[go: up one dir, main page]

EP3441156B1 - Methods for producing a matrix for pressure forming of workpieces - Google Patents

Methods for producing a matrix for pressure forming of workpieces Download PDF

Info

Publication number
EP3441156B1
EP3441156B1 EP17185483.9A EP17185483A EP3441156B1 EP 3441156 B1 EP3441156 B1 EP 3441156B1 EP 17185483 A EP17185483 A EP 17185483A EP 3441156 B1 EP3441156 B1 EP 3441156B1
Authority
EP
European Patent Office
Prior art keywords
core
die core
die
reinforcement body
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17185483.9A
Other languages
German (de)
French (fr)
Other versions
EP3441156A1 (en
Inventor
Dennis Beihofer
Torben Luther
Michael Marré
Henning Wagner
Werner Michi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Felss Systems GmbH
Original Assignee
Felss Systems GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Felss Systems GmbH filed Critical Felss Systems GmbH
Priority to EP17185483.9A priority Critical patent/EP3441156B1/en
Priority to CN201810735945.6A priority patent/CN109383046A/en
Priority to US16/048,937 priority patent/US20190047035A1/en
Priority to JP2018149273A priority patent/JP2019031080A/en
Publication of EP3441156A1 publication Critical patent/EP3441156A1/en
Application granted granted Critical
Publication of EP3441156B1 publication Critical patent/EP3441156B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/10Die sets; Pillar guides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/38Automated lay-up, e.g. using robots, laying filaments according to predetermined patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J13/00Details of machines for forging, pressing, or hammering
    • B21J13/02Dies or mountings therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C25/00Profiling tools for metal extruding
    • B21C25/02Dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C25/00Profiling tools for metal extruding
    • B21C25/02Dies
    • B21C25/025Selection of materials therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C3/00Profiling tools for metal drawing; Combinations of dies and mandrels
    • B21C3/02Dies; Selection of material therefor; Cleaning thereof
    • B21C3/04Dies; Selection of material therefor; Cleaning thereof with non-adjustable section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/24Making specific metal objects by operations not covered by a single other subclass or a group in this subclass dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/40Plastics, e.g. foam or rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/02Dies; Inserts therefor; Mounting thereof; Moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/02Dies; Inserts therefor; Mounting thereof; Moulds
    • B30B15/022Moulds for compacting material in powder, granular of pasta form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P11/00Connecting or disconnecting metal parts or objects by metal-working techniques not otherwise provided for 
    • B23P11/02Connecting or disconnecting metal parts or objects by metal-working techniques not otherwise provided for  by first expanding and then shrinking or vice versa, e.g. by using pressure fluids; by making force fits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/12Thermoplastic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2307/00Use of elements other than metals as reinforcement
    • B29K2307/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/757Moulds, cores, dies

