EP3482448B1 - Controllable phase control element for electromagnetic waves - Google Patents
Controllable phase control element for electromagnetic waves Download PDFInfo
- Publication number
- EP3482448B1 EP3482448B1 EP17737506.0A EP17737506A EP3482448B1 EP 3482448 B1 EP3482448 B1 EP 3482448B1 EP 17737506 A EP17737506 A EP 17737506A EP 3482448 B1 EP3482448 B1 EP 3482448B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- holder
- phase control
- control element
- phase
- polarizers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000010287 polarization Effects 0.000 claims description 37
- 239000000945 filler Substances 0.000 claims description 7
- 239000006260 foam Substances 0.000 claims description 3
- 239000004033 plastic Substances 0.000 claims description 3
- 239000011263 electroactive material Substances 0.000 claims description 2
- 238000011144 upstream manufacturing Methods 0.000 claims 1
- 230000008878 coupling Effects 0.000 description 10
- 238000010168 coupling process Methods 0.000 description 10
- 238000005859 coupling reaction Methods 0.000 description 10
- 239000013598 vector Substances 0.000 description 7
- 238000011161 development Methods 0.000 description 6
- 230000018109 developmental process Effects 0.000 description 6
- 230000010363 phase shift Effects 0.000 description 6
- 230000008901 benefit Effects 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000004973 liquid crystal related substance Substances 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/18—Phase-shifters
- H01P1/182—Waveguide phase-shifters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/165—Auxiliary devices for rotating the plane of polarisation
- H01P1/17—Auxiliary devices for rotating the plane of polarisation for producing a continuously rotating polarisation, e.g. circular polarisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/165—Auxiliary devices for rotating the plane of polarisation
- H01P1/17—Auxiliary devices for rotating the plane of polarisation for producing a continuously rotating polarisation, e.g. circular polarisation
- H01P1/172—Auxiliary devices for rotating the plane of polarisation for producing a continuously rotating polarisation, e.g. circular polarisation using a dielectric element
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/26—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
- H01Q3/30—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
- H01Q3/32—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by mechanical means
Definitions
- the invention relates to a controllable phase actuator for electromagnetic waves, in particular for the GHz frequency range and in particular for antennas.
- Controllable phase shifters are used in a variety of RF systems for signal processing.
- An important field of application are antennas or antenna systems, where the main concern is the phase-coherent superimposition of signals.
- the antenna pattern of stationary antenna groups can be spatially changed with the aid of controllable phase shifters.
- the main beam swings in different directions.
- the phase actuators change the relative phase position of the signals that are received or sent by different individual antennas of a group antenna. If the relative phase position of the signals of the individual antennas is set accordingly with the aid of the phase actuators, then the main beam of the antenna directional diagram of the group antenna points in the desired direction.
- the phase control has that Task to always optimally align the main beam of the group antennas to a target during the spatial movement of the mobile carrier.
- a moving target can be tracked using phase control.
- phase actuators are mostly made up of non-linear solid bodies (“solid state phase shifters”), mostly ferrites, microswitches (MEMS technology, binary switches), or liquid crystals (“liquid crystals”).
- solid state phase shifters mostly ferrites, microswitches (MEMS technology, binary switches), or liquid crystals (“liquid crystals”).
- phase controlled array antennas using conventional phase actuators are very expensive. This prevents use, particularly for civil applications above 10 GHz.
- Another problem is the requirements for the precise control of the antenna pattern of the group antennas. If the group antennas are used in directional radio applications with satellites, then there are strict requirements for the regulatory conformity of the antenna pattern. For each main beam direction, the diagram of the regulatory mask must obey in transmission mode. This can only be reliably ensured that at any time both the amplitude and the phase of each individual antenna element of the group antenna is known.
- phase actuators allow reliable instantaneous, i.e. Immediate determination of the phase position of the signal after the phase actuator possible without additional calculation. For this it would be necessary to be able to reliably determine the state of the phase actuator at any time. However, this is practically not possible with solid-state, MEMS or liquid crystal phase shifters.
- From the DE 37 41 501 C1 is known feed system for an antenna that can transmit different polarized waves.
- the feed system uses a fixed 90 ° phase shifter and a movable 180 ° phase shifter so that the phase relationship of the two shafts can be adjusted to each other.
- the EP 0 196 081 A2 shows a high-frequency coupler with several sequentially arranged phase shifters.
- From the DE 39 20 563 A1 is a feed system for a parabolic antenna, which is mounted on a rotatable holder and contains a polarizer and a polarization switch.
- the U.S. patent US 2,438,119 A discloses a phase converter for a linearly polarized wave by means of a plurality of webs in a cavity structure.
- the JP S55 102901 A discloses the possibility of a phase shift of a high-frequency signal by means of a rotatable dielectric plate within a waveguide arrangement.
- FIG. 2 The principle of operation of the invention is in Fig. 2 shown.
- An incident wave (5a) with circular polarization and phase position ⁇ is transformed by the first polarizer (4a) into a wave with linear polarization (5b). These are converted back into a wave with circular polarization (5c) by the second polarizer (4b).
- phase actuator (1) is now rotated by an angle ⁇ with the aid of the drive unit (2), then the polarization vector (5b) of the linear wave rotates between the two polarizers (4a) and (4b) in a plane perpendicular to the direction of propagation. Since the polarizers (4a) and (4b) also rotate, the circular shaft (5c), which is generated by the second polarizer (4b), now has a phase position of ⁇ + 2 ⁇ , as from Figure 2 can be seen.
- the dependence of the phase angle difference between the outgoing (5c) and incoming (5b) circular wave on the rotation of the phase actuator (1) is strictly linear, continuous and strictly 2 ⁇ periodic.
- any phase rotation or phase shift can be set continuously by the drive unit (2).
- phase actuator (1) viewed electrodynamically, is advantageously a purely passive component that does not have to contain any nonlinear components, its function is completely reciprocal. This means that a shaft that runs through the phase actuator (1) from bottom to top is rotated in phase in the same way as a shaft that runs through the phase actuator (1) from top to bottom.
- the wave impedance of the arrangement is also completely independent of the relative phase position of the incoming and outgoing wave, which is not the case with non-linear phase shifters such as semiconductor phase shifters or liquid crystal phase shifters. There the wave impedance depends on the relative phase position, which makes these components difficult to control.
- the at least two polarizers (4a) and (4b) are preferably mounted perpendicular to the direction of propagation of the incident wave and parallel to one another in the holder (3).
- the axis of rotation (6) is preferably in the direction of propagation of the incident wave.
- the controllable phase control element works practically without loss, since the losses induced by the polarizers (4a, b) and the dielectric holder (3) are very small with a corresponding design. At frequencies of 20 GHz, for example, the total losses are less than 0.2 dB, which corresponds to an efficiency of more than 95%. Conventional phase shifters, on the other hand, typically already have losses of several dB at these frequencies.
- the drive unit (2) is also equipped with an angular position encoder or if it already gives the angular position (as is the case with some piezomotors), then the phase position of the outgoing shaft (5c) can be instantly determined exactly at any time.
- phase actuator (1) Because of the simple construction of the phase actuator (1) and the fact that only very simple drives (2) are required, the phase control can be implemented very inexpensively. Reproduction in large numbers is also easily possible.
- Possible drive units (2) are, for example, both inexpensive electric motors, as well as piezomotors, or simple actuators which are constructed from electroactive materials.
