EP3445884A1 - Ferritic alloy - Google Patents
Ferritic alloyInfo
- Publication number
- EP3445884A1 EP3445884A1 EP17708795.4A EP17708795A EP3445884A1 EP 3445884 A1 EP3445884 A1 EP 3445884A1 EP 17708795 A EP17708795 A EP 17708795A EP 3445884 A1 EP3445884 A1 EP 3445884A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- ferritic alloy
- alloy according
- alloy
- weight
- ferritic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 98
- 239000000956 alloy Substances 0.000 title claims abstract description 98
- 239000012535 impurity Substances 0.000 claims abstract description 12
- 229910052799 carbon Inorganic materials 0.000 claims description 18
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 14
- 230000000694 effects Effects 0.000 claims description 14
- 229910052757 nitrogen Inorganic materials 0.000 claims description 14
- 238000000576 coating method Methods 0.000 claims description 13
- 239000011248 coating agent Substances 0.000 claims description 12
- 238000004519 manufacturing process Methods 0.000 claims description 11
- 229910052726 zirconium Inorganic materials 0.000 claims description 4
- 238000002485 combustion reaction Methods 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 238000005253 cladding Methods 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 claims description 2
- 239000007788 liquid Substances 0.000 claims description 2
- 150000002739 metals Chemical class 0.000 claims description 2
- 150000003839 salts Chemical class 0.000 claims description 2
- 239000011651 chromium Substances 0.000 description 41
- 229910052782 aluminium Inorganic materials 0.000 description 27
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 24
- 230000003647 oxidation Effects 0.000 description 24
- 238000007254 oxidation reaction Methods 0.000 description 24
- 239000004411 aluminium Substances 0.000 description 19
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 19
- 230000001681 protective effect Effects 0.000 description 19
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 18
- 229910052804 chromium Inorganic materials 0.000 description 17
- 230000000052 comparative effect Effects 0.000 description 15
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 11
- 239000001301 oxygen Substances 0.000 description 11
- 229910052760 oxygen Inorganic materials 0.000 description 11
- 238000005260 corrosion Methods 0.000 description 10
- 230000007797 corrosion Effects 0.000 description 10
- 239000002344 surface layer Substances 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 9
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 229910052710 silicon Inorganic materials 0.000 description 8
- 239000010410 layer Substances 0.000 description 7
- 229910052727 yttrium Inorganic materials 0.000 description 6
- 239000011572 manganese Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 5
- 238000007792 addition Methods 0.000 description 4
- 238000005275 alloying Methods 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 230000007774 longterm Effects 0.000 description 4
- 239000010955 niobium Substances 0.000 description 4
- 238000009864 tensile test Methods 0.000 description 4
- 239000002028 Biomass Substances 0.000 description 3
- 229910052684 Cerium Inorganic materials 0.000 description 3
- 229910019878 Cr3Si Inorganic materials 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 229910052746 lanthanum Inorganic materials 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 3
- 238000004881 precipitation hardening Methods 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 2
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 2
- 229910000423 chromium oxide Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 238000010310 metallurgical process Methods 0.000 description 2
- 238000005272 metallurgy Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 230000008092 positive effect Effects 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000004663 powder metallurgy Methods 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 229910052706 scandium Inorganic materials 0.000 description 2
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical compound [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910018540 Si C Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910001119 inconels 625 Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- -1 iron-chromium-aluminium Chemical compound 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 238000007712 rapid solidification Methods 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 239000012925 reference material Substances 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/34—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C30/00—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
Definitions
- the present disclosure relates to a ferritic alloy according to the preamble of claim 1.
- the present disclosure further relates to use of the ferritic alloy and to objects or coatings manufactured thereof.
- Ferritic alloys such as FeCrAl-alloys comprising chromium (Cr) levels of 15 to 25 wt% and aluminium (Al) levels from 3 to 6 wt% are well known for their ability to form protective a-alumina ( ⁇ 1 2 0 3 ), aluminium oxide, scales when exposed to temperatures between 900 and 1300°C.
- the lower limit of Al content to form and maintain the alumina scale varies with exposure conditions.