Definitions

  • the invention relates to a method for producing a forming die for pressure forming of workpieces, in the context of which a die core of the forming die is provided on the outside with a core reinforcement in the form of a Arm michs stressess of fiber reinforced plastic such that the arranged on the die core Arm michs emotions the die core in the circumferential direction of the Die core around a Häddlingsachse of the die core, along which extends in the interior of the die core a workpiece holder of the die core, wherein the reinforcing body has a plastic matrix and a reinforcing fiber structure which is embedded in the plastic matrix and extending in the circumferential direction of the die core, wherein the reinforcing body Generation of a radial bias of the reinforcing body against the die core is applied to the die core, so that arranged on the die core Kernarmtechnik transversely to the Arbei tsschisachse is radially biased against the die core and wherein the Arm ists emotions is applied to generate a radial
  • the workpiece to be formed is arranged in the workpiece holder in the interior of a die core.
  • the wall of the workpiece holder of the die core is formed shaping and provided for this purpose, for example, with a shaping profile.
  • the die core and the workpiece located inside the workpiece holder of the die core are moved relative to one another along a working movement axis of the die core. Due to the process, the workpiece exerts a large radial force on the die core transversely to the working movement axis.
  • the die core In order to prevent undesirable deformation of the die core under the action of the radial force exerted by the workpiece, the die core is radially biased in the direction opposite to the working movement axis in the opposite direction of the radial force exerted by the workpiece.
  • the die core is provided with a core reinforcement, which encloses the die core on its outer side in the circumferential direction about the working movement axis.
  • the object of the present invention is to provide a comparison with the generic prior art simplified method for producing a forming die for pressure forming of workpieces.
  • a core reinforcement which has a reinforcing body made of fiber-reinforced plastic which is radially prestressed against the die core.
  • the reinforcing body comprises a plastic matrix and a reinforcing fiber structure embedded in the plastic matrix and extending in the circumferential direction of the die core about its working movement axis.
  • a reinforcing body made of fiber-reinforced plastic is applied to the die core of the forming die as a core reinforcement to produce a radial prestressing of the reinforcing body against the die core on the outside of the die core.
  • the reinforcing fiber structure of the reinforcing body may comprise short, long or continuous fibers.
  • the plastic matrix of the reinforcing body is in particular a polymer matrix of thermosets or thermoplastics in question.
  • the reinforcing body which consists of fiber-reinforced plastic, is characterized by a high load carrying capacity and at the same time low volume and low mass out. Due to the small size, the forming die produced according to the claim can be accommodated on a forming machine to save space. The reduced mass of the forming die, for example, when handling them as part of a tool change of considerable advantage. In addition, such forming dies are cheaper than conventional forming dies for pressure forming of workpieces.
  • fiber-reinforced plastic is applied in the uncured state on the outside of the die core to create a radially biased against the die core Arm ists stressess, wherein the die core at the time of application of the fiber reinforced plastic has a mounting core cross-section which is smaller as a utility core cross-section present in a use state of the die core.
  • the reduced cross-section of the die core for the assembly is increased to the cross-section which the die core has during workpiece reshaping.
  • Connected to the cross-sectional enlargement of the die core occurring when the reinforcing body has hardened is the generation of a radial prestressing of the hardened reinforcing body against the die core.
  • the reinforcing body before application to the die core as a cured hollow body.
  • the hardened reinforcing body has a core receptacle for the die core of the forming die according to the invention.
  • a core receiving axis of the reinforcing body extends in the installed position of the die core in the interior of the reinforcing body along the working movement axis of the die core.
  • the core receptacle of the reinforcing body has a core receiving opening at least on one side. In a mounting initial state of the reinforcing body whose core receptacle has an output core receiving cross-section.
  • the core receiving cross section is increased relative to the starting core receiving cross section in order to produce a readiness for assembly of the reinforcing body and of the die core.
  • the reinforcing body and the die core are moved relative to each other along the core receiving axis of the reinforcing body or along the Häzingsache of the die core. If the reinforcing body is arranged on the outside of the die core in the desired position after the joining process, finally the core receiving cross section of the reinforcing body is reduced. As a result, a radial prestressing of the reinforcing body is produced against the die core.
  • claim 3 for producing a readiness for assembly of the reinforcing body and the die core of the core receiving cross section of the reinforcing body relative to the output core receiving cross-section enlarged and also reduces the core cross-section of the die core relative to the utility core cross-section. If the reinforcing body is arranged in the desired position on the outside of the die core after the joining process, finally the core receiving cross section of the reinforcing body is reduced and, in addition, the core cross section of the die core is enlarged. As a result, a radial prestressing of the reinforcing body is produced against the die core.
  • the reinforcement body of fiber-reinforced plastic is applied directly to the die core in a preferred embodiment of the manufacturing method according to the invention according to claims 1 and 2.
  • the reinforcement body of fiber-reinforced plastic is applied directly to the die core in a preferred embodiment of the manufacturing method according to the invention according to claims 1 and 2.
  • the die core is lengthened relative to its use state along the working movement axis of the die core, preferably elastically elongated (claim 5) and / or the temperature of the die core is changed with respect to the temperature in the use state of the die core, reduced at corresponding temperature behavior of the material of the die core (claim 6).
  • the temperature of the reinforcing body present as a cured hollow body is changed in relation to the temperature at assembly initial state of the reinforcing body, depending on the temperature behavior of the Armier stresses increased or decreased (claim 7).
  • Claim 8 relates to a manufacturing method according to the invention, in the context of which a reinforcing body made of carbon fiber reinforced plastic (CFRP) is applied to generate a radial bias of the reinforcing body against the die core on the die core.
  • CFRP carbon fiber reinforced plastic
  • the reinforcement fiber structure extending in the circumferential direction of the die core of a reinforcing body made of carbon fiber reinforced plastic applied to the die core permits, in a particularly lightweight construction, a particularly effective prestressing of the reinforcing body against the die core of the forming die according to the invention.
  • a forming die 1 for pressure forming in the present case for the axial forming of workpieces, comprises a die core 2 made of steel and a reinforcing body 3 made of carbon fiber-reinforced plastic (CFRP).
  • the die core 2 is hollow cylindrical and has a workpiece holder 4 in its interior.
  • the workpiece holder 4 extends along a working movement axis 5 of the die core 2, which forms the symmetry axis of the die core 2.
  • An axially parallel inner wall 6 of the die core 2 delimiting the workpiece holder 4 is in the usual way with a shaping profile (not shown in FIGS. 1a, 1b) Mistake.
  • An axially parallel outer wall of the die core 2 defines a core cross section QM of the die core 2.
  • the workpiece arranged in the interior of the workpiece holder 4 and the forming die 1 are moved as usual along the working movement axis 5 relative to one another.
  • the workpiece is claimed by the shaping profile of the die core 2 beyond the yield point and thereby formed.
  • the workpiece exerts a large radial force on the die core 2 during its deformation.
  • the effective direction of the force exerted by the workpiece on the die core 2 radial force is in the FIGS. 1a, 1b illustrated by arrows.
  • the die core 2 is not undesirably deformed under the action of the radial force exerted by the workpiece, and the reinforcing body 3 is provided to increase the load bearing capacity of the die core 2.
  • the reinforcing body 3 is formed in the illustrated example in the manner of a CFRP tube with a wound continuous filament structure.
  • the die core 2 is arranged in a core receptacle 7 of the reinforcing body 3.
  • a core receiving axis 8 of the reinforcing body 3 coincides with the working movement axis 5 of the die core 2 in the installed position of the die core 2 in the core receptacle 7 of the reinforcing body 3.
  • An axially parallel inner wall of the core receptacle 7 delimits a core receiving cross section QA of the reinforcing body 3.
  • FIGS. 1a, 1b is the forming die 1 and with this the die core 2 and the Arm ists stresses 3 in use, in which with the forming die 1, a forming process can be performed.
  • the reinforcing body 3 is radially biased against the die core 2 counter to the direction of the radial force exerted on the die core 2 by the workpiece during the forming process.
  • the die core 2 has a utility core cross section
  • the core receptacle 7 of the reinforcing body 3 has a utility core receiving cross section.
  • the die core 2 is elastically elongated along the working movement axis 5 (method step (1) in FIG. 2 ).
  • the die core 2 receives, as the core cross-section QM, a mounting core cross section which is smaller than the useful core cross section.
  • fiber-reinforced plastic in the wet state is applied to the outside of the cross-section reduced die core 2 in such a way that an in FIG. 2 shown in a highly schematically illustrated reinforcing fiber structure 9 of the fiber-reinforced plastic with continuous fibers of carbon in the circumferential direction of the die core 2 about the working movement axis 5 (method step (2) in FIG FIG. 2 ).
  • the reinforcing fiber structure 9 with carbon continuous fibers is embedded in a thermoplastic matrix (for example polysulfone / PSU) of the fiber-reinforced plastic.
  • the core receptacle 7 In the interior of the hardened reinforcing body 3, where the mandrel 10 was previously arranged, the core receptacle 7 is formed, which has a core receiving opening 1 on both sides along the core receiving axis 8.
  • the core receptacle 7 of the Arm ists stressess 3 in this phase of the illustrated manufacturing method has an output core receiving cross section.
  • the temperature of the reinforcing body 3 is changed, in the illustrated example, the reinforcing body 3 is cooled. Due to the corresponding temperature behavior of the carbon fiber reinforced plastic used here, the cooling leads to a widening of the reinforcing body 3 and, associated therewith, to an enlargement of the core receiving cross section QA of the reinforcing body 3 with respect to the starting core receiving cross section (step (3) in FIG. 3 ). Thus, the reinforcing body 3 is ready for assembly.
  • the die core 2 is cooled starting from its use state.
  • the core cross section QM of the die core 2 is reduced relative to the use core cross section (step (4) in FIG. 3 ).
  • the die core 2 is ready to install.
  • the core cross-section QM of the ready-to-install die core 2 is smaller than the core receiving cross-section QA of the ready-to-fit Arm ists stressess 2, wherein the core cross-section QM of the ready Matrizenenkerns 2 in the vertical projection on the core receiving cross section QA of the ready Arm ists stressess 3 within the core receiving cross section QA of the ready-Armings stressess 3.
  • the reinforcing body 3 and the die core 2 are joined by inserting the ready-to-install die core 2 through one of the core receiving openings 11 of the reinforcing body 3 along the core receiving axis 8 into the core seat 7 of the reinforcing body 3 (operation (5) in FIG. 3 ).
  • the unit of reinforcing body 3 and die core 2 is heated (step (6) in FIG. 3 ). Due to the heating, the core cross section QM of the die core 2 increases, while the core receiving cross section QA of the reinforcing body 3 decreases. As a result of the enlargement of the core cross section QM of the die core 2 with simultaneous reduction of the core receiving cross section QA of the reinforcing body 3, the reinforcing body 3 is prestressed radially against the female body 2. The production of the forming die 1 is completed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Robotics (AREA)
  • Moulding By Coating Moulds (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Mounting, Exchange, And Manufacturing Of Dies (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Herstellung einer Umformmatrize zum Druckumformen von Werkstücken, im Rahmen dessen ein Matrizenkern der Umformmatrize an der Außenseite mit einer Kernarmierung in Form eines Armierungskörpers aus faserverstärktem Kunststoff versehen wird derart, dass der auf dem Matrizenkern angeordnete Armierungskörper den Matrizenkern in Umfangsrichtung des Matrizenkerns um eine Arbeitsbewegungsachse des Matrizenkerns umschließt, entlang derer sich im Innern des Matrizenkerns eine Werkstückaufnahme des Matrizenkerns erstreckt, wobei der Armierungskörper eine Kunststoffmatrix und eine Verstärkungsfaserstruktur aufweist, die in die Kunststoffmatrix eingebettet ist und sich in der Umfangsrichtung des Matrizenkerns erstreckt, wobei der Armierungskörper unter Erzeugung einer radialen Vorspannung des Armierungskörpers gegen den Matrizenkern auf den Matrizenkern aufgebracht wird, so dass die auf dem Matrizenkern angeordnete Kernarmierung quer zu der Arbeitsbewegungsachse gegen den Matrizenkern radial vorgespannt ist und wobei der Armierungskörper unter Erzeugung einer radialen Vorspannung des Armierungskörpers gegen den Matrizenkern auf den Matrizenkern aufgebracht wird, indem ein sich senkrecht zu der Arbeitsbewegungsachse erstreckender Kernquerschnitt des Matrizenkerns gegenüber einem bei einem Gebrauchszustand des Matrizenkerns vorliegenden Gebrauchs-Kernquerschnitt auf einen Montage-Kernquerschnitt verkleinert wird.The invention relates to a method for producing a forming die for pressure forming of workpieces, in the context of which a die core of the forming die is provided on the outside with a core reinforcement in the form of a Armierungskörpers of fiber reinforced plastic such that the arranged on the die core Armierungskörper the die core in the circumferential direction of the Die core around a Arbeitsbewegungsachse of the die core, along which extends in the interior of the die core a workpiece holder of the die core, wherein the reinforcing body has a plastic matrix and a reinforcing fiber structure which is embedded in the plastic matrix and extending in the circumferential direction of the die core, wherein the reinforcing body Generation of a radial bias of the reinforcing body against the die core is applied to the die core, so that arranged on the die core Kernarmierung transversely to the Arbei tsbewegungsachse is radially biased against the die core and wherein the Armierungskörper is applied to generate a radial bias of the Armierungskörpers against the die core on the die core by a perpendicular to the Arbeitsbewegungsachse extending core cross-section of the die core against a present in a state of use of the die core utility core cross section a mounting core cross-section is reduced.

Die Erfindung betrifft des Weiteren ein Verfahren zur Herstellung einer Umformmatrize zum Druckumformen von Werkstücken, im Rahmen dessen ein Matrizenkern der Umformmatrize an der Außenseite mit einer Kernarmierung in Form eines Armierungskörpers aus faserverstärktem Kunststoff versehen wird derart, dass der auf dem Matrizenkern angeordnete Armierungskörper den Matrizenkern in Umfangsrichtung des Matrizenkerns um eine Arbeitsbewegungsachse des Matrizenkerns umschließt, entlang derer sich im Innern des Matrizenkerns eine Werkstückaufnahme des Matrizenkerns erstreckt, wobei der Armierungskörper eine Kunststoffmatrix und eine Verstärkungsfaserstruktur aufweist, die in die Kunststoffmatrix eingebettet ist und sich in der Umfangsrichtung des Matrizenkerns erstreckt, wobei der Armierungskörper unter Erzeugung einer radialen Vorspannung des Armierungskörpers gegen den Matrizenkern auf den Matrizenkern aufgebracht wird, so dass die auf dem Matrizenkern angeordnete Kernarmierung quer zu der Arbeitsbewegungsachse gegen den Matrizenkern radial vorgespannt ist und wobei der Armierungskörper unter Erzeugung einer radialen Vorspannung des Armierungskörpers gegen den Matrizenkern auf den Matrizenkern aufgebracht wird,

