EP3470728B1 - Light module for a motor vehicle - Google Patents
Light module for a motor vehicle Download PDFInfo
- Publication number
- EP3470728B1 EP3470728B1 EP18198510.2A EP18198510A EP3470728B1 EP 3470728 B1 EP3470728 B1 EP 3470728B1 EP 18198510 A EP18198510 A EP 18198510A EP 3470728 B1 EP3470728 B1 EP 3470728B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- light
- light sources
- focal surface
- imaging device
- object focal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/20—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
- F21S41/25—Projection lenses
- F21S41/255—Lenses with a front view of circular or truncated circular outline
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/10—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
- F21S41/14—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
- F21S41/141—Light emitting diodes [LED]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/10—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
- F21S41/14—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
- F21S41/141—Light emitting diodes [LED]
- F21S41/143—Light emitting diodes [LED] the main emission direction of the LED being parallel to the optical axis of the illuminating device
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/10—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
- F21S41/14—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
- F21S41/141—Light emitting diodes [LED]
- F21S41/147—Light emitting diodes [LED] the main emission direction of the LED being angled to the optical axis of the illuminating device
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/10—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
- F21S41/14—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
- F21S41/141—Light emitting diodes [LED]
- F21S41/151—Light emitting diodes [LED] arranged in one or more lines
- F21S41/153—Light emitting diodes [LED] arranged in one or more lines arranged in a matrix
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/10—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
- F21S41/19—Attachment of light sources or lamp holders
- F21S41/192—Details of lamp holders, terminals or connectors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/20—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
- F21S41/25—Projection lenses
- F21S41/26—Elongated lenses
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/30—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
- F21S41/32—Optical layout thereof
- F21S41/321—Optical layout thereof the reflector being a surface of revolution or a planar surface, e.g. truncated
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/30—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
- F21S41/32—Optical layout thereof
- F21S41/322—Optical layout thereof the reflector using total internal reflection
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/30—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
- F21S41/32—Optical layout thereof
- F21S41/323—Optical layout thereof the reflector having two perpendicular cross sections having regular geometrical curves of a distinct nature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/40—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by screens, non-reflecting members, light-shielding members or fixed shades
- F21S41/43—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by screens, non-reflecting members, light-shielding members or fixed shades characterised by the shape thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/60—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
- F21S41/65—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources
- F21S41/663—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources by switching light sources
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V19/00—Fastening of light sources or lamp holders
- F21V19/001—Fastening of light sources or lamp holders the light sources being semiconductors devices, e.g. LEDs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21W—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
- F21W2102/00—Exterior vehicle lighting devices for illuminating purposes
- F21W2102/10—Arrangement or contour of the emitted light
- F21W2102/13—Arrangement or contour of the emitted light for high-beam region or low-beam region
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21W—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
- F21W2107/00—Use or application of lighting devices on or in particular types of vehicles
- F21W2107/10—Use or application of lighting devices on or in particular types of vehicles for land vehicles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
- F21Y2107/00—Light sources with three-dimensionally disposed light-generating elements
- F21Y2107/10—Light sources with three-dimensionally disposed light-generating elements on concave supports or substrates, e.g. on the inner side of bowl-shaped supports
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
- F21Y2107/00—Light sources with three-dimensionally disposed light-generating elements
- F21Y2107/70—Light sources with three-dimensionally disposed light-generating elements on flexible or deformable supports or substrates, e.g. for changing the light source into a desired form
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
- F21Y2115/00—Light-generating elements of semiconductor light sources
- F21Y2115/10—Light-emitting diodes [LED]
Definitions
- the invention relates to the technical field of light modules for motor vehicle lighting.
- Light modules of this type are already known. They are capable of emitting a segmented light beam longitudinally forward.
- the lighting device comprises a matrix of elementary light sources which is projected forward by an imaging device to form the segmented light beam into a matrix of light pixels. Each light pixel is illuminated by an associated light source.
- the light sources are capable of being activated in a manner individual and independent. By selectively switching on or off each of the elementary light sources, it is possible to create a light beam that specifically illuminates certain areas of the road in front of the vehicle, while leaving other areas in darkness.
- Such an optical lighting module is used in particular to perform an adaptive lighting function also called "ADB", an acronym for the English expression "Adaptive Driving Beam”.
- ADB adaptive lighting function
- Such an ADB function is intended to automatically detect a road user likely to be dazzled by a lighting beam emitted in high beam mode by a headlight, and to modify the contour of this lighting beam so as to create a shadow zone at the location of the detected user while continuing to illuminate the road with a long-range beam on either side of the user.
- the advantages of the ADB function are numerous: ease of use, better visibility compared to lighting in dipped beam mode, greatly reduced risk of dazzling, safer driving, etc.
- Such an optical module generally comprises a matrix of light sources, generally formed by light-emitting diodes (LEDs), and an imaging device.
- the light-emitting diodes are arranged on the surface of a flat substrate that extends in a plane orthogonal to the main emission direction of the light-emitting diodes.
- Each light source is imaged by the projection optics to form a light pixel.
- Each light pixel is capable of being selectively illuminated by activating or deactivating each light source.
- Such an optical module is however likely to be subject to optical aberrations such as spherical aberration, coma aberration, distortion aberration, astigmatism, field curvature aberration, etc.
- the present invention relates more particularly to solving the problems posed by field curvature aberration also called "Petzval field curvature".
- the imaging device is supposed to have an object focal surface formed by a plane orthogonal to the optical axis of said optics.
- this object focal surface actually has a concave spherical curvature.
- the light sources of the matrix are arranged in a plane orthogonal to the optical axis of the projection optics, only the secondary elementary light sources located on the curved object focal surface are projected sharply.
- the other light sources located in front of or behind the curved object focal surface will be projected more or less blurred depending on their longitudinal distance from the object focal surface. The further the light source is from the object focal surface, the more blurred the associated light pixel will be.
- the array of light sources generally has a horizontal dimension much greater than its vertical direction.
- the light sources arranged at each end of a line are sufficiently far from the object focal surface for the curvature defect to have visible effects on the corresponding light pixels.
- the curvature defect therefore has annoying effects on the horizontal lines of light pixels, while the effects on the vertical columns of light pixels are barely perceptible to the naked eye.
- the primary optical element comprises, for example, light guides, each of which is associated with a light source.
- the output faces of the light guides are arranged on a curved surface matching the curvature of the real object focal surface of the projection optics.
- the device imaging then projects an image of the output faces of the light guides.
- the input faces of the light guides are arranged in the same plane.
- the light guides located transversely at a distance from the optical axis of the projection optics have a length greater than that of the light guides located near said optical axis.
- Such a primary optical element is not easy to manufacture because of the variable lengths of the light guides.
- the length of the light guides located at the ends of the primary optical element is such that the choice of material for making the primary optical element is limited, for example, to silicone. In particular, it is very complex and extremely expensive to make the light guides from polycarbonate or PMMA.
- a motor vehicle light module according to the preamble of claim 1 is known from documents US 2001/019486 A1 And EP 2 505 910 A2 .
- Such a shape of the substrate makes it possible to arrange each light source of a line at a unique distance from the first object focusing surface of the imaging device.
- the light pixels obtained by projection of the light sources of the same line have substantially the same light intensity profile regardless of their position along the line.
- a light pixel located at the end of the line will have substantially the same light intensity distribution as a light pixel located in the middle of the line.
- the substrate which carries the matrix of light sources is flexible at least in a horizontal plane to adapt its radius of curvature to the radius of curvature of the first object focal surface.
- the substrate can be bent under stress and that it returns to its original shape when the stress is removed.
- the substrate can return to a planar shape in its unstressed state.
- the substrate is also flexible in a vertical plane to form a portion of a sphere after deformation.
- the imaging device comprises an entry face for the light rays, the imaging device being designed so that the first object focal surface has a radius of curvature determined so that, in projection in a horizontal plane, the circle virtually extending said first object focal surface passes through the end edges of the entry face for the light rays.
- the light sources are merged with the first focal surface object of the imaging device.
- This variant is particularly interesting when the light sources of the same line are substantially contiguous.
- the light sources are offset rearwardly relative to the first object focal surface by a determined offset distance.
- the offset distance is defined such that a cone whose base rests on the circumference of the input face of the imaging device and whose apex is located on the focus intercepts, in the extension of its apex, a segment whose length is equal to the distance between the center of two consecutive light sources of the same line.
- the imaging device comprises a single object focal surface which is formed by said first object focal surface.
- the matrix of light sources comprises at least two horizontal lines of light sources and the vertical distance separating two adjacent light sources of the same column is substantially equal to the horizontal distance separating two adjacent light sources of the same line so that, in the light beam, the light lines of light pixels overlap vertically.
- the matrix of light sources comprises at least two horizontal lines of light sources and the vertical distance separating two adjacent light sources of the same column is greater than the horizontal distance separating two adjacent light sources of the same line so that, in the light beam, the light lines of light pixels appear distinctly from each other with vertical interposition of darker intermediate lines.
- the invention also relates to a segmented light beam projector for a motor vehicle which comprises two light modules each produced according to the invention, the lines of light pixels of one light beam being interposed between the lines of light pixels of the other light beam to create a homogeneous overall light beam.
- the imaging device comprises a second object focal surface, the first object focal surface focusing the light rays in a horizontal plane, and the second object focal surface focusing the light rays in a vertical plane, the light module comprising a primary optical element which shapes the light rays emitted by the light sources to obtain vertically adjoining secondary light sources which are arranged in coincidence with or close to the second object focal surface.
- a local reference point linked to the light module will be adopted, without limitation, having longitudinal orientations, oriented from back to front and corresponding to the normal direction of movement of the vehicle, vertical orientation, oriented from bottom to top, and transverse orientation, oriented from left to right, indicated by the trihedron "L, V, T" in the figures.
- the vertical orientation is used here as a geometric reference point for the description of the light module, without relation to the direction of gravity.
- the vertical and transverse orientations are independent of a reference point linked to the vehicle.
- the transverse orientation extends from one wing to the other of the vehicle parallel to the road, while the vertical orientation extends orthogonally to the road, from the wheels to the roof of the vehicle.
- the light module can also be arranged in the vehicle such that the vertical and transverse orientations are rotated about the longitudinal axis relative to the vehicle.
- a motor vehicle 10 equipped with a headlight 12 which produces a light beam 14 segmented into light pixels which performs a specific lighting function. In a non-limiting manner, this is a high beam function.
- the light beam 14 is emitted along a substantially longitudinal emission axis "A" towards the front of the vehicle 10.
