EP3431925A1 - Road finisher with layer thickness detection device and method for detecting the thickness of an installed material layer - Google Patents
Road finisher with layer thickness detection device and method for detecting the thickness of an installed material layer Download PDFInfo
- Publication number
- EP3431925A1 EP3431925A1 EP18192758.3A EP18192758A EP3431925A1 EP 3431925 A1 EP3431925 A1 EP 3431925A1 EP 18192758 A EP18192758 A EP 18192758A EP 3431925 A1 EP3431925 A1 EP 3431925A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- sensor
- screed
- trailing edge
- distance
- layer thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C23/00—Auxiliary devices or arrangements for constructing, repairing, reconditioning, or taking-up road or like surfaces
- E01C23/06—Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road
- E01C23/07—Apparatus combining measurement of the surface configuration of paving with application of material in proportion to the measured irregularities
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C19/00—Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
- E01C19/22—Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for consolidating or finishing laid-down unset materials
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C19/00—Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
- E01C19/22—Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for consolidating or finishing laid-down unset materials
- E01C19/42—Machines for imparting a smooth finish to freshly-laid paving courses other than by rolling, tamping or vibrating
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C19/00—Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
- E01C19/48—Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C21/00—Apparatus or processes for surface soil stabilisation for road building or like purposes, e.g. mixing local aggregate with binder
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C23/00—Auxiliary devices or arrangements for constructing, repairing, reconditioning, or taking-up road or like surfaces
- E01C23/01—Devices or auxiliary means for setting-out or checking the configuration of new surfacing, e.g. templates, screed or reference line supports; Applications of apparatus for measuring, indicating, or recording the surface configuration of existing surfacing, e.g. profilographs
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B21/00—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
- G01B21/02—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
- G01B21/08—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness for measuring thickness
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B5/00—Measuring arrangements characterised by the use of mechanical techniques
- G01B5/02—Measuring arrangements characterised by the use of mechanical techniques for measuring length, width or thickness
- G01B5/06—Measuring arrangements characterised by the use of mechanical techniques for measuring length, width or thickness for measuring thickness
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C2301/00—Machine characteristics, parts or accessories not otherwise provided for
Definitions
- the present invention relates to a paver, in particular a paver with a layer thickness detecting device and a method for detecting the thickness of a built-in by such a paver on a substrate material layer.
- a paver with a tracked chassis runs on a prepared ground on which a road surface to be produced or a road surface to be produced is to be applied.
- the built-in road surface is a bituminous material, but also sandy or stony layers or concrete layers can be installed.
- a height-adjustable screed is provided at the front of a stockpile of the pavement material is accumulated, which is promoted and distributed by a conveyor, which ensures that on the front of the screed always a sufficient, but not too large amount the paving material is kept stockpiled.
- the height of the trailing edge of the screed opposite the surface of the prepared ground defines the thickness of the finished pavement prior to its subsequent further consolidation by rolling.
- the screed is held on a pulling arm, which is rotatably mounted about a arranged in the central region of the paver traction point, the altitude of the screed is set by a Hydraulikverstell Rhein.
- Fig. 1 shows a well-known paver, such as in the EP 0 542 297 A1 is described.
- the paver is designated in its entirety by the reference numeral 10 and includes a tracked chassis 12 with which the paver 10 travels on the prepared ground 14.
- a height-adjustable screed 16 is arranged, which is articulated by means of a pulling arm 18 at a traction point 20 on the paver 10.
- a supply 22 of the asphalt material In front of the screed 16 there is a supply 22 of the asphalt material, whereby this supply is kept constant by means of a corresponding, known per se regulation of the speed of a screw-like conveyor 24 substantially over the entire width range of the screed 16.
- the screed 16 Floats on the asphalt of the road surface to be finished.
- the thickness of the road surface to be manufactured before its final consolidation by road rollers is adjusted by regulating the altitude of the trailing edge 26 of the screed 16. This height control is effected by changing the angle of attack of the screed 16, and is typically done by the control of actuating cylinders which engage the front ends of the tension arms 18.
- the paver comprises three ultrasonic sensors 28, 30, 32, which are fastened to a holder 34.
- the bracket 34 is attached to the pull arm 18.
- the three ultrasonic sensors 28, 30, 32 serve to scan a reference surface, which may be formed, for example, by an already manufactured or old web of the road surface.