  • indem der Armierungskörper als ausgehärteter Hohlkörper hergestellt wird, der in seinem Innern für den Matrizenkern eine Kernaufnahme aufweist, wobei die Kernaufnahme des Armierungskörpers eine sich bei Einbaulage des Matrizenkerns längs der Arbeitsbewegungsachse des Matrizenkerns erstreckende Kernaufnahmeachse aufweist, wobei die Kernaufnahme des Armierungskörpers längs der Kernaufnahmeachse wenigstens einseitig eine Kernaufnahmeöffnung aufweist und wobei die Kernaufnahme des Armierungskörpers in einem Montage-Ausgangszustand des Armierungskörpers einen sich senkrecht zu der Kernaufnahmeachse erstreckenden Ausgangs-Kernaufnahmequerschnitt besitzt,
  • indem eine Montagebereitschaft des Armierungskörpers und des Matrizenkerns hergestellt wird und
  • indem der montagebereite Armierungskörper und der montagebereite Matrizenkern gefügt werden, wobei der montagebereite Matrizenkern durch die Kernaufnahmeöffnung des montagebereiten Armierungskörpers längs der Kernaufnahmeachse in die Kernaufnahme des montagebereiten Armierungskörpers eingeführt und dadurch der Armierungskörper auf der Außenseite des Matrizenkerns angeordnet wird.
The invention further relates to a method for producing a forming die for pressure forming of workpieces, in the context of which a die core of the forming die is provided on the outside with a core reinforcement in the form of a reinforcing body of fiber reinforced plastic such that the Armierungskörper arranged on the die core the die core in Surrounding the die core around a working axis of movement of the die core, along which a workpiece holder of the die core extends inside the die core, the reinforcing body having a plastic matrix and a reinforcing fiber structure embedded in the plastic matrix and extending in the circumferential direction of the die core, wherein the Armierungskörper is applied while generating a radial bias of the Armierungskörpers against the die core on the die core, so that arranged on the die core Kernarmierung transversely is radially biased to the working movement axis against the die core and wherein the reinforcing body is applied to the die core to produce a radial bias of the reinforcing body against the die core,
  • in that the reinforcing body is produced as a hardened hollow body which has a core receptacle in its interior for the die core, the core receptacle of the reinforcing body having a core receiving axis extending along the working movement axis of the die core in the installed position of the die core, the core receptacle of the reinforcing body being at least one side along the core receiving axis has a core receiving opening and wherein the core receptacle of the reinforcing body has an output core receiving cross section extending perpendicularly to the core receiving axis in a mounting initial state of the reinforcing body,
  • by an assembly readiness of the Armierungskörpers and the die core is made and
  • by fitting the ready-to-install armoring body and the ready-to-install die core, the ready-to-install die core being inserted through the core receiving opening of the ready-to-use arming body along the core receiving axis into the core receptacle of the ready-to-mount armoring body, thereby placing the armor body on the outside of the die core.

Beim Druckumformen von Werkstücken mittels einer Umformmatrize ist das umzuformende Werkstück in der Werkstückaufnahme im Innern eines Matrizenkerns angeordnet. Die Wand der Werkstückaufnahme des Matrizenkerns ist formgebend ausgebildet und zu diesem Zweck beispielsweise mit einem formgebenden Profil versehen. Während des Umformprozesses werden der Matrizenkern und das im Innern der Werkstückaufnahme des Matrizenkerns angeordnete Werkstück längs einer Arbeitsbewegungsachse des Matrizenkerns relativ zueinander bewegt. Prozessbedingt übt das Werkstück dabei quer zu der Arbeitsbewegungsachse eine große Radialkraft auf den Matrizenkern aus. Um eine unerwünschte Verformung des Matrizenkerns unter der Wirkung der von dem Werkstück ausgeübten Radialkraft zu verhindern, ist der Matrizenkern in Gegenrichtung der von dem Werkstück ausgeübten Radialkraft in Richtung auf die Arbeitsbewegungsachse radial vorgespannt. Zur Erhöhung seiner Lastaufnahmefähigkeit ist der Matrizenkern mit einer Kernarmierung versehen, welche den Matrizenkern an dessen Außenseite in Umfangsrichtung um die Arbeitsbewegungsachse umschließt.When pressure forming of workpieces by means of a forming die, the workpiece to be formed is arranged in the workpiece holder in the interior of a die core. The wall of the workpiece holder of the die core is formed shaping and provided for this purpose, for example, with a shaping profile. During the forming process, the die core and the workpiece located inside the workpiece holder of the die core are moved relative to one another along a working movement axis of the die core. Due to the process, the workpiece exerts a large radial force on the die core transversely to the working movement axis. In order to prevent undesirable deformation of the die core under the action of the radial force exerted by the workpiece, the die core is radially biased in the direction opposite to the working movement axis in the opposite direction of the radial force exerted by the workpiece. To increase its load-bearing capacity, the die core is provided with a core reinforcement, which encloses the die core on its outer side in the circumferential direction about the working movement axis.

Gattungsgemäßer Stand der Technik ist offenbart in DE 25 06 701 A1 . Diese Druckschrift betrifft ein Umformwerkzeug, das eine Matrize, eine Matrizenarmierung sowie einen zwischen der Matrize und der Matrizenarmierung angeordneten hülsenförmigen Körper umfasst. Die Matrizenarmierung besteht vorzugsweise aus Kohlenstofffasern, die in ein Bindemittel eingebettet sind. Bei der Herstellung des Umformwerkzeugs wird die Matrize im unterkühlten Zustand in die als Armierungsring vorliegende Matrizenarmierung eingeschoben.The generic prior art is disclosed in DE 25 06 701 A1 , This document relates to a forming tool comprising a die, a Matrizenarmierung and arranged between the die and Matrizenarmierung sleeve-shaped body. The Matrizenarmierung preferably consists of carbon fibers, which are embedded in a binder. In the production of the forming tool, the die is in supercooled state inserted into the present as reinforcement ring Matrizenarmierung.

Weiterer Stand der Technik ist bekannt aus WO 99/39848 A1 . Im Falle dieses Standes der Technik ist ein Matrizenkern im Innern eines mit dem Matrizenkern koaxialen Spannrings angeordnet. Der Spannring wiederum wird von einer mit dem Spannring und dem Matrizenkern koaxialen ringartigen Bandarmierung aus Stahl in Umfangsrichtung umschlossen. Die Bandarmierung ist quer zu der Arbeitsbewegungsachse des Matrizenkerns gegen den Spannring und über den Spannring auch gegen den Matrizenkern radial vorgespannt. Zur Aufnahme großer Radialkräfte sind Umformmatrizen der aus WO 99/39848 A1 vorbekannten Art mit einer groß bauenden und entsprechend massebehafteten Armierung zu versehen. An einer Umformmaschine benötigen derartige Umformmatrizen einen großen Einbauraum, ihr Handling wird durch ihre große Masse erschwert.Further prior art is known from WO 99/39848 A1 , In the case of this prior art, a die core is arranged in the interior of a clamping ring which is coaxial with the die core. The clamping ring in turn is enclosed by a coaxial with the clamping ring and the die core annular steel band reinforcement in the circumferential direction. The band reinforcement is radially biased transversely to the working movement axis of the die core against the clamping ring and over the clamping ring against the die core. To accommodate large radial forces are forming dies of WO 99/39848 A1 previously known type to be provided with a large-sized and correspondingly massive armor. At a forming machine such Umformmatrizen require a large installation space, their handling is complicated by their large mass.

Die Aufgabe der vorliegenden Erfindung besteht darin, ein gegenüber dem gattungsgemäßen Stand der Technik vereinfachtes Verfahren zur Herstellung einer Umformmatrize zum Druckumformen von Werkstücken bereitzustellen.The object of the present invention is to provide a comparison with the generic prior art simplified method for producing a forming die for pressure forming of workpieces.

Erfindungsgemäß gelöst wird diese Aufgabe durch das Verfahren gemäß Patentanspruch 1 und durch das Verfahren gemäß Patentanspruch 2.This object is achieved according to the invention by the method according to claim 1 and by the method according to claim 2.

Für den Matrizenkern der anspruchsgemäß hergestellten Umformmatrize ist eine Kernarmierung vorgesehen, die einen gegen den Matrizenkern radial vorgespannten Armierungskörper aus faserverstärktem Kunststoff aufweist. Der Armierungskörper umfasst eine Kunststoffmatrix sowie eine in die Kunststoffmatrix eingebettete und sich in der Umfangsrichtung des Matrizenkerns um dessen Arbeitsbewegungsachse erstreckende Verstärkungsfaserstruktur. Im Rahmen der anspruchsgemäßen Herstellungsverfahren wird auf den Matrizenkern der Umformmatrize als Kernarmierung ein Armierungskörper aus faserverstärktem Kunststoff unter Erzeugung einer radialen Vorspannung des Armierungskörpers gegen den Matrizenkern auf die Außenseite des Matrizenkerns aufgebracht.For the die core of the forming die produced according to the claims, a core reinforcement is provided which has a reinforcing body made of fiber-reinforced plastic which is radially prestressed against the die core. The reinforcing body comprises a plastic matrix and a reinforcing fiber structure embedded in the plastic matrix and extending in the circumferential direction of the die core about its working movement axis. In the context of the claimed manufacturing process, a reinforcing body made of fiber-reinforced plastic is applied to the die core of the forming die as a core reinforcement to produce a radial prestressing of the reinforcing body against the die core on the outside of the die core.