- a vertical transverse screen 16 has been arranged at a determined longitudinal distance in front of the vehicle 10.
- the screen 16 is here arranged 25 m from the vehicle.
- a transverse axis "H” and a vertical axis “V” have been drawn on the screen 16, which are concurrent with the axis "A” of emission of the light beam 14.
- the axes "H” and “V” are graduated in degrees of opening of the light beam.
- the light beam 14 illuminates an area 18 of the screen 16.
- This illuminated area 18 is divided into a matrix of juxtaposed light pixels 20 which are arranged in transverse lines and vertical columns.
- the light pixels 20 can be activated individually and independently of each other.
- juxtaposed means that two adjacent luminous pixels 20, vertically or transversely, overlap.
- the light beam 14 illuminates the area 18 of the screen 16 in a substantially uniform manner.
- a luminous pixel 20 is extinguished, a portion of the space that it occupied on the screen 16 is not illuminated by the neighboring pixels.
- each light pixel 20 has a bell-shaped light intensity profile along a cutting line.
- the overlap of two light pixels 20 is defined by the fact that the light profiles of two successive light pixels along a line, for example transverse, intersect.
- FIG 3 gives a non-limiting example of overlapping of the luminous pixels 20.
- the figure 3 represents the luminous intensity profiles of three adjacent luminous pixels 20A, 20B, 20C projected on the screen 16.
- Each luminous pixel 20A, 20B, 20C has a bell-shaped luminous intensity profile, the maximum luminous intensity Imax being located at the center of the luminous pixel 20A, 20B, 20C.
- the luminous pixel 20A on the left overlaps the central luminous pixel 20B so that the luminous intensity curves intersect at a point "P1" having a luminous intensity substantially equal to half of the maximum luminous intensity Imax.
- the right luminous pixel 20C overlaps the central luminous pixel 20B so that the luminous intensity curves intersect at a point "P2" having a luminous intensity substantially equal to half of the maximum luminous intensity Imax.
- a central strip comprising the top of the bell is illuminated only by the central luminous pixel 20B and this central strip is surrounded by strips illuminated in a degraded and low-intensity manner, which extend from the central strip respectively to the points P1 and P2.
- each light pixel has a light profile approaching a crenel shape in which the top of the bell is spread out to substantially form a plateau.
- the crossing between two light intensity profiles of two successive light pixels occurs at a light intensity less than half the maximum intensity.
- the space occupied by a given light pixel is likely to be entirely illuminated by the adjacent light pixels.
- the projector 12 comprises at least one light module 22.
- the light module 22 comprises at least one matrix 24 of light sources 26 and at least one imaging device 28 which is designed to project the light sources by forming the light beam 14 in which each light source 26 produces a light pixel 20.
- the light sources 26 are here all identical in dimensions.
- the light sources 26 are formed by light-emitting surfaces of light-emitting diodes. They are all arranged on a front face 29 of a common substrate 30.
- the common substrate 30 has a plate shape which extends in a generally vertical transverse plane
- all the light sources 26 are arranged in the same plane parallel to or merged with the face 29.
- the light-emitting diodes protrude relative to the face 29, they all protrude by the same distance.
- the light sources 26 are arranged in horizontal rows 32 and vertical columns 34.
- the matrix 24 here has a greater number of columns 34 than rows 32.
- the matrix has a transverse width much greater than its vertical height.
- two adjacent light sources 26 of the same line 32 are spaced apart by a first transverse distance "D1".
- the transverse distance "D1" is the same for all the light sources 26 of the same line 32.
- two adjacent light sources 26 of the same column 34 are spaced apart by a second vertical distance “D2”.
- the vertical distance “D2” is the same for all light sources of the same column 34.
- the light module 22 comprises at least one imaging device 28 which is designed to project an image of each light source 26 substantially to infinity.
- the imaging device 28 is in particular designed to project the light sources 26 by forming the light beam 14 in which each light source 26 produces a light pixel 20.
- the imaging device 28 is in the form of a single lens. It will nevertheless be understood that the imaging device may also comprise at least one reflective element and/or one or more lenses.
- the imaging device 28 has an entry face 36 for the light rays and an exit face 38 for the light beam 14.
- the imaging device 28 has at least a first focal length F1 and a first generally vertical transverse object focal surface 40 which is arranged substantially in coincidence with the light sources 26.
- the first object focal surface 40 is notably arranged so that, when all the light sources 26 of a line 32 are activated, the screen 16 is illuminated homogeneously by a luminous line of corresponding luminous pixels 20.
- the object focal surface 40 of the imaging device 30 is represented as a first approximation by a planar object focal surface 40 that is perfectly orthogonal to the optical axis "A".
- the projection optics 14 have an object focal surface that has a concave spherical curvature defect.
- Such a defect is called Petzval field aberration.
- the curvature defect has a radius of curvature of determined radii of curvature.
- the first object focal surface 40 appears as an arc of a circle.
- the invention proposes that the substrate 30 of the matrix 24 has, in a horizontal plane, a curved shape at least partly parallel to the first object focal surface 40 of the imaging device 28.
- the part of the substrate 30 comprising the light sources 26 may have, in a horizontal plane, a curved shape parallel to the first object focal surface 40 of the imaging device 28 while the ends of the substrate 30 located on either side of the part of the substrate 30 comprising the light sources 26 may have, in this same horizontal plane, a shape parallel or not to the first object focal surface 40 of the imaging device 28.
- the entire substrate 30 of the matrix 24 has, in a horizontal plane, a curved shape parallel to the first object focal length 40 of the imaging device.
- the substrate 30 is thus curved so that its front face 29 has the shape of a cylinder sector with vertical generatrices and a horizontal circular arc directrix.
- the radius of curvature of the substrate 30 is determined so that each line 32 of light sources 26 is parallel with the object focal surface 40 taken along a horizontal section plane passing through said line 32.
- all the light sources 26 of the same line 32 are arranged at the same distance from the first object focal surface 40.
- the substrate 30 which carries the matrix 24 of light sources 26 is flexible at least in a horizontal plane to precisely adapt its radius of curvature to the radius of curvature of the first object focal surface 40.
- the substrate 30 is for example elastically flexible, the front face 29 of the substrate 30 having a planar shape in its unstressed state, as shown in broken lines in FIG. figure 6 . This makes it possible to precisely adjust the radius of curvature of the substrate 30 to the curvature defect of the associated imaging device 30.
- the die 24 is mounted on a mount which allows its radius of curvature to be adjusted.
- the mount comprises, for example, two clamping jaws 35 which are each arranged against a vertical edge of the substrate 30 and which transversely clamp the substrate 30 to constrain it in the desired curved position.
- the mount has a curved support surface against which a rear face of the substrate 30 is fixed, for example by gluing or by elastic interlocking or by any other suitable fixing means.
- the transverse distance "D1" which separates two adjacent light sources 26 of the same line 32 is substantially zero, it is possible to make the first object focal surface 40 coincide perfectly with the light sources to obtain homogeneous illumination of a line of corresponding light pixels 20.
- the light sources 26 are thus merged with the first object focal surface 40 of the imaging device 28.
- the transverse distance "D1" between two adjacent light sources 26 of the same line 32 is not zero.
- the transverse distance "D1" is between 10% and 50% of the width of a light source 26.
- the object focal surface 40 is offset longitudinally forward by a longitudinal distance "D3" relative to the closest light sources 26, as shown in FIG. figure 6 . This allows the light source 26 to be imaged by a slightly blurred and more transversely spread light pixel 20 which overlaps the adjacent pixels 20, thus making the dark spaces between two transversely adjacent light sources 26 disappear.
- the radius of curvature of the substrate 30 is equal to the sum of the radius of curvature of the first object focal surface 40 and the longitudinal offset distance "D3".
- the offset distance "D3" is defined so that a cone 43 whose base rests on the circumference of the entry face 36 of the imaging device 28 and whose apex is located on the focus of the imaging device 28 intercepts, in the extension of its apex, a segment whose length is equal to the distance between the center of two consecutive light sources 26 of the same line 32.
- the opening angle "a" of the cone 43 corresponds to the opening angle of the imaging device 28.
- a virtual circle “C” is defined which is formed by extending the first object focal plane 40.
- the imaging device 28 is advantageously designed so that the first object focal plane 40, in projection in an axial horizontal plane, has a radius of curvature determined so that the circle “C” passes through the end edges of the entry face 36 of the light rays, as illustrated in FIG. figure 7 .
- the end edges of the entrance face 36 delimit an arc 41 of the circle “C”.
- the so-called “inscribed angle” theorem states that an angle inscribed in the circle “C” which intercepts said arc 41 has the same value "a” regardless of the position of its vertex on the circle “C”.
- the angle " ⁇ " corresponds to the opening angle of the imaging device 28.
- This configuration thus makes it possible to very substantially improve the luminous efficiency of the light sources 26 arranged at the end of the line 32 compared to a light module in which the light sources are arranged on a flat substrate. This configuration also helps avoid vignetting optical aberrations.
- the imaging device 28 comprises a single object focal surface which is formed by said first object focal surface 40.
- the matrix 24 of light sources 26 is designed so that the vertical distance "D2" separating two adjacent light sources 26 of the same column 34 is substantially equal to the horizontal distance "D1" separating two adjacent light sources 26 of the same line 32.
- the light beam 14 illuminates the screen 16 in such a way that the light lines of light pixels 20 overlap vertically, in the same way as two light pixels 20 of the same line 32.
- the light beam 14 thus illuminates the screen 16 homogeneously.
- the matrix 24 has, in vertical axial section, a rectilinear shape, while the first object focal surface 40 has the shape of an arc of a circle.
- this configuration is not inconvenient because, as explained above, the vertical dimension of the matrix 24 is much smaller than its transverse dimension. As a result, the blur created by the effect of the field curvature is not perceptible to the naked eye on the luminous pixels 20 of the same column.
- the invention proposes a variant of this first embodiment which is shown in figures 9 And 10 .
- the vertical distance "D2" separating two adjacent light sources 26 of the same column 34 is greater than the horizontal distance "D1" separating two sources adjacent luminous pixels 26 of the same line 32 so that, in the light beam 14A, the lines 42A of luminous pixels 20 appear distinctly from each other with the interposition of darker intercalary lines, as shown in the figure 9 .
- the projector 12 then comprises two similar light modules 22A, 22B.
- the second light module 22B is arranged so as to project a light beam 14B having lines 42B of light pixels 20 between the lines 42A of light pixels of the other light beam 14A to create a uniform overall light beam.
- the two light modules 22A, 22B are here arranged in the same projector 12.
- the projector 12 comprises a common housing 44 closed by a glass 46 enclosing the two light modules 22A, 22B.
