks, and in particular:
  • thermal limits specific to heat pipes: the flow inside a heat pipe is two-phase and is governed by five limits in terms of flow, viscosity, boiling, entrainment, capillarity) which depend on the dimensions of the heat pipes and the power to be removed.
  • mechanical limits: the increase in the number of heat pipes leads to an increase in the rigidity of the assembly. However, in order to compensate for the deviations in tolerances, it is essential that the dissipator deforms sufficiently.
  • a high number of removable thermal interfaces: thermal contacts must be ensured between the cold plate and the heat sink on the one hand, and between the heat sink and the processor. These thermal contacts are in the current solution implemented by the applicant guaranteed by the use of conductive grease, having the drawback of generating a high temperature gradient.
  • the complexity and the cost of the global solution: the solid / fluid exchange surfaces are currently at the level of the cold plate. The complexity of this at the level of the heat sinks considerably increases the machining operations in the cold plate and thus the manufacturing cost.

Pour résoudre les défauts et inconvénients susmentionnés, le déposant a donc mis au point un système de refroidissement pour une carte électronique qui est entièrement liquide, comprenant une plaque froide alimentée en fluide caloporteur via un chemin d'eau interne à la plaque froide, et une pluralité de dissipateurs thermiques reliés en liaisons souples avec le chemin d'eau interne à la plaque froide. Ces liaisons souples forment un réseau flexible couplé au réseau de canaux rigides de la plaque froide alimenté en fluide caloporteur (typiquement de l'eau glycolée), permettant ainsi l'alimentation en fluide caloporteur des dissipateurs thermiques. Ce réseau devra être couplé au système de plaque froide permettant le refroidissement du reste de la carte électronique.To resolve the aforementioned defects and drawbacks, the applicant has therefore developed a cooling system for an electronic card which is entirely liquid, comprising a cold plate supplied with heat transfer fluid via a water path internal to the cold plate, and a cold plate. plurality of heat sinks connected in flexible connections with the water path internal to the cold plate. These flexible connections form a flexible network coupled to the network of rigid channels of the cold plate supplied with heat transfer fluid (typically glycol water), thus allowing the supply of heat transfer fluid to the heat sinks. This network must be coupled to the cold plate system allowing the cooling of the rest of the electronic board.

Pour optimiser au maximum le refroidissement du processeur, le liquide caloporteur doit être amené au plus proche de la source de chaleur. A cette fin, le Demandeur a mis spécifiquement au point un dissipateur thermique monophasique comportant un bloc de refroidissement en matériau thermoconducteur pouvant être alimenté en fluide caloporteur. La source de chaleur que constitue le processeur sera donc directement interfacée avec ce bloc de refroidissement (également désigné dans les exemples par le terme en anglais « waterblock ») alimenté en fluide caloporteur prélevé de la plaque froide. Un tel système de refroidissement intégré répond aux contraintes d'efficacité thermiques, de compacité mécanique et de maintenabilité nécessaire pour ce type de matériel informatique haute performance.To optimize the cooling of the processor as much as possible, the coolant must be brought as close as possible to the heat source. To this end, the Applicant has specifically developed a single-phase heat sink comprising a cooling unit made of thermally conductive material which can be supplied with heat transfer fluid. The heat source formed by the processor will therefore be directly interfaced with this cooling unit ( also designated in the examples by the term “water block ”) supplied with heat transfer fluid taken from the cold plate. Such an integrated cooling system meets the constraints of thermal efficiency, mechanical compactness and maintainability necessary for this type of high performance computer hardware.

Plus particulièrement, la présente invention a donc pour objet un système de refroidissement liquide d'une carte électronique comprenant un support, une pluralité de composants électroniques fixés sur ledit support se décomposant en composants électroniques bas et moyens et en composants électroniques hauts (de préférence des processeurs), ledit système comprenant :

  • une plaque froide présentant des dimensions extérieures sensiblement égales à celles dudit support de la carte électronique de sorte qu'elle recouvre l'intégralité du support et lesdits composants électroniques bas et moyens, ladite plaque froide étant une plaque réalisée en un matériau thermique conducteur et comprenant un circuit primaire de refroidissement avec des canaux principaux (de préférence rigides) à l'intérieur desquels circule un fluide caloporteur, l'alimentation en fluide caloporteur dans ladite plaque froide étant réalisée via un connecteur d'entrée et la sortie dudit fluide caloporteur hors de la plaque froide se faisant via un connecteur de sortie,
  • une pluralité de dissipateurs thermiques comprenant chacun une zone d'échange thermique principale apte à venir en appui contre un composant électronique haut,
ledit système de refroidissement liquide étant caractérisé en ce qu'il comporte en outre un circuit secondaire de canaux secondaires flexibles connectés aux canaux principaux du circuit primaire par des connecteurs coudés fixés dans ladite plaque froide (par exemple par vissage dans la plaque froide), et
en ce que lesdits dissipateurs thermiques (12) sont des dissipateurs thermiques monophasiques qui comprennent chacun :
  • ▪ un bloc de refroidissement en matériau thermoconducteur (typiquement en aluminium ou alliage d'aluminium) comprenant une partie inférieure constituant la zone d'échange thermique principale, une partie intermédiaire dite de répartition et une partie supérieure connectée à la plaque froide,
  • ▪ un canal d'entrée et un canal de sortie qui sont connectés d'une part à la partie supérieure dudit bloc de refroidissement par l'intermédiaire respectivement d'un connecteur d'entrée et d'un connecteur de sortie, et d'autre part à un canal secondaire flexible du circuit secondaire via un connecteur coudé, de sorte que ledit bloc de refroidissement est alimenté par ledit fluide caloporteur circulant dans ladite plaque froide, lesdits connecteurs coudés étant aptes à permettre la rotation desdits canaux d'entrée et de sortie par rapport audit canal secondaire flexible auquel ils sont connectés, et
en ce que ledit bloc de refroidissement comprend en outre:
  • ▪ une fente traversante située dans la partie intermédiaire pour répartir de manière homogène l'écoulement dudit fluide caloporteur en provenance de la partie supérieure sous forme de jet centré vers
  • ▪ une plaque support située dans la zone d'échange thermique principale et comportant une partie centrale creuse avec une zone munie d'ailettes ou de picots pour générer de la turbulence dans le régime d'écoulement dudit fluide caloporteur et une zone périphérique à ladite zone munie d'ailettes ou de picots pour recueillir le fluide caloporteur et le diriger vers ledit connecteur de sortie.
More particularly, the subject of the present invention is therefore a liquid cooling system for an electronic card comprising a support, a plurality of electronic components fixed on said support breaking down into low and medium electronic components and high electronic components (preferably high electronic components). processors), said system comprising:
  • a cold plate having external dimensions substantially equal to those of said support of the electronic card so that it covers the entire support and said low and middle electronic components, said cold plate being a plate made of a thermally conductive material and comprising a primary cooling circuit with main channels (preferably rigid) inside which circulates a heat transfer fluid, the supply of heat transfer fluid into said cold plate being carried out via an inlet connector and the outlet of said fluid coolant outside the cold plate via an output connector,
  • a plurality of heat sinks each comprising a main heat exchange zone able to bear against a high electronic component,
said liquid cooling system being characterized in that it further comprises a secondary circuit of flexible secondary channels connected to the main channels of the primary circuit by elbow connectors fixed in said cold plate (for example by screwing into the cold plate), and
in that said heat sinks (12) are single phase heat sinks which each comprise:
  • ▪ a cooling block made of thermally conductive material (typically aluminum or aluminum alloy) comprising a lower part constituting the main heat exchange zone, an intermediate so-called distribution part and an upper part connected to the cold plate,
  • ▪ an input channel and an output channel which are connected on the one hand to the upper part of said cooling unit via an input connector and an output connector respectively, and on the other hand part to a flexible secondary channel of the secondary circuit via an elbow connector, so that said cooling unit is supplied by said heat transfer fluid circulating in said cold plate, said elbow connectors being able to allow rotation of said inlet and outlet channels with respect to said flexible secondary channel to which they are connected, and
in that said cooling block further comprises:
  • ▪ a through slot located in the intermediate part to distribute evenly the flow of said heat transfer fluid from the upper part in the form of a jet centered towards
  • ▪ a support plate located in the main heat exchange zone and comprising a hollow central part with a zone provided with fins or pins to generate turbulence in the flow regime of said heat transfer fluid and a zone peripheral to said zone provided with fins or pins to collect the heat transfer fluid and direct it towards said outlet connector.