Die Verstärkungsfaserstruktur des Armierungskörpers kann Kurz-, Lang- oder Endlosfasern aufweisen. Als Kunststoffmatrix des Armierungskörpers kommt insbesondere eine polymere Matrix aus Duromeren oder Thermoplasten infrage.The reinforcing fiber structure of the reinforcing body may comprise short, long or continuous fibers. The plastic matrix of the reinforcing body is in particular a polymer matrix of thermosets or thermoplastics in question.

Der aus faserverstärktem Kunststoff bestehende Armierungskörper zeichnet sich durch eine große Lastaufnahmefähigkeit bei gleichzeitig geringem Volumen und geringer Masse aus. Aufgrund der geringen Baugröße lässt sich die anspruchsgemäß hergestellte Umformmatrize an einer Umformmaschine platzsparend unterbringen. Die reduzierte Masse der Umformmatrize ist beispielsweise bei deren Handling im Rahmen eines Werkzeugwechsels von erheblichem Vorteil. Zudem sind derartige Umformmatrizen kostengünstiger als herkömmliche Umformmatrizen zum Druckumformen von Werkstücken.The reinforcing body, which consists of fiber-reinforced plastic, is characterized by a high load carrying capacity and at the same time low volume and low mass out. Due to the small size, the forming die produced according to the claim can be accommodated on a forming machine to save space. The reduced mass of the forming die, for example, when handling them as part of a tool change of considerable advantage. In addition, such forming dies are cheaper than conventional forming dies for pressure forming of workpieces.

Im Rahmen des erfindungsgemäßen Herstellungsverfahrens gemäß Patentanspruch 1 wird zur Erstellung eines gegen den Matrizenkern radial vorgespannten Armierungskörpers faserverstärkter Kunststoff im nicht ausgehärteten Zustand auf die Außenseite des Matrizenkerns aufgebracht, wobei der Matrizenkern zum Zeitpunkt des Aufbringens des faserverstärkten Kunststoffs einen Montage-Kernquerschnitt aufweist, der kleiner ist als ein bei einem Gebrauchszustand des Matrizenkerns vorliegender Gebrauchs-Kernquerschnitt. Nach dem Aushärten des im nassen Zustand aufgebrachten faserverstärkten Kunststoffs wird der für die Montage reduzierte Querschnitt des Matrizenkerns auf denjenigen Querschnitt vergrößert, welchen der Matrizenkern bei der Werkstückumformung aufweist. Mit der bei ausgehärtetem Armierungskörper erfolgenden Querschnittsvergrößerung des Matrizenkerns verbunden ist die Erzeugung einer radialen Vorspannung des ausgehärteten Armierungskörpers gegen den Matrizenkern.In the context of the inventive manufacturing method according to claim 1 fiber-reinforced plastic is applied in the uncured state on the outside of the die core to create a radially biased against the die core Armierungskörpers, wherein the die core at the time of application of the fiber reinforced plastic has a mounting core cross-section which is smaller as a utility core cross-section present in a use state of the die core. After curing of the fiber-reinforced plastic applied in the wet state, the reduced cross-section of the die core for the assembly is increased to the cross-section which the die core has during workpiece reshaping. Connected to the cross-sectional enlargement of the die core occurring when the reinforcing body has hardened is the generation of a radial prestressing of the hardened reinforcing body against the die core.

Alternativ liegt im Rahmen des Herstellungsverfahrens gemäß Patentanspruch 2 der Armierungskörper vor dem Aufbringen auf den Matrizenkern als ausgehärteter Hohlkörper vor. In seinem Innern weist der ausgehärtete Armierungskörper eine Kernaufnahme für den Matrizenkern der erfindungsgemäßen Umformmatrize auf. Eine Kernaufnahmeachse des Armierungskörpers erstreckt sich bei Einbaulage des Matrizenkerns im Innern des Armierungskörpers längs der Arbeitsbewegungsachse des Matrizenkerns. Längs der Kernaufnahmeachse weist die Kernaufnahme des Armierungskörpers wenigstens einseitig eine Kernaufnahmeöffnung auf. In einem Montage-Ausgangszustand des Armierungskörpers besitzt dessen Kernaufnahme einen Ausgangs-Kernaufnahmequerschnitt. Erfindungsgemäß wird zur Herstellung einer Montagebereitschaft des Armierungskörpers und des Matrizenkerns der Kernaufnahmequerschnitt gegenüber dem Ausgangs-Kernaufnahmequerschnitt vergrößert. Dadurch wird erreicht, dass der Kernaufnahmequerschnitt des montagebereiten Armierungskörpers derart bemessen ist, dass der Kernquerschnitt des montagebereiten Matrizenkerns in der senkrechten Projektion auf den Kernaufnahmequerschnitt innerhalb des Kernaufnahmequerschnitts liegt und folglich der Matrizenkern zum Aufbringen des Armierungskörpers in die Kernaufnahme des Armierungskörpers eingeführt werden kann. Nach der Herstellung der Montagebereitschaft des Armierungskörpers und des Matrizenkerns werden der montagebereite Armierungskörper und der montagebereite Matrizenkern entsprechend gefügt. Dabei werden der Armierungskörper und der Matrizenkern relativ zueinander längs der Kernaufnahmeachse des Armierungskörpers beziehungsweise längs der Arbeitsbewegungsache des Matrizenkerns bewegt. Ist der Armierungskörper nach dem Fügevorgang auf der Außenseite des Matrizenkerns in der Sollposition angeordnet, wird schließlich der Kernaufnahmequerschnitt des Armierungskörpers verkleinert. Dadurch wird eine radiale Vorspannung des Armierungskörpers gegen den Matrizenkern erzeugt.Alternatively, in the context of the manufacturing method according to claim 2, the reinforcing body before application to the die core as a cured hollow body. In its interior, the hardened reinforcing body has a core receptacle for the die core of the forming die according to the invention. A core receiving axis of the reinforcing body extends in the installed position of the die core in the interior of the reinforcing body along the working movement axis of the die core. Along the core receiving axis, the core receptacle of the reinforcing body has a core receiving opening at least on one side. In a mounting initial state of the reinforcing body whose core receptacle has an output core receiving cross-section. According to the invention, the core receiving cross section is increased relative to the starting core receiving cross section in order to produce a readiness for assembly of the reinforcing body and of the die core. It is thereby achieved that the core receiving cross section of the ready-to-mount Armierungskörpers is dimensioned such that the core cross-section of the ready-mounting die core is in the vertical projection on the core receiving cross-section within the core receiving cross-section and consequently the die core for applying the Armierungskörpers can be introduced into the core of the Armierungskörpers. After the preparation of the readiness for assembly of the Armierungskörpers and the die core of the ready to install Armierungskörper and the assembly-ready die core joined accordingly. In this case, the reinforcing body and the die core are moved relative to each other along the core receiving axis of the reinforcing body or along the Arbeitsbewegungsache of the die core. If the reinforcing body is arranged on the outside of the die core in the desired position after the joining process, finally the core receiving cross section of the reinforcing body is reduced. As a result, a radial prestressing of the reinforcing body is produced against the die core.

Besondere Ausführungsarten der erfindungsgemäßen Herstellungsverfahren nach den Patentansprüchen 1 und 2 ergeben sich aus den abhängigen Patentansprüchen 3 bis 8.Particular embodiments of the manufacturing method according to the invention according to claims 1 and 2 emerge from the dependent claims 3 to 8.

In Weiterbildung des erfindungsgemäßen Verfahrens nach Patentanspruch 2 wird ausweislich Patentanspruch 3 zur Herstellung einer Montagebereitschaft des Armierungskörpers und des Matrizenkerns der Kernaufnahmequerschnitt des Armierungskörpers gegenüber dem Ausgangs-Kernaufnahmequerschnitt vergrößert und außerdem der Kernquerschnitt des Matrizenkerns gegenüber dem Gebrauchs-Kernquerschnitt verkleinert. Ist der Armierungskörper nach dem Fügevorgang auf der Außenseite des Matrizenkerns in der Sollposition angeordnet, wird schließlich der Kernaufnahmequerschnitt des Armierungskörpers verkleinert und außerdem wird der Kernquerschnitt des Matrizenkerns vergrö-ßert. Dadurch wird eine radiale Vorspannung des Armierungskörpers gegen den Matrizenkern erzeugt.In a further development of the method according to claim 2 is shown in claim 3 for producing a readiness for assembly of the reinforcing body and the die core of the core receiving cross section of the reinforcing body relative to the output core receiving cross-section enlarged and also reduces the core cross-section of the die core relative to the utility core cross-section. If the reinforcing body is arranged in the desired position on the outside of the die core after the joining process, finally the core receiving cross section of the reinforcing body is reduced and, in addition, the core cross section of the die core is enlarged. As a result, a radial prestressing of the reinforcing body is produced against the die core.

Gemäß Patentanspruch 4 wird in bevorzugter Ausgestaltung der erfindungsgemäßen Herstellungsverfahren nach den Patentansprüchen 1 und 2 der Armierungskörper aus faserverstärktem Kunststoff unmittelbar auf den Matrizenkern aufgebracht. Infolgedessen ergibt sich als Umformmatrize eine besonders kompakt bauende Einheit aus Matrizenkern und Armierungskörper.According to claim 4, the reinforcement body of fiber-reinforced plastic is applied directly to the die core in a preferred embodiment of the manufacturing method according to the invention according to claims 1 and 2. As a result, results as a forming die a particularly compact unit of die core and reinforcing body.