- the layer thickness is desired, for example, to control the quality of the newly installed road surface. If the calculated layer thickness, for example a bituminous layer, is too low, then there is a risk that the road surface breaks up early, which results in costly repairs of the road surface. On the other hand, the layer thickness should be checked with regard to the amount of material used in order not to obstruct too much material, which would lead to increased costs.
- the object of the present invention is to provide an improved approach for determining the layer thickness of a built-in material by a paver material layer, which is less expensive, and which makes it possible to determine the layer thickness with increased accuracy.
- the paver according to the invention is advantageous because the layer thickness detection device is fixedly attached to the screed, so that a more accurate detection of the layer thickness is made possible, since the measuring device is mounted at the point at which the actual installation takes place.
- the origin of a coordinate system for detecting the layer thickness is just at the point where the actual installation of the material takes place.
- the approach according to the invention facilitates installation, since the layer thickness detection device only has to be fastened to the screed, in particular no attachment to another area of the paver is required, which makes the measuring system e.g. due to the movement of the paver negatively affected.
- the film thickness detection device includes a signal processing unit configured to calculate the layer thickness of the built-in material layer based on the sensor signals from the first sensor and the second sensor, the distances of the first sensor and the second sensor from the screed trailing edge, and the mounting heights of the first Sensor and the second sensor with respect to the screed trailing edge to capture.
- the inventive approach according to this embodiment is advantageous because only easily determinable variables are included in the calculation, namely the distance signals detected by the sensors and the well-defined distances of the sensors with respect to the screed trailing edge, so that in a simple manner with low signal processing effort exact determination of the layer thickness to the point where the installation of the layer takes place, namely with respect to the screed trailing edge, can be performed.
- the distances of the first sensor and the second sensor from the screed trailing edge and the attachment heights of the first sensor and the second sensor with respect to the screed trailing edge are the same, and the signal processing unit is configured to increase the layer thickness of the incorporated material layer based on the sensor signals from the screed first sensor and the second sensor, and to detect the mounting height of the first sensor and the second sensor with respect to the screed trailing edge.
- the inventive approach according to this embodiment is advantageous since, assuming the same distances of the sensors with respect to the screed trailing edge, the determination of the layer thickness can be greatly simplified, in a first, good approximation for small changes in angle only the mounting height of the sensors and the sensor signals to be included in the calculation.
- the inventive approach according to this embodiment is advantageous because it allows a simple calculation of the layer thickness, the sensors can be arranged depending on the circumstances with different distances from each other with respect to the screed trailing edge, the calculation is simplified because the sensors are installed with the same height with respect to the screed trailing edge.
- h B Layer thickness of the incorporated material layer
- s 1 first distance to the built-in material layer detected by the first sensor
- s 2 second distance to the ground detected by the second sensor
- B Mounting height of the first sensor and the second sensor with respect to the screed trailing edge
- a Distance of the first sensor from the screed trailing edge
- b Distance of the second sensor from the screed trailing edge.
- the inventive approach according to this embodiment is advantageous because a highly accurate determination of the layer thickness is made possible, wherein an optimization of the calculation algorithm is achieved in that the pivot point of the measuring device is exactly assumed at the screed trailing edge.
- the inventive approach according to this embodiment is advantageous because, due to the mounting of the sensors with a height with respect to the screed trailing edge, which is equal to the thickness of the screed, the determination of the mounting height is greatly simplified, for example, simply the known thickness or height of the screed as Mounting height without further steps to determine the same would be required.
- the mounting heights of the first sensor and the second sensor with respect to the screed trailing edge are the same, and the signal processing unit is configured to perform a calibration for determining the mounting height, wherein the first sensor detects the distance to the ground during the calibration.
- the inventive approach according to this embodiment is advantageous because in a simple manner in a calibration process, the mounting heights of the first sensor and the second sensor, which are the same, can be determined by the first sensor in the calibration also the distance to the Underground recorded. According to the invention, a precise determination of the mounting height is thus made possible in a simple manner, which is also possible in the case of mounting the sensors at the level of the top of the screed, in order to determine the most accurate possible mounting height.
- the layer thickness detection device comprises at least one carrier attached to the screed, wherein the first sensor is disposed on the carrier at a first distance from the screed trailing edge, and wherein the second sensor is disposed on the carrier at a second distance from the screed trailing edge is.
- the inventive approach according to this embodiment is advantageous because using the carrier, the distance of the sensors with respect to the screed trailing edge can be adjusted easily, so that the first sensor safely scans the built-material layer and the second sensor safely scans the ground.