- the effect of a too low Al level at higher temperatures is that the selective oxidation of Al will fail and less stable and less protective scales based on chromium and iron will be formed.
- FeCrAl alloys will normally not form the protective a- alumina layer if exposed to temperatures below about 900°C.
- these attempts have not been very successful because the diffusion of oxygen and aluminium to the oxide -metal interface will be relatively slow at lower temperatures and thereby the rate of formation of the alumina scale will be low, which means that there will be a risk of severe corrosion attacks and formation of less stable oxides.
- alloys with lower Cr levels of about 10 to 12 wt% Cr have been developed in order to avoid this phenomenon. This group of alloys has been found to work very well in molten lead at controlled and low pressure 0 2 .
- EP 0 475 420 relates to a rapidly solidified ferritic alloy foil essentially consisting of Cr, Al, Si, about 1.5 to 3 wt % and REM (Y, Ce, La, Pr, Nd, the balance being Fe and impurities.
- the foil may further contain about 0.001 to 0.5 wt % of at least one element selected from the group consisting of Ti, Nb, Zr and V.
- the foil has a grain size of not more than about 10 ⁇ .
- EP 075 420 discusses Si additions in order to improve the flow properties of the alloy melt but the success was limited due to reduced ductility.
- EP 0091 526 relates to thermal cyclic oxidation resistant and hot workable alloys, more particularly, to iron-chromium-aluminium alloys with rare earth additions. In oxidation, the alloys will produce a whisker-textured oxide that is desirable on catalytic converter surfaces. However, the obtained alloys did not provide a high temperature resistance.
- the present disclosure therefore relates to a ferritic alloy, which will provide a combination of good oxidation resistance and an excellent ductility, comprising the following composition in weight% (wt%):
- the present disclosure also relates to an object and/or a coating comprising the ferritic alloy according to the present disclosure. Additionally, the present disclosure also relates to the use of the ferritic alloy as defined hereinabove or hereinafter for manufacturing an object and/or a coating.
- Figure l a and Figure lb disclose the phases in Fe-10%Cr-5%Al vs. Si level (figure la) and Fe-20%Cr-5%Al vs. Si level (figure lb).
- the diagram has been made by using Database TCFE7 and
- Figures 2a disclose polished sections of two alloys according to the present disclosure compared to three reference alloys after exposure to 50 times 1 hour cycles at 850°C exposed to biomass (wood pellets) ash containing large amounts of potassium.
- the present disclosure provides a ferritic alloy comprising in weight% (wt%): C 0.01 to 0.1 ;
- an alloy as defined hereinabove or hereinafter i.e. containing the alloying elements and in the ranges mentioned herein, unexpectedly will form a protective surface layer containing aluminium rich oxide even at chromium levels as low as 4 wt%. This is very important both for the workability and for the long term phase stability of the alloy as the undesirable brittle ⁇ -phase, after exposure for long time in the herein mentioned temperature range, will be reduced or even avoided.
- the interaction between Si and Al and Cr will enhance the formation of a stable and continuous protective surface layer containing aluminium rich oxide, and by using the above equation, it will be possible to add Si and still obtain a ferritic alloy which will be possible both to produce and to form into different objects.
- the inventor has surprisingly found that if the amounts of Si and Al and Cr are balanced so that the following condition is fulfilled (all the numbers of the elements are in weight fractions):
- the obtained alloy will have a combination of excellent oxidation resistance and workability and formability within the Cr range of the present disclosure.
- 0.015 ⁇ (Al + 0.5Si)(Cr + WSi + 0.1) ⁇ 0.021 such as 0.016 ⁇ (Al + O.SSi) (Cr + lOSi + 0.1) ⁇ 0.020, such as 0.017 ⁇ (Al + O.SSi) (Cr + lOSi + 0.1) ⁇ 0.019.