Sowohl im Rahmen des erfindungsgemäßen Herstellungsverfahrens gemäß Patentanspruch 1 als auch im Rahmen des erfindungsgemäßen Herstellungsverfahrens gemäß Patentanspruch 3 bedarf es einer Verkleinerung des Kernquerschnitts des Matrizenkerns gegenüber dem Gebrauchs-Kernquerschnitt. In vorteilhafter Ausgestaltung der erfindungsgemäßen Herstellungsverfahren wird zu diesem Zweck der Matrizenkern gegenüber seinem Gebrauchszustand längs der Arbeitsbewegungsachse des Matrizenkerns gelängt, vorzugsweise elastisch gelängt (Patentanspruch 5) und/oder die Temperatur des Matrizenkerns wird gegenüber der Temperatur bei Gebrauchszustand des Matrizenkerns verändert, bei entsprechendem Temperaturverhalten des Werkstoffs des Matrizenkerns reduziert (Patentanspruch 6).Both in the context of the inventive manufacturing method according to claim 1 and in the context of the manufacturing method according to the invention according to claim 3, it requires a reduction of the core cross-section of the die core relative to the utility core cross-section. In an advantageous embodiment of the manufacturing method according to the invention, the die core is lengthened relative to its use state along the working movement axis of the die core, preferably elastically elongated (claim 5) and / or the temperature of the die core is changed with respect to the temperature in the use state of the die core, reduced at corresponding temperature behavior of the material of the die core (claim 6).

Zur Vergrößerung des Kernaufnahmequerschnitts des Armierungskörpers gegenüber dem Ausgangs-Kernaufnahmequerschnitt im Rahmen des erfindungsgemäßen Herstellungsverfahrens gemäß Patentanspruch 2 wird in weiterer vorteilhafter Ausgestaltung des erfindungsgemäßen Herstellungsverfahrens die Temperatur des als ausgehärteter Hohlkörper vorliegenden Armierungskörpers gegenüber der Temperatur bei Montage-Ausgangszustand des Armierungskörpers verändert, je nach Temperaturverhalten des Armierungskörpers erhöht oder gesenkt (Patentanspruch 7).To increase the core receiving cross section of the reinforcing body relative to the starting core receiving cross section in the manufacturing process according to claim 2, the temperature of the reinforcing body present as a cured hollow body is changed in relation to the temperature at assembly initial state of the reinforcing body, depending on the temperature behavior of the Armierkörpers increased or decreased (claim 7).

Im Rahmen der erfindungsgemäßen Herstellungsverfahren können für den Armierungskörper der erfindungsgemäßen Umformmatrize verschiedenartige faserverstärkte Kunststoffe verwendet werden. Patentanspruch 8 betrifft ein erfindungsgemäßes Herstellungsverfahren, im Rahmen dessen ein Armierungskörper aus kohlenstofffaserverstärktem Kunststoff (CFK) unter Erzeugung einer radialen Vorspannung des Armierungskörpers gegen den Matrizenkern auf den Matrizenkern aufgebracht wird. Kohlenstofffaserverstärkte Kunststoffe zeichnen sich durch eine besonders hohe Zugfestigkeit bei geringer Dichte aus. Die sich in der Umfangsrichtung des Matrizenkerns erstreckende Verstärkungsfaserstruktur eines auf den Matrizenkern aufgebrachten Armierungskörpers aus kohlenstofffaserverstärktem Kunststoff gestattet bei besonders leichter Bauweise eine besonders wirksame Vorspannung des Armierungskörpers gegen den Matrizenkern der erfindungsgemäßen Umformmatrize.In the context of the production method according to the invention, various fiber-reinforced plastics can be used for the reinforcing body of the forming die according to the invention. Claim 8 relates to a manufacturing method according to the invention, in the context of which a reinforcing body made of carbon fiber reinforced plastic (CFRP) is applied to generate a radial bias of the reinforcing body against the die core on the die core. Carbon fiber reinforced plastics are characterized by a particularly high tensile strength at low density. The reinforcement fiber structure extending in the circumferential direction of the die core of a reinforcing body made of carbon fiber reinforced plastic applied to the die core permits, in a particularly lightweight construction, a particularly effective prestressing of the reinforcing body against the die core of the forming die according to the invention.

Werden im Rahmen des erfindungsgemäßen Herstellungsverfahrens gemäß Patentanspruch 3 ein Armierungskörper aus kohlenstofffaserverstärktem Kunststoff (negativer Wärmeausdehnungskoeffizient) und ein Matrizenkern aus einem Material mit einem positiven Wärmeausdehnungskoeffizienten, beispielsweise aus Stahl, gefügt und werden zur Herstellung der Montagebereitschaft des Armierungskörpers und des Matrizenkerns und/oder zur Erzeugung der radialen Vorspannung des Armierungskörpers gegen den Matrizenkern die Temperaturen des Armierungskörpers und des Matrizenkerns verändert, so kann jeweils eine gleichsinnige Temperaturänderung der beiden Teile der erfindungsgemäßen Umformmatrize vorgenommen werden. Aufgrund des Temperaturverhaltens der Werkstoffe des Armierungskörpers und des Matrizenkerns sind die beiderseitigen Temperaturen zur Herstellung der Montagebereitschaft zu senken und zur Erzeugung der radialen Vorspannung des Armierungskörpers gegen den Matrizenkern zu erhöhen.Are in the context of the manufacturing method according to claim 3 according to the invention a Armierungskörper of carbon fiber reinforced plastic (negative coefficient of thermal expansion) and a die core made of a material having a positive coefficient of thermal expansion, for example made of steel, and are used to produce the assembly readiness of the Armierungskörpers and the die core and / or for the production the radial bias of the Armierungskörpers against the die core changes the temperatures of the Armierungskörpers and the die core, so in each case a same temperature change of the two parts of the forming die according to the invention can be made. Because of the temperature behavior of the materials of the reinforcing body and of the die core, the mutual temperatures for producing the assembly readiness are to be reduced and to increase the radial prestressing of the reinforcing body against the die core.

Nachfolgend wird die Erfindung anhand beispielhafter schematischer Darstellungen näher erläutert. Es zeigen:

Figuren 1a, 1b
Schnittdarstellungen einer Umformmatrize zum Druckumformen von Werkstücken, mit einem Matrizenkern und einer Kernarmierung,
Figur 2
den Ablauf einer ersten Variante eines Verfahrens zur Herstellung der Umformmatrize gemäß den Figuren la, 1b und
Figur 3
den Ablauf einer zweiten Variante des Verfahrens zur Herstellung der Umformmatrize gemäß den Figuren la, 1b.
The invention will be explained in more detail below with reference to exemplary schematic illustrations. Show it:
FIGS. 1a, 1b
Sectional views of a forming die for pressure forming of workpieces, with a die core and a core reinforcement,
FIG. 2
the sequence of a first variant of a method for producing the forming die according to the figures la, 1b and
FIG. 3
the sequence of a second variant of the method for producing the forming die according to the figures la, 1b.

Gemäß den Figuren la, 1b umfasst eine Umformmatrize 1 zum Druckumformen, vorliegend zum Axialformen von Werkstücken einen Matrizenkern 2 aus Stahl sowie einen Armierungskörper 3 aus kohlenstofffaserfaserverstärktem Kunststoff (CFK). Der Matrizenkern 2 ist hohlzylindrisch ausgebildet und weist in seinem Innern eine Werkstückaufnahme 4 auf. Die Werkstückaufnahme 4 erstreckt sich längs einer Arbeitsbewegungsachse 5 des Matrizenkerns 2, welche die Symmetrieachse des Matrizenkerns 2 bildet. Eine die Werkstückaufnahme 4 begrenzende achsparallele Innenwand 6 des Matrizenkerns 2 ist in gewohnter Weise mit einem in den Figuren la, 1b nicht gezeigten formgebenden Profil versehen. Eine achsparallele Außenwand des Matrizenkerns 2 begrenzt einen Kernquerschnitt QM des Matrizenkerns 2.According to FIGS. 1a, 1b, a forming die 1 for pressure forming, in the present case for the axial forming of workpieces, comprises a die core 2 made of steel and a reinforcing body 3 made of carbon fiber-reinforced plastic (CFRP). The die core 2 is hollow cylindrical and has a workpiece holder 4 in its interior. The workpiece holder 4 extends along a working movement axis 5 of the die core 2, which forms the symmetry axis of the die core 2. An axially parallel inner wall 6 of the die core 2 delimiting the workpiece holder 4 is in the usual way with a shaping profile (not shown in FIGS. 1a, 1b) Mistake. An axially parallel outer wall of the die core 2 defines a core cross section QM of the die core 2.

Zum Druckumformen von Werkstücken, beispielsweise von Rohren, mittels der Umformmatrize 1 werden das im Innern der Werkstückaufnahme 4 angeordnete Werkstück und die Umformmatrize 1 wie üblich längs der Arbeitsbewegungsachse 5 relativ zueinander bewegt. Dabei wird das Werkstück durch das formgebende Profil des Matrizenkerns 2 über die Fließgrenze hinaus beansprucht und dadurch umgeformt.For pressure forming of workpieces, for example pipes, by means of the forming die 1, the workpiece arranged in the interior of the workpiece holder 4 and the forming die 1 are moved as usual along the working movement axis 5 relative to one another. The workpiece is claimed by the shaping profile of the die core 2 beyond the yield point and thereby formed.