- the carrier comprises a measuring beam fixed to the screed, wherein the first sensor is disposed at a first end of the measuring beam at the first distance from the screed trailing edge, and wherein the second sensor is at a second end of the measuring beam at the second distance is arranged from the screed trailing edge.
- the measuring beam is rigid and immovably fixed to an upper side of the screed.
- a measuring beam according to this embodiment is advantageous, as this allows a simple attachment of the measuring arrangement to the screed, wherein in particular due to the fact that the measuring beam already comprises the respective sensors at its two ends, a simple attachment to the screed and in particular also a simple alignment of the sensors is ensured with respect to the screed.
- it may be provided to arrange a plurality of such measuring bars with corresponding sensors along the width of the screed. Due to the rigid design of the measuring beam and the movable attachment of the same at the top of the screed a simple and reliable measurement is ensured.
- the carrier comprises a first rigid carrier, which is immovably fixed to the screed and to which the first sensor is located at the first distance from the screed trailing edge, and a second rigid beam immovably fixed to the screed and to which the second sensor is located at the second distance from the screed trailing edge.
- This exemplary embodiment is advantageous since, instead of a common measuring beam for fastening the two sensors, separate measuring beams or separate rigid supports can also be provided, depending on the circumstances, the first sensor and the second sensor at different positions with respect to the screed trailing edge and with respect to the screed trailing edge to arrange, for example, with different distances to the screed trailing edge and / or with different mounting heights.
- the first sensor and the second sensor include ultrasonic sensors, laser sensors, microwave sensors or a combination thereof.
- an approach which enables a continuous determination of the layer thickness on a road paver, which represents one of the most important tasks for determining quality parameters during asphalt paving.
- various measuring methods are known in the prior art in order to determine the layer thickness during asphalt paving, without, however, achieving an accuracy which is within an acceptable range which can be usefully used for the application.
- an approach is taught in which the layer thickness measurement uses a measuring method which has an increased accuracy, which is achieved in particular by providing a measuring device which is permanently installed on the screed.
- Fig. 2 shows a paver according to an embodiment of the present invention.
- the in Fig. 2 shown road paver is the in Fig. 1
- the road paver shown in FIG. 1 similarly comprises the layer thickness detection device according to the invention.
- the in Fig. 2 paver shown does not include the in Fig. 1 shown ultrasonic sensors and the holder shown, instead, the layer thickness detection device according to the invention is attached to the screed 16.
- the in Fig. 1 shown sensors to control the installation of the material layer are maintained.
- the layer thickness detection device according to the invention comprises a carrier 36, which is fixed rigidly and immovably to the upper side of the screed 16, so that the carrier 36 moves with the screed 16.
- a first sensor 38 is arranged at a distance a from the screed trailing edge 26 in the direction of travel behind the screed 16.
- a second sensor 40 is arranged at a distance b from the screed trailing edge 26 in the direction of travel in front of the screed 16, also an ultrasonic sensor or a laser sensor which generates a distance signal s2.
- the first sensor 38 may be an ultrasonic sensor, a laser sensor or a microwave sensor, and generates a distance signal s1 indicative of the distance from the first sensor 38 to the surface 42a of the built-in layer 42.
- the second sensor 40 may be an ultrasonic sensor, a laser sensor or a microwave sensor, and generates a distance signal s 2, which indicates the distance from the second sensor 40 to the substrate 14.
- the layer thickness detection device further comprises a signal processing device 44, which in Fig. 2 is shown schematically, and may be part of a control of the paver 10, for example. Alternatively, the signal processing device may also be provided independently of other elements of the paver. In the embodiment shown, the signal processing device 44 may be configured as a microcontroller, which receives data from the sensors 38 and 40 via schematically illustrated connections 46, 48, which reflect the measured distance s1 or s2.
- the signal processing means determines 44, the thickness h B of the built-in layer 42.
- the signal processing means 44 may h B detect continuously or at fixed predetermined time intervals, output and / or store the layer thickness, wherein the signal processing means may comprise a memory and / or a display for this purpose, further, the in Fig. 2 are not shown in detail.
- the carrier 36 is shown schematically and is rigidly and immovably attached to a plank top edge 16b, so that the carrier 36 and thus the sensors 38 and 40 move together with the plank, so by means of the manner explained in more detail below one in the Processing means 44, as mentioned above, the layer thickness h B of the built-in layer 42 can be determined.