- the ferritic alloy of the present disclosure is especially useful at temperatures below about 900°C since a protective surface layer containing aluminium rich oxide will be formed on an object and/or a coating made of said alloy, which will prevent corrosion, oxidation and embrittlement of the object and/or the coating. Furthermore, the present ferritic alloy may provide protection against corrosion, oxidation and embrittlement at temperatures as low as 400°C as a protective surface layer containing aluminium rich oxide will be formed on the surface of the object and/or coating manufactured thereof. Additionally, the alloy according to the present disclosure will also work excellent at temperatures up to about 1 100°C and it will show a reduced tendency for long-term embrittlement in the temperature range of 400 to 600°C. The present alloy may be used in the form of a coating.
- an object may also comprise the present alloy.
- coating is intended to refer to embodiments in which the ferritic alloy according to the present disclosure is present in form of a layer exposed to a corrosive environment that is in contact with a base material, regardless of the means and methods to accomplish it, and regardless of the relative thickness relation between the layer and the base material.
- examples of this but not limited to is a PVD coating, a cladding or a compound or composite material.
- the aim of the alloy is that is should protect the material underneath from both corrosion and oxidation.
- suitable objects is a compound tube, a tube, a boiler, a gas turbine component and a steam turbine component.
- Other examples include a superheater, a water wall in a power plant, a component in a vessel or a heat exchanger (for example for reforming or other processing of
- the alloy according to the disclosure is suitable to be used in environments having corrosive conditions. Examples of such environments include but are not limited exposure to salts, liquid lead and other metals, exposures to ash or high carbon content deposits, combustion atmospheres, atmospheres with low p0 2 and/or high N 2 and/or high carbon activity environments.
- the present ferritic alloy may be manufactured by using normally occurring solidification rates ranging from conventional metallurgy to rapid solidification.
- the present alloy will also be suitable for manufacturing all types of objects both forged and extruded, such as a wire, a strip, a bar and a plate.
- the amount of hot and cold plastic deformation as well as grain structure and grain size will, as the person skilled in the art know vary between the forms of the objects and the production route.
- Carbon may be present as an unavoidable impurity resulting from the production process. Carbon may also be included in the ferritic alloy as defined hereinabove or hereinafter to increase strength by precipitation hardening. To have a noticeable effect on the strength in the alloy, carbon should be present in an amount of at least 0.01 wt%. At too high levels, carbon may result in difficulties to form the material and also a negative effect on the corrosion resistance. Therefore, the maximum amount of carbon is 0.1 wt%.
- the content of carbon is 0.02 - 0.09 wt%, such as 0.02 - 0.08 wt%, such as 0.02 - 0.07 wt% such as 0.02 - 0.06 wt% such as 0.02 - 0.05 wt%, such as 0.01 - 0.04 wt%.
- Nitrogen may be present as an unavoidable impurity resulting from the production process. Nitrogen may also be included in the ferritic alloy as defined hereinabove or hereinafter to increase strength by precipitation hardening, in particular when a powder metallurgical process route is applied. At too high levels, nitrogen may result in difficulties to form the alloy and also have a negative effect on the corrosion resistance. Therefore, the maximum amount of nitrogen is 0.1 wt%. Suitable ranges of nitrogen are for example 0.001 - 0.08 wt%, such as 0.001 - 0.05 wt%, such as 0.001 - 0.04 wt%, such as 0.001 - 0.03 wt%, such as 0.001 - 0.02 wt%.
- Oxygen may exist in the alloy as defined hereinabove or hereinafter as an impurity resulting from the production process.
- the amount of oxygen may be up to 0.02 wt%, such as up to 0.005 wt%. If oxygen is added deliberately to provide strength by dispersion strengthening, as when manufacturing the alloy through a powder metallurgical process route, the alloy as defined hereinabove or hereinafter, comprises up to or equal to 0.2 wt% oxygen.
- Chromium is present in the present alloy primarily as a matrix solid solution element. Chromium promotes the formation of the aluminium oxide layer on the alloy through the so-called third element effect, i.e. by formation of chromium oxide in the transient oxidation stage. Chromium shall be present in the alloy as defined hereinabove or hereinafter in an amount of at least 4 wt% to fulfill this purpose. In the present inventive alloy, Cr also enhances the susceptibility to form brittle ⁇ phase and Cr 3 Si. This effect emerges at around 12 wt% and is enhanced at levels above 15 wt%, therefore the limit of Cr is 15 wt%.