Le système de refroidissement selon l'invention permet ainsi de garantir le refroidissement de tous les composants de la carte électronique, et ce par voie liquide quelle que soit la nature des composants électroniques : les composants bas et moyens par la plaque froide et les composants dits hauts tels que les processeurs et les barrettes mémoires par les dissipateurs thermiques monophasiques à bloc de refroidissement.The cooling system according to the invention thus makes it possible to guarantee the cooling of all the components of the electronic card, and this by liquid means whatever the nature of the electronic components: the low and medium components by the cold plate and the so-called components. highs such as processors and memory modules by single phase cooling block heat sinks.

Par composants électroniques bas et moyens, on entend, au sens de la présente invention, tout composant de la carte électronique présentant une hauteur inférieure à une hauteur seuil, au-dessous de laquelle il peut être refroidi par le circuit de refroidissement la plaque froide. Pour ce qui concerne les composants électroniques bas et moyens, il s'agit en général d'alimentation ou de régulateur de tension.By low and medium electronic components is meant, within the meaning of the present invention, any component of the electronic card having a height less than a threshold height, below which it can be cooled by the cooling circuit of the cold plate. As regards the low and medium electronic components, it is generally a power supply or a voltage regulator.

Par composants électroniques hauts, on entend, au sens de la présente invention, tout composant de la carte électronique qui n'est pas refroidi par le circuit de refroidissement la plaque froide car ils doivent rester accessibles sans démontage de la plaque froide. Il s'agit de composants électroniques nécessitant une maintenance rapide comme les processeurs ou les barrettes mémoires.By high electronic components is meant, within the meaning of the present invention, any component of the electronic card which is not cooled by the cooling circuit of the cold plate because they must remain accessible without dismantling the cold plate. These are electronic components requiring rapid maintenance such as processors or memory modules.

Le système de refroidissement selon l'invention, en raison de sa structure avec blocs de refroidissement reliés en liaisons souples avec le circuit de refroidissement de la plaque froide, permet une grande flexibilité pour le démontage des processeurs et garantit une fiabilité des connexions après un grand nombre de cycles d'opération de démontage. Une étanchéité à 10 bars est garantie par le système de refroidissement selon l'invention, y compris après plusieurs opération de démontage.The cooling system according to the invention, due to its structure with cooling units connected in flexible connections with the cooling circuit of the cold plate, allows great flexibility for the disassembly of processors and guarantees reliable connections after a large number of disassembly operation cycles. A seal at 10 bars is guaranteed by the cooling system according to the invention, including after several dismantling operations.

Le système de refroidissement selon l'invention, en raison de sa structure avec blocs de refroidissement reliés en liaisons souples avec le circuit de refroidissement de la plaque froide, permet l'implantation d'une pluralité de dissipateurs de chaleur en série ou en parallèle, par exemple au nombre de six.The cooling system according to the invention, due to its structure with cooling units connected in flexible links with the cooling circuit of the cold plate, allows the installation of a plurality of heat sinks in series or in parallel, for example six in number.

Le dissipateur thermique du système de refroidissement selon l'invention doit d'ailleurs lui-même respecter une contrainte d'encombrement défini par la taille des processeurs et par la place disponible sur les plaques froides pour répartir judicieusement le fluide de refroidissement.The heat sink of the cooling system according to the invention must moreover itself comply with a size constraint defined by the size of the processors and by the space available on the cold plates to judiciously distribute the cooling fluid.

Le dissipateur thermique du système de refroidissement selon l'invention permet en outre de répondre à des contraintes de fabrication en grande série, en raison de sa simplicité de fabrication et d'assemblage par liaisons souples avec la plaque froide.The heat sink of the cooling system according to the invention also makes it possible to meet the constraints of mass production, because of its simplicity of manufacture and of assembly by flexible connections with the cold plate.