- the mounting height of the sensors 38, 40 above the screed trailing edge 26 is a height equal to the thickness B and the height B of the screed 16, respectively.
- the approach according to the invention for coating thickness measurement for example when paving asphalt with the in Fig. 2 paver 10, based on the fact that the two height sensors 38, 40 are provided, which are arranged in a line along the direction of travel of the paver 10 and, according to one embodiment distance symmetrically to the screed trailing edge 26 so that the sensor 38, the distance s1 to the asphalt surface 42a the built-in asphalt layer 42 measures, and that the sensor 40 measures the distance s2 to the substrate 14.
- the two sensors 38, 40 are rigidly connected to the paver 16, by means of the carrier 36, in particular so that only slight twisting can occur.
- Fig. 3 shows a schematic representation of the screed geometry, such as in a road paver, as in Fig. 2 is shown, but can also be used in other road pavers.
- Fig. 3 shows the schematic structure for the layer thickness measurement using the distance sensors 38 and 40 and on the basis of the associated distance measured values s1 and s2.
- a symmetry point S is shown, which is located directly above the screed trailing edge 26, and that of the in Fig. 3 is traversed line L1 shown.
- the sensors 38, 40 are rigidly connected to the paver 16 via the carrier 36, in such a way that no twists are made in the direction of the imaginary line L1, in particular no twists in the vertical direction.
- the distance B which indicates the mounting height of the sensors with respect to the screed trailing edge 26, lies between the point of symmetry S and the surface 42 a of the installed asphalt layer 42.
- the distance B represents in the embodiment shown approximately a constant value, even if the screed 16 via the traction point 20 is moved in the longitudinal inclination.
- the line L1 represents a reference line for the sensors 38 and 40, and at the same time the mounting height with respect to the point of symmetry S.
- the line L1 may also be referred to as a mounting reference line.
- the distances a and b are the distances or installation distances of the sensors 38 and 40 relative to the screed trailing edge 26 and to the point of symmetry S.
- Das Coordinate system for layer thickness measurement using sensors 38 and 40 is located directly on the screed trailing edge 26 as shown in FIG Fig. 4 is clarified, which represents the position of the XY coordinate system with respect to the screed trailing edge 26. More specifically, the Y-origin of the coordinate system lies directly on the screed trailing edge 26, with the scrape edge defining the X origin.
- the coordinate system follows the movement of the screed trailing edge 26 during the paving process, where the X axis coincides negatively with the road surface 42a in its extension from zero.
- FIG Fig. 5 is an abstraction of the measured quantities for the coating thickness measurement.
- Fig. 5 is that on the basis of Fig. 4 illustrated coordinate system (XY coordinate system) shown, as well as the thickness h B of the built-in layer 42 and the distance measurements s1 and s2 of the sensors, which in Fig. 2 have been explained, the distances with respect to the asphalt surface 42a and with respect to the substrate 14, starting from the line L1, which is spaced from the zero point of the coordinate system by the installation height B of the sensors in the positive Y direction.
- the line L1 ' must again be aligned parallel to the ground 14, which is achieved by rotating the line L1' by the values ⁇ s1 and ⁇ s2 relative to the point of symmetry S, as shown by the arrows 50a and 50b in FIG Fig. 6 is shown. If one then corrects the value s2 ', which is the measured value which is detected by the sensor 40 at the changed bottom inclination, by ⁇ s2, then one obtains again the original measured value s2, ie the measured value which is for the imaginary and parallel to the background 14 (coordinate axis X) extending line L1 would result.
- .DELTA.s2 can not be measured directly and is merely an auxiliary quantity that can be resolved in the equation system.
- Fig. 7 Abstract illustrates the basis of the Fig. 6 explained measurands and their geometric context.
- the layer thickness is thus obtained according to the illustrated embodiment by adding the measured values obtained from the sensors and the subtraction of the double constant B, as stated above.
- a simple calculation rule is provided which enables a layer thickness determination with high accuracy with a simple mechanical design of the measuring device and with a simple calculation algorithm.
- the constant B represents the mounting height of the sensors 38 and 40 with respect to the screed trailing edge 26, as described above with reference to FIGS Figures 3 and 5 has been explained, wherein in the preferred embodiments, the constant B is equal to the height of the screed.
- the attachment of the carrier may be at a distance from the top of the screed 16a, so that here the constant B indicates the thickness of the screed and the additional distance of the carrier over the screed.