- the content of Cr is 5 to 13 wt%, such as 5 to 12 wt%, such as 6 to 12 wt%, such as 7 to 11 wt%, such as 8 to 10 wt%.
- Aluminium is an important element in the alloy as defined hereinabove or hereinafter. Aluminium, when exposed to oxygen at high temperature, will form the dense and thin oxide, AI2O3, through selective oxidation, which will protect the underlying alloy surface from further oxidation.
- the amount of aluminium should be at least 2 wt% to ensure that a protective surface layer containing aluminium rich oxide is formed and also to ensure that sufficient aluminium is present to heal the protective surface layer when damaged.
- aluminium has a negative impact on the formability and high amounts of aluminium may result in the formation of cracks in the alloy during mechanical working thereof. Consequently, the amount of aluminium should not exceed 6 wt%.
- aluminium may be 3 - 5 wt%, such as 2.5 - 4.5 wt%, such as 3 to 4 wt%.
- Si In commercial FeCrAl alloys, silicon is often present in levels of up to 0.4 wt%. In ferritic alloys as defined hereinabove or hereinafter, Si will play a very important role as it has been found to have a great effect on improving the oxidation and corrosion resistance.
- the upper limit of Si is set by the loss of workability in hot and cold condition and increasing susceptibility to formation of brittle Cr 3 Si and ⁇ phase during long term exposure. Additions of Si therefore have to be performed in relation to the content of Al and Cr.
- the amount of Si is therefore between 0.5 to 3 wt%, such as 1 to 3 wt%, such as 1 to 2.5 wt%, such as 1.5 to 2.5 wt%.
- Manganese may be present as an impurity in the alloy as defined hereinabove or hereinafter up to 0.4 wt%, such as from 0 to 0.3 wt%.
- yttrium may be added in an amount up to 0.3 wt% to improve the adherence of the protective surface layer. Furthermore, in powder metallurgy, if yttrium is added to create a dispersion of together with oxygen and/or nitrogen, the yttrium content is in an amount of at least 0.04 wt%, in order to accomplish the desired dispersion hardening effect by oxides and/or nitrides.
- the maximum amount of yttrium in dispersion hardened alloys in the form of oxygen containing Y compounds may be up to 1.0 wt%. Scandium (Sc), Cerium (Ce) and Lanthanum (La)
- Scandium, Cerium, and Lanthanum are interchangeable elements and may be added individually or in combination in a total amount of up to 0.2 wt% to improve oxidation properties, self-healing of the aluminium oxide ( ⁇ 1 2 0 3 ) layer or the adhesion between the alloy and the AI2O3 layer.
- molybdenum and tungsten have positive effects on the hot-strength of the alloy as defined hereinabove or hereinafter.
- Mo has also a positive effect on the wet corrosion properties. They may be added individually or in combination in an amount up to 4.0 wt%, such as from 0 to 2.0 wt%.
- the reactive elements are highly reactive with carbon, nitrogen and oxygen. Titanium (Ti), Niobium (Nb), Vanadium (V), Hafnium (Hf), Tantalum (Ta) and Thorium (Th) are reactive elements in the sense that they have high affinity to carbon, thus being strong carbide formers. These elements are added in order to improve the oxidation properties of the alloy. The total amount of the elements is up to 1.0 wt% such as 0.4 wt%, such as up to 0.15.
- Zirconium is often referred to as a reactive element as since it is very reactive towards oxygen, nitrogen and carbon.
- Zr has a double role as it will be present in the protective surface layer containing aluminium rich oxide thereby improving the oxidation resistance and it will also form carbides and nitrides.
- Zr-levels above 0.40 wt% will have an effect on the oxidation due to the formation of Zr rich intermetallic inclusions and levels below 0.05 wt% will be too small to fulfill the dual purpose, regardless of the C and N content.
- the range is between 0.05 to 0.40 wt%, such as 0.10 to 0.35.
- the relationship between Zr and N and C may be important in order to achieve even better oxidation resistance of the protective surface layer, i.e. the alumina scale.