- the polarizers (4a, b) can consist, for example, of simple, flat meandering polarizers, which are applied to a carrier material, for example a high-frequency circuit board. Manufactured these polarizers can be made by known etching processes or by additive processes ("circuit printing").
- the at least two polarizers (4a) and (4b) preferably have a shape symmetrical to the axis (5).
- the in Fig. 3 The polarizer (4a, b) shown is designed as a meander polarizer. However, as is known to the person skilled in the art, there are also a large number of other possible embodiments of polarizers for electromagnetic waves which can transform a wave of circular polarization into a wave of linear polarization.
- Dielectric materials such as e.g. closed-cell foams with low density, which have very low HF losses, but also plastic materials such as polytetrafluoroethylene (Teflon) or polyimides are used. Because of the small size of the phase control element in the region of a wavelength, particularly at frequencies above 10 GHz, the RF losses remain very small here, with appropriate impedance matching.
- FIG. 4 An antenna element (6) is shown schematically in an exemplary application, which is preceded by a phase control according to the invention.
- the signal In transmission mode, the signal is fed into the waveguide section (2) via a coupling (31). The signal then happens Phase actuator (1) and is passed via the coupling (32) to the antenna element (6). With the help of the drive (2), which rotates the phase actuator (1) in the waveguide with the aid of the connecting element (33), the phase position of the signal emitted by the antenna element (6) can be set as desired.
- phase control Since the phase control according to the invention is completely reciprocal due to its construction, the processing of a received signal takes place in the same way: the signal received by the antenna element (6) is fed into the waveguide with the aid of the coupling (31). The signal then passes through the phase actuator (1) and is coupled out of the waveguide with the coupling (32). The phase of the received signal can be set as desired using the drive (2).
- a receiving amplifier can also be attached directly to the coupling (32), e.g. Compensate for network losses.
- the connecting element (33) is designed as an axis and preferably consists of a non-metallic, dielectric material such as e.g. Plastic. This has the advantage that cylindrical cavity modes are not disturbed, or only very little, if the axis is mounted symmetrically in the waveguide.
- the coupling structure (31) or the coupling structure (32) can be as in Fig. 4 shown as a loop, so that a cylindrical cavity mode is directly excited.
- embodiments are also conceivable in which two signals are coupled in or out with orthogonal pins. The phase relationship of the two signals is then such that a cylindrical cavity mode is also excited.
- the shape of the waveguide is preferably a hollow cylinder.
- Another example for explaining the invention is in Fig. 5 shown schematically.
- the phase actuator (1) consists of the two polarization plates (4a, 4b) and the holder (3) and is mounted in a cylindrical waveguide piece (50). The holder (3) is firmly connected to the waveguide piece (50).
- the waveguide piece (50) is introduced into a further cylindrical waveguide (51) in such a way that the waveguide piece (50) in which the phase actuator (1) is located can rotate freely about the waveguide axis (52).
- a drive unit (2) has a roller (53) so that the waveguide section (50) and thus also the phase actuator (1) can be rotated by the drive unit (2).
- this waveguide mode is impressed with a phase angle which is linearly dependent on the angular position of the phase actuator.
- the holder (3) is designed as a dielectric filler, which completely fills the waveguide section (50) and in which the polarizers (4a, 4b) are embedded.
- the waveguide section (50) is equipped with an outer ring gear (54) so that the drive unit (2) can rotate the waveguide section (50) together with the phase actuator (1) via the gear coupling (55).
- the polarizers (4a, 4b) are designed here as two pairs. This can have the advantage of higher polarization decoupling and / or have a larger frequency bandwidth.
- the polarizers of a pair are at a distance from each other that is significantly smaller than a wavelength.
- the two pairs are spaced from each other by approximately half the wavelength in order to reduce coupling of the two polarizers.
- the holder is designed as a dielectric filler that completely fills a waveguide piece, then it is also conceivable to metallize the dielectric filler on its outside, where it contacts the waveguide piece (50). This is advantageous if the component is to be very light, because then the waveguide section (50) can be omitted.
- Embodiments are also conceivable in which the conversion of the signal polarization is not carried out by plane polarizers or polarization plates, but e.g. by means of structures distributed spatially in the holder (e.g. septum polaristors). For the function of the invention it is only important that these structures can first transform an incident wave with circular polarization into a wave with linear polarization and then transform it back into a wave with circular polarization.
- the in the Figures 4 , 5 and 6 can typically be easily integrated into the feed networks of group antennas due to their small space requirement.
- the dimensions are typically in the range of less than one wavelength, ie approx. 1cm x 1cm. If the holder (3) is designed as a dielectric filler and the dielectric constant is chosen to be correspondingly large, then much smaller construction volumes can also be achieved. The ohmic losses then increase slightly, but are still only in the percentage range.
- the weight of the controllable phase actuator is also typically very small. If the polarizers are made using thin-film technology on thin HF substrates and the holder is made of closed-cell foam, the weight of the phase actuator is typically only a few grams. Therefore, only very small and light actuators, such as micro-electric motors, are required for the drive unit. The weight of such micro-electric motors is also in the gram range. The weight of an individual phase control, in particular in the frequency range above 10 GHz, is then typically only a few grams.
- phase controls according to the invention.
- the heat input from the phase actuators is negligible due to the very low ohmic losses. If electric motors are used as drive units, their efficiency is typically> 95%, so that the drive units also produce practically no heat input. In addition, the power consumption of micro motors, for example, is only in the mW range.
- the holder (3) is designed here as a star-shaped filler body with a cylindrical outer contour.
- four slots are provided for the pairs of polarizers (4a, 4b) and a central bore for the axis (56).
- the advantage lies in the simple manufacture.
- the polarizers (4a, 4b) can be glued directly into the slots of the holder (3), which results in a phase actuator (1) according to the invention without further process steps.
- the axis (56) can also be glued directly into a hole in the holder (3) and connected to the drive unit (2).
- the axis (56) is directly the axis of an electric motor, which thus directly establishes the required connection with the phase actuator (1) and can therefore meet all functional requirements.
- FIG. 8 A further development of the invention for the direct processing of signals with linear polarization is in Fig. 8 shown.
- the further development provides that at least one further polarizer (41), which can transform signals with linear polarization into signals with circular polarization, is attached in front of the phase actuator (1), and at least one further polarizer (42) is attached after the phase actuator (1) is which signals of circular polarization can transform into signals of linear polarization.
- the phase actuator (1) also consists of the holder (3) and the polarizers (4) and has a drive unit (2) which is designed in this way and is connected to the phase actuator (1) or the holder (3) in this way that the holder (3) or the phase actuator (1) can be rotated.
- FIG. 9 An incident wave of linear polarization (7a) with phase position ⁇ is transformed into a signal with circular polarization (7b) by the polarizer (41) attached in front of the phase actuator (1).
- the wave with circular polarization (7b) then falls on the rotatable phase actuator (1) and is transformed by the polarizer (4a) into a wave of linear polarization (7c). If the phase actuator is rotated, then the field vector (or the E and H field vectors) rotates according to the linear polarization (7c) in a plane perpendicular to the direction of propagation of the wave.