- the invention proposes a second embodiment of the invention which is shown in figures 11 And 12 .
- the imaging device 28 is a bifocal device, sometimes also called astigmatic, which comprises, in addition to the first object focal surface 40, a second object focal surface 48.
- the second object focal surface 48 is arranged at a focal length "F2" relative to the optical center of the imaging device 28.
- the first object focal surface 40 focuses the light rays in a horizontal plane, while the second object focal surface 48 focuses the light rays in a vertical plane.
- the light module further comprises a primary optical element 50 which shapes the light rays emitted by the light sources 26 to obtain light sources 52 vertically adjoining secondary lenses which are arranged on the second object focal surface.
- the primary optical element 50 is an optical part, or a set of optical parts and/or structures, arranged to transfer the light emitted by said light sources 26 onto a virtual projection surface, which is located opposite and at a predefined distance from the matrix 24, in the direction of light emission, to form the secondary light sources 52 there.
- the virtual surface is advantageously a virtual concave surface in the form of a portion of a sphere parallel to or merged with the second object focusing surface 48.
- the virtual projection surface may be a portion of a cylinder parallel to the front face of the matrix 24.
- each secondary light source 52 has a height greater than that of each associated light source 26.
- the secondary light sources 52 are here vertically adjoining.
- the primary optical element 50 can be made in a single optical part but can comprise at least two optical parts which can have different shapes and/or refractive indices. Said at least two parts can also be made of different materials and can comprise coatings to improve the light transmission efficiency, such as an anti-reflective coating.
- the primary element 50 can comprise diffractive or refractive structures, such as diffraction gratings or Fresnel structures.
- the primary optical element 50 comprises several layers of light guide 54, each of which is arranged facing a line 32 of associated light sources 26.
- a guide sheet 54 is defined as an optical part capable of guiding light by total internal reflection of this light, for example from an entry face to an exit face.
- a guide sheet 54 has a small thickness compared to its length and its width.
- each guide sheet 54 has an upper face 56 and a lower face 58 of extended guidance separated by a perimeter.
- This perimeter defines a thickness of the guide sheet 56, which can be variable, for example increasing from one end to the other.
- the perimeter comprises a transverse vertical rear face 60 for entering the light common to all the light sources 26 of the associated line 32.
- the rear entry face 60 is arranged close to the associated light sources 26, for example a few millimeters away.
- the light emitted by the light sources 26 which enters through the rear face 60 propagates inside the guide sheet 60 by successive total internal reflections against the upper and lower faces 56, 58 in the direction of a vertical transverse front exit face 62.
- the front face 62 forms a portion of the periphery of the guide sheet 54.
- each guide sheet 54 has a height greater than that of its inlet face 60.
- each guide sheet 54 has, in transverse longitudinal section, a divergent profile from its inlet face 60 to its outlet face 62.
- the input face 60 has a height which is substantially equal to the height of the emission surface of the associated light sources 26.
- the exit face 62 is thus illuminated over its entire height by the associated light sources 26, thus forming a line of secondary light sources 52.
- the first object focusing surface 40 of the imaging device 28 is arranged in the same manner as in the previous embodiments, i.e. in coincidence with or in proximity to the light sources 26.
- the second object focusing surface 48 which is arranged substantially in coincidence with the exit faces 62 of the guide sheets 54.
- the light rays emitted by the emission surface of said light source 14 are projected in parallel by the imaging device 28 in longitudinal vertical planes, such that the light beam associated with said light source 26 creates a light segment of generally rectangular shape delimited transversely by vertical edges which are the clear image of the vertical edges of the emission surface.
- each light source 26 creates a secondary light source 52 on the output face 62 of the guide sheet 20.
- Each secondary light source 52 is thus delimited vertically by two transverse edges which coincide with the edges formed by the upper and lower faces 56, 58 with the output face 62.
- the output face 62 being arranged substantially in coincidence with the second object focusing surface 48, the light rays emitted by each secondary light source 52 are therefore projected in parallel by the imaging device 28 in longitudinal transverse planes, so that the light beam associated with said light source 20 creates a light segment of generally rectangular shape delimited vertically by vertical edges which are the image clear of the transverse edges of the secondary light source 52.
- the secondary light sources 52 being substantially contiguous, the pixels 20 obtained are also contiguous vertically.
- the guide sheet is replaced by reflective surfaces.
- the space that was occupied by the guide sheet of the figure 12 is left empty, while the reflecting surfaces are carried by prisms 64 which extend longitudinally from their base 66 located on the front face of the substrate 24, between two lines 32 to a free front transverse edge 68.
- the upper 58 and lower 56 faces of the prisms 64 form reflecting surfaces.
- the prisms exactly fill the voids between two guide sheets of the figure 12 .
- the pixels obtained are sharper, particularly on the transverse edges of the area illuminated by the light beam.
- the imaging device is designed according to the other aspect of the invention so that the virtual sphere carrying the object focusing surface passes through the edges of its input face, the luminous efficiency of the module luminous is significantly improved compared to known designs.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Optics & Photonics (AREA)
- Mathematical Physics (AREA)
- Geometry (AREA)
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
- Lighting Device Outwards From Vehicle And Optical Signal (AREA)
Description
L'invention se rapporte au domaine technique des modules lumineux d'éclairage pour véhicule automobile.The invention relates to the technical field of light modules for motor vehicle lighting.
L'invention se rapporte plus particulièrement à un module lumineux de véhicule automobile comprenant :
- au moins une matrice de sources lumineuses rangées en au moins une ligne horizontale et en colonnes verticales, les sources lumineuses étant des surfaces émettrices de diodes électroluminescentes qui sont toutes agencées sur un substrat commun ;
- au moins un dispositif d'imagerie conçu pour projeter les sources lumineuses en un faisceau lumineux dans lequel chaque source lumineuse produit un pixel lumineux, l'activation des sources lumineuses d'une ligne formant une ligne lumineuse de pixels lumineux éclairée de manière homogène, le dispositif d'imagerie comportant au moins une première surface focale objet présentant un défaut de courbure de rayon de courbure déterminé.
- at least one matrix of light sources arranged in at least one horizontal row and in vertical columns, the light sources being emitting surfaces of light-emitting diodes which are all arranged on a common substrate;
- at least one imaging device designed to project the light sources into a light beam in which each light source produces a light pixel, the activation of the light sources of a line forming a light line of light pixels illuminated homogeneously, the imaging device comprising at least one first object focal surface having a curvature defect of determined radius of curvature.
On connaît déjà des modules lumineux de ce type. Ils sont aptes à émettre longitudinalement vers l'avant un faisceau lumineux segmenté. Le dispositif d'éclairage comporte une matrice de sources lumineuses élémentaires qui est projetée vers l'avant par un dispositif d'imagerie pour former le faisceau lumineux segmenté en une matrice de pixels lumineux. Chaque pixel lumineux est éclairé par une source lumineuse associée. Les sources lumineuses sont susceptibles d'être activées de manière individuelle et indépendante. En allumant ou en éteignant sélectivement chacune des sources lumineuses élémentaires, il est possible de créer un faisceau lumineux éclairant spécifiquement certaines zones de la route en avant du véhicule, tout en laissant dans l'obscurité d'autres zones.Light modules of this type are already known. They are capable of emitting a segmented light beam longitudinally forward. The lighting device comprises a matrix of elementary light sources which is projected forward by an imaging device to form the segmented light beam into a matrix of light pixels. Each light pixel is illuminated by an associated light source. The light sources are capable of being activated in a manner individual and independent. By selectively switching on or off each of the elementary light sources, it is possible to create a light beam that specifically illuminates certain areas of the road in front of the vehicle, while leaving other areas in darkness.
Un tel module optique d'éclairage est notamment utilisé pour réaliser une fonction d'éclairage adaptatif aussi dite "ADB", acronyme de l'expression anglaise "Adaptative Driving Beam". Une telle fonction ADB est destinée à permettre de détecter de façon automatique un usager de la route susceptible d'être ébloui par un faisceau d'éclairage émis en mode feu de route par un projecteur, et à modifier le contour de ce faisceau d'éclairage de manière à créer une zone d'ombre à l'endroit où se trouve l'usager détecté tout en continuant à éclairer la route avec un faisceau à grande portée de part et d'autre de l'usager. Les avantages de la fonction ADB sont multiples : confort d'utilisation, meilleure visibilité par rapport à un éclairage en mode feu de croisement, risque d'éblouissement fortement réduit, conduite plus sûre...Such an optical lighting module is used in particular to perform an adaptive lighting function also called "ADB", an acronym for the English expression "Adaptive Driving Beam". Such an ADB function is intended to automatically detect a road user likely to be dazzled by a lighting beam emitted in high beam mode by a headlight, and to modify the contour of this lighting beam so as to create a shadow zone at the location of the detected user while continuing to illuminate the road with a long-range beam on either side of the user. The advantages of the ADB function are numerous: ease of use, better visibility compared to lighting in dipped beam mode, greatly reduced risk of dazzling, safer driving, etc.
Un tel module optique comporte généralement une matrice de sources lumineuses, généralement formées par des diodes électroluminescentes (LEDs), et un dispositif d'imagerie. Les diodes électroluminescentes sont agencées sur la surface d'un substrat plan qui s'étend dans un plan orthogonal à la direction d'émission principale des diodes électroluminescentes. Chaque source lumineuse est imagée par l'optique de projection pour former un pixel lumineux. Chaque pixel lumineux est susceptible d'être éclairé sélectivement par activation ou désactivation de chaque source lumineuse.Such an optical module generally comprises a matrix of light sources, generally formed by light-emitting diodes (LEDs), and an imaging device. The light-emitting diodes are arranged on the surface of a flat substrate that extends in a plane orthogonal to the main emission direction of the light-emitting diodes. Each light source is imaged by the projection optics to form a light pixel. Each light pixel is capable of being selectively illuminated by activating or deactivating each light source.
Un tel module optique est cependant susceptible d'être soumis à des aberrations optiques telles que l'aberration de sphéricité, l'aberration de coma, l'aberration de distorsion, l'astigmatisme, l'aberration de courbure de champ, etc.Such an optical module is however likely to be subject to optical aberrations such as spherical aberration, coma aberration, distortion aberration, astigmatism, field curvature aberration, etc.