Prozessbedingt übt das Werkstück bei seiner Umformung eine große Radialkraft auf den Matrizenkern 2 aus. Die Wirkrichtung der von dem Werkstück auf den Matrizenkern 2 ausgeübten Radialkraft ist in den Figuren 1a, 1b durch Pfeile veranschaulicht.Due to the process, the workpiece exerts a large radial force on the die core 2 during its deformation. The effective direction of the force exerted by the workpiece on the die core 2 radial force is in the FIGS. 1a, 1b illustrated by arrows.

Damit der Matrizenkern 2 unter der Wirkung der von dem Werkstück ausgeübten Radialkraft nicht in unerwünschter Weise verformt wird und zur Erhöhung der Lastaufnahmefähigkeit des Matrizenkerns 2 ist der Armierungskörper 3 vorgesehen. Der Armierungskörper 3 ist in dem dargestellten Beispielsfall nach Art eines CFK-Rohrs mit einer gewickelten Endlosfaserstruktur ausgebildet.Thus, the die core 2 is not undesirably deformed under the action of the radial force exerted by the workpiece, and the reinforcing body 3 is provided to increase the load bearing capacity of the die core 2. The reinforcing body 3 is formed in the illustrated example in the manner of a CFRP tube with a wound continuous filament structure.

Der Matrizenkern 2 ist in einer Kernaufnahme 7 des Armierungskörpers 3 angeordnet. Eine Kernaufnahmeachse 8 des Armierungskörpers 3 fällt bei Einbaulage des Matrizenkerns 2 in der Kernaufnahme 7 des Armierungskörpers 3 mit der Arbeitsbewegungsachse 5 des Matrizenkerns 2 zusammen. Eine achsparallele Innenwand der Kernaufnahme 7 begrenzt einen Kernaufnahmequerschnitt QA des Armierungskörpers 3.The die core 2 is arranged in a core receptacle 7 of the reinforcing body 3. A core receiving axis 8 of the reinforcing body 3 coincides with the working movement axis 5 of the die core 2 in the installed position of the die core 2 in the core receptacle 7 of the reinforcing body 3. An axially parallel inner wall of the core receptacle 7 delimits a core receiving cross section QA of the reinforcing body 3.

In den Figuren 1a, 1b befindet sich die Umformmatrize 1 und mit dieser der Matrizenkern 2 und der Armierungskörper 3 im Gebrauchszustand, in welchem mit der Umformmatrize 1 ein Umformprozess durchgeführt werden kann. Der Armierungskörper 3 ist entgegen der Richtung der während des Umformprozesses von dem Werkstück auf den Matrizenkern 2 ausgeübten Radialkraft gegen den Matrizenkern 2 radial vorgespannt. Der Matrizenkern 2 weist einen Gebrauchs-Kernquerschnitt, die Kernaufnahme 7 des Armierungskörpers 3 einen Gebrauchs-Kernaufnahmequerschnitt auf.In the FIGS. 1a, 1b is the forming die 1 and with this the die core 2 and the Armierungskörper 3 in use, in which with the forming die 1, a forming process can be performed. The reinforcing body 3 is radially biased against the die core 2 counter to the direction of the radial force exerted on the die core 2 by the workpiece during the forming process. The die core 2 has a utility core cross section, the core receptacle 7 of the reinforcing body 3 has a utility core receiving cross section.

Zwei Möglichkeiten zur Herstellung der Umformmatrize 1 sind in den Figuren 2 und 3 veranschaulicht.Two ways of producing the forming die 1 are in the Figures 2 and 3 illustrated.

Gemäß Figur 2 wird zur Herstellung der Umformmatrize 1 zunächst der Matrizenkern 2 längs der Arbeitsbewegungsachse 5 elastisch gelängt (Verfahrensschritt(1) in Figur 2). Dadurch erhält der Matrizenkern 2 als Kernquerschnitt QM einen Montage-Kernquerschnitt, der kleiner ist als der Gebrauchs-Kernquerschnitt.According to FIG. 2 For the production of the forming die 1, first the die core 2 is elastically elongated along the working movement axis 5 (method step (1) in FIG FIG. 2 ). As a result, the die core 2 receives, as the core cross-section QM, a mounting core cross section which is smaller than the useful core cross section.

Anschließend wird auf die Außenseite des querschnittsreduzierten Matrizenkerns 2 faserverstärkter Kunststoff im nassen Zustand derart aufgebracht, dass sich eine in Figur 2 stark schematisch dargestellte Verstärkungsfaserstruktur 9 des faserverstärkten Kunststoffs mit Endlosfasern aus Kohlenstoff in der Umfangsrichtung des Matrizenkerns 2 um die Arbeitsbewegungsachse 5 erstreckt (Verfahrensschritt (2) in Figur 2). In dem dargestellten Beispielsfall ist die Verstärkungsfaserstruktur 9 mit Endlosfasern aus Kohlenstoff in eine thermoplastische Matrix (beispielsweise Polysulfon/PSU) des faserverstärkten Kunststoffs eingebettet.Subsequently, fiber-reinforced plastic in the wet state is applied to the outside of the cross-section reduced die core 2 in such a way that an in FIG. 2 shown in a highly schematically illustrated reinforcing fiber structure 9 of the fiber-reinforced plastic with continuous fibers of carbon in the circumferential direction of the die core 2 about the working movement axis 5 (method step (2) in FIG FIG. 2 ). In the illustrated example case, the reinforcing fiber structure 9 with carbon continuous fibers is embedded in a thermoplastic matrix (for example polysulfone / PSU) of the fiber-reinforced plastic.

Bei nach wie vor querschnittsreduziertem Matrizenkern 2 wird der anfangs nasse faserverstärkte Kunststoff getempert und dadurch ausgehärtet (Verfahrensschritt (3) in Figur 2). Nach dem Aushärten des faserverstärkten Kunststoffs wird die Längung des Matrizenkerns 2 aufgehoben (Verfahrensschritt (4) in Figur 2). Infolgedessen vergrößert sich der Kernquerschnitt QM des Matrizenkerns 2 auf den Gebrauchs-Kernquerschnitt. Dadurch ergibt sich eine radiale Vorspannung (Pfeile in der Teildarstellung (4) von Figur 2) des durch Aushärten des faserverstärkten Kunststoffs erzeugten Armierungskörpers 3 gegen den Matrizenkern 2. Die Herstellung der Umformmatrize 1 ist damit abgeschlossen.In still reduced cross-section die core 2 of the initially wet fiber reinforced plastic is annealed and thereby cured (step (3) in FIG. 2 ). After the fiber-reinforced plastic has hardened, the elongation of the die core 2 is canceled (method step (4) in FIG FIG. 2 ). As a result, the core cross section QM of the die core 2 increases to the utility core cross section. This results in a radial bias (arrows in the partial view (4) of FIG. 2 ) of the reinforcing body 3 produced by curing the fiber-reinforced plastic against the die core 2. The production of the forming die 1 is thus completed.

Abweichend von der in Figur 2 veranschaulichten Variante des Verfahrens zur Herstellung der Umformmatrize 1 wird im Falle des Herstellungsverfahrens gemäß Figur 3 der Armierungskörper 3 vor dem Aufbringen auf den Matrizenkern 2 von diesem getrennt gefertigt. Zu diesem Zweck wird faserverstärkter Kunststoff abseits des Matrizenkerns 2 im nassen Zustand auf einen Dorn 10 derart aufgebracht, dass sich die Verstärkungsfaserstruktur 9 des faserverstärkten Kunststoffs in Umfangsrichtung des Dorns 10 um diesen herum erstreckt (Verfahrensschritt (1) in Figur 3). Durch Tempern des anfangs nassen faserverstärkten Kunststoffs wird dieser unter Ausbildung des Armierungskörpers 3 ausgehärtet. Der ausgehärtete Armierungskörper 3 wird von dem Dorn 10 abgezogen (Verfahrensschritt (2) in Figur 3). Im Innern des ausgehärteten Armierungskörpers 3 ist dort, wo zuvor der Dorn 10 angeordnet war die Kernaufnahme 7 ausgebildet, die längs der Kernaufnahmeachse 8 beidseits jeweils eine Kernaufnahmeöffnung 1 aufweist. Als Kernaufnahmequerschnitt QA weist die Kernaufnahme 7 des Armierungskörpers 3 in dieser Phase des veranschaulichten Herstellungsverfahrens einen Ausgangs-Kernaufnahmequerschnitt auf.Notwithstanding the in FIG. 2 illustrated variant of the method for producing the forming die 1 is in the case of the manufacturing method according to FIG. 3 the reinforcing body 3 made separately from this before applying to the die core 2. For this purpose, fiber-reinforced plastic is applied to a mandrel 10 away from the die core 2 in the wet state such that the reinforcing fiber structure 9 of the fiber-reinforced plastic extends around it in the circumferential direction of the mandrel 10 (method step (1) in FIG FIG. 3 ). By tempering the initially wet fiber-reinforced plastic this is cured to form the Armierungskörpers 3. The hardened reinforcing body 3 is pulled off the mandrel 10 (method step (2) in FIG FIG. 3 ). In the interior of the hardened reinforcing body 3, where the mandrel 10 was previously arranged, the core receptacle 7 is formed, which has a core receiving opening 1 on both sides along the core receiving axis 8. As a core receiving cross-section QA, the core receptacle 7 of the Armierungskörpers 3 in this phase of the illustrated manufacturing method has an output core receiving cross section.