La partie intermédiaire du bloc de refroidissement comporte une fente. Dans cette configuration, le fluide caloporteur, lorsqu'il arrive dans le bloc de refroidissement, traverse une fine fente très fine ou lame, qui permet sa répartition équitable dans la surface d'échange au travers des ailettes. La forme de ce répartiteur et sa distance par rapport aux ailettes sont étudiés de manière à obtenir un nombre de Reynolds le plus grand possible dans l'encombrement disponible.The middle part of the cooling block has a slot. In this configuration, the heat transfer fluid, when it arrives in the cooling unit, passes through a very fine thin slit or blade, which allows its equitable distribution in the exchange surface through the fins. The shape of this distributor and its distance from the fins are studied so as to obtain the largest possible Reynolds number in the space available.

De préférence, on choisira d'orienter la fente de la partie intermédiaire du bloc de refroidissement perpendiculairement à la direction des ailettes, de manière à maximiser le coefficient d'échange entre le fluide et la surface solide des ailettes.Preferably, it will be chosen to orient the slot of the intermediate part of the cooling unit perpendicular to the direction of the fins, so as to maximize the coefficient of exchange between the fluid and the solid surface of the fins.

Selon un mode de réalisation avantageux du bloc de refroidissement, la partie intermédiaire du bloc de refroidissement peut être constituée d'une plaque de répartition dans laquelle est pratiquée la fente traversante.According to an advantageous embodiment of the cooling block, the intermediate part of the cooling block cooling may consist of a distribution plate in which the through slot is made.

Dans un tel mode de réalisation, la plaque de répartition peut se présenter sous la forme sensiblement d'un parallélépipède rectangle dont l'un des côtés est muni d'une marche s'emboitant dans la partie de la zone périphérique de la zone d'échange thermique principale est située sous le connecteur d'entrée sans recouvrir la partie de la zone périphérique sous ledit connecteur de sortie.In such an embodiment, the distribution plate may be in the substantially form of a rectangular parallelepiped, one of the sides of which is provided with a step which fits into the part of the peripheral zone of the zone of. main heat exchange is located under the input connector without covering the part of the peripheral area under said output connector.

Selon un mode de réalisation avantageux du bloc de refroidissement, on utilisera pour la plaque support du bloc de refroidissement des ailettes, et de préférence des ailettes droites. Dans ce cas, les ailettes droites peuvent présenter une épaisseur de 0,2 mm et être espacées les unes des autres d'une distance de 0,4 mm. L'écart entre 2 ailettes est de préférence de 0,2 mm également.According to an advantageous embodiment of the cooling unit, fins, and preferably straight fins, will be used for the support plate of the cooling unit. In this case, the straight fins may have a thickness of 0.2 mm and be spaced from each other by a distance of 0.4 mm. The distance between 2 fins is preferably also 0.2 mm.

L'utilisation d'ailettes permet d'une part d'augmenter la surface d'échange, et d'autre part d'augmenter la turbulence de l'écoulement pour améliorer le coefficient d'échange thermique.The use of fins makes it possible on the one hand to increase the exchange surface, and on the other hand to increase the turbulence of the flow in order to improve the heat exchange coefficient.

Les ailettes droites permettent de créer un écoulement par jet (connu sous la dénomination en anglais « liquid-jet ») et d'obtenir des régimes d'écoulements turbulents même avec des vitesses et des pertes de pression très faibles.The straight fins make it possible to create a flow by jet (known under the name in English " liquid-jet ") and to obtain turbulent flow regimes even with very low velocities and pressure losses.

Le système de refroidissement liquide selon l'invention permet donc de combiner une surface d'échange élevée et un coefficient convectif optimisé au centre du processeur grâce à son écoulement par jet centré. Il permet en outre d'obtenir une réduction du diamètre hydraulique et des sections de passage, ce qui offre une plus grande vitesse au fluide et ainsi les échanges convectifs sont améliorés. Ce type d'écoulement permet aussi de centrer le pic du transfert de chaleur convectif contrairement aux écoulements longitudinaux, qui n'optimisent pas l'échange au plus proche du processeur.The liquid cooling system according to the invention therefore makes it possible to combine a high heat exchange surface and an optimized convective coefficient at the center of the processor by virtue of its flow by a centered jet. It also makes it possible to obtain a reduction in the hydraulic diameter and the passage sections, which offers greater speed to the fluid and thus the convective exchanges are improved. This type of flow also makes it possible to center the peak of the convective heat transfer, unlike longitudinal flows, which do not optimize the exchange as close as possible to the processor.

D'autres avantages et particularités de la présente invention résulteront des exemples ci-après qui va suivre, donnés à titre d'exemple non limitatif et en référence aux figures annexées :