La présente invention concerne plus particulièrement la résolution des problèmes posés par l'aberration de courbure de champ aussi appelée "courbure de champ de Petzval". Théoriquement, le dispositif d'imagerie est supposé présenter une surface focale objet formée par un plan orthogonal à l'axe optique de ladite optique. Cependant, cette surface focale objet présente en réalité une courbure sphérique concave.The present invention relates more particularly to solving the problems posed by field curvature aberration also called "Petzval field curvature". Theoretically, the imaging device is supposed to have an object focal surface formed by a plane orthogonal to the optical axis of said optics. However, this object focal surface actually has a concave spherical curvature.
De ce fait, les sources lumineuses de la matrice étant agencées dans un plan orthogonal à l'axe optique de l'optique de projection, seules les sources lumineuses élémentaires secondaires situées sur la surface focale objet courbe sont projetées de manière nette. Les autres sources lumineuses situées en avant ou en arrière de la surface focale objet courbe seront projetées de manière plus ou moins floue en fonction de leur distance longitudinale par rapport à la surface focale objet. Plus la source lumineuse sera éloignée de la surface focale objet, plus le pixel lumineux associé sera flou.As a result, since the light sources of the matrix are arranged in a plane orthogonal to the optical axis of the projection optics, only the secondary elementary light sources located on the curved object focal surface are projected sharply. The other light sources located in front of or behind the curved object focal surface will be projected more or less blurred depending on their longitudinal distance from the object focal surface. The further the light source is from the object focal surface, the more blurred the associated light pixel will be.
La matrice de sources lumineuses présente généralement une dimension horizontale très supérieure à sa direction verticale. Ainsi, les sources lumineuses agencées à chaque extrémité d'une ligne sont suffisamment éloignées de la surface focale objet pour que le défaut de courbure ait des effets visibles sur les pixels lumineux correspondant. Le défaut de courbure a donc des effets gênant sur les lignes horizontales de pixels lumineux, tandis que les effets sur les colonnes verticales de pixels lumineux sont peu perceptibles à l'œil nu.The array of light sources generally has a horizontal dimension much greater than its vertical direction. Thus, the light sources arranged at each end of a line are sufficiently far from the object focal surface for the curvature defect to have visible effects on the corresponding light pixels. The curvature defect therefore has annoying effects on the horizontal lines of light pixels, while the effects on the vertical columns of light pixels are barely perceptible to the naked eye.
Pour résoudre ce problème, on a déjà proposé d'interposer un élément optique primaire entre les sources lumineuses et le dispositif d'imagerie. L'élément optique primaire comporte par exemple des guides de lumière dont chacun est associé à une source lumineuse. Les faces de sortie des guides de lumière sont agencées sur une surface courbe épousant la courbure de la surface focale objet réelle de l'optique de projection. Le dispositif d'imagerie projette alors une image des faces de sortie des guides de lumière.To solve this problem, it has already been proposed to interpose a primary optical element between the light sources and the imaging device. The primary optical element comprises, for example, light guides, each of which is associated with a light source. The output faces of the light guides are arranged on a curved surface matching the curvature of the real object focal surface of the projection optics. The device imaging then projects an image of the output faces of the light guides.
Les diodes électroluminescentes étant portées par une carte à circuit imprimé plane, les faces d'entrée des guides de lumière sont agencées dans un même plan. De ce fait, les guides de lumières situés transversalement à distance de l'axe optique de l'optique de projection présentent une longueur supérieure à celle des guides de lumière situés à proximité dudit axe optique. Un tel élément optique primaire est peu aisé à fabriquer du fait des longueurs variables des guides de lumière.Since the light-emitting diodes are carried by a flat printed circuit board, the input faces of the light guides are arranged in the same plane. As a result, the light guides located transversely at a distance from the optical axis of the projection optics have a length greater than that of the light guides located near said optical axis. Such a primary optical element is not easy to manufacture because of the variable lengths of the light guides.
En outre, la longueur des guides de lumière situés aux extrémités de l'élément optique primaire est telle que le choix de matériau pour réaliser l'élément optique primaire est limité par exemple à la silicone. Il est notamment très complexe et extrêmement onéreux de réaliser les guides de lumière en polycarbonate ou en PMMA.Furthermore, the length of the light guides located at the ends of the primary optical element is such that the choice of material for making the primary optical element is limited, for example, to silicone. In particular, it is very complex and extremely expensive to make the light guides from polycarbonate or PMMA.
On a aussi proposé d'interposer un élément optique de correction de la courbure de champ entre le dispositif d'imagerie et la matrice de sources lumineuses.It has also been proposed to interpose an optical element for correcting the field curvature between the imaging device and the light source matrix.
Cependant, une telle solution impose à nouveau d'ajouter un élément au module lumineux. Le coût de fabrication et le poids du module lumineux sont alors augmentés. Un module lumineux de véhicule automobile selon le préambule de la revendication 1 est connu des documents
L'invention propose un module lumineux de véhicule automobile comprenant :
- au moins une matrice de sources lumineuses rangées en au moins une ligne horizontales et en colonnes verticales, les sources lumineuses étant des surfaces émettrices de diodes électroluminescentes qui sont toutes agencées sur un substrat commun ;
- au moins un dispositif d'imagerie conçu pour projeter les sources lumineuses en un faisceau lumineux dans lequel chaque source lumineuse produit un pixel lumineux, l'activation des sources lumineuses d'une ligne formant une ligne lumineuse de pixels lumineux éclairée de manière homogène, le dispositif d'imagerie comportant au moins une première surface focale objet présentant un défaut de courbure de rayon de courbure déterminé ;
- at least one matrix of light sources arranged in at least one horizontal row and in vertical columns, the light sources being emitting surfaces of light-emitting diodes which are all arranged on a common substrate;
- at least one imaging device designed to project the light sources into a light beam in which each light source produces a light pixel, the activation of the light sources of a line forming a light line of light pixels illuminated homogeneously, the imaging device comprising at least one first object focal surface having a curvature defect of determined radius of curvature;
Une telle forme du substrat permet d'agencer chaque source lumineuse d'une ligne à une unique distance de la première surface de focalisation objet du dispositif d'imagerie. Il en résulte que les pixels lumineux obtenus par projection des sources lumineuses d'une même ligne présentent sensiblement un même profil d'intensité lumineuse quelle que soit leur position le long de la ligne. Notamment un pixel lumineux situé en bout de ligne présentera sensiblement la même distribution d'intensité lumineuse qu'un pixel lumineux situé en milieu de ligne.Such a shape of the substrate makes it possible to arrange each light source of a line at a unique distance from the first object focusing surface of the imaging device. As a result, the light pixels obtained by projection of the light sources of the same line have substantially the same light intensity profile regardless of their position along the line. In particular, a light pixel located at the end of the line will have substantially the same light intensity distribution as a light pixel located in the middle of the line.
Selon un autre aspect de l'invention, le substrat qui porte la matrice de sources lumineuses est flexible au moins dans un plan horizontal pour adapter son rayon de courbure au rayon de courbure de la première surface focale objet.According to another aspect of the invention, the substrate which carries the matrix of light sources is flexible at least in a horizontal plane to adapt its radius of curvature to the radius of curvature of the first object focal surface.
On entend par flexible que le substrat peut être courbé sous contrainte et qu'il reprend sa forme initiale lorsque la contrainte est supprimée. En particulier, le substrat peut reprendre une forme plane dans son état non contraint.Flexible means that the substrate can be bent under stress and that it returns to its original shape when the stress is removed. In particular, the substrate can return to a planar shape in its unstressed state.
Il est ainsi possible d'adapter le rayon de courbure du substrat au rayon de courbure de la première surface de focalisation objet du dispositif d'imagerie. Ceci permet notamment d'utiliser un même modèle de matrice de sources lumineuses avec différents dispositifs d'imagerie. Cela permet en outre de régler parfaitement le rayon de courbure de la matrice à chaque dispositif d'imagerie.It is thus possible to adapt the radius of curvature of the substrate to the radius of curvature of the first object focusing surface of the imaging device. This makes it possible in particular to use the same model of light source matrix with different imaging devices. This also allows the matrix curvature radius to be perfectly adjusted to each imaging device.
En variante, le substrat est aussi flexible dans un plan vertical pour former une portion de sphère après déformation.Alternatively, the substrate is also flexible in a vertical plane to form a portion of a sphere after deformation.
Selon un autre aspect de l'invention, le dispositif d'imagerie comporte une face d'entrée des rayons lumineux, le dispositif d'imagerie étant conçu pour que la première surface focale objet présente un rayon de courbure déterminé pour que, en projection dans un plan horizontal, le cercle prolongeant virtuellement ladite première surface focale objet passe par les bords d'extrémité de la face d'entrée des rayons lumineux.According to another aspect of the invention, the imaging device comprises an entry face for the light rays, the imaging device being designed so that the first object focal surface has a radius of curvature determined so that, in projection in a horizontal plane, the circle virtually extending said first object focal surface passes through the end edges of the entry face for the light rays.
Ceci permet très avantageusement d'améliorer le rendement lumineux du module lumineux en augmentant le flux lumineux des sources lumineuses émis par les sources lumineuses situées en bout de ligne à travers le dispositif d'imagerie.This very advantageously makes it possible to improve the luminous efficiency of the light module by increasing the luminous flux of the light sources emitted by the light sources located at the end of the line through the imaging device.
Selon une variante de l'invention, les sources lumineuses sont confondues avec la première surface focale objet du dispositif d'imagerie.According to a variant of the invention, the light sources are merged with the first focal surface object of the imaging device.
Cette variante est particulièrement intéressante lorsque les sources lumineuses d'une même ligne sont sensiblement jointives.This variant is particularly interesting when the light sources of the same line are substantially contiguous.
Selon un autre aspect de l'invention, les sources lumineuses sont décalées vers l'arrière par rapport à la première surface focale objet d'une distance de décalage déterminée.According to another aspect of the invention, the light sources are offset rearwardly relative to the first object focal surface by a determined offset distance.
Par exemple, la distance de décalage est définie de manière qu'un cône dont la base s'appuie sur la circonférence de la face d'entrée du dispositif d'imagerie et dont le sommet est situé sur le foyer intercepte, dans le prolongement de son sommet, un segment dont la longueur est égale à la distance entre le centre de deux sources lumineuses consécutives d'une même ligne.For example, the offset distance is defined such that a cone whose base rests on the circumference of the input face of the imaging device and whose apex is located on the focus intercepts, in the extension of its apex, a segment whose length is equal to the distance between the center of two consecutive light sources of the same line.
Ceci permet d'améliorer l'homogénéité lumineuse du faisceau lumineux émis par le module lumineux.This improves the light homogeneity of the light beam emitted by the light module.
Selon un premier mode de réalisation de l'invention, le dispositif d'imagerie comporte une unique surface focale objet qui est formée par ladite première surface focale objet.According to a first embodiment of the invention, the imaging device comprises a single object focal surface which is formed by said first object focal surface.