- the signal of linear polarization rotated in this way is then transformed by the polarizer (4b) into a signal of circular polarization (7d), the phase position of which now depends in a linear manner on the rotation of the phase actuator. If the phase actuator is rotated by an angle ⁇ , then the circular shaft (7d) has the phase position ⁇ + 2 ⁇ . The double change 2 ⁇ is caused by the rotation of the polarizers (4a) and (4b). The signal of circular polarization (7d) with phase angle ⁇ + 2 ⁇ is finally transformed back by the polarizer (42) into a signal with linear polarization (7e), which then also has the phase position ⁇ + 2 ⁇ .
- the position of the vector of the linear polarization of the wave (7e) relative to the position of the polarization vector of the incident wave (7a) in the plane perpendicular to the direction of propagation depends on the relative orientation of the two polarizers (5) and (6). If these are oriented the same, then the polarization vectors of the waves (7a) and (7e) are the same. If, on the other hand, the polarizers (5) and (6) are oriented differently, then the polarization vectors of the waves (7a) and (7e) an angle determined by the relative orientation of the polarizers (41) and (42).
- the polarizer (41) is designed to be rotatable with its own drive unit, the polarizer (42) is not designed to be rotatable, and if the polarizer (41) can be rotated independently of the phase actuator (1), then the polarizer (41) can rotate the linear polarization ( 7a) follow the incident wave.
- a phase-controlled group antenna with 4 antenna elements is shown as an example, which contains controllable phase actuators in its feed network (10).
- the signals from all four antenna elements are brought together via the feed network (10).
- the drives of the individual phase controls are controlled e.g. by a microprocessor (11). If the phase controls are now set with the help of the microprocessor (11) so that there is a constant relative phase difference ⁇ between the signals of the individual elements, then the main beam of the array antenna points in a specific direction which is dependent on the phase difference ⁇ .
- the antenna diagram of the group antenna is in every state of the group antenna (i.e. also to any one Time) determined completely deterministically.
- the corresponding antenna pattern can be calculated very precisely with relatively low computing power using a Fast Fourier Transformation (FFT).
- FFT Fast Fourier Transformation
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Networks Using Active Elements (AREA)
Description
Die Erfindung betrifft ein steuerbares Phasenstellglied für elektromagnetische Wellen, insbesondere für den GHz-Frequenzbereich und insbesondere für Antennen.The invention relates to a controllable phase actuator for electromagnetic waves, in particular for the GHz frequency range and in particular for antennas.
Steuerbare Phasenstellglieder ("phase shifters") kommen in einer Vielzahl von HF-Systemen bei der Signalverarbeitung zur Anwendung. Ein wichtiges Anwendungsfeld sind dabei Antennen oder Antennensysteme, wobei es dort hauptsächlich um die phasenkohärente Überlagerung von Signalen geht.Controllable phase shifters are used in a variety of RF systems for signal processing. An important field of application are antennas or antenna systems, where the main concern is the phase-coherent superimposition of signals.
So ist bekannt, dass mit Hilfe von steuerbaren Phasenstellgliedern ("phase shifters") das Antennendiagramm von stationären Antennengruppen räumlich verändert werden kann. So lässt sich z.B. der Hauptstrahl in verschiedene Richtungen schwenken. Die Phasenstellglieder verändern dabei die relative Phasenlage der Signale, die von verschiedenen einzelnen Antennen einer Gruppenantenne empfangen oder gesendet werden. Wird die relative Phasenlage der Signale der einzelnen Antennen mit Hilfe der Phasenstellglieder entsprechend eingestellt, dann zeigt die Hauptkeule ("main beam") des Antennenrichtdiagramms der Gruppenantenne in die gewünschte Richtung.It is known, for example, that the antenna pattern of stationary antenna groups can be spatially changed with the aid of controllable phase shifters. For example, the main beam swings in different directions. The phase actuators change the relative phase position of the signals that are received or sent by different individual antennas of a group antenna. If the relative phase position of the signals of the individual antennas is set accordingly with the aid of the phase actuators, then the main beam of the antenna directional diagram of the group antenna points in the desired direction.
Bei Gruppenantennen auf mobilen Trägern wie etwa Fahrzeugen, Flugzeugen oder Schiffen zum Beispiel hat die Phasensteuerung die Aufgabe, den Hauptstrahl der Gruppenantennen während der räumlichen Bewegung des mobilen Trägers immer optimal auf ein Ziel auszurichten.For group antennas on mobile carriers such as vehicles, airplanes or ships, for example, the phase control has that Task to always optimally align the main beam of the group antennas to a target during the spatial movement of the mobile carrier.
In umgekehrter Weise kann, wie etwa bei stationären Radarantennen, ein sich bewegendes Ziel mit Hilfe der Phasensteuerung verfolgt werden.Conversely, as with stationary radar antennas, a moving target can be tracked using phase control.
Die derzeit bekannten Phasenstellglieder sind meist aus nichtlinearen Festkörpern ("solid state phase shifters"), meist Ferriten, Mikroschaltern (MEMS-Technologie, binäre Schalter), oder Flüssigkristallen ("liquid cristals") aufgebaut.The currently known phase actuators are mostly made up of non-linear solid bodies (“solid state phase shifters”), mostly ferrites, microswitches (MEMS technology, binary switches), or liquid crystals (“liquid crystals”).
Alle diese Technologien haben jedoch den Nachteil, dass sie zu einem oft erheblichen Signalverlust führen, da ein Teil der Hochfrequenzleistung in den Phasenstellgliedern dissipiert wird. Insbesondere bei Anwendungen im GHz-Bereich sinkt die Antenneneffizienz der Gruppenantennen dadurch stark ab.However, all of these technologies have the disadvantage that they often lead to considerable signal loss, since part of the high-frequency power is dissipated in the phase actuators. The antenna efficiency of the group antennas drops sharply, particularly in applications in the GHz range.
Zudem sind phasengesteuerte Gruppenantennen, bei denen herkömmliche Phasenstellglieder verwendet werden sehr teuer. Insbesondere für zivile Anwendungen oberhalb von 10 GHz verhindert dies eine Verwendung.In addition, phase controlled array antennas using conventional phase actuators are very expensive. This prevents use, particularly for civil applications above 10 GHz.
Ein weiteres Problem stellen die Anforderungen an die genaue Kontrolle des Antennendiagramms der Gruppenantennen dar. Werden die Gruppenantennen in Richtfunkanwendungen mit Satelliten eingesetzt, dann bestehen strenge Anforderungen an die regulatorische Konformität des Antennendiagramms. Für jede Hauptstrahlrichtung muss im Sendebetrieb das Diagramm der regulatorischen Maske gehorchen. Dies kann nur dadurch zuverlässig gewährleistet werden, dass zu jedem Zeitpunkt sowohl die Amplitude als auch die Phase jedes einzelnen Antennenelements der Gruppenantenne bekannt ist.Another problem is the requirements for the precise control of the antenna pattern of the group antennas. If the group antennas are used in directional radio applications with satellites, then there are strict requirements for the regulatory conformity of the antenna pattern. For each main beam direction, the diagram of the regulatory mask must obey in transmission mode. This can only be reliably ensured that at any time both the amplitude and the phase of each individual antenna element of the group antenna is known.
Keine der derzeit bekannten Technologien für Phasenstellglieder erlaubt jedoch die zuverlässige instantane, d.h. sofortige, ohne Zusatzberechnung mögliche, Bestimmung der Phasenlage des Signals nach dem Phasenstellglied. Hierzu wäre es erforderlich den Zustand des Phasenstellglieds jederzeit zuverlässig bestimmen zu können. Dies ist jedoch praktisch weder bei Festkörper-, noch bei MEMS- oder Flüssigkristallphasenschiebern möglich.However, none of the currently known technologies for phase actuators allow reliable instantaneous, i.e. Immediate determination of the phase position of the signal after the phase actuator possible without additional calculation. For this it would be necessary to be able to reliably determine the state of the phase actuator at any time. However, this is practically not possible with solid-state, MEMS or liquid crystal phase shifters.