  • la figure 1 montre un système de refroidissement mixte d'une carte électronique double processeur de l'art antérieur;
  • la figure 2 un dissipateur thermique diphasique d'un système de refroidissement de carte électronique connu de l'art antérieur et appartenant au Demandeur,
  • la figure 3 montre le système de refroidissement connu de l'art antérieur intégrant le dissipateur thermique illustré sur la figure 2,
  • la figure 4 est une représentation schématique du système de refroidissement liquide selon l'invention, montrant la répartition du fluide caloporteur dans les canaux secondaires flexibles au travers des dissipateurs thermiques ;
  • la figure 5 est une photographie montrant, dans un système de refroidissement liquide selon l'invention comportant une pluralité de ces blocs de refroidissement, la cinématique de rotation de l'un de ces blocs par rapport à un canal du circuit secondaire de refroidissement
  • la figure 6 est une vue éclatée schématique d'un mode de réalisation d'un dissipateur thermique utilisable dans un système de refroidissement liquide selon l'invention ;
  • la figure 7 est une photographie montrant le montage complet du système de refroidissement liquide selon l'invention sur trois cartes électroniques comportant chacune un processeur ;
  • La figure 8 montre le résultat d'une simulation numérique de l'évolution de la perte de charge dans le circuit de refroidissement primaire de la plaque froide, faisant partie d'un système de refroidissement liquide selon l'invention à 3 blocs de refroidissement ;
  • la figure 9 est une représentation schématique du modèle hydraulique simplifié du système de refroidissement liquide selon l'invention correspondant à celui pour lequel la simulation numérique illustrée sur la figure 9 a été réalisée ;
  • La figure 10 montre le résultat d'une simulation numérique de l'évolution du champ de vitesses dans le circuit de refroidissement primaire de la plaque froide, faisant partie d'un système de refroidissement liquide selon l'invention correspondant à celui des figures 9 et 10 ;
  • La figure 11 montre le résultat d'une simulation numérique de l'échauffement du fluide caloporteur dans le circuit de refroidissement primaire de la plaque froide, faisant partie d'un système de refroidissement liquide selon l'invention correspondant à celui des figures 9, 10 et 11 ; dans cette figure on observe également l'échauffement du fluide dans les tuyaux représentatif du bloc de refroidissement ;
  • La figure 12 montre le résultat du champ de températures de la plaque froide (vue de dessous, c'est-à-dire du côté de la carte électronique).
Other advantages and features of the present invention will result from the examples below which will follow, given by way of non-limiting example and with reference to the appended figures:
  • the figure 1 shows a mixed cooling system of a dual processor electronic card of the prior art;
  • the figure 2 a two-phase heat sink of an electronic card cooling system known from the prior art and belonging to the Applicant,
  • the figure 3 shows the cooling system known from the prior art incorporating the heat sink illustrated on figure 2 ,
  • the figure 4 is a schematic representation of the liquid cooling system according to the invention, showing the distribution of the heat transfer fluid in the flexible secondary channels through the heat sinks;
  • the figure 5 is a photograph showing, in a liquid cooling system according to the invention comprising a plurality of these cooling blocks, the kinematics of rotation of one of these blocks with respect to a channel of the secondary cooling circuit
  • the figure 6 is a schematic exploded view of an embodiment of a heat sink usable in a liquid cooling system according to the invention;
  • the figure 7 is a photograph showing the complete assembly of the liquid cooling system according to the invention on three electronic boards each comprising a processor;
  • The figure 8 shows the result of a numerical simulation of the evolution of the pressure drop in the circuit of primary cooling of the cold plate, forming part of a liquid cooling system according to the invention with 3 cooling blocks;
  • the figure 9 is a schematic representation of the simplified hydraulic model of the liquid cooling system according to the invention corresponding to that for which the digital simulation illustrated on figure 9 was realized ;
  • The figure 10 shows the result of a numerical simulation of the evolution of the speed field in the primary cooling circuit of the cold plate, forming part of a liquid cooling system according to the invention corresponding to that of the figures 9 and 10;
  • The figure 11 shows the result of a digital simulation of the heating of the heat transfer fluid in the primary cooling circuit of the cold plate, forming part of a liquid cooling system according to the invention corresponding to that of the figures 9 , 10 and 11 ; in this figure, the heating of the fluid in the pipes representative of the cooling unit is also observed;
  • The figure 12 shows the result of the temperature field of the cold plate (seen from below, that is to say from the side of the electronic board).

Pour plus de clarté, les éléments identiques ou similaires sont repérés sur ces figures par des signes de références identiques sur l'ensemble des figures.For greater clarity, identical or similar elements are identified in these figures by identical reference signs in all of the figures.

Les figures 1 à 3 sont décrites plus en détail au niveau de la partie de la description qui précède, relative à la description des solutions connues de l'art antérieur.The figures 1 to 3 are described in more detail in the part of the preceding description relating to the description of the solutions known from the prior art.

Les figures 4 à 8 sont décrites plus en détail au niveau de la partie de la description qui suit, relative à la description détaillée d'un mode de réalisation du système de refroidissement liquide selon l'invention.The figures 4 to 8 are described in more detail in the part of the description which follows, relating to the description detail of an embodiment of the liquid cooling system according to the invention.

Les figures 9 à 14 sont décrites plus en détail au niveau des exemples qui suivent, qui illustrent l'invention sans en limiter la portée.The figures 9 to 14 are described in more detail in the examples which follow, which illustrate the invention without limiting its scope.

DESCRIPTION D'UN MODE DE REALISATIONDESCRIPTION OF AN EMBODIMENT

La figure 4 représente schématiquement un mode de réalisation d'un système de refroidissement liquide 1 selon l'invention comportant trois dissipateurs thermiques 12. La figure 4 montre plus particulièrement distribution du fluide caloporteur 112 dans un réseau secondaire de canaux secondaires flexibles 1111 au travers des dissipateurs thermiques 12.The figure 4 schematically shows an embodiment of a liquid cooling system 1 according to the invention comprising three heat sinks 12. The figure 4 shows more particularly the distribution of the heat transfer fluid 112 in a secondary network of flexible secondary channels 1111 through the heat sinks 12.

Le montage complet du système de refroidissement liquide 1 selon l'invention sur une carte électronique 2 comportant trois processeurs 23 (visibles sur la figure 5) est montré sur la photographie de la figure 8. La carte électronique 2 comprend, outre les processeurs 23, une pluralité de composants électroniques bas et moyens 22 (visibles par transparence sur la figure 5) fixés sur un support 21.The complete assembly of the liquid cooling system 1 according to the invention on an electronic card 2 comprising three processors 23 (visible on the figure 5 ) is shown in the photograph of the figure 8 . The electronic card 2 comprises, in addition to the processors 23, a plurality of low and medium electronic components 22 (visible by transparency on the figure 5 ) fixed on a support 21.

La figure 8 montre que le système de refroidissement liquide selon l'invention comprend d'une part une plaque froide 11 présentant des dimensions extérieures sensiblement égales à celles dudit support de la carte électronique 2 de sorte qu'elle recouvre l'intégralité du support 21 et des composants électroniques bas et moyens 22 qui y sont fixés, et d'autre part trois dissipateurs thermiques 12 comprenant chacun une zone d'échange thermique principale 121 (visible sur la figure 6) apte à venir en appui contre un processeur 23.The figure 8 shows that the liquid cooling system according to the invention comprises on the one hand a cold plate 11 having external dimensions substantially equal to those of said support of the electronic card 2 so that it covers the entirety of the support 21 and of the components low electronics and means 22 which are attached thereto, and on the other hand three heat sinks 12 each comprising a main heat exchange zone 121 (visible on the figure 6 ) able to come to rest against a processor 23.