Un tel dispositif d'imagerie est plus simple à concevoir.Such an imaging device is simpler to design.
Selon une première variante du premier mode de réalisation, la matrice de sources lumineuses comporte au moins deux lignes horizontales de sources lumineuses et la distance verticale séparant deux sources lumineuses adjacentes d'une même colonne est sensiblement égale à la distance horizontale séparant deux sources lumineuses adjacentes d'une même ligne de sorte que, dans le faisceau lumineux, les lignes lumineuses de pixels lumineux se chevauchent verticalement.According to a first variant of the first embodiment, the matrix of light sources comprises at least two horizontal lines of light sources and the vertical distance separating two adjacent light sources of the same column is substantially equal to the horizontal distance separating two adjacent light sources of the same line so that, in the light beam, the light lines of light pixels overlap vertically.
Selon une deuxième variante du premier mode de réalisation, la matrice de sources lumineuses comporte au moins deux lignes horizontales de sources lumineuses et la distance verticale séparant deux sources lumineuses adjacentes d'une même colonne est supérieur à la distance horizontale séparant deux sources lumineuses adjacentes d'une même ligne de sorte que, dans le faisceau lumineux, les lignes lumineuses de pixels lumineux apparaissent distinctement les unes de autres avec interposition verticale de lignes intercalaires plus sombres.According to a second variant of the first embodiment, the matrix of light sources comprises at least two horizontal lines of light sources and the vertical distance separating two adjacent light sources of the same column is greater than the horizontal distance separating two adjacent light sources of the same line so that, in the light beam, the light lines of light pixels appear distinctly from each other with vertical interposition of darker intermediate lines.
Selon cette deuxième variante, l'invention concerne aussi un projecteur de faisceau lumineux à segments pour véhicule automobile qui comporte deux modules lumineux chacun réalisé selon l'invention, les lignes de pixels lumineux d'un faisceau lumineux étant interposées entre les lignes de pixels lumineux de l'autre faisceau lumineux pour créer un faisceau lumineux global homogène.According to this second variant, the invention also relates to a segmented light beam projector for a motor vehicle which comprises two light modules each produced according to the invention, the lines of light pixels of one light beam being interposed between the lines of light pixels of the other light beam to create a homogeneous overall light beam.
Selon un deuxième mode de réalisation de l'invention, le dispositif d'imagerie comporte une deuxième surfaces focale objet, la première surface focale objet focalisant les rayons lumineux dans un plan horizontal, et la deuxième surface focale objet focalisant les rayons lumineux dans un plan vertical, le module lumineux comportant un élément optique primaire qui met en forme les rayons lumineux émis par les sources lumineuses pour obtenir des sources lumineuses secondaires verticalement jointives qui sont agencées en coïncidence ou à proximité de la deuxième surface focale objet.According to a second embodiment of the invention, the imaging device comprises a second object focal surface, the first object focal surface focusing the light rays in a horizontal plane, and the second object focal surface focusing the light rays in a vertical plane, the light module comprising a primary optical element which shapes the light rays emitted by the light sources to obtain vertically adjoining secondary light sources which are arranged in coincidence with or close to the second object focal surface.
Ceci permet avantageusement d'obtenir un faisceau lumineux homogène dans lequel les pixels lumineux se chevauchent aussi verticalement.This advantageously makes it possible to obtain a homogeneous light beam in which the light pixels also overlap vertically.
D'autres caractéristiques et avantages de l'invention apparaitront au cours de la lecture de la description détaillée qui va suivre pour la compréhension de laquelle on se reportera aux dessins annexés dans lesquels :
- la
figure 1 est une vue de côté qui représente schématiquement un véhicule automobile équipé d'un module lumineux réalisé selon les enseignements de l'invention qui éclaire un écran transversal ; - la
figure 2 est une vue de face qui représente l'écran éclairé par le faisceau lumineux émis par le module lumineux de lafigure 1 qui est segmenté en plusieurs pixels lumineux chevauchants ; - la
figure 3 est un diagramme qui représente le profil d'intensité lumineuse de trois pixels lumineux adjacents du faisceau lumineux en fonction de leur position sur un axe transversal de l'écran ; - la
figure 4 est une vue en perspective qui représente schématiquement le module lumineux réalisé selon un premier mode de réalisation de l'invention ; - la
figure 5 est une vue de face qui représente une matrice de sources lumineuses qui équipe le module lumineux de lafigure 4 ; - la
figure 6 est une vue en coupe longitudinale transversale selon le plan de coupe 6-6 de lafigure 4 qui représente le substrat courbé de la matrice de sources lumineuses ainsi que la première surface de focalisation objet d'un dispositif d'imagerie du module lumineux ; - la
figure 7 est une vue similaire à celle de lafigure 6 qui représente une variante de réalisation de l'invention dans lequel la première surface de focalisation a été prolongée par un cercle passant par des bords d'extrémité de la surface d'entrée du dispositif d'imagerie ; - la
figure 8 est une vue en coupe verticale longitudinale selon le plan de coupe 8-8 de lafigure 4 ; - la
figure 9 est une vue de face similaire à celle de lafigure 2 dans laquelle l'écran est éclairé par un projecteur comportant deux modules lumineux réalisés selon une variante du premier mode de réalisation de l'invention ; - la
figure 10 est une vue en coupe longitudinale transversale qui représente schématiquement le projecteur comportant les deux modules qui éclairent l'écran de lafigure 9 ; - la
figure 11 est une vue similaire à celle de lafigure 6 qui représente un module lumineux réalisé selon un deuxième mode de réalisation de l'invention dans lequel il comporte un élément optique primaire et dans lequel le dispositif d'imagerie comporte deux surfaces de focalisation objet distinctes ; - la
figure 12 est une vue similaire à celle de lafigure 8 qui représente le module lumineux réalisé selon le deuxième mode de réalisation de l'invention ; - la
figure 13 est une vue similaire à celle de lafigure 12 qui représente une variante du deuxième mode de réalisation de l'invention.
- there
figure 1 is a side view which schematically represents a motor vehicle equipped with a light module produced according to the teachings of the invention which illuminates a transverse screen; - there
figure 2 is a front view showing the screen illuminated by the light beam emitted by the light module of thefigure 1 which is segmented into several overlapping light pixels; - there
figure 3 is a diagram that represents the luminous intensity profile of three adjacent luminous pixels of the light beam as a function of their position on a transverse axis of the screen; - there
figure 4 is a perspective view which schematically represents the light module produced according to a first embodiment of the invention; - there
figure 5 is a front view that represents a matrix of light sources that equips the light module of thefigure 4 ; - there
figure 6 is a transverse longitudinal sectional view along section plane 6-6 of thefigure 4 which represents the curved substrate of the light source matrix as well as the first focusing surface object of an imaging device of the light module; - there
figure 7 is a view similar to that of thefigure 6 which represents an alternative embodiment of the invention in which the first focusing surface has been extended by a circle passing through end edges of the input surface of the imaging device; - there
figure 8 is a longitudinal vertical sectional view along section plane 8-8 of thefigure 4 ; - there
figure 9 is a front view similar to that of thefigure 2 in which the screen is illuminated by a projector comprising two light modules produced according to a variant of the first embodiment of the invention; - there
figure 10 is a transverse longitudinal sectional view which schematically represents the projector comprising the two modules which illuminate the screen of thefigure 9 ; - there
figure 11 is a view similar to that of thefigure 6 which represents a light module produced according to a second embodiment of the invention in which it comprises a primary optical element and in which the imaging device comprises two distinct object focusing surfaces; - there
figure 12 is a view similar to that of thefigure 8 which represents the light module produced according to the second embodiment of the invention; - there
figure 13 is a view similar to that of thefigure 12 which represents a variant of the second embodiment of the invention.
Dans la suite de la description, des éléments présentant une structure identique ou des fonctions analogues seront désignés par une même référence.In the remainder of the description, elements having an identical structure or similar functions will be designated by the same reference.
Dans la suite de la description, on adoptera à titre non limitatif un repère local lié au module lumineux présentant des orientations longitudinale, orientée d'arrière en avant et correspondant au sens de déplacement normal du véhicule, verticale, orientée de bas en haut, et transversale, orientée de gauche à droite indiquées par le trièdre "L,V,T" des figures. L'orientation verticale est ici utilisée à titre de repère géométrique pour la description du module lumineux, sans rapport avec la direction de la gravité.In the remainder of the description, a local reference point linked to the light module will be adopted, without limitation, having longitudinal orientations, oriented from back to front and corresponding to the normal direction of movement of the vehicle, vertical orientation, oriented from bottom to top, and transverse orientation, oriented from left to right, indicated by the trihedron "L, V, T" in the figures. The vertical orientation is used here as a geometric reference point for the description of the light module, without relation to the direction of gravity.
En outre, les orientations verticale et transversale sont indépendantes d'un repère lié au véhicule. A titre non limitatif, dans l'exemple de la
On a représenté à la
Pour les besoins de la description, on a agencé un écran 16 transversal vertical à une distance longitudinale déterminée en avant du véhicule 10. L'écran 16 est ici agencé à 25 m du véhicule.For the purposes of the description, a vertical
Comme représenté à la
Le faisceau lumineux 14 éclaire une zone 18 de l'écran 16. Cette zone 18 éclairée est divisée en une matrice de pixels lumineux 20 juxtaposés qui sont rangés en lignes transversales et en colonnes verticales. Les pixels lumineux 20 sont activables individuellement et indépendamment les uns des autres.The
Le terme "juxtaposé" signifie que deux pixels lumineux 20 adjacents, verticalement ou transversalement, se chevauchent. Ainsi, lorsque tous les pixels lumineux 26 sont allumés, le faisceau lumineux 14 éclaire de manière sensiblement homogène la zone 18 de l'écran 16. Lorsqu'un pixel lumineux 20 est éteint, une portion de la place qu'il occupait sur l'écran 16 n'est pas éclairée par les pixels voisins.The term "juxtaposed" means that two adjacent
Plus particulièrement, chaque pixel lumineux 20 présente un profil d'intensité lumineuse en forme de cloche le long d'une ligne de coupe. On définit le chevauchement de deux pixels lumineux 20 par le fait que les profils lumineux de deux pixels lumineux successifs le long d'une ligne, par exemple transversale, se croisent.More particularly, each
La
En variante non représentée de l'invention, chaque pixel lumineux présente un profil lumineux se rapprochant d'une forme de créneau dans laquelle le sommet de la cloche est étalé pour former sensiblement un plateau. Dans ce cas, le croisement entre deux profils d'intensité lumineuse de deux pixels lumineux successifs se fait à une intensité lumineuse inférieure à la moitié de l'intensité maximale.In a variant of the invention that is not shown, each light pixel has a light profile approaching a crenel shape in which the top of the bell is spread out to substantially form a plateau. In this case, the crossing between two light intensity profiles of two successive light pixels occurs at a light intensity less than half the maximum intensity.