- the mounting height of the sensors 38 and 40 with respect to the screed trailing edge 26 may be less than the screed thickness.
- This constant can be determined during a system calibration and remains stored as a constant parameter in the coating thickness measurement system.
- a measurement by means of the sensors 38 and 40, which now both refer to the substrate 14, since due to the missing layer 42, the layer thickness given in equation 12 to zero so that as part of the system calibration the constant B can be determined as follows: B s 2 + s 1 2
- Fig. 8 schematically shows the geometric characteristics that are used to determine the layer thickness with increased accuracy.
- Fig. 8 is the point of symmetry S, which was assumed in the simplified calculation at the top of the screed, namely, where the carrier is attached, now assumed at the screed trailing edge 26.
- the sensors 38, 40 perform a kind of pivoting movement which does not lead to a symmetrical change in position of the sensors 38, 40 with respect to the in Fig. 4 shown Bohlenkoordinatensystems leads.
- the coordinate system for calculating the layer thickness relates to the screed trailing edge and the newly laid asphalt layer 42, with the peak of the coordinate system at the screed trailing edge 26 and the X axis lying in the surface 42a of the already laid asphalt layer.
- the coordinate system determined in this way is called the screed coordinate system, which is defined during installation.
- the screed 16 may change during installation even in their position in the coordinate system depending on the screed angle.
- Fig. 8 are given various constant characteristics, which in the layer thickness determination according to the invention according to the embodiment for a highly accurate Calculation of the layer thickness are used.
- Fixed are the sizes a, b and B, namely the distances between the sensors 38 and 40 of the screed trailing edge 26 and the mounting height with respect to the screed trailing edge 26.
- the abovementioned embodiments of the layer thickness detection approach according to the invention are advantageous over conventional approaches, since the measurement setup according to the invention is mounted in a particularly simple manner on the screed 16 (see FIG Figures 2 and 3 ) is installed, and according to embodiments, for example, in an existing leveling system can be integrated.
- the distance of the sensors with respect to the screed trailing edge can be equal to the thickness of the screed according to a preferred embodiment, so that it requires no additional installation structures, but the measuring structure according to the invention can be easily attached to the existing screed. Equally advantageous may be to adjust a certain distance of the ultrasonic sensors from the surface to be detected in order to obtain an optimal measuring distance.
- the sensors are mounted as symmetrically as possible to the screed trailing edge, so that when using the calculation rule according to the first embodiment sufficiently accurate results, without the use of highly accurate calculation algorithm is required.
- the calculation algorithm according to the invention implements both the first algorithm and the second, more accurate algorithm, wherein, for example, depending on a detected adjustment of the screed, for example, when exceeding a critical angle, or if very accurate results are desired, the calculation of the layer thickness from the first algorithm to the second, more accurate algorithm.
- the layer thickness measuring device may be provided to use the data recorded by the layer thickness measuring device regarding the layer thickness for active control of the paver with respect to a position of the screed in order to maintain a predetermined layer thickness.
- Fig. 10 shows a schematic plan view of a possible installation of the layer thickness measuring system according to the present invention.
- the system includes two beams or measuring beams 36a, 36b secured to the screed 16, either on the screed top 16b or spaced upwardly from the screed top, with respective first sensors 38a, 38b and second sensors 40a, 40b the respective ends of the measuring beam 36a, 36b are arranged with the distances a, b to the screed trailing edge 26.
- only one measuring bar, but also more than two measuring bars with correspondingly arranged sensor systems can be provided, whereby the scanning area for the layer thickness measurement increases due to the plurality of sensors, so that a higher measured value accuracy is established.
- Fig. 11 shows an alternative embodiment of the measuring device according to the invention, in which the sensors 38 and 40 via separate, rigid support 36a, 36b are attached.
- the calculation algorithm it is essential that the calculation algorithm be aware of the Mounting heights of the sensors 38 and 40 has, which may also be different, as in Fig. 11 Unlike in the embodiments described above, in which the sensors 38, 40 are arranged at opposite ends of a carrier or measuring beam, is in the in Fig. 11 shown embodiment, to arrange the sensor 38 higher than the sensor 40, via a rigid, attached to the plank top edge 16b support 36a, wherein the attachment 36a is such that the sensor 38 moves together with the screed 16, preferably so, that no connections occur.