La plaque froide 11 peut être avantageusement une plaque réalisée en un matériau thermique conducteur tel que l'aluminium. Elle comprend un circuit primaire de refroidissement 110 (visible sur la simulation de la figure 8) avec des canaux principaux 1101 à l'intérieur desquels circule un fluide caloporteur 112 tel que de l'eau glycolée. L'alimentation en fluide caloporteur 112 dans la plaque froide 11 est réalisée via un connecteur d'entrée 113 et la sortie du fluide caloporteur 112 hors de la plaque froide 11 se faisant via un connecteur de sortie 114.The cold plate 11 can advantageously be a plate made of a thermally conductive material such as aluminum. It includes a primary cooling circuit 110 (visible on the simulation of the figure 8 ) with main channels 1101 inside which circulates a heat transfer fluid 112 such as glycol water. The supply of heat transfer fluid 112 into the cold plate 11 is carried out via an inlet connector 113 and the outlet of the heat transfer fluid 112 from the cold plate 11 is made via an outlet connector 114.

La figure 5 montre par ailleurs comment le système de refroidissement liquide 1 selon l'invention est associé au circuit primaire de refroidissement 110 de la plaque froide, grâce à des dissipateurs thermiques monophasiques 12 (visibles également sur la figure 4) et un circuit secondaire 111 de canaux secondaires flexibles 1111 connectés aux canaux principaux 1101 du circuit primaire 110 par des connecteurs coudés 1112 vissés dans la plaque froide 11.The figure 5 also shows how the liquid cooling system 1 according to the invention is associated with the primary cooling circuit 110 of the cold plate, thanks to single-phase heat sinks 12 (also visible on the figure 4 ) and a secondary circuit 111 of flexible secondary channels 1111 connected to the main channels 1101 of the primary circuit 110 by elbow connectors 1112 screwed into the cold plate 11.

Les dissipateurs thermiques 12 sont des dissipateurs thermiques monophasiques qui comprennent chacun (voir également la figure 4) :

  • ▪ un bloc de refroidissement 120 en matériau thermoconducteur
  • un canal d'entrée 3 et un canal de sortie 4 qui sont connectés d'une part à la partie supérieure 123 dudit bloc de refroidissement 120 par l'intermédiaire respectivement d'un connecteur d'entrée 5 et d'un connecteur de sortie 6, et d'autre part à un canal secondaire flexible 1111 du circuit secondaire 111 via un connecteur coudé 1223, 1224.
The heat sinks 12 are single phase heat sinks which each include (see also figure 4 ):
  • ▪ a cooling block 120 in thermally conductive material
  • ▪ an input channel 3 and an output channel 4 which are connected on the one hand to the upper part 123 of said cooling unit 120 by means of an input connector 5 and an output connector respectively 6, and on the other hand to a flexible secondary channel 1111 of the secondary circuit 111 via an elbow connector 1223, 1224.

La structure du dissipateur thermique du système de refroidissement selon l'invention est donc telle que le bloc de refroidissement est alimenté par le fluide caloporteur 112 circulant dans ladite plaque froide 11.The structure of the heat sink of the cooling system according to the invention is therefore such that the cooling unit is supplied by the heat transfer fluid 112 circulating in said cold plate 11.

La figure 5 montre clairement que ces connecteurs coudés 1223, 1224 permettent la rotation des canaux d'entrée et de sortie 3, 4 par rapport au canal secondaire flexible 1111 auquel ils sont connectés.The figure 5 clearly shows that these angled connectors 1223, 1224 allow the rotation of the inlet and outlet channels 3, 4 with respect to the flexible secondary channel 1111 to which they are connected.

La figure 6 est une vue éclatée schématique d'un mode de réalisation d'un dissipateur thermique 12 utilisable dans un système de refroidissement liquide 1 selon l'invention. Cette figure montre que le dissipateur thermique utilisable dans le cadre de l'invention comprend un bloc de refroidissement 120 en matériau thermoconducteur comprenant une partie inférieure constituant une zone d'échange thermique principale 121, une partie intermédiaire 122 dite de répartition et une partie supérieure 123 connectée à la plaque froide 11. Une fente traversante 8 est située dans la partie intermédiaire 122 pour répartir de manière homogène l'écoulement du fluide caloporteur 112 en provenance de la partie supérieure 123 sous forme de jet centré vers une plaque support 9 située dans la zone d'échange thermique principale 121. Cette plaque support 9 et comportant une partie centrale creuse avec une zone munie d'ailettes 910 (les ailettes ne sont pas visibles sur la fig.6) pour générer de la turbulence dans le régime d'écoulement dudit fluide caloporteur 112 et une zone périphérique 911 à la zone munie d'ailettes 910 pour recueillir le fluide caloporteur 112 et le diriger vers ledit connecteur de sortie 6.The figure 6 is a schematic exploded view of an embodiment of a heat sink 12 usable in a liquid cooling system 1 according to the invention. This figure shows that the heat sink that can be used in the context of the invention comprises a cooling unit 120 made of thermally conductive material comprising a lower part constituting a main heat exchange zone 121, an intermediate part 122 called the distribution part and an upper part 123 connected to the cold plate 11. A through slot 8 is located in the intermediate part 122 to evenly distribute the flow of the heat transfer fluid 112 from the upper part 123 in the form of a jet centered towards a support plate 9 located in the main heat exchange zone 121. This support plate 9 and comprising a hollow central part with a zone provided with fins 910 (the fins are not visible on the fig.6 ) to generate turbulence in the flow regime of said coolant 112 and a peripheral zone 911 to the zone provided with fins 910 to collect the coolant 112 and direct it towards said outlet connector 6.

Selon un mode de réalisation avantageux du bloc de refroidissement, on utilisera pour la plaque support du bloc de refroidissement des ailettes 910, et de préférence: des ailettes droites. Dans ce cas, les ailettes droites peuvent présenter une épaisseur de 0,2 mm et être espacées les unes des autres d'une distance de 0,4 mm.According to an advantageous embodiment of the cooling unit, fins 910 will be used for the support plate of the cooling unit, and preferably: straight fins. In this case, the straight fins may have a thickness of 0.2 mm and be spaced from each other by a distance of 0.4 mm.