Selon une autre variante non représentée de l'invention, par exemple lorsque les sources lumineuses sont projetées de manière floue, l'espace occupé par un pixel lumineux déterminé est susceptible d'être entièrement éclairé par les pixels lumineux adjacents. Dans ce cas, pour obtenir une zone entièrement sombre, il est nécessaire d'éteindre au moins deux pixels adjacents.According to another variant not shown of the invention, for example when the light sources are projected in a blurred manner, the space occupied by a given light pixel is likely to be entirely illuminated by the adjacent light pixels. In this case, to obtain a completely dark area, it is necessary to extinguish at least two adjacent pixels.
Pour réaliser un tel faisceau lumineux 14, le projecteur 12 comporte au moins un module lumineux 22. Comme cela est par exemple représenté à la
Plus particulièrement, les sources lumineuses 26 sont formées par des surfaces émettrices de lumière de diodes électroluminescentes. Elles sont toutes agencées sur une face 29 avant d'un substrat commun 30. Le substrat commun 30 présente une forme de plaque qui s'étend dans un plan globalement vertical transversalMore particularly, the
Plus particulièrement, toutes les sources lumineuses 26 sont agencées dans un même plan parallèle ou confondu avec la face 29. Par exemple, si les diodes électroluminescentes font saillies par rapport à la face 29, elles font toutes saillies de la même distance.More particularly, all the
Les sources lumineuses 26 sont rangées en lignes 32 horizontales et en colonnes 34 verticales. La matrice 24 présente ici un plus grand nombre de colonnes 34 que de lignes 32. De ce fait, la matrice présente une largeur transversale très supérieure à sa hauteur verticale.The
Dans le mode de réalisation représenté à la
De même, deux sources lumineuses 26 adjacentes d'une même colonne 34 sont espacées d'une deuxième distance verticale "D2". Ici, la distance verticale "D2" est la même pour toutes sources lumineuses d'une même colonne 34.Similarly, two adjacent
Le module lumineux 22 comporte au moins un dispositif d'imagerie 28 qui est conçu pour projeter une image de chaque source lumineuse 26 sensiblement à l'infini. Le dispositif d'imagerie 28 est notamment conçu pour projeter les sources lumineuses 26 en formant le faisceau lumineux 14 dans lequel chaque source lumineuse 26 produit un pixel lumineux 20.The
Dans les modes de réalisation représentés aux figures, le dispositif d'imagerie 28 se présente sous la forme d'une unique lentille. On comprendra néanmoins que le dispositif d'imagerie peut aussi comprendre au moins un élément réfléchissant et/ou une ou plusieurs lentilles.In the embodiments shown in the figures, the
De manière générale, le dispositif d'imagerie 28 présente une face 36 d'entrée des rayons lumineux et une face 38 de sortie du faisceau lumineux 14.Generally, the
Le dispositif d'imagerie 28 présente au moins une première longueur focale F1 et une première surface focale objet 40 globalement verticale transversale qui est agencé sensiblement en coïncidence avec les sources lumineuses 26.The
La première surface focale objet 40 est notamment agencée de manière que, lorsque toutes les sources lumineuses 26 d'une ligne 32 sont activées, l'écran 16 soit éclairé de manière homogène par une ligne lumineuse de pixels lumineux 20 correspondant.The first object
Dans l'usage courant, la surface focale objet 40 du dispositif d'imagerie 30 est représentée en première approximation par une surface focale objet 40 plane et parfaitement orthogonale à l'axe "A" optique. Cependant, dans la réalité, il est connu que l'optique 14 de projection présente une surface focale objet ayant un défaut de courbure sphérique concave. Un tel défaut est appelé aberration de champ de Petzval. Le défaut de courbure présente un rayon de courbure de rayons de courbure déterminé. Ainsi, comme représenté par exemple à la
Pour que les pixels lumineux 20 d'une même ligne présentent une netteté homogène, l'invention propose que le substrat 30 de la matrice 24 présente, dans un plan horizontal, une forme courbe au moins en partie parallèle à la première surface focale objet 40 du dispositif d'imagerie 28. En particulier, la partie du substrat 30 comportant les sources lumineuses 26 peut présenter, dans un plan horizontal, une forme courbe parallèle à la première surface focale objet 40 du dispositif d'imagerie 28 tandis que les extrémités du substrat 30 situées de part et d'autre de la partie du substrat 30 comportant les sources lumineuses 26 peut présenter, dans ce même plan horizontal, une forme parallèle ou non à la première surface focale objet 40 du dispositif d'imagerie 28.In order for the
Selon un exemple représenté à la
Le substrat 30 est ainsi courbé de manière que sa face avant 29 présente une forme de secteur de cylindre de génératrices verticales et de directrice en arc de cercle horizontal. Le rayon de courbure du substrat 30 est déterminé de manière que chaque ligne 32 de sources lumineuses 26 soit parallèle avec la surface focale objet 40 prise selon un plan de coupe horizontal passant par ladite ligne 32. Ainsi, toutes les sources lumineuses 26 d'une même ligne 32 sont agencées à la même distance de la première surface focale objet 40.The
Avantageusement, le substrat 30 qui porte la matrice 24 de sources lumineuses 26 est flexible au moins dans un plan horizontal pour adapter précisément son rayon de courbure au rayon de courbure de la première surface focale objet 40. Le substrat 30 est par exemple flexible élastiquement, la face 29 avant du substrat 30 présentant une forme plane dans son état non contraint, comme cela est représenté en traits interrompus à la
Pratiquement, la matrice 24 est montée sur une monture qui permet d'ajuster son rayon de courbure. La monture comporte par exemple deux mâchoires de serrage 35 qui sont chacune agencées contre un bord vertical du substrat 30 et qui serrent transversalement le substrat 30 pour le contraindre dans la position courbée voulue.In practice, the
En variante non représentée, la monture présente une surface d'appui courbe contre laquelle une face arrière du substrat 30 est fixée, par exemple par collage ou par emboîtement élastique ou par tout autre moyen de fixation adapté.In a variant not shown, the mount has a curved support surface against which a rear face of the
Lorsque la distance transversale "D1" qui sépare deux sources lumineuses 26 adjacentes d'une même ligne 32 est sensiblement nulle, il est possible de faire coïncider parfaitement la première surface focale objet 40 avec les sources lumineuses pour obtenir un éclairage homogène d'une ligne de pixels lumineux 20 correspondants. Les sources lumineuses 26 sont ainsi confondues avec la première surface focale objet 40 du dispositif d'imagerie 28.When the transverse distance "D1" which separates two adjacent
Généralement, la distance transversale "D1" entre deux sources lumineuses 26 adjacentes d'une même ligne 32 n'est pas nulle. Par exemple la distance transversale "D1" est comprise entre 10% et 50% de la largeur d'une source lumineuse 26. Pour permettre d'obtenir un éclairage homogène de l'écran 16 par la ligne de pixels lumineux 20 correspondant, la surface focale objet 40 est décalée longitudinalement vers l'avant d'une distance longitudinale "D3" par rapport aux sources lumineuses 26 les plus proches, comme cela est représenté à la
Dans le mode de réalisation représenté à la
Selon un autre aspect de l'invention, on définit un cercle "C" virtuel qui est formé en prolongeant le premier plan focal objet 40. Le dispositif d'imagerie 28 est avantageusement conçu pour que le premier plan focal objet 40, en projection dans un plan horizontal axial, présente un rayon de courbure déterminé pour que le cercle "C" passe par les bords d'extrémité de la face d'entrée 36 des rayons lumineux, comme cela est illustré à la
En termes optiques, et dans le contexte de l'invention, cela signifie que le flux lumineux produit par une source lumineuse 26, agencée à proximité de la première surface focale objet 30, traversant la face d'entrée 36 du dispositif d'imagerie 28 est sensiblement identique pour toutes les sources lumineuses 26 de ladite ligne 32. Cette configuration permet ainsi d'améliorer très sensiblement le rendement lumineux des sources lumineuses 26 agencées en bout de ligne 32 par rapport à un module lumineux dans lequel les sources lumineuses sont agencées sur un substrat plan. Cette configuration permet aussi d'éviter les aberrations optiques de vignettage.In optical terms, and in the context of the invention, this means that the luminous flux produced by a
Selon un premier mode de réalisation de l'invention qui est décrit en référence aux
La matrice 24 de sources lumineuses 26 est conçue pour que la distance vertical "D2" séparant deux sources lumineuses 26 adjacentes d'une même colonne 34 soit sensiblement égale à la distance horizontale "D1" séparant deux sources lumineuses 26 adjacentes d'une même ligne 32. Ainsi, le faisceau lumineux 14 éclaire l'écran 16 de manière que les lignes lumineuses de pixels lumineux 20 se chevauchent verticalement, de la même manière que deux pixels lumineux 20 de la même ligne 32. Le faisceau lumineux 14 éclaire ainsi de manière homogène l'écran 16.The
Comme cela est représenté à la
Cependant, il n'est pas toujours aisé d'obtenir une matrice 24 présentant des sources lumineuses aussi rapprochées verticalement.However, it is not always easy to obtain a 24 matrix presenting light sources so close together vertically.