- the inventor has surprisingly found that if Zr is added to the alloy and the alloy also comprises N and C and if the following condition (the element content given in weight%) is fulfilled:
- the obtained alloy will achieve a good oxidation resistance.
- the balance in the ferritic alloy as defined hereinabove or hereinafter is Fe and unavoidable impurities.
- unavoidable impurities are elements and compounds which have not been added on purpose, but cannot be fully avoided as they normally occur as impurities in e.g. the material used for manufacturing the ferritic alloy.
- Figure l a and Figure lb shows that higher Cr in a Si-containing ferritic alloy is prone to form Si 3 Cr inclusions and at 20% Cr also to promote undesirable brittle ⁇ -phase after exposure for long time in the focus temperature area.
- diagrams are only shown for two Cr levels, 10 and 20%, the trend of embrittling phases increasing with higher Cr is clearly demonstrated Note the absence of ⁇ -phase at 10% Cr and the increasing amount of Cr 3 Si phase at higher Si content at both Cr levels. Hence, these figures show that there will be problems when using Cr levels around 20%.
- Test melts were produced in a vacuum melting furnace. The compositions of the test melts are shown in table 1.
- the obtained samples were hot rolled and machined to fiat rods with a cross section of 2 x 10 mm. They were then cut into 20 mm long coupons and ground with SiC paper to 800 mesh for exposure to air and combustion conditions. Some of the rods were cut to 200 mm long x 3 xl2 mm rods for tensile testing at room temperature in a Zwick/Roell Z100 tensile test apparatus.
- the samples were tested for yield and rupture stress as well as elongation to rupture in a standard tensile test machine and the result giving >3% elongation to rupture is designated “x" in "Workable” column of the table.
- the "x” therefore designates an alloy that is easily hot rolled and that shows ductile behavior at room temperature.
- the "x” designates that the alloy forms a protective alumina rich oxide scale at 950°C in air and at 850°C with biomass ash deposit.
- Figures 2 a) to e) disclose samples which are polished sections of of the present disclosure (figures 2a) 4783 and 2b) 4779) compared to three comparative alloys after exposure to 50 times 1 hour cycles at 850°C exposed to biomass (wood pellets) ash containing large amounts of potassium.
- the micrographs are taken in a JEOL FEG SEM at 1000 times magnification and show a clear advantage in behavior between the alloys of the present disclosure and reference materials.
- a 3-4 ⁇ thin and protective alumina scale (aluminium oxide layer) has been formed, whereas a thicker and less protective chromia (chromium oxide) rich scale is formed on the stainless steel (2c - 1 INi, 21Cr, N, Ce, Fe bal.) and Ni-base alloy (2e - Inconel 625: 58Ni, 21Cr, 0.4A1, 0.5Si, Mo, Nb, Fe), and a relatively porous and not as protective alumina scale forms on the comparative FeCrAl alloy (alloy 4776) (figure 2d - 20Cr, 5A1, 0.04 Si, Fe bal).