Aus der
Das US-Patent
Die
Gemäß der
Das wissenschaftliche Paper von
- 1. die exakte Steuerung der relativen Phasenlage von Signalen erlaubt,
- 2. keine, oder nur sehr geringe Verluste induziert,
- 3. zu jedem Zeitpunkt die instantane Bestimmung der Phasenlage eines anliegenden Signals zulässt und
- 4. kostengünstig realisierbar ist.
- 1. allows the precise control of the relative phase position of signals,
- 2. induces no or only very small losses,
- 3. Allows instantaneous determination of the phase position of an applied signal at any time and
- 4. is inexpensive to implement.
Diese Aufgabe wird durch ein erfindungsgemäßes steuerbares Phasenstellglied nach den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Weiterbildungen der Erfindung sind in den abhängigen Ansprüchen, der Beschreibung und den Figuren zu entnehmen.This object is achieved by a controllable phase actuator according to the invention. Advantageous developments of the invention can be found in the dependent claims, the description and the figures.
Ein erfindungsgemäßes steuerbares Phasenstellglied umfasst eine Antriebseinheit (2) und eine Halterung (3), an der mindestens zwei, in Einfallrichtung einer Welle hintereinander angeordnete Polarisatoren (4) angebracht sind. Jeder Polarisator (4)ist derart gestaltet, dass er ein zirkular polarisiertes Signal in ein linear polarisiertes Signal umwandeln kann. Die Antriebseinheit (2) ist so ausgelegt, dass die Halterung (3) gedreht werden kann. Damit werden auch die Polarisatoren (4) gedreht und zwar um einen Winkel, der frei wählbar ist und die Phase des Signals wie gewünscht einstellt. Das Funktionsprinzip ist in
Figur 2- eine Phasenverschiebung einer zirkularen Welle,
Figur 3- einen Polarisator in Draufsicht,
Figur 4- ein Phasenstellglied in einem Hohlleiter,
Figur 5- mehreren Phasenstellglieder innerhalb einer Antenne,
Figur 6- ein weiteres Beispiel eines Phasenstellgliedes mit seitlich angeordneten Antrieb,
- Figur 7,8
- weitere Ausführungsbeispiele eines Phasenstellgliedes mit Polarisatorpaaren,
- Figur 9-11
- weitere Ausführungsbeispiele eines Phasenstellgliedes mit zusätzlichen Polarisatoren und einer Phasenverschiebung einer zirkularen Welle.
- Figure 2
- a phase shift of a circular wave,
- Figure 3
- a polarizer in top view,
- Figure 4
- a phase actuator in a waveguide,
- Figure 5
- several phase actuators within an antenna,
- Figure 6
- another example of a phase actuator with laterally arranged drive,
- Figure 7.8
- further exemplary embodiments of a phase control element with polarizer pairs,
- Figure 9-11
- further embodiments of a phase actuator with additional polarizers and a phase shift of a circular wave.
Die prinzipielle Funktionsweise der Erfindung ist in
Wird das Phasenstellglied (1) jetzt mit Hilfe der Antriebseinheit (2) um einen Winkel Δθ gedreht, dann rotiert der Polarisationsvektor (5b) der linearen Welle zwischen den beiden Polarisatoren (4a) und (4b) in einer Ebene senkrecht zur Fortpflanzungsrichtung mit. Da sich auch die Polarisatoren (4a) und (4b) ebenfalls mit drehen, hat die zirkulare Welle (5c), welche vom zweiten Polarisator (4b) generiert wird, jetzt eine Phasenlage von ϕ + 2 Δθ, wie aus
Bedingt durch die Konstruktion des erfindungsgemäßen steuerbaren Phasenstellglieds ist die Abhängigkeit der Phasenwinkeldifferenz zwischen auslaufender (5c) und einlaufender (5b) zirkularer Welle von der Drehung des Phasenstellglieds (1) streng linear, stetig und streng 2π periodisch. Zudem kann jede beliebige Phasendrehung bzw. Phasenschiebung kontinuierlich durch die Antriebseinheit (2) eingestellt werden.Due to the construction of the controllable phase actuator according to the invention, the dependence of the phase angle difference between the outgoing (5c) and incoming (5b) circular wave on the rotation of the phase actuator (1) is strictly linear, continuous and strictly 2π periodic. In addition, any phase rotation or phase shift can be set continuously by the drive unit (2).
Da es sich beim Phasenstellglied (1) elektrodynamisch betrachtet vorteilhafterweise um ein rein passives Bauelement handelt, welches keinerlei nichtlineare Komponenten enthalten muss, ist seine Funktion vollständig reziprok. D.h., dass eine Welle, welche von unten nach oben durch das Phasenstellglied (1) läuft, in gleicher Weise in ihrer Phase gedreht wird wie eine Welle, welche von oben nach unten durch das Phasenstellglied (1) läuft.Since the phase actuator (1), viewed electrodynamically, is advantageously a purely passive component that does not have to contain any nonlinear components, its function is completely reciprocal. This means that a shaft that runs through the phase actuator (1) from bottom to top is rotated in phase in the same way as a shaft that runs through the phase actuator (1) from top to bottom.
Auch die Wellenimpedanz der Anordnung ist konstruktionsbedingt vollkommen unabhängig von der relativen Phasenlage von ein- und auslaufender Welle, was bei nichtlinearen Phasenschiebern wie etwa Halbleiterphasenschiebern oder Flüssigkristallphasenschiebern nicht der Fall ist. Dort ist die Wellenimpedanz von der relativen Phasenlage abhängig, was diese Bauteile schwierig zu steuern macht.Due to the design, the wave impedance of the arrangement is also completely independent of the relative phase position of the incoming and outgoing wave, which is not the case with non-linear phase shifters such as semiconductor phase shifters or liquid crystal phase shifters. There the wave impedance depends on the relative phase position, which makes these components difficult to control.
Die mindestens zwei Polarisatoren (4a) und (4b) sind vorzugsweise senkrecht zur Ausbreitungsrichtung der einfallenden Welle und parallel zueinander in der Halterung (3) angebracht. Die Drehachse (6) liegt vorzugsweise in Ausbreitungsrichtung der einfallenden Welle.The at least two polarizers (4a) and (4b) are preferably mounted perpendicular to the direction of propagation of the incident wave and parallel to one another in the holder (3). The axis of rotation (6) is preferably in the direction of propagation of the incident wave.
Das steuerbare Phasenstellglied arbeitet dabei praktisch verlustlos, da bei entsprechender Auslegung die durch die Polarisatoren (4a, b) und den dielektrischen Halter (3) induzierten Verluste sehr klein sind. Bei Frequenzen von 20 GHz zum Beispiel betragen die gesamten Verluste weniger als 0,2 dB, was einer Effizienz von mehr als 95% entspricht. Konventionelle Phasenschieber dagegen haben typischerweise bei diesen Frequenzen bereits Verluste von mehreren dB.The controllable phase control element works practically without loss, since the losses induced by the polarizers (4a, b) and the dielectric holder (3) are very small with a corresponding design. At frequencies of 20 GHz, for example, the total losses are less than 0.2 dB, which corresponds to an efficiency of more than 95%. Conventional phase shifters, on the other hand, typically already have losses of several dB at these frequencies.