Pour résoudre ce problème, l'invention propose une variante de ce premier mode de réalisation qui est représentée aux
Pour permettre d'obtenir un éclairage homogène de l'écran 16, le projecteur 12 comporte alors deux modules lumineux 22A, 22B similaires. Le deuxième module lumineux 22B est agencé de manière à projeter un faisceau lumineux 14B présentant des lignes 42B de pixels lumineux 20 entre les lignes 42A de pixels lumineux de l'autre faisceau lumineux 14A pour créer un faisceau lumineux global homogène.To enable uniform illumination of the
Les deux modules lumineux 22A, 22B sont ici agencés dans un même projecteur 12. Le projecteur 12 comporte un boîtier 44 commun fermé par une glace 46 renfermant les deux modules lumineux 22A, 22B.The two
En variante, pour résoudre le problème posé lorsque la distance verticale "D2" entre les sources lumineuses 26 de la matrice 24 est trop important, l'invention propose un deuxième mode de réalisation de l'invention qui est représenté aux
Dans ce mode de réalisation, le dispositif d'imagerie 28 est un dispositif bifocal, parfois aussi appelé astigmate, qui comporte, outre la première surface focale objet 40, une deuxième surface focale objet 48. La deuxième surface focale objet 48 est agencée à une longueur focale "F2" par rapport au centre optique du dispositif d'imagerie 28.In this embodiment, the
La première surface focale objet 40 focalise les rayons lumineux dans un plan horizontal, tandis que la deuxième surface focale objet 48 focalise les rayons lumineux dans un plan vertical.The first object
Le module lumineux comporte en outre un élément optique primaire 50 qui met en forme les rayons lumineux émis par les sources lumineuses 26 pour obtenir des sources lumineuses secondaires 52 verticalement jointive qui sont agencées sur la deuxième surface focale objet.The light module further comprises a primary
L'élément optique primaire 50 est une pièce optique, ou un ensemble de pièces et/ou structures optiques, agencé pour transférer la lumière émise par les dites sources lumineuses 26 sur une surface virtuelle de projection, qui se situe en face et à une distance prédéfinie de la matrice 24, dans le sens de l'émission de la lumière, pour y former les sources lumineuses secondaires 52.The primary
Dans l'exemple représenté à la
En variante, la surface virtuelle de projection peut être une portion de cylindre parallèle à la face avant de la matrice 24.Alternatively, the virtual projection surface may be a portion of a cylinder parallel to the front face of the
Avantageusement, chaque source lumineuse secondaire 52 présente une hauteur supérieure à celle de chaque source lumineuse 26 associée. Ainsi, les sources lumineuses secondaires 52 sont ici jointives verticalement.Advantageously, each secondary
Bien entendu, l'élément optique primaire 50 peut être réalisé dans une seule pièce optique mais peut comprendre au moins deux pièces optiques qui peuvent avoir des formes et/ou indices de réfraction différents. Les dites au moins deux pièces peuvent également être fabriqué dans des matériaux différents et peuvent comprendre des revêtements pour améliorer l'efficacité de transmission de la lumière, tel qu'un revêtement antireflet. Afin d'optimiser l'efficacité et la qualité du faisceau projeté par le module de lumière, l'élément primaire 50 peut comprendre des structures diffractives ou réfractives, tels que des réseaux de diffraction ou des structures Fresnel.Of course, the primary
Dans le mode de réalisation représenté aux
Une nappe de guidage 54 est définie comme une pièce optique apte à guider de la lumière par réflexion interne totale de cette lumière, par exemple d'une face d'entrée à une face de sortie. Une nappe de guidage 54 présente une épaisseur faible au regard de sa longueur et de sa largeur.A
Ainsi chaque nappe de guidage 54 présente une face supérieure 56 et une face inférieure 58 de guidage étendues séparée par un pourtour. Ce pourtour définit une épaisseur de la nappe de guidage 56, qui peut être variable, par exemple augmentant d'une extrémité à l'autre. Le pourtour comporte une face arrière 60 transversale verticale d'entrée de la lumière commune à toutes les sources lumineuses 26 de la ligne 32 associée. La face arrière 60 d'entrée est agencée à proximité des sources lumineuses 26 associées, par exemple à quelques millimètres.Thus, each
La lumière émise par les sources lumineuses 26 qui entre par la face arrière 60 se propage à l'intérieur de la nappe de guidage 60 par réflexions internes totales successives contre les faces 56, 58 supérieure et inférieure en direction d'une face 62 avant transversale verticale de sortie. La face avant 62 forme une portion du pourtour de la nappe de guidage 54.The light emitted by the
Dans le mode de réalisation représenté aux figures, la face de sortie 62 de chaque nappe de guidage 54 présente une hauteur supérieure à celle de sa face d'entrée 60. De ce fait, chaque nappe de guidage 54 présente, en coupe longitudinale transversale, un profil divergent depuis sa face d'entrée 60 jusqu'à sa face de sortie 62.In the embodiment shown in the figures, the
La face d'entrée 60 présente une hauteur qui est sensiblement égale à la hauteur de la surface d'émission des sources lumineuses 26 associées.The input face 60 has a height which is substantially equal to the height of the emission surface of the associated
La face de sortie 62 est ainsi éclairée sur toute sa hauteur par les sources lumineuses 26 associées, formant ainsi une ligne de sources lumineuses secondaires 52.The
La première surface de focalisation objet 40 du dispositif d'imagerie 28 est agencée de la même manière que dans les modes de réalisation précédent, c'est-à-dire en coïncidence ou à proximité des sources lumineuses 26. La deuxième surface de focalisation objet 48 qui est agencé sensiblement en coïncidence avec les faces de sortie 62 des nappes de guidage 54.The first
Ainsi, pour chaque source lumineuse 26 agencée sensiblement à proximité de la première surface de focalisation objet 40, les rayons lumineux émis par la surface d'émission de ladite source lumineuse 14 se retrouvent projetés parallèlement par le dispositif d'imagerie 28 dans des plans verticaux longitudinaux, de sorte que le faisceau lumineux associé à ladite source lumineuse 26 crée un segment lumineux de forme globalement rectangulaire délimité transversalement par des bords verticaux qui sont l'image nette des bords verticaux de la surface d'émission.Thus, for each
De même, chaque source lumineuse 26 crée sur la face de sortie 62 de la nappe de guidage 20 une source lumineuse secondaire 52. Chaque source lumineuse secondaire 52 est ainsi délimitée verticalement par deux bords transversaux qui coïncident avec les arêtes formées par les faces supérieure et inférieure 56, 58 avec la face de sortie 62.Likewise, each
La face de sortie 62 étant agencée sensiblement en coïncidence avec la deuxième surface de focalisation objet 48, les rayons lumineux émis par chaque source lumineuse secondaire 52 se retrouvent donc projetés parallèlement par le dispositif d'imagerie 28 dans des plans transversaux longitudinaux, de sorte que le faisceau lumineux associé à ladite source lumineuse 20 crée un segment lumineux de forme globalement rectangulaire délimité verticalement par des bords verticaux qui sont l'image nette des bords transversaux de la source lumineuse secondaire 52.The output face 62 being arranged substantially in coincidence with the second
Les sources lumineuses 52 secondaires étant sensiblement jointives, les pixels 20 obtenus sont aussi jointifs verticalement.The secondary
Pour les mêmes raisons d'homogénéité du faisceau lumineux 14, on pourra prévoir de décaler légèrement la deuxième surface focale objet 48 vers l'avant par rapport aux sources lumineuses secondaires 52 pour permettre d'obtenir des pixels lumineux 20 qui se chevauchent légèrement verticalement, au sens expliqué précédemment.For the same reasons of homogeneity of the
En variante de l'invention représentée à la
Grâce au module lumineux réalisé selon l'un quelconque des modes de réalisation précédemment décrits, les pixels obtenus sont plus nets, particulièrement sur les bords transversaux de la zone éclairée par le faisceau lumineux.Thanks to the light module produced according to any of the embodiments previously described, the pixels obtained are sharper, particularly on the transverse edges of the area illuminated by the light beam.
En outre, lorsque le dispositif d'imagerie conçu selon l'autre aspect de l'invention de manière que ce que la sphère virtuelle portant la surface de focalisation objet passe par les bords de sa face d'entrée, le rendement lumineux du module lumineux est sensiblement amélioré par rapport aux conceptions connues.Furthermore, when the imaging device is designed according to the other aspect of the invention so that the virtual sphere carrying the object focusing surface passes through the edges of its input face, the luminous efficiency of the module luminous is significantly improved compared to known designs.
Claims (11)
- Motor vehicle lighting module (22) comprising:- at least one matrix (24) of light sources (26) arranged in at least one horizontal row (32) and in vertical columns (34), the light sources (26) being emitting surfaces of light-emitting diodes which are all arranged on a common substrate (30);- at least one imaging device (28) designed to project the light sources (26) in a light beam (14) in which each light source (26) produces a light pixel (20), the activation of the light sources (26) of a row (32) forming a light row of light pixels (20) lit uniformly, the imaging device (28) comprising at least one first object focal surface (40) exhibiting a curvature defect of determined radius of curvature;characterized in that the matrix (24) is mounted on a mount which makes it possible to adjust its radius of curvature so that the substrate (30) has, in a horizontal plane, a curved form at least partly parallel to or coinciding with the first object focal surface (40) of the imaging device (28) and in that the front face of the substrate (30) has a planar form in its non-stressed state.
- Lighting module (22) according to the preceding claim, characterized in that the substrate (30) which bears the matrix (24) of light sources (26) is flexible at least in a horizontal plane to adapt its radius of curvature to the radius of curvature of the first object focal surface (40).
- Lighting module (22) according to either one of the preceding claims, characterized in that the imaging device (28) comprises an input face (36) for the light rays, the imaging device (28) being designed for the first object focal surface (40) to have a determined radius of curvature so that, in projection in a horizontal plane, the circle (C) virtually prolonging said first object focal surface (40) passes through the end edges of the input face (36) for the light rays.
- Lighting module (22) according to any one of the preceding claims, characterized in that the light sources (26) are merged with the first object focal surface (40) of the imaging device.
- Lighting module (22) according to any one of Claims 1 to 3, characterized in that the light sources (26) are offset to the rear relative to the first object focal surface (40) by a determined offset distance.
- Lighting module (22) according to the preceding claim, characterized in that the offset distance (D3) is defined such a way that a cone (43) whose base bears on the circumference of the input face (36) of the imaging device (28) and whose vertex is situated on the focus intercepts, in the extension of its vertex, a segment whose length is equal to the distance between the centre of two consecutive light sources (26) of one and the same row (32).
- Lighting module (22) according to any one of the preceding claims, characterized in that the imaging device (28) comprises a single object focal surface (40) which is formed by said first object focal surface (40).
- Lighting module (22) according to the preceding claim, in which the matrix of light sources comprises at least two horizontal lines of light sources characterized in that the vertical distance (D2) separating two adjacent light sources (26) of one and the same column (34) is substantially equal to the horizontal distance (D1) separating two adjacent light sources (26) of one and the same row (32) such that, in the light beam (14), the light rows of light pixels (20) overlap vertically.
- Lighting module (22) according to Claim 7, in which the matrix of light sources comprises at least two horizontal lines of light sources characterized in that the vertical distance (D2) separating two adjacent light sources (26) of one and the same column (34) is greater than the horizontal distance (DI) separating two adjacent light sources (26) of one and the same row (32) such that, in the light beam (14), the light rows of light pixels (20) appear distinct from one another with vertical interposition of darker separating rows.