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Powder Metallurgy (AREA)
- Fuel Cell (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Catalysts (AREA)
Abstract
Description
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL17708795T PL3445884T3 (en) | 2016-04-22 | 2017-03-06 | Ferritic alloy |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16166661 | 2016-04-22 | ||
PCT/EP2017/055143 WO2017182188A1 (en) | 2016-04-22 | 2017-03-06 | Ferritic alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3445884A1 true EP3445884A1 (en) | 2019-02-27 |
EP3445884B1 EP3445884B1 (en) | 2020-10-07 |
Family
ID=56072196
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17708795.4A Active EP3445884B1 (en) | 2016-04-22 | 2017-03-06 | Ferritic alloy |
Country Status (10)
Country | Link |
---|---|
US (1) | US20190106774A1 (en) |
EP (1) | EP3445884B1 (en) |
JP (3) | JP7059198B2 (en) |
CN (1) | CN113088830B (en) |
BR (1) | BR112018071646B1 (en) |
CA (1) | CA3020420C (en) |
DK (1) | DK3445884T3 (en) |
ES (1) | ES2842424T3 (en) |
PL (1) | PL3445884T3 (en) |
WO (1) | WO2017182188A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR112019024471A2 (en) * | 2017-05-24 | 2020-06-16 | Sandvik Intellectual Property Ab | FERRITIC ALLOY |
WO2021043913A1 (en) * | 2019-09-03 | 2021-03-11 | Kanthal Ab | A new welding material |
CN116970873B (en) * | 2023-09-25 | 2023-12-15 | 上海核工程研究设计院股份有限公司 | Beryllium-containing ferrite heat-resistant steel and manufacturing method thereof |
Family Cites Families (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1850953A (en) * | 1925-06-19 | 1932-03-22 | Percy A E Armstrong | Heat, rust, and acid resisting ferrous alloy |
US2210308A (en) * | 1936-06-08 | 1940-08-06 | Kemet Lab Co Inc | Iron alloy suitable for electrical resistances |
CA928537A (en) * | 1968-06-28 | 1973-06-19 | Allegheny Ludlum Corporation | Oxidation resistant stainless steel |
DE2161954A1 (en) * | 1971-12-14 | 1973-06-20 | Deutsche Edelstahlwerke Gmbh | FERRITIC HEAT RESISTANT STEEL |
JPS5541290B2 (en) * | 1973-11-02 | 1980-10-23 | ||
US4261739A (en) * | 1979-08-06 | 1981-04-14 | Armco Inc. | Ferritic steel alloy with improved high temperature properties |
JPS5911660B2 (en) * | 1979-10-31 | 1984-03-16 | 日新製鋼株式会社 | Stainless steel for combustion equipment heat absorption radiator |
GB2070642A (en) * | 1980-02-28 | 1981-09-09 | Firth Brown Ltd | Ferritic iron-aluminium- chromium alloys |
JPS5915974B2 (en) * | 1980-04-18 | 1984-04-12 | 住友金属工業株式会社 | Ferrite steel for petroleum and coal chemical plants |
JPS5919984B2 (en) * | 1980-09-19 | 1984-05-10 | 大同特殊鋼株式会社 | Corrosion-resistant material for molten sodium polysulfide |
CA1178084A (en) | 1981-09-14 | 1984-11-20 | Daniel W. Yankovich, Jr. | Apparatus and method for detecting fouled cooling circuits in a blast furnace or the like |
US4414023A (en) | 1982-04-12 | 1983-11-08 | Allegheny Ludlum Steel Corporation | Iron-chromium-aluminum alloy and article and method therefor |
JPH02217443A (en) * | 1989-02-16 | 1990-08-30 | Sumitomo Metal Ind Ltd | High chromium steel for waste incineration waste heat boiler tubes |
US5160390A (en) | 1990-09-12 | 1992-11-03 | Kawasaki Steel Corporation | Rapidly solidified fe-cr-al alloy foil having excellent anti-oxidation properties |
EP0674015A1 (en) * | 1992-12-11 | 1995-09-27 | Nippon Steel Corporation | Steel of high corrosion resistance and high processability |
JPH0741917A (en) * | 1993-07-27 | 1995-02-10 | Nippon Steel Corp | Steel for automobile exhaust system |
JPH0741905A (en) * | 1993-07-27 | 1995-02-10 | Nippon Steel Corp | Steel for automobile exhaust system |
JP3541458B2 (en) * | 1993-10-15 | 2004-07-14 | Jfeスチール株式会社 | Ferritic stainless steel with excellent high-temperature salt damage characteristics |
SE504797C2 (en) * | 1995-08-11 | 1997-04-28 | Kanthal Ab | Metallic, high temperature resistant material and ways of making it |
JPH108214A (en) * | 1996-06-14 | 1998-01-13 | Sumitomo Metal Ind Ltd | Fe-Cr-Al cast steel products |