Nachdem der Armierungskörper 3 als ausgehärteter Hohlkörper bereitgestellt worden ist, wird die Temperatur des Armierungskörpers 3 geändert, in dem dargestellten Beispielsfall wird der Armierungskörper 3 abgekühlt. Aufgrund des entsprechenden Temperaturverhaltens des vorliegend eingesetzten kohlenstofffaserverstärkten Kunststoffs führt die Abkühlung zu einer Aufweitung des Armierungskörpers 3 und damit verbunden zu einer Vergrößerung des Kernaufnahmequerschnitts QA des Armierungskörpers 3 gegenüber dem Ausgangs-Kernaufnahmequerschnitt (Arbeitsschritt (3) in Figur 3). Damit ist der Armierungskörper 3 montagebereit.After the reinforcing body 3 has been provided as a hardened hollow body, the temperature of the reinforcing body 3 is changed, in the illustrated example, the reinforcing body 3 is cooled. Due to the corresponding temperature behavior of the carbon fiber reinforced plastic used here, the cooling leads to a widening of the reinforcing body 3 and, associated therewith, to an enlargement of the core receiving cross section QA of the reinforcing body 3 with respect to the starting core receiving cross section (step (3) in FIG FIG. 3 ). Thus, the reinforcing body 3 is ready for assembly.

Zur Herstellung der Montagebereitschaft des Matrizenkerns 2 wird der Matrizenkern 2 ausgehend von seinem Gebrauchszustand abgekühlt. Dadurch wird der Kernquerschnitt QM des Matrizenkerns 2 gegenüber dem Gebrauchs-Kernquerschnitt verkleinert (Arbeitsschritt (4) in Figur 3). Damit ist auch der Matrizenkern 2 montagebereit.To produce the assembly readiness of the die core 2, the die core 2 is cooled starting from its use state. As a result, the core cross section QM of the die core 2 is reduced relative to the use core cross section (step (4) in FIG FIG. 3 ). Thus, the die core 2 is ready to install.

Der Kernquerschnitt QM des montagebereiten Matrizenkerns 2 ist kleiner als der Kernaufnahmequerschnitt QA des montagebereiten Armierungskörpers 2, wobei der Kernquerschnitt QM des montagebereiten Matrizenkerns 2 in der senkrechten Projektion auf den Kernaufnahmequerschnitt QA des montagebereiten Armierungskörpers 3 innerhalb des Kernaufnahmequerschnitts QA des montagebereiten Armierungskörpers 3 liegt.The core cross-section QM of the ready-to-install die core 2 is smaller than the core receiving cross-section QA of the ready-to-fit Armierungskörpers 2, wherein the core cross-section QM of the ready Matrizenenkerns 2 in the vertical projection on the core receiving cross section QA of the ready Armierungskörpers 3 within the core receiving cross section QA of the ready-Armingskörpers 3.

Nach der Herstellung der Montagebereitschaft des Armierungskörpers 3 und des Matrizenkerns 2 werden der Armierungskörper 3 und der Matrizenkern 2 gefügt, indem der montagebereite Matrizenkern 2 durch eine der Kernaufnahmeöffnungen 11 des Armierungskörpers 3 längs der Kernaufnahmeachse 8 in die Kernaufnahme 7 des Armierungskörpers 3 eingeschoben wird (Arbeitsschritt (5) in Figur 3).After the assembly readiness of the reinforcing body 3 and the die core 2 is established, the reinforcing body 3 and the die core 2 are joined by inserting the ready-to-install die core 2 through one of the core receiving openings 11 of the reinforcing body 3 along the core receiving axis 8 into the core seat 7 of the reinforcing body 3 (operation (5) in FIG. 3 ).

Nachdem der Matrizenkern 2 seine Sollposition im Innern des Armierungskörpers 3 eingenommen hat, wird die Einheit aus Armierungskörper 3 und Matrizenkern 2 erwärmt (Arbeitsschritt (6) in Figur 3). Aufgrund der Erwärmung vergrößert sich der Kernquerschnitt QM des Matrizenkerns 2, während sich der Kernaufnahmequerschnitt QA des Armierungskörpers 3 verkleinert. In Folge der Vergrößerung des Kernquerschnitts QM des Matrizenkerns 2 bei gleichzeitiger Verkleinerung des Kernaufnahmequerschnitts QA des Armierungskörpers 3 ist der Armierungskörper 3 radial gegen den Matrizenkörper 2 vorgespannt. Die Herstellung der Umformmatrize 1 ist abgeschlossen.After the die core 2 has assumed its desired position in the interior of the reinforcing body 3, the unit of reinforcing body 3 and die core 2 is heated (step (6) in FIG FIG. 3 ). Due to the heating, the core cross section QM of the die core 2 increases, while the core receiving cross section QA of the reinforcing body 3 decreases. As a result of the enlargement of the core cross section QM of the die core 2 with simultaneous reduction of the core receiving cross section QA of the reinforcing body 3, the reinforcing body 3 is prestressed radially against the female body 2. The production of the forming die 1 is completed.

Claims (8)