- Lighting module (22) according to any one of Claims 1 to 6, characterized in that the imaging device (28) comprises a second object focal surface (48), the first object focal surface (42) focusing the light rays in a horizontal plane, and the second object focal surface (48) focusing the light rays in a vertical plane, the lighting module (22) comprising a primary optical element (50) which forms the light rays emitted by the light sources (20) to obtain vertically contiguous secondary light sources (52) which are arranged coinciding with or in proximity to the second object focal surface (48) .
- Headlight (12) for segmented light beams (14) for a motor vehicle, characterized in that it comprises two lighting modules (22A, 22B) each produced according to Claim 8, the rows of light pixels (20) of one light beam (14A) being interposed between the rows of light pixels (20) of the other light beam (14B) to create an overall uniform light beam.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1759648A FR3072445B1 (en) | 2017-10-16 | 2017-10-16 | LIGHT MODULE FOR MOTOR VEHICLES |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3470728A1 EP3470728A1 (en) | 2019-04-17 |
EP3470728B1 true EP3470728B1 (en) | 2024-11-20 |
Family
ID=60515658
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18198510.2A Active EP3470728B1 (en) | 2017-10-16 | 2018-10-03 | Light module for a motor vehicle |
Country Status (4)
Country | Link |
---|---|
US (1) | US10837613B2 (en) |
EP (1) | EP3470728B1 (en) |
CN (1) | CN109668109B (en) |
FR (1) | FR3072445B1 (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11302248B2 (en) | 2019-01-29 | 2022-04-12 | Osram Opto Semiconductors Gmbh | U-led, u-led device, display and method for the same |
US11271143B2 (en) | 2019-01-29 | 2022-03-08 | Osram Opto Semiconductors Gmbh | μ-LED, μ-LED device, display and method for the same |
JP7558175B2 (en) | 2019-01-29 | 2024-09-30 | エイエムエス-オスラム インターナショナル ゲーエムベーハー | Video wall, driver circuit, drive control circuit and related methods |
KR20210120106A (en) | 2019-02-11 | 2021-10-06 | 오스람 옵토 세미컨덕터스 게엠베하 | Optoelectronic Components, Optoelectronic Assemblies and Methods |
US11538852B2 (en) | 2019-04-23 | 2022-12-27 | Osram Opto Semiconductors Gmbh | μ-LED, μ-LED device, display and method for the same |
JP7608368B2 (en) | 2019-05-13 | 2025-01-06 | エイエムエス-オスラム インターナショナル ゲーエムベーハー | Multi-chip carrier structure |
KR20220012334A (en) * | 2019-05-23 | 2022-02-03 | 오스람 옵토 세미컨덕터스 게엠베하 | Lighting Assemblies, Light Guide Assemblies and Methods |
EP3786518A1 (en) | 2019-08-27 | 2021-03-03 | Seoul Semiconductor Europe GmbH | Illumination device |
CN112443808A (en) * | 2019-08-28 | 2021-03-05 | 堤维西交通工业股份有限公司 | Adaptive headlights |
CN114730824A (en) | 2019-09-20 | 2022-07-08 | 奥斯兰姆奥普托半导体股份有限两合公司 | Optoelectronic components, semiconductor structures and methods |
FR3103025B1 (en) * | 2019-09-27 | 2021-12-10 | Valeo Vision | DEVICE AND PROCEDURE FOR CONTROL OF MATRIX LIGHT SOURCES |
CN113154331B (en) * | 2020-01-22 | 2024-01-23 | 扬明光学股份有限公司 | Projection device for vehicle, method for manufacturing the same, and headlight for vehicle |
CN115335630A (en) * | 2020-03-13 | 2022-11-11 | 麦克赛尔株式会社 | Optical device, method for manufacturing optical device, and headlamp |
JP7529981B2 (en) | 2020-07-22 | 2024-08-07 | 日亜化学工業株式会社 | Light source |
CN113231283B (en) * | 2021-05-10 | 2023-06-27 | 上海润立美术设计有限公司 | UV-LED solidification equipment with adjustable point, line, area source |
JP7591486B2 (en) * | 2021-10-28 | 2024-11-28 | 株式会社小糸製作所 | Vehicle lighting fixtures |
FR3141749A1 (en) * | 2022-11-06 | 2024-05-10 | Valeo Vision | Lighting device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10102613A1 (en) * | 2001-01-21 | 2002-07-25 | Aloysius Wolf | Focusing device for light emitting diodes of illuminating devices, has base plate on which light emitting diodes sit that can be displaced in convex or concave manner |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4228895C2 (en) * | 1992-08-29 | 2002-09-19 | Bosch Gmbh Robert | Motor vehicle lighting device with multiple semiconductor light sources |
DE10009782B4 (en) * | 2000-03-01 | 2010-08-12 | Automotive Lighting Reutlingen Gmbh | Lighting device of a vehicle |
US7128442B2 (en) * | 2003-05-09 | 2006-10-31 | Kian Shin Lee | Illumination unit with a solid-state light generating source, a flexible substrate, and a flexible and optically transparent encapsulant |
FR2936585B1 (en) * | 2008-09-29 | 2016-05-27 | Valeo Vision Sas | ADAPTIVE LIGHTING DEVICE FOR MOTOR VEHICLE |
DE102011006380A1 (en) * | 2011-03-29 | 2012-10-04 | Automotive Lighting Reutlingen Gmbh | Motor vehicle headlight with a semiconductor light source |
DE102013114264B4 (en) * | 2013-12-18 | 2023-12-07 | HELLA GmbH & Co. KGaA | Headlights for vehicles |
CN106536403B8 (en) * | 2014-05-28 | 2019-08-20 | 3M创新有限公司 | MEMS Devices on Flexible Substrates |
DE202015105174U1 (en) * | 2014-11-03 | 2015-10-15 | Pintsch Bamag Antriebs- Und Verkehrstechnik Gmbh | Light module for headlights and headlights with such a light module |
JP6693052B2 (en) * | 2015-06-02 | 2020-05-13 | 市光工業株式会社 | Vehicle lighting |
DE102015219211A1 (en) * | 2015-10-05 | 2017-04-06 | Automotive Lighting Reutlingen Gmbh | Light module for a vehicle lighting device |
US10132478B2 (en) * | 2016-03-06 | 2018-11-20 | Svv Technology Innovations, Inc. | Flexible solid-state illumination devices |
FR3084723B1 (en) * | 2018-07-31 | 2020-08-28 | Valeo Vision | LIGHT MODULE CONTAINING A MATRIX OF LIGHT SOURCES AND A BIFOCAL OPTICAL SYSTEM |
-
2017
- 2017-10-16 FR FR1759648A patent/FR3072445B1/en active Active
-
2018
- 2018-10-03 EP EP18198510.2A patent/EP3470728B1/en active Active
- 2018-10-16 CN CN201811202475.3A patent/CN109668109B/en active Active
- 2018-10-16 US US16/162,000 patent/US10837613B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10102613A1 (en) * | 2001-01-21 | 2002-07-25 | Aloysius Wolf | Focusing device for light emitting diodes of illuminating devices, has base plate on which light emitting diodes sit that can be displaced in convex or concave manner |
Also Published As
Publication number | Publication date |
---|---|
CN109668109A (en) | 2019-04-23 |
EP3470728A1 (en) | 2019-04-17 |
US20190113199A1 (en) | 2019-04-18 |
US10837613B2 (en) | 2020-11-17 |
FR3072445A1 (en) | 2019-04-19 |
CN109668109B (en) | 2021-08-17 |
FR3072445B1 (en) | 2020-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3470728B1 (en) | Light module for a motor vehicle | |
EP3147557B1 (en) | Primary optical element for lighting module of a vehicle | |
EP3396241B1 (en) | Light module with imaging optics optimised for a pixelated spatial modulator, intended for a motor vehicle | |
EP3301347B1 (en) | Lighting device for a motor vehicle comprising a light guide | |
EP3167226B1 (en) | Lighting module for a motor vehicle | |
EP3611425B1 (en) | Light module for a motor vehicle suitable for generating a light beam with at least one row of lighting units | |
EP3517827B1 (en) | Light module comprising a primary optical element provided with two shaping layers | |
FR3055400A1 (en) | OPTICAL MODULE FOR LIGHTING PORTIC POINTS | |
EP3604904B1 (en) | Light module comprising an array of light sources and a bifocal optical system | |
EP1610057A1 (en) | Lighting module for a vehicle headlight and headlight incorporating such a module | |
EP3315851B1 (en) | Optical module for projecting a cutting light beam having horizontal focusing means | |
WO2022129625A1 (en) | Motor vehicle headlamp with multiple lighting modules on an inclined common plate | |
FR3056692A1 (en) | OPTICAL MODULE FOR MOTOR VEHICLE | |
EP3511608B1 (en) | Optical module for motor vehicle | |
WO2022162180A1 (en) | Motor vehicle device for lighting the road | |
FR3070925A1 (en) | LUMINOUS MODULE FOR A MOTOR VEHICLE, AND LIGHTING AND / OR SIGNALING DEVICE EQUIPPED WITH SUCH A MODULE | |
EP2730838B1 (en) | Lighting module for a vehicle headlamp comprising several light sources | |
EP3502550A1 (en) | Segmented light beam performing lighting functions | |
FR3056695A1 (en) | LIGHTING DEVICE FOR A MOTOR VEHICLE HAVING A LIGHT GUIDE | |
EP2944514A1 (en) | Lighting system for a motor vehicle headlight comprising a plurality of lighting modules | |
FR2918441A1 (en) | VEHICLE PROJECTOR | |
WO2024251987A1 (en) | Light unit for a motor vehicle | |
WO2025132840A1 (en) | Light unit for a motor vehicle | |
FR3054021A1 (en) | LIGHT DEVICE FOR VARIABLE IMAGE PROJECTION | |
BE374664A (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20181003 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20200514 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230528 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F21Y 107/10 20160101ALN20240530BHEP Ipc: F21Y 115/10 20160101ALN20240530BHEP Ipc: F21Y 107/70 20160101ALN20240530BHEP Ipc: F21S 41/153 20180101ALI20240530BHEP Ipc: F21S 41/19 20180101ALI20240530BHEP Ipc: F21S 41/255 20180101ALI20240530BHEP Ipc: F21S 41/143 20180101AFI20240530BHEP |
|
INTG | Intention to grant announced |
Effective date: 20240617 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602018076677 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20241120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20250320 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241120 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20250320 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241120 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241120 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1743861 Country of ref document: AT Kind code of ref document: T Effective date: 20241120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20250220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241120 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241120 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20250221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20250220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241120 |