Wird die Antriebseinheit (2) zudem mit einem Winkellagegeber ausgestattet oder ist sie selbst schon winkellagegebend (wie dies z.B. bei manchen Piezomotoren der Fall ist), so kann die Phasenlage der auslaufenden Welle (5c) zu jedem Zeitpunkt instantan exakt bestimmt werden.If the drive unit (2) is also equipped with an angular position encoder or if it already gives the angular position (as is the case with some piezomotors), then the phase position of the outgoing shaft (5c) can be instantly determined exactly at any time.
Wegen des einfachen Aufbaus des Phasenstellglieds (1) und der Tatsache, dass lediglich sehr einfach aufgebaute Antriebe (2) erforderlich sind, lässt sich die Phasensteuerung sehr kostengünstig realisieren. Auch eine Reproduktion mit großen Stückzahlen ist ohne weiteres möglich.Because of the simple construction of the phase actuator (1) and the fact that only very simple drives (2) are required, the phase control can be implemented very inexpensively. Reproduction in large numbers is also easily possible.
Als Antriebseinheiten (2) kommen dabei zum Beispiel sowohl kostengünstige Elektromotoren, als auch Piezomotoren, oder einfache Aktuatoren, die aus elektroaktiven Materialen aufgebaut sind, in Frage.Possible drive units (2) are, for example, both inexpensive electric motors, as well as piezomotors, or simple actuators which are constructed from electroactive materials.
Die Polarisatoren (4a, b) können z.B. aus einfachen, ebenen Mäanderpolarisatoren bestehen, welche auf ein Trägermaterial, z.B. eine hochfrequenztaugliche Platine, aufgebracht sind. Hergestellt werden können diese Polarisatoren durch bekannte Ätzverfahren oder durch additive Verfahren ("circuit printing").The polarizers (4a, b) can consist, for example, of simple, flat meandering polarizers, which are applied to a carrier material, for example a high-frequency circuit board. Manufactured these polarizers can be made by known etching processes or by additive processes ("circuit printing").
Wie in
Der in
Für die Halterung (3) können dielektrische Materialien wie z.B. geschlossenzellige Schäume mit geringer Dichte, welche sehr geringe HF-Verluste aufweisen, aber auch Plastikmaterialien wie Polytetrafluorethylen (Teflon) oder Polyimide verwendet werden. Wegen der insbesondere bei Frequenzen oberhalb von 10 GHz geringen Größe des Phasenstellglieds im Bereich einer Wellenlänge, bleiben die HF-Verluste bei entsprechender Impedanzanpassung auch hier sehr klein.Dielectric materials such as e.g. closed-cell foams with low density, which have very low HF losses, but also plastic materials such as polytetrafluoroethylene (Teflon) or polyimides are used. Because of the small size of the phase control element in the region of a wavelength, particularly at frequencies above 10 GHz, the RF losses remain very small here, with appropriate impedance matching.
In
Im Sendebetrieb wird das Signal über eine Einkopplung (31) in das Hohlleiterstück (2) eingespeist. Das Signal passiert dann das Phasenstellglied (1) und wird über die Auskopplung (32) zum Antennenelement (6) geleitet. Mit Hilfe des Antriebs (2), welcher mit Hilfe des Verbindungselements (33) das Phasenstellglied (1) im Hohlleiter dreht, kann die Phasenlage des Signals, das vom Antennenelement (6) abgestrahlt wird, beliebig eingestellt werden.In transmission mode, the signal is fed into the waveguide section (2) via a coupling (31). The signal then happens Phase actuator (1) and is passed via the coupling (32) to the antenna element (6). With the help of the drive (2), which rotates the phase actuator (1) in the waveguide with the aid of the connecting element (33), the phase position of the signal emitted by the antenna element (6) can be set as desired.
Da die erfindungsgemäße Phasensteuerung konstruktionsbedingt vollständig reziprok arbeitet, erfolgt die Verarbeitung eines Empfangssignals in gleicher Weise: das vom Antennenelement (6) empfangene Signal wird mit Hilfe der Einkopplung (31) in den Hohlleiter eingespeist. Das Signal passiert dann das Phasenstellglied (1) und wird mit der Auskopplung (32) aus dem Hohlleiter ausgekoppelt. Die Phase des Empfangssignals kann mit Hilfe des Antriebs (2) wieder beliebig eingestellt werden. Direkt an der Auskopplung (32) kann auch bereits ein Empfangsverstärker angebracht werden, um z.B. Speisenetzwerkverluste auszugleichen.Since the phase control according to the invention is completely reciprocal due to its construction, the processing of a received signal takes place in the same way: the signal received by the antenna element (6) is fed into the waveguide with the aid of the coupling (31). The signal then passes through the phase actuator (1) and is coupled out of the waveguide with the coupling (32). The phase of the received signal can be set as desired using the drive (2). A receiving amplifier can also be attached directly to the coupling (32), e.g. Compensate for network losses.
Das Verbindungselement (33) ist dabei als Achse ausgelegt und besteht bevorzugt aus einem nichtmetallischen, dielektrischen Material wie z.B. Kunststoff. Dies hat den Vorteil, dass zylindrische Hohlraummoden nicht, oder nur sehr wenig gestört werden, wenn die Achse symmetrisch im Hohlleiter angebracht wird.The connecting element (33) is designed as an axis and preferably consists of a non-metallic, dielectric material such as e.g. Plastic. This has the advantage that cylindrical cavity modes are not disturbed, or only very little, if the axis is mounted symmetrically in the waveguide.
Die Einkopplungsstruktur (31) bzw. die Auskopplungsstruktur (32) kann dabei wie in
Läuft nun eine zylindrische Hohlleitermode durch den Hohlleiter (51), wobei es wegen der Reziprozität der Funktion der erfindungsgemäßen Phasensteuerung auf die Ausbreitungsrichtung nicht ankommt, dann wird dieser Hohlleitermode ein Phasenwinkel aufgeprägt, welcher von der Winkelstellung des Phasenstellglieds linear abhängt. Durch Rotation des Hohlleiterstücks (50) und damit des Phasenstellglieds (1) mit Hilfe der Antriebseinheit (2) kann dieser Phasenwinkel beliebig eingestellt werden.If a cylindrical waveguide mode now runs through the waveguide (51), the direction of propagation not being important because of the reciprocity of the function of the phase control according to the invention, this waveguide mode is impressed with a phase angle which is linearly dependent on the angular position of the phase actuator. By rotating the waveguide section (50) and thus the phase actuator (1) with the aid of the drive unit (2), this phase angle can be set as desired.
In dem in
Die Polarisatoren (4a, 4b) sind hier als zwei Paare ausgeführt. Dies kann den Vorteil höherer Polarisationsentkopplung und/oder größerer Frequenzbandbreite haben. Die Polarisatoren eines Paars haben dabei einen Abstand voneinander, der wesentlich kleiner als eine Wellenlänge ist. Beide Paare sind voneinander um etwa die halbe Wellenlänge beabstandet, um eine Verkopplung beider Polarisatoren zu reduzieren.The polarizers (4a, 4b) are designed here as two pairs. This can have the advantage of higher polarization decoupling and / or have a larger frequency bandwidth. The polarizers of a pair are at a distance from each other that is significantly smaller than a wavelength. The two pairs are spaced from each other by approximately half the wavelength in order to reduce coupling of the two polarizers.