  1. Method for producing a forming die (1) for pressure-forming workpieces, in which a die core (2) of the forming die (1) is provided at the outer side with a core reinforcement in the form of a reinforcement body (3) made of a fibre-reinforced plastics material in such a manner that the reinforcement body (3) arranged on the die core (2) surrounds the die core (2) in a peripheral direction of the die core (2) around a working movement axis (5) of the die core (2), along which working movement axis a workpiece receiving member (4) of the die core (2) extends inside the die core (2), wherein the reinforcement body (3) comprises a plastics matrix and a reinforcing fibre structure (9) which is embedded in the plastics matrix and which extends in the peripheral direction of the die core (2) wherein the reinforcement body (3) is applied to the die core (2) so as to produce a radial pretensioning of the reinforcement body (3) against the die core (2) such that the core reinforcement which is arranged on the die core (2) is radially pretensioned transversely to the working movement axis (5) against the die core (2), and wherein the reinforcement body (3) is applied to the die core (2) so as to produce a radial pretensioning of the reinforcement body (3) against the die core (2) by a core cross-section (QM) of the die core (2) which extends perpendicularly to the working movement axis (5) being decreased to an assembly core cross-section with respect to a core cross-section for use which is present in a state for use of the die core (2),
    characterised in that the reinforcement body (3) is applied to the die core (2) so as to produce a radial pretensioning of the reinforcement body (3) against the die core (2)
    • by the fibre-reinforced plastics material in the non-hardened state being applied to the outer side of the die core (2) which has the assembly core cross-section in such a manner that the reinforcing fibre structure (9) of the fibre-reinforced plastics material extends in the peripheral direction of the die core (2) which has the assembly core cross-section and
    • by the core cross-section (QM) of the die core (2) being increased to the core cross-section for use after the hardening of the fibre-reinforced plastics material applied to the outer side of the die core (2).
  2. Method for producing a forming die (1) for pressure-forming workpieces, in which a die core (2) of the forming die (1) is provided at the outer side with a core reinforcement in the form of a reinforcement body (3) made of a fibre-reinforced plastics material in such a manner that the reinforcement body (3) arranged on the die core (2) surrounds the die core (2) in a peripheral direction of the die core (2) around a working movement axis (5) of the die core (2), along which working movement axis a workpiece receiving member (4) of the die core (2) extends inside the die core (2), wherein the reinforcement body (3) comprises a plastics matrix and a reinforcing fibre structure (9) which is embedded in the plastics matrix and which extends in the peripheral direction of the die core (2) wherein the reinforcement body (3) is applied to the die core (2) so as to produce a radial pretensioning of the reinforcement body (3) against the die core (2) such that the core reinforcement which is arranged on the die core (2) is radially pretensioned transversely to the working movement axis (5) against the die core (2), and wherein the reinforcement body (3) is applied to the die core (2) so as to produce a radial pretensioning of the reinforcement body (3) against the die core (2)
    • by the reinforcement body (3) being produced as a hardened hollow member which has in the interior thereof a core receiving member (7) for the die core (2), wherein the core receiving member (7) of the reinforcement body (3) has a core receiving member axis (8) which extends along the working movement axis (5) of the die core (2) when the die core (2) is in the mounting position, wherein the core receiving member (7) of the reinforcement body (3) has along the core receiving member axis (8) a core receiving member opening (11) at least at one side and wherein, in an initial assembly state of the reinforcement body (3), the core receiving member (7) of the reinforcement body (3) has an initial core receiving member cross-section which extends perpendicularly to the core receiving member axis (8),
    • by a readiness for assembly of the reinforcement body (3) and the die core (2) being produced and
    • by the ready-for-assembly reinforcement body (3) and the ready-for-assembly die core (2) being joined, wherein the ready-for-assembly die core (2) is introduced through the core receiving member opening (11) of the ready-for-assembly reinforcement body (3) along the core receiving member axis (8) into the core receiving member (7) of the ready-for-assembly reinforcement body (3) and the reinforcement body (3) is thereby arranged at the outer side of the die core (2),
    characterised in that the reinforcement body (3) is applied to the die core (2) so as to produce a radial pretensioning of the reinforcement body (3) against the die core (2)
    • by the readiness for assembly of the reinforcement body (3) and the die core (2) being produced by the core receiving member cross-section (QA) of the reinforcement body (3) being increased with respect to the initial core receiving member cross-section, wherein the core receiving member cross-section (QA) of the ready-for-assembly reinforcement body (3) has such dimensions that the core cross-section (QM) of the ready-for-assembly die core (2) is, in the perpendicular projection onto the core receiving member cross-section (QA), within the core receiving member cross-section (QA), and
    • by, after the reinforcement body (3) and the die core (2) have been joined so as to produce the radial pretensioning of the reinforcement body (3) against the die core (2), the core receiving member cross-section (QA) of the reinforcement body (3) being decreased.
  3. Method according to claim 2, characterised in that the reinforcement body (3) is applied to the die core (2) so as to produce a radial pretensioning of the reinforcement body (3) against the die core (2)
    • by the core cross-section (QM) of the die core (2) being decreased with respect to a core cross-section for use which is present in a state for use of the die core (2) for producing the readiness for assembly of the reinforcement body (3) and the die core (2), and
    • by, after the reinforcement body (3) and the die core (2) have been joined so as to produce the radial pretensioning of the reinforcement body (3) against the die core (2), the core receiving member cross-section (QA) of the reinforcement body (3) being decreased and the core cross-section (QM) of the die core (2) being increased.
  4. Method according to any of the preceding claims, characterised in that the reinforcement body (3) made of fibre-reinforced plastics material is applied directly to the die core (2) so as to produce a radial pretensioning of the reinforcement body (3) against the die core (2).
  5. Method according to at least claim 1 or claim 3, characterised in that the core cross-section (QM) of the die core (2) is decreased with respect to the core cross-section for use by the die core (2) being extended along the working movement axis (5) of the die core (2), preferably resiliently extended, with respect to the state for use.
  6. Method according to at least claims 1 or claim 3, characterised in that the core cross-section (QM) of the die core (2) is decreased with respect to the core cross-section for use by the temperature of the die core (2) being changed with respect to the temperature in the state for use of the die core (2).
  7. Method according to at least claim 2 or claim 3, characterised in that the core receiving member cross-section (QA) of the reinforcement body (3) is increased with respect to the initial core receiving member cross-section by the temperature of the reinforcement body (3) being changed with respect to the temperature in the initial assembly state of the reinforcement body (3).
  8. Method according to any of the preceding claims, characterised in that a reinforcement body (3) made of carbon-fibre-reinforced plastics material is applied to the die core (2) so as to produce a radial pretensioning of the reinforcement body (3) against the die core (2).
EP17185483.9A 2017-08-09 2017-08-09 Methods for producing a matrix for pressure forming of workpieces Active EP3441156B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17185483.9A EP3441156B1 (en) 2017-08-09 2017-08-09 Methods for producing a matrix for pressure forming of workpieces
CN201810735945.6A CN109383046A (en) 2017-08-09 2018-07-06 Method for making the shaping dies of workpiece pressure forming and for manufacturing this shaping dies
US16/048,937 US20190047035A1 (en) 2017-08-09 2018-07-30 Forming die for pressure-forming workpieces and method for producing a forming die for pressure-forming workpieces
JP2018149273A JP2019031080A (en) 2017-08-09 2018-08-08 A forming die for press-molding a workpiece and a method for manufacturing a forming die for pressure-molding a workpiece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP17185483.9A EP3441156B1 (en) 2017-08-09 2017-08-09 Methods for producing a matrix for pressure forming of workpieces

Publications (2)

Publication Number Publication Date
EP3441156A1 EP3441156A1 (en) 2019-02-13
EP3441156B1 true EP3441156B1 (en) 2019-10-09

Family

ID=59626449

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17185483.9A Active EP3441156B1 (en) 2017-08-09 2017-08-09 Methods for producing a matrix for pressure forming of workpieces

Country Status (4)

Country Link
US (1) US20190047035A1 (en)
EP (1) EP3441156B1 (en)
JP (1) JP2019031080A (en)
CN (1) CN109383046A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019114438A1 (en) * 2019-05-29 2020-12-03 Kolibri Metals Gmbh Forming die with lubrication for pressure forming of metallic workpieces and processes for their production

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2506701A1 (en) * 1975-02-18 1976-08-19 Eberhard Dipl Ing Wolff Metal-shaping female die - having outer reinforcements with high E-modulus and low pref. negative thermal expansion coefficient
GB2199282B (en) * 1986-12-19 1990-01-24 Honda Motor Co Ltd Process for producing a urethane moulding
JPH0741352B2 (en) * 1992-09-24 1995-05-10 アカマツフォーシス株式会社 dice
DE19804700A1 (en) 1998-02-06 1999-08-19 Danfoss As Molding tool
DE19916566B4 (en) * 1999-04-13 2005-07-28 Wafios Ag Matrix for highly stressed hollow molds
DE10101539C2 (en) * 2001-01-15 2003-01-23 Neumayer Erich Gmbh Co Kg Process for manufacturing a built shaft
EP1570976A1 (en) * 2004-03-04 2005-09-07 Alcan Technology & Management Ltd. Processes for converting cyclic oligomers into thermoplastic PBT products
EP2511084B1 (en) * 2011-04-14 2014-11-12 Magna Steyr Fahrzeugtechnik AG & Co KG Fibre-reinforced plastic node element and method for producing and using same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
JP2019031080A (en) 2019-02-28
US20190047035A1 (en) 2019-02-14
EP3441156A1 (en) 2019-02-13
CN109383046A (en) 2019-02-26

Similar Documents

Publication Publication Date Title
EP1859958B1 (en) Composite design flange component and method for manufacturing a flange component
DE3817119C2 (en) Composite fasteners
EP2242682B1 (en) Method of connecting two fuselage sections with the formation of a transverse joint, and transverse joint connection
DE102014004157B4 (en) Process for the production of load introduction flanges on fiber-reinforced hollow profiles with thermoplastic matrix
DE102013005649B4 (en) Process for producing a fiber composite component having a load introduction element
DE69224393T2 (en) AXIAL SUBSTRUCTIBLE CLUTCH WITH COMPOSITE PUMP RING
EP3368261B1 (en) Core system, use of the core system in the production of a fiber composite component and method for producing a fiber composite component
DE3341368A1 (en) METHOD FOR PRODUCING A DRIVE SHAFT FROM FIBER REINFORCED PLASTIC AND DRIVE SHAFT FROM FIBER REINFORCED PLASTIC
DE102009056472A1 (en) Method for manufacturing composite component for pultrusion system, involves guiding textile semi-finished product and metallic semi-finished fiber product through heater to forming tool, particularly nozzle
DE102011011577A1 (en) Manufacturing torsion bar spring or rolling stabilizer for motor vehicle with tubular cross-section, comprises producing component by braiding and/or wrapping core with fiber bundles and thermal melting of matrix material
DE102019006280A1 (en) Process for the production of a positive load introduction for rod-shaped fiber bundle structures and their design
DE102006047412B4 (en) Bar-shaped fiber composite structure with load introduction elements and method for the production
DE102010049563A1 (en) Method for manufacturing torsion bar spring of motor car, involves thermally melting matrix material during and/or after braiding and/or wrapping of core, and connecting component to torsion bar spring
WO2013139950A1 (en) Structural component semi-finished product for producing a fibre-reinforced structural component, as well as a structural component and a method for producing same
EP2988923B1 (en) Process for producing a composite tube
EP3441156B1 (en) Methods for producing a matrix for pressure forming of workpieces
DE102015100774A1 (en) Component, method and apparatus for its production
EP3599320A1 (en) Reinforcing bar and method for its production
DE102012018788B4 (en) Method for producing a composite component
DE102015115053A1 (en) Method for producing a hollow body profile with a fiber-plastic composite reinforcement and a body support
DE102010030484A1 (en) Strut element e.g. hinged support, for coupling end pieces for receiving e.g. elastomeric joint, in automotive industry, has end part comprising conical cross-section extending beyond outer contour in connecting region
DE102011006020A1 (en) Roller bearings has cavity which is formed in outer bearing ring and is filled with duroplastic material whose phase irreversibly changes when environmental parameter such as temperature is increased over threshold value
WO2019020703A1 (en) Method for producing a coil spring
DE102016210118B3 (en) Method for producing screw or coil springs made of a fiber-reinforced material and apparatus for carrying out this method
EP1494254A1 (en) Force transmission element, method and apparatus for producing it

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20180328

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190321

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017002505

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1188177

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191115

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191009

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200109

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200109

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200110

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200210

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017002505

Country of ref document: DE

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200209

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

26N No opposition filed

Effective date: 20200710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502017002505

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200809

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210302

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200809

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210809

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1188177

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220809