Selon un mode de réalisation avantageux du bloc de refroidissement, la fente traversante 8 est perpendiculaire à la direction des ailettes 910.According to an advantageous embodiment of the cooling unit, the through slot 8 is perpendicular to the direction of the fins 910.

Selon un mode de réalisation avantageux du bloc de refroidissement, la partie intermédiaire 122 est constituée d'une plaque de répartition 7 dans laquelle est pratiquée la fente traversante 8. La plaque de répartition 7 se présente sous la forme sensiblement d'un parallélépipède rectangle dont l'un des côtés est muni d'une marche 71 s'emboitant dans la partie de la zone périphérique 911 de la zone d'échange thermique principale 121 située sous le connecteur d'entrée 5, sans recouvrir la partie de la zone périphérique 911 située sous le connecteur de sortie 6.According to an advantageous embodiment of the cooling unit, the intermediate part 122 consists of a distribution plate 7 in which the through slot 8 is formed. The distribution plate 7 is in the substantially form of a rectangular parallelepiped with one of the sides is provided with a step 71 fitting into the part of the peripheral zone 911 of the main heat exchange zone 121 located under the input connector 5, without covering the part of the peripheral zone 911 located under the output connector 6.

Grâce au système de refroidissement liquide selon l'invention 1, les processeurs seront 10°C moins chauds que si l'on utilisait le système de refroidissement connu de l'art antérieur représenté sur la figure 3 (système à caloducs : voir également la figure 2) à caloducs. Grâce au système de refroidissement liquide selon l'invention, il est donc possible de refroidir des processeurs plus puissants.Thanks to the liquid cooling system according to the invention 1, the processors will be 10 ° C less hot than if the known cooling system of the prior art shown in FIG. figure 3 (heat pipe system: see also figure 2 ) with heat pipes. Thanks to the liquid cooling system according to the invention, it is therefore possible to cool more powerful processors.

EXEMPLESEXAMPLES

On simule le comportement hydraulique du système de refroidissement liquide selon l'invention (à trois processeurs) tel que représenté sur les figures 4 à 8.The hydraulic behavior of the liquid cooling system according to the invention (with three processors) as shown in the diagrams is simulated. figures 4 to 8 .

CONDITIONS DE CALCULCALCULATION CONDITIONS

Les conditions de calculs sont les suivantes :

  • Modèle simulant la conduction et la convection avec le fluide caloporteur, la convection naturelle et le rayonnement avec l'air ambiant autour de la plaque froide étant négligés ;
  • Débit entrée de lame = 3 l/min (5.10-5 m3/s);
  • Température du fluide caloporteur en entrée de lame = 44°C ;
  • Fluide caloporteur utilisé : PEG MB633 (mélange eau + PEG)
Cibles de perte de charges pour équilibrage des lames : 70kPa Cible de ΔTentrée-sortie sur la lame : environ 7°CThe calculation conditions are as follows:
  • Model simulating conduction and convection with the heat transfer fluid, natural convection and radiation with ambient air around the cold plate being neglected;
  • Blade inlet flow rate = 3 l / min (5.10 -5 m 3 / s);
  • Temperature of the heat transfer fluid at the blade inlet = 44 ° C;
  • Heat transfer fluid used: PEG MB633 (water + PEG mixture)
Pressure drop targets for blade balancing: 70kPa Input-output ΔT target on the blade: approximately 7 ° C

EXEMPLE 1 : simulation hydraulique du système de refroidissement selon l'invention à 3 blocs de refroidissement (tel que représenté sur les figures 4 à 7). EXAMPLE 1 : hydraulic simulation of the cooling system according to the invention with 3 cooling blocks (as shown in FIGS. 4 to 7).

Le résultat de la simulation numérique de l'évolution de la perte de charge dans le circuit de refroidissement primaire de la plaque froide est montré sur la figure 8. Un travail d'optimisation a permis d'atteindre la cible de 70 kPa environ de pertes de charges dans la plaque froide à 3l/min (comme le montre la figure 8 et l'échelle).The result of the numerical simulation of the evolution of the pressure drop in the primary cooling circuit of the cold plate is shown on the figure 8 . Optimization work made it possible to reach the target of around 70 kPa of pressure drop in the cold plate at 3l / min (as shown in figure 8 and scale).

La cible de pertes de charges pour l'équilibrage de lames est de 70kPa. La valeur calculée de la perte de charge globale de la plaque froide est de l'ordre de 75Kpa, ce qui est proche de la valeur cible.The pressure drop target for blade balancing is 70kPa. The calculated value of the overall pressure drop of the cold plate is of the order of 75Kpa, which is close to the target value.

EXEMPLE 2 : simulation thermique du système de refroidissement selon l'invention à 3 blocs de refroidissement (tel que représenté sur les figures 4 à 7). EXAMPLE 2 : thermal simulation of the cooling system according to the invention with 3 cooling blocks (as represented in FIGS. 4 to 7).

La figure 11 montre le résultat d'une simulation numérique de l'échauffement du fluide caloporteur dans le circuit de refroidissement primaire de la plaque froide, et la figure 12 montre le résultat du champ de températures de la plaque froide (vue de dessous). Des sources de chaleurs sont appliquées directement sur la plaque froide à l'emplacement des composants moyens et bas. Le résultat de la simulation donne une température de plaque à l'interface avec chacun des composants (moyens et bas) .The figure 11 shows the result of a numerical simulation of the heating of the heat transfer fluid in the primary cooling circuit of the cold plate, and the figure 12 shows the result of the temperature field of the cold plate (view from below). Heat sources are applied directly to the cold plate at the location of the middle and bottom components. The result of the simulation gives a plate temperature at the interface with each of the components (medium and low).

On observe un échauffement du fluide à l'intérieur de la plaque froide, l'entrée de la plaque froide est bien à 44°C puisque c'est une donnée d'entrée du calcul (condition limite). La sortie est aux alentours de 52°C. On a donc un gradient de température entre l'entrée et la sortie du fluide de 8°C environ.One observes a heating of the fluid inside the cold plate, the entry of the cold plate is well at 44 ° C since it is an input data of calculation (limiting condition). The output is around 52 ° C. There is therefore a temperature gradient between the inlet and the outlet of the fluid of approximately 8 ° C.