Für Anwendungen im Frequenzbereich größer 20 GHz können darüber hinaus Ausführungsformen vorteilhaft sein, welche über mehr als 4 Polarisatoren verfügen.For applications in the frequency range greater than 20 GHz, embodiments which have more than 4 polarizers can also be advantageous.
Wenn die Halterung als dielektrischer Füllkörper ausgeführt ist, welcher ein Hohlleiterstück vollständig ausfüllt, dann ist es zudem denkbar, den dielektrischen Füllkörper an seiner Außenseite, dort wo er das Hohlleiterstück (50) berührt, zu metallisieren. Dies ist von Vorteil, wenn das Bauteil sehr leicht sein soll, weil dann das Hohlleiterstück (50) entfallen kann.If the holder is designed as a dielectric filler that completely fills a waveguide piece, then it is also conceivable to metallize the dielectric filler on its outside, where it contacts the waveguide piece (50). This is advantageous if the component is to be very light, because then the waveguide section (50) can be omitted.
Auch sind Ausführungsformen denkbar, bei denen die Umwandlung der Signalpolarisation nicht durch ebene Polarisatoren bzw. Polarisationsplättchen sondern z.B. durch räumlich in der Halterung verteilte Strukturen erfolgt (z.B. Septum-Polaristoren). Für die Funktion der Erfindung kommt es lediglich darauf an, dass diese Strukturen eine einfallende Welle mit zirkularer Polarisation zunächst in eine Welle mit linearer Polarisation transformieren und anschließend in eine Welle mit zirkularer Polarisation zurücktransformieren können.Embodiments are also conceivable in which the conversion of the signal polarization is not carried out by plane polarizers or polarization plates, but e.g. by means of structures distributed spatially in the holder (e.g. septum polaristors). For the function of the invention it is only important that these structures can first transform an incident wave with circular polarization into a wave with linear polarization and then transform it back into a wave with circular polarization.
Die in den
Auch das Gewicht des steuerbaren Phasenstellglieds ist typischerweise sehr klein. Werden die Polarisatoren in Dünnschichttechnologie auf dünnen HF-Substraten ausgeführt, und wird die Halterung aus geschlossenzelligem Schaum hergestellt, dann beträgt das Gewicht des Phasenstellglieds typischerweise nur wenige Gramm. Daher sind auch für die Antriebseinheit nur sehr kleine und leichte Aktuatoren, wie etwa Mikro-Elektromotoren, erforderlich. Das Gewicht solcher Mikro-Elektromotoren liegt ebenfalls im Grammbereich. Das Gewicht einer einzelnen Phasensteuerung, insbesondere im Frequenzbereich oberhalb von 10 GHz, liegt dann bei typischerweise nur einigen Gramm.The weight of the controllable phase actuator is also typically very small. If the polarizers are made using thin-film technology on thin HF substrates and the holder is made of closed-cell foam, the weight of the phase actuator is typically only a few grams. Therefore, only very small and light actuators, such as micro-electric motors, are required for the drive unit. The weight of such micro-electric motors is also in the gram range. The weight of an individual phase control, in particular in the frequency range above 10 GHz, is then typically only a few grams.
Hinzu kommt die sehr geringe Dissipation der erfindungsgemäßen Phasensteuerungen. Der Wärmeeintrag der Phasenstellglieder ist wegen der sehr geringen Ohmschen Verluste vernachlässigbar. Werden Elektromotoren als Antriebseinheiten verwendet, dann beträgt deren Wirkungsgrad typischerweise > 95%, so dass auch die Antriebseinheiten praktisch keinen Wärmeeintrag hervorrufen. Zudem liegt die Leistungsaufnahme etwa von Mikro-Motoren lediglich im mW-Bereich.Added to this is the very low dissipation of the phase controls according to the invention. The heat input from the phase actuators is negligible due to the very low ohmic losses. If electric motors are used as drive units, their efficiency is typically> 95%, so that the drive units also produce practically no heat input. In addition, the power consumption of micro motors, for example, is only in the mW range.
Eine weitere vorteilhafte Ausführungsform der Erfindung ist in
Der Vorteil liegt in der einfachen Fertigung. Die Polarisatoren (4a, 4b) können direkt in die Schlitze der Halterung (3) eingeklebt werden, was ohne weitere Verfahrensschritte ein erfindungsgemäßes Phasenstellglied (1) ergibt. Ebenso kann die Achse (56) direkt in eine Bohrung in der Halterung (3) eingeklebt und mit der Antriebseinheit (2) verbunden werden.The advantage lies in the simple manufacture. The polarizers (4a, 4b) can be glued directly into the slots of the holder (3), which results in a phase actuator (1) according to the invention without further process steps. The axis (56) can also be glued directly into a hole in the holder (3) and connected to the drive unit (2).
Es ist zudem denkbar, dass die Achse (56) unmittelbar die Achse eines Elektromotors ist, welche damit direkt die geforderte Verbindung mit dem Phasenstellglied (1) herstellt und somit alle funktionalen Anforderungen erfüllen kann.It is also conceivable that the axis (56) is directly the axis of an electric motor, which thus directly establishes the required connection with the phase actuator (1) and can therefore meet all functional requirements.
Auch anderer, z.B. zylindrische oder im Querschnitt dreiecks- oder kreuzförmige, dielektrische Füllkörper sind denkbar.Others, e.g. Cylindrical or triangular or cross-shaped dielectric fillers are conceivable.
Eine Weiterentwicklung der Erfindung zur direkten Verarbeitung von Signalen mit linearer Polarisation ist in
Das Phasenstellglied (1) besteht erfindungsgemäß weiterhin aus der Halterung (3) und den Polarisatoren (4) und verfügt über eine Antriebseinheit (2), welche derart ausgelegt ist und mit dem Phasenstellglied (1) bzw. der Halterung (3) derart verbunden ist, dass die Halterung (3) bzw. das Phasenstellglied (1) gedreht werden kann.According to the invention, the phase actuator (1) also consists of the holder (3) and the polarizers (4) and has a drive unit (2) which is designed in this way and is connected to the phase actuator (1) or the holder (3) in this way that the holder (3) or the phase actuator (1) can be rotated.
Die Funktionsweise der Weiterentwicklung der Erfindung ist in
Die Lage des Vektors der linearen Polarisation der Welle (7e) relativ zur Lage des Polarisationsvektors der einfallenden Welle (7a) in der Ebene senkrecht zu Fortpflanzungsrichtung hängt von der relativen Orientierung der beiden Polarisatoren (5) und (6) ab. Sind diese gleich orientiert, dann sind die Polarisationsvektoren der Wellen (7a) und (7e) gleich. Sind dagegen die Polarisatoren (5) und (6) unterschiedlich orientiert, dann schließen die Polarisationsvektoren der Wellen (7a) und (7e) einen Winkel ein, der von der relativen Orientierung der Polarisatoren (41) und (42) bestimmt ist.The position of the vector of the linear polarization of the wave (7e) relative to the position of the polarization vector of the incident wave (7a) in the plane perpendicular to the direction of propagation depends on the relative orientation of the two polarizers (5) and (6). If these are oriented the same, then the polarization vectors of the waves (7a) and (7e) are the same. If, on the other hand, the polarizers (5) and (6) are oriented differently, then the polarization vectors of the waves (7a) and (7e) an angle determined by the relative orientation of the polarizers (41) and (42).