ES2181254T3 (en) * | 1997-08-12 | 2003-02-16 | Sandvik Ab | STEEL ALLOY FOR COMPOSITE TUBES. |
JP2000273592A (en) * | 1999-03-19 | 2000-10-03 | Sanyo Special Steel Co Ltd | Electrical stainless steel for cold forging and its production |
JP2001164317A (en) * | 1999-12-09 | 2001-06-19 | Nippon Steel Corp | Method of manufacturing automotive exhaust system steel pipe with excellent oxidation resistance |
FR2806940B1 (en) * | 2000-03-29 | 2002-08-16 | Usinor | STAINLESS STEEL FERRITIC STRIP ALUMINUM-CONTAINING, ESPECIALLY USEFUL FOR A MOTOR VEHICLE EXHAUST CATALYST SUPPORT AND METHOD FOR MANUFACTURING SAID STRIP |
SE517894C2 (en) * | 2000-09-04 | 2002-07-30 | Sandvik Ab | FeCrAl alloy |
SE520617C2 (en) * | 2001-10-02 | 2003-07-29 | Sandvik Ab | Ferritic stainless steel, foil made of steel, use of steel and foil, and method of making steel |
JP2004269915A (en) * | 2003-03-05 | 2004-09-30 | Jfe Steel Kk | Al-CONTAINING HIGHLY OXIDATION RESISTANT STAINLESS STEEL FOIL HAVING NO WRINKLING ON JOINING, AND CATALYST CARRIER |
SE528027C2 (en) * | 2004-04-16 | 2006-08-08 | Sandvik Intellectual Property | Use of a ferritic steel in catalysts for diesel engines |
JP5401039B2 (en) * | 2008-01-11 | 2014-01-29 | 日新製鋼株式会社 | Ferritic stainless steel and manufacturing method thereof |
CN102168226B (en) * | 2011-04-02 | 2013-04-10 | 裘德鑫 | Martensite antibacterial stainless steel and manufacturing method thereof |
WO2013178629A1 (en) * | 2012-05-29 | 2013-12-05 | Thyssenkrupp Steel Europe Ag | Heat-resistant fe-al-cr steel |
KR101673217B1 (en) * | 2012-09-25 | 2016-11-07 | 제이에프이 스틸 가부시키가이샤 | Ferritic stainless steel |
JP6392501B2 (en) * | 2013-05-10 | 2018-09-19 | 新日鐵住金ステンレス株式会社 | Stainless steel substrate for solar cell with excellent insulation and small thermal expansion coefficient and method for producing the same |
WO2015064739A1 (en) * | 2013-11-01 | 2015-05-07 | 新日鐵住金ステンレス株式会社 | Ferritic stainless steel for use in fuel reformer and method of manufacturing ferritic stainless steel |
EP3230481B1 (en) * | 2014-12-11 | 2019-02-20 | Sandvik Intellectual Property AB | A ferritic alloy |
-
2017
- 2017-03-06 EP EP17708795.4A patent/EP3445884B1/en active Active
- 2017-03-06 US US16/093,884 patent/US20190106774A1/en not_active Abandoned
- 2017-03-06 PL PL17708795T patent/PL3445884T3/en unknown
- 2017-03-06 CA CA3020420A patent/CA3020420C/en active Active
- 2017-03-06 WO PCT/EP2017/055143 patent/WO2017182188A1/en active Application Filing
- 2017-03-06 DK DK17708795.4T patent/DK3445884T3/en active
- 2017-03-06 ES ES17708795T patent/ES2842424T3/en active Active
- 2017-03-06 JP JP2018555158A patent/JP7059198B2/en active Active
- 2017-03-06 CN CN202110215596.7A patent/CN113088830B/en active Active
- 2017-03-06 BR BR112018071646-4A patent/BR112018071646B1/en active IP Right Grant
-
2021
- 2021-12-10 JP JP2021200564A patent/JP2022046521A/en active Pending
-
2024
- 2024-03-07 JP JP2024034480A patent/JP2024079699A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
DK3445884T3 (en) | 2020-11-30 |
CA3020420C (en) | 2023-08-29 |
EP3445884B1 (en) | 2020-10-07 |
WO2017182188A1 (en) | 2017-10-26 |
JP2019516015A (en) | 2019-06-13 |
US20190106774A1 (en) | 2019-04-11 |
JP7059198B2 (en) | 2022-04-25 |
JP2022046521A (en) | 2022-03-23 |
CN113088830B (en) | 2023-09-01 |
PL3445884T3 (en) | 2021-04-19 |
JP2024079699A (en) | 2024-06-11 |
ES2842424T3 (en) | 2021-07-14 |
CA3020420A1 (en) | 2017-10-26 |
CN109072384A (en) | 2018-12-21 |
CN113088830A (en) | 2021-07-09 |
BR112018071646B1 (en) | 2022-03-22 |
BR112018071646A2 (en) | 2019-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2479302B1 (en) | Ni-based heat resistant alloy, gas turbine component and gas turbine | |
JP2024079699A (en) | Ferrite Alloy | |
JP3480061B2 (en) | High Cr ferritic heat resistant steel | |
JP6675846B2 (en) | Fe-Cr-Ni alloy with excellent high-temperature strength | |
EP3318653B1 (en) | Ferritic stainless steel | |
JP2012509407A (en) | Aluminum oxide forming nickel base alloy | |
EP3118341B1 (en) | Ferritic stainless steel | |