Claims (7)

  1. A liquid cooling system (1) for an electronic board (2) comprising a substrate (21), a plurality of electronic components (22, 23) secured to said substrate (21) broken down into low-level and mid-level electronic components (22) and into high-level electronic components (23), said system (1) comprising:
    • a cold plate (11) having external dimensions substantially equal to those of said substrate (21) of the electronic board (2) such that it covers the entire substrate (21) and said low-level and mid-level electronic components (22), said cold plate (11) being a plate made from a heat conducting material and comprising a primary cooling circuit (110) with main channels (1101) inside which a heat transfer fluid (112) flows, the supply of heat transfer fluid (112) in said cold plate (11) being done via an inlet connector (113) and the exit of said heat transfer fluid (112) from the cold plate (11) being done via an outlet connector (114),
    • a plurality of heat sinks (12) each comprising a main heat exchange zone (121) able to bear against a high-level electronic component (23),
    said liquid cooling system (1) being characterized in that it further includes a secondary circuit (111) of flexible secondary channels (1111) connected to the main channels (1101) of the primary circuit (111) by angled connectors (1112) secured in said cold plate (11), and
    in that said heat sinks (12) are single-phase heat sinks which each comprise:
    ▪ a cooling block (120) made from a heat conducting material comprising a lower part making up the main heat exchange zone (121), an intermediate part (122) called the distribution part and an upper part (123) connected to the cold plate (11),
    ▪ an inlet channel (3) and an outlet channel (4) which are connected on the one hand to the upper part (123) of said cooling block (120) respectively by means of an inlet connector (5) and of an outlet connector (6), and on the other hand to a flexible secondary channel (1111) of the secondary circuit (111) via an angled connector (1223, 1224), such that said cooling block (120) is supplied by said heat transfer fluid (112) flowing in said cold plate (11), said angled connectors (1223, 1224) being able to allow the rotation of said inlet and outlet channels (3, 4) relative to said flexible secondary channel (1111) to which they are connected, and
    in that the cooling block (120) further comprises:
    ▪ a through slot (8) located in the intermediate part (122) to uniformly distribute the flow of said heat transfer fluid (112) coming from the upper part (123) in the form of a centered jet toward
    ▪ a support plate (9) located in the main heat exchange zone (121) and including a hollow central part with a zone provided with fins (910) in order to generate turbulence in the flow state of said heat transfer fluid (112) and a zone (911) peripheral to said zone provided with fins (910) to collect the heat transfer fluid (112) and orient it toward said outlet connector (6).
  2. The liquid cooling system (1) according to claim 1, wherein the fins (910) are straight fins.
  3. The liquid cooling system (1) according to claim 2, wherein the fins (910) have a thickness of 0.2 mm and are spaced apart from one another by a distance of 0.4 mm.
  4. The liquid cooling system (1) according to any one of claims 1 to 3, wherein the orientation of said slot (8) is perpendicular to the direction of the fins (910).
  5. The liquid cooling system (1) according to any one of claims 1 to 4, wherein the intermediate part (122) is made up of a distribution plate (7) in which the through slot (8) is formed.
  6. The liquid cooling system (1) according to claim 5, wherein said distribution plate (7) is in the approximate form of a rectangular parallelepiped, one of the sides of which is provided with a step (71) that fits into the part of the peripheral zone (911) of the main heat exchange zone (121) located below said inlet connector (5), without covering the part of the peripheral zone (911) located below said outlet connector (6).
  7. The liquid cooling system (1) according to any one of the preceding claims, wherein high-level electronic components (23) are processors.
EP18211441.3A 2017-12-15 2018-12-10 Liquid cooling system for an electronic board comprising a cold plate and heat sinks linked to cold plate using flexible links Active EP3500079B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1762254A FR3075560B1 (en) 2017-12-15 2017-12-15 LIQUID COOLING SYSTEM FOR ELECTRONIC BOARD CONSISTING OF A COLD PLATE AND THERMAL SINKERS CONNECTED IN FLEXIBLE LINKS WITH THE SAID COLD PLATE

Publications (2)

Publication Number Publication Date
EP3500079A1 EP3500079A1 (en) 2019-06-19
EP3500079B1 true EP3500079B1 (en) 2021-09-29

Family

ID=62749019

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18211441.3A Active EP3500079B1 (en) 2017-12-15 2018-12-10 Liquid cooling system for an electronic board comprising a cold plate and heat sinks linked to cold plate using flexible links

Country Status (4)

Country Link
US (1) US11129305B2 (en)
EP (1) EP3500079B1 (en)
FR (1) FR3075560B1 (en)
WO (1) WO2019115963A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11350544B2 (en) 2020-03-24 2022-05-31 International Business Machines Corporation Flexible cold plate with parallel fluid flow paths
US11452237B2 (en) * 2020-10-16 2022-09-20 Hewlett Packard Enterprise Development Lp Liquid cooling interconnect module of a computing system
GB2601357B (en) * 2020-11-27 2023-02-01 Nexalus Ltd Modular thermal heat sink device
US11439039B2 (en) * 2020-12-07 2022-09-06 Hamilton Sundstrand Corporation Thermal management of electronic devices on a cold plate
CN112714592A (en) * 2020-12-22 2021-04-27 中车永济电机有限公司 Multifunctional water-cooling radiator for locomotive charging motor
CN113613463B (en) * 2021-07-31 2023-09-26 西南电子技术研究所(中国电子科技集团公司第十研究所) General cold plate of airborne through liquid cooling module
US12029013B2 (en) * 2021-09-08 2024-07-02 Baidu Usa Llc Cooling plate with coaxial fluid port
US12058837B2 (en) * 2021-09-24 2024-08-06 Baidu Usa Llc Enclosure for electronic device with liquid cooling
US11602078B1 (en) * 2022-02-17 2023-03-07 Marcellus Lloyd Clifton, III System for a remote, active phase-transition cooling system utilizing a solid-state modular connector system as a method for heat-transport
EP4333576B1 (en) * 2022-08-31 2025-02-26 Bull Sas Output heat sink for a cooling system of a supercomputer electronic board
EP4333575B1 (en) * 2022-08-31 2025-02-26 Bull Sas Inlet heat sink for a supercomputer electronics board cooling system
EP4333577B1 (en) * 2022-08-31 2025-02-26 Bull Sas Intermediate heat sink for a cooling system of a supercomputer electronic board
EP4332728A1 (en) * 2022-08-31 2024-03-06 Bull Sas Computing blade with offset network cards
CN115420131B (en) * 2022-09-21 2024-04-19 西安电子科技大学 A central differential heat exchanger and a heat exchange performance detection device thereof
EP4345575B1 (en) 2022-09-28 2024-09-04 Bull Sas Method for manufacturing heat sink
CN116193812A (en) * 2022-12-27 2023-05-30 超聚变数字技术有限公司 Electronic equipment
US20240237275A1 (en) * 2023-01-11 2024-07-11 Argo AI, LLC Modular cold plate for electronic control module