Es ist deshalb denkbar, z.B. dann wenn die Signalpolarisation nachgeführt werden muss, was in bestimmten mobilen Antennenanwendungen vorkommen kann, einen oder beide Polarisatoren (41) bzw. (42) drehbar auszugestalten und mit einer eigenen Antriebseinheit zu versehen.It is therefore conceivable, e.g. when the signal polarization has to be tracked, which can occur in certain mobile antenna applications, to design one or both polarizers (41) or (42) so as to be rotatable and to provide them with their own drive unit.
Wird z.B. der Polarisator (41) drehbar mit einer eigenen Antriebseinheit ausgestaltet, der Polarisator (42) nicht drehbar ausgestaltet, und kann der Polarisator (41) unabhängig vom Phasenstellglied (1) gedreht werden, dann kann der Polarisator (41) eine Drehung der linearen Polarisation (7a) der einfallenden Welle folgen. Damit entsteht eine neuartige Anordnung, mit deren Hilfe simultan die Signalpolarisation nachgeführt und die Phasenlage des Signals eingestellt werden kann.E.g. the polarizer (41) is designed to be rotatable with its own drive unit, the polarizer (42) is not designed to be rotatable, and if the polarizer (41) can be rotated independently of the phase actuator (1), then the polarizer (41) can rotate the linear polarization ( 7a) follow the incident wave. This creates a new arrangement, with the help of which the signal polarization can be tracked simultaneously and the phase position of the signal can be adjusted.
Wie in
Aus
In
Die Signale aller vier Antennenelemente werden über das Speisenetzwerk (10) zusammengeführt. Die Steuerung der Antriebe der einzelnen Phasensteuerungen erfolgt z.B. durch einen Mikroprozessor (11). Werden die Phasensteuerungen nun mit Hilfe des Mikroprozessors (11) so eingestellt, dass zwischen den Signalen der Einzelelemente eine konstante relative Phasendifferenz Δϕ besteht, dann zeigt der Hauptstrahl der Gruppenantenne in eine bestimmte, von der Phasendifferenz Δϕ abhängige Richtung.The signals from all four antenna elements are brought together via the feed network (10). The drives of the individual phase controls are controlled e.g. by a microprocessor (11). If the phase controls are now set with the help of the microprocessor (11) so that there is a constant relative phase difference Δϕ between the signals of the individual elements, then the main beam of the array antenna points in a specific direction which is dependent on the phase difference Δϕ.
Da über das Speisenetzwerke (10) die Amplitudenrelationen der gesendeten bzw. empfangenen Signale der Einzelantennen genau bekannt sind und zusätzlich über die Phasensteuerungen die Phasenlage jedes dieser Signale genau bestimmbar ist, ist das Antennendiagramm der Gruppenantenne in jedem Zustand der Gruppenantenne (d.h. auch zu jedem beliebigen Zeitpunkt) vollständig deterministisch bestimmt.Since the amplitude relationships of the transmitted or received signals of the individual antennas are precisely known via the feed network (10) and the phase position of each of these signals can also be precisely determined via the phase controls, the antenna diagram of the group antenna is in every state of the group antenna (i.e. also to any one Time) determined completely deterministically.
Wenn die erforderliche Rechenleistung im Mikroprozessor (11) oder an einer anderen Stelle des Antennensystems zur Verfügung steht, ist es daher sogar möglich, das gesamte Antennendiagramm zu jedem Zeitpunkt mit sehr hoher Genauigkeit analytisch zu berechnen. Dies stellt, insbesondere im Hinblick auf die typischerweise in zivilen Anwendungen geforderte regulatorische Konformität des Antennendiagramms, einen wesentlichen Vorteil erfindungsgemäßer Anordnungen dar.If the required computing power is available in the microprocessor (11) or at another location in the antenna system, it is therefore even possible to calculate the entire antenna pattern analytically at any time with very high accuracy. This represents a significant advantage of arrangements according to the invention, in particular with regard to the regulatory conformity of the antenna pattern typically required in civil applications.
Auch wenn die Gruppenantennen mehrere tausend Einzelantennen beinhalten, wie dies z.B. im Frequenzbereich oberhalb von 10 GHz typischerweise der Fall ist, kann mit Hilfe einer Fast Fourier Transformation (FFT) das entsprechende Antennendiagramm mit relativ geringer Rechenleistung sehr genau berechnet werden. Entsprechend schnelle FFT Algorithmen sind hinlänglich bekannt.Even if the group antennas contain several thousand individual antennas, e.g. is typically the case in the frequency range above 10 GHz, the corresponding antenna pattern can be calculated very precisely with relatively low computing power using a Fast Fourier Transformation (FFT). Correspondingly fast FFT algorithms are well known.
Die beschriebenen Beispiele der
Claims (11)
- Controllable phase control element (1) for electromagnetic waves for a feed structure of an antenna, comprising
a drive unit (2),
a holder (3) which has a connecting element (33) which can be rotated about an axis, and the holder (3) is mounted in a cylindrical waveguide of the controllable phase control element (1), and
at least two meander-line polarizers (4), wherein the meander-line polarizers (4) are mounted on the holder (3) and each meander-line polarizer (4) is designed for converting a circularly polarized signal into a linearly polarized signal, and
the drive unit (2) is connected to the holder (3) by means of the rotatable connecting element (33) in such a way that the meander-line polarizers (4) can be rotated, wherein the holder (3) is fixedly connected to the waveguide, and the waveguide is connected in a rotatable manner and to the drive unit (2), which is situated outside the waveguide, in such a way that the drive unit rotates the waveguide and the inner holder (3). - Controllable phase control element (1) according to Claim 1, wherein the meander-line polarizers (4) are mounted on the holder (3) perpendicularly in relation to the propagation direction of an incident wave and parallel in relation to one another.
- Controllable phase control element (1) according to either of the preceding claims, wherein the meander-line polarizers (4) and/or the holder (3) have/has a shape which is rotationally symmetrical in relation to the rotation axis of the rotatable connecting element (33) of the holder (3).
- Controllable phase control element (1) according to one of the preceding claims, wherein the holder (3) consists of a plastic and/or of closed-cell foam.
- Controllable phase control element (1) according to one of the preceding claims, wherein the drive unit (2) contains an electric motor or a piezo motor or an actuator, wherein the actuator contains electroactive materials.
- Controllable phase control element (1) according to one of the preceding claims, comprising an angle position sensor which determines the angular position of the holder (3).
- Controllable phase control element (1) according to one of the preceding claims, wherein the meander-line polarizers (4) consist of in each case at least one polarization pair (4a, 4b) which are arranged parallel in relation to one another, wherein the distance between the meander-line polarizers (4) is less than the wavelength λ.
- Controllable phase control element (1) according to Claim 7, wherein the distance between the meander-line polarizers (4) is half the wavelength λ.
- Controllable phase control element (1) according to one of the preceding claims, wherein the holder (3) is a dielectric filler which is metallized on its outer sides.
- Controllable phase control element (1) for electromagnetic waves according to one of the preceding claims, comprising two additional polarizers (41, 42) which are mounted upstream and, respectively, downstream of the meander-line polarizers (4) in the propagation direction of an incident wave, and each of the additional polarizers (41, 42) is designed in such a way that it can convert a circularly polarized signal into a linearly polarized signal.