US20200181745A1 (en) | Ferritic alloy | |
JPS6314845A (en) | Corrosion and abrasion resistant steel | |
JPWO2018066573A1 (en) | Austenitic heat-resistant alloy and welded joint using the same | |
JP2003171745A (en) | Austenitic stainless steel sheet for heat exchanger | |
CN109072384B (en) | Ferritic alloys | |
JP5554180B2 (en) | Austenitic stainless steel | |
JP3367216B2 (en) | High Cr ferritic heat resistant steel | |
WO2021043913A1 (en) | A new welding material | |
WO2023086007A1 (en) | A fecral powder and an object made thereof | |
JPH0577739B2 (en) | ||
JPH0813071A (en) | Alloy that can be forged at high temperatures | |
WO2004087980A1 (en) | Stainless steel for use in high temperature applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20181122 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C22C 38/04 20060101ALI20200414BHEP Ipc: C22C 38/00 20060101AFI20200414BHEP Ipc: C22C 38/02 20060101ALI20200414BHEP Ipc: C22C 38/18 20060101ALI20200414BHEP Ipc: C22C 38/28 20060101ALI20200414BHEP Ipc: C22C 38/06 20060101ALI20200414BHEP Ipc: C22C 1/02 20060101ALI20200414BHEP Ipc: C22C 38/50 20060101ALI20200414BHEP Ipc: C22C 38/44 20060101ALI20200414BHEP |
|
INTG | Intention to grant announced |
Effective date: 20200506 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1321231 Country of ref document: AT Kind code of ref document: T Effective date: 20201015 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602017024988 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20201124 |
|
REG | Reference to a national code |
Ref country code: FI Ref legal event code: FGE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: T2 Effective date: 20201007 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20201007 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1321231 Country of ref document: AT Kind code of ref document: T Effective date: 20201007 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210208 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210108 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210207 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210107 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602017024988 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2842424 Country of ref document: ES Kind code of ref document: T3 Effective date: 20210714 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20210708 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210331 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210331 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210306 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210306 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210207 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20220616 AND 20220622 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230525 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20170306 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 602017024988 Country of ref document: DE Owner name: KANTHAL AB, SE Free format text: FORMER OWNER: SANDVIK INTELLECTUAL PROPERTY AB, SANDVIKEN, SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FI Payment date: 20240315 Year of fee payment: 8 Ref country code: DE Payment date: 20240206 Year of fee payment: 8 Ref country code: GB Payment date: 20240201 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20240212 Year of fee payment: 8 Ref country code: PL Payment date: 20240214 Year of fee payment: 8 Ref country code: NO Payment date: 20240222 Year of fee payment: 8 Ref country code: IT Payment date: 20240212 Year of fee payment: 8 Ref country code: FR Payment date: 20240223 Year of fee payment: 8 Ref country code: DK Payment date: 20240314 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240408 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: PC2A Owner name: KANTHAL AB Effective date: 20240927 |
|
REG | Reference to a national code |
Ref country code: FI Ref legal event code: PCE Owner name: KANTHAL AB |