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11163565A (en) * 1997-11-27 1999-06-18 Ando Electric Co Ltd Cooling structure for printed board
US6550263B2 (en) * 2001-02-22 2003-04-22 Hp Development Company L.L.P. Spray cooling system for a device
US7325588B2 (en) * 2004-04-29 2008-02-05 Hewlett-Packard Development Company, L.P. High serviceability liquid cooling loop using flexible bellows
US7149087B2 (en) * 2004-09-08 2006-12-12 Thermal Corp. Liquid cooled heat sink with cold plate retention mechanism
US8944151B2 (en) 2008-05-28 2015-02-03 International Business Machines Corporation Method and apparatus for chip cooling
US7916483B2 (en) * 2008-10-23 2011-03-29 International Business Machines Corporation Open flow cold plate for liquid cooled electronic packages
US8289039B2 (en) * 2009-03-11 2012-10-16 Teradyne, Inc. Pin electronics liquid cooled multi-module for high performance, low cost automated test equipment
US8482919B2 (en) * 2011-04-11 2013-07-09 Toyota Motor Engineering & Manufacturing North America, Inc. Power electronics card assemblies, power electronics modules, and power electronics devices
FR3002411B1 (en) 2013-02-20 2015-03-06 Bull Sas THERMAL DISSIPATOR FOR PROCESSOR
FR3002410B1 (en) * 2013-02-20 2016-06-03 Bull Sas ELECTRONIC CARD COMPRISING A LIQUID COOLING SYSTEM
US9310859B2 (en) * 2013-11-12 2016-04-12 International Business Machines Corporation Liquid cooling of multiple components on a circuit board
US9852963B2 (en) * 2014-10-27 2017-12-26 Ebullient, Inc. Microprocessor assembly adapted for fluid cooling
US9943016B2 (en) * 2014-11-04 2018-04-10 Ge Aviation Systems Llc Cooling structure
GB201619987D0 (en) * 2016-11-25 2017-01-11 Iceotope Ltd Fluid cooling system
US10168749B2 (en) * 2016-12-01 2019-01-01 Intel Corporation Cooling using adjustable thermal coupling

Also Published As

Publication number Publication date
WO2019115963A1 (en) 2019-06-20
US20210076539A1 (en) 2021-03-11
FR3075560B1 (en) 2020-10-16
EP3500079A1 (en) 2019-06-19
US11129305B2 (en) 2021-09-21
FR3075560A1 (en) 2019-06-21

Similar Documents

Publication Publication Date Title
EP3500079B1 (en) Liquid cooling system for an electronic board comprising a cold plate and heat sinks linked to cold plate using flexible links
EP2770810B1 (en) Electronic card provided with a liquid cooling system
EP2791971B1 (en) Electronic device with cooling by a liquid metal spreader
EP2421350B1 (en) Electric device with fluid cooling, avionics rack for receiving such a device and aircraft provided with such racks
TWI557858B (en) Design of a heat dissipation structure for an integrated circuit (ic) chip
JP2020532875A (en) Heat sink for immersion cooling, heat sink device and module
EP2773172B1 (en) Plurality of cooling devices and hydraulic distributor
EP2653021B1 (en) Cooling an electronic device
FR2760593A1 (en) ELECTRICAL ASSEMBLY WITH HIGH HEAT DISSIPATION
US10629515B2 (en) System and method for cooling digital mirror devices
WO2019101634A1 (en) Electrical power module
EP3712743A1 (en) Dissipative interconnection module for expansion card with m.2 form factor
FR3068449A1 (en) COOLING SYSTEM OF ONE OR MORE COMPUTER SERVERS BY HEAT PUMP AND HEAT PRODUCTION FROM THE RECOVERED SERVER (S)
FR3036918A1 (en) ELECTRONIC CARD AND METHOD OF MANUFACTURING THE SAME
EP3712744B1 (en) Heat sink for a plurality of memory modules
EP4333577B1 (en) Intermediate heat sink for a cooling system of a supercomputer electronic board
EP4333576B1 (en) Output heat sink for a cooling system of a supercomputer electronic board
EP4333575B1 (en) Inlet heat sink for a supercomputer electronics board cooling system
EP4010779A1 (en) Heat recovery system and method
EP2591513B1 (en) Device for generating current and/or voltage based on a thermoelectric module placed in a flowing fluid
FR3030181A1 (en) BOX OF ELECTRONIC EQUIPMENT ON BOARD AND CALCULATOR AVIONIQUE COMPRISING SUCH A BOX
EP3245447B1 (en) Lighting module with diodes having improved cooling
EP4345575B1 (en) Method for manufacturing heat sink
FR3068448A1 (en) COOLING SYSTEM OF ONE OR MORE COLD PLATE COMPUTERS AND HEAT PRODUCTION MACHINES FROM THE RECOVERED SERVER (S)
FR2920946A1 (en) Heat evacuation device for e.g. power transistor, of airborne equipment in aircraft, has connector thermally connected to exterior heat evacuation device, and with removable part inserted in fixed part that is fixed on printed circuit board

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191121

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210706

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1435397

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018024213

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211229

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211229

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210929

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1435397

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220129

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220131

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018024213

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220630

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211210

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20181210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20241216

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20241218

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20241219

Year of fee payment: 7