- Controllable phase control element (1) according to Claim 10, wherein at least one of the additional polarizers (41, 42) is configured in a rotatable manner and has a drive unit by way of which it can be rotated independently of the holder (3).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102016112583.0A DE102016112583A1 (en) | 2016-07-08 | 2016-07-08 | Controllable phase actuator for electromagnetic waves |
PCT/EP2017/065890 WO2018007212A1 (en) | 2016-07-08 | 2017-06-27 | Controllable phase control element for electromagnetic waves |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3482448A1 EP3482448A1 (en) | 2019-05-15 |
EP3482448B1 true EP3482448B1 (en) | 2020-08-05 |
Family
ID=59313208
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17737506.0A Active EP3482448B1 (en) | 2016-07-08 | 2017-06-27 | Controllable phase control element for electromagnetic waves |
Country Status (7)
Country | Link |
---|---|
US (1) | US10868349B2 (en) |
EP (1) | EP3482448B1 (en) |
CN (1) | CN109417210B (en) |
DE (1) | DE102016112583A1 (en) |
ES (1) | ES2824513T3 (en) |
IL (1) | IL264101B (en) |
WO (1) | WO2018007212A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102017112552B4 (en) | 2017-06-07 | 2025-01-30 | Lisa Dräxlmaier GmbH | ANTENNA WITH MULTIPLE INDIVIDUAL RADIATORS |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2438119A (en) | 1942-11-03 | 1948-03-23 | Bell Telephone Labor Inc | Wave transmission |
NL72696C (en) | 1945-04-26 | |||
JPS5927522B2 (en) * | 1979-01-30 | 1984-07-06 | 日本高周波株式会社 | rotary phase shifter |
IT1181958B (en) * | 1985-03-27 | 1987-09-30 | Selenia Spazio Spa | DEVICE FOR THE LOSS-FREE COMBINATION OF THE RF POWER OF TWO OR MORE MICROWAVE TRANSMITTERS WORKING IN PARALLEL AND WITH ANY POWER RATIO |
JPH01126803A (en) * | 1987-11-12 | 1989-05-18 | Mitsubishi Electric Corp | Horn antenna system |
DE3741501C1 (en) * | 1987-12-08 | 1989-02-02 | Kathrein Werke Kg | Excitation or feed system for a parabolic antenna |
DE3920563A1 (en) * | 1989-06-23 | 1991-01-10 | Mueller Heinz Juergen Dipl Ing | Energising and supply system for parabolic antenna - e.g. for satellite communications using polariser, polarisation switching device and converter for different, frequency ranges |
JP3343408B2 (en) * | 1993-08-24 | 2002-11-11 | 株式会社トキメック | Circularly polarized antenna |
US6166610A (en) * | 1999-02-22 | 2000-12-26 | Hughes Electronics Corporation | Integrated reconfigurable polarizer |
US20050046511A1 (en) * | 2003-08-29 | 2005-03-03 | Spx Corporation | Switchless combining system and method |
DE102010014916B4 (en) * | 2010-04-14 | 2012-10-31 | Aeromaritime Systembau Gmbh | Phased array antenna |
CN102938497B (en) * | 2012-11-20 | 2014-12-17 | 北京遥测技术研究所 | Four-band multi-polarization co-aperture feed source |
-
2016
- 2016-07-08 DE DE102016112583.0A patent/DE102016112583A1/en not_active Withdrawn
-
2017
- 2017-06-27 WO PCT/EP2017/065890 patent/WO2018007212A1/en unknown
- 2017-06-27 ES ES17737506T patent/ES2824513T3/en active Active
- 2017-06-27 EP EP17737506.0A patent/EP3482448B1/en active Active
- 2017-06-27 US US16/316,214 patent/US10868349B2/en active Active
- 2017-06-27 CN CN201780042452.8A patent/CN109417210B/en active Active
-
2019
- 2019-01-06 IL IL264101A patent/IL264101B/en unknown
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
ES2824513T3 (en) | 2021-05-12 |
CN109417210B (en) | 2021-07-06 |
EP3482448A1 (en) | 2019-05-15 |
IL264101A (en) | 2019-01-31 |
US10868349B2 (en) | 2020-12-15 |
IL264101B (en) | 2022-06-01 |
CN109417210A (en) | 2019-03-01 |
WO2018007212A1 (en) | 2018-01-11 |
DE102016112583A1 (en) | 2018-01-11 |
US20200112074A1 (en) | 2020-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3482454B1 (en) | Phase-controlled antenna element | |
EP1601046B1 (en) | Array antenna equipped with a housing | |
DE4136476C2 (en) | Ultra-high frequency lens and antenna with electronic beam swiveling with such a lens | |
EP1312135B1 (en) | Arrangement and method for influencing and controlling electromagnetic alternating fields and/or antennae and antennae diagrams | |
EP2425490B1 (en) | Broadband antenna system for satellite communication | |
DE102014203185B4 (en) | Antenna device and radar device | |
EP3482457B1 (en) | Phase-controlled antenna array | |
EP1434300B1 (en) | Broadband antenna with a 3-dimensional casting part | |
DE60219713T2 (en) | Phase shifter, phased array antenna and radar | |
DE10351506A1 (en) | Device and method for phase shifting | |
EP3482448B1 (en) | Controllable phase control element for electromagnetic waves | |
DE202022107107U1 (en) | Integrated base station antenna | |
EP2608316A1 (en) | Assembly with a flat top antenna for emitting or receiving circular and linear polarised electromagnetic waves | |
EP0737371B1 (en) | Planar antenna | |
DE102012224062B4 (en) | Stripline antenna, array antenna and radar device | |
EP4117108B1 (en) | Waveguide assembly comprising a ridge waveguide and a waveguide and interconnect interface | |
DE102018111123A1 (en) | Antenna array with transmitting and receiving antenna elements and method for operating an antenna array | |
DE102009005502B4 (en) | Cavity resonator RF power distribution network | |
EP2485329A1 (en) | Array antenna | |
DE102008046975B4 (en) | Antenna device for high-frequency electromagnetic waves | |
DE19845868A1 (en) | Dual focus planar antenna | |
DE202015106025U1 (en) | RFID antenna assembly | |
DE10150086A1 (en) | Group antenna for military or civil radar device has array of openings in first conductive body and aligned recesses in opposing surface of second conductive body | |
DE2631273C3 (en) | Mechanically controlled waveguide phase shifter | |
DE102005021826B4 (en) | Antenna device for an antenna array and antenna array having a plurality of such antenna devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20181217 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200312 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1300012 Country of ref document: AT Kind code of ref document: T Effective date: 20200815 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502017006615 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PK Free format text: BERICHTIGUNGEN |
|
RIN2 | Information on inventor provided after grant (corrected) |
Inventor name: MOESSINGER, ALEXANDER Inventor name: OPPENLAENDER, JOERG |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20200805 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201207 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201105 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201105 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201106 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502017006615 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2824513 Country of ref document: ES Kind code of ref document: T3 Effective date: 20210512 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 |
|
26N | No opposition filed |
Effective date: 20210507 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210627 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210630 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210627 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20170627 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1300012 Country of ref document: AT Kind code of ref document: T Effective date: 20220627 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220627 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20230712 Year of fee payment: 7 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20231017 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240509 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240628 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240513 Year of fee payment: 8 Ref country code: FR Payment date: 20240509 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20240510 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240704 Year of fee payment: 8 |