- the sensor 40 is attached to the pull arm 18 that rotates the screed 16 via a second support structure 36b such that both the sensor 38 and the sensor 40 are disposed in a fixed, well-defined and non-changing relationship with the screed trailing edge 26 is, so that the above-described approaches for determining the layer thickness of the built-in layer 42 also in an embodiment according to Fig. 11 can be used, in which case then additionally the different heights of the sensors 38 and 40 must be considered.
- the above-described sensors may preferably be ultrasonic sensors, but laser scanners may also be used which then provide orthogonal vectors to the substrate or to the layer 42 for calculating the layer thickness.
- Other sensor configurations may include a combination of ultrasonic sensors and laser scanners, whereby only a simple laser distance measurement at both measuring positions is possible.
- aspects have been described in the context of a device, it will be understood that these aspects also constitute a description of the corresponding method, so that a block or a component of a device is also to be understood as a corresponding method step or as a feature of a method step. Similarly, aspects described in connection with or as a method step also represent a description of a corresponding block or detail or feature of a corresponding device.
- embodiments of the invention may be implemented in hardware or in software.
- the implementation may be performed using a digital storage medium, such as a floppy disk, a DVD, a Blu-ray Disc, a CD, a ROM, a PROM, an EPROM, a EEPROM or a FLASH memory, a hard disk or other magnetic or optical storage are stored on the electronically readable control signals that can cooperate with a programmable computer system or cooperate, that the respective method is performed. Therefore, the digital storage medium can be computer readable.
- some embodiments according to the invention include a data carrier having electronically readable control signals capable of interacting with a programmable computer system such that one of the methods described herein is performed.
- embodiments of the present invention may be implemented as a computer program product having a program code, wherein the program code is operable to perform one of the methods when the computer program product runs on a computer.
- the program code can also be stored, for example, on a machine-readable carrier.
- inventions include the computer program for performing any of the methods described herein, wherein the computer program is stored on a machine-readable medium.
- an embodiment of the method according to the invention is thus a computer program which has a program code for performing one of the methods described herein when the computer program runs on a computer.
- a further embodiment of the inventive method is thus a data carrier (or a digital storage medium or a computer-readable medium) on which the computer program is recorded for carrying out one of the methods described herein.
- a further embodiment of the method according to the invention is thus a data stream or a sequence of signals, which represent the computer program for performing one of the methods described herein.
- the data stream or the sequence of signals may be configured, for example, to be transferred via a data communication connection, for example via the Internet.
- Another embodiment includes a processing device, such as a computer or a programmable logic device, that is configured or adapted to perform one of the methods described herein.
- a processing device such as a computer or a programmable logic device, that is configured or adapted to perform one of the methods described herein.
- Another embodiment includes a computer on which the computer program is installed to perform one of the methods described herein.
- a programmable logic device eg, a field programmable gate array, an FPGA
- a field programmable gate array may cooperate with a microprocessor to perform one of the methods described herein.
- the methods are performed by any hardware device. This may be a universal hardware such as a computer processor (CPU) or hardware specific to the process, such as an ASIC.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Mining & Mineral Resources (AREA)
- Road Paving Machines (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Abstract
Ein Straßenfertiger umfasst eine Bohle (16) zum Einbau einer Materialschicht (42) auf einem Untergrund (14) und eine Schichtdickenerfassungsvorrichtung zum Erfassen der Dicke (h B ) der eingebauten Materialschicht (42). Die Schichtdickenerfassungsvorrichtung umfasst einen ersten Sensor (38) zum Erfassen eines ersten Abstands zu der eingebauten Materialschicht (42) und einen zweiten Sensor (40) zum Erfassen eines zweiten Abstands zu dem Untergrund (14). Die Schichtdickenerfassungsvorrichtung ist fest an der Bohle (16) befestigt.A paver comprises a screed (16) for incorporating a layer of material (42) on a substrate (14) and a layer thickness detecting device for detecting the thickness (h B) of the incorporated layer of material (42). The layer thickness detection device comprises a first sensor (38) for detecting a first distance to the built-in material layer (42) and a second sensor (40) for detecting a second distance to the ground (14). The layer thickness detection device is firmly attached to the screed (16).
Description
Die vorliegende Erfindung betrifft einen Straßenfertiger, insbesondere einen Straßenfertiger mit einer Schichtdickenerfassungsvorrichtung sowie ein Verfahren zum Erfassen der Dicke einer durch einen solchen Straßenfertiger auf einen Untergrund eingebauten Materialschicht.The present invention relates to a paver, in particular a paver with a layer thickness detecting device and a method for detecting the thickness of a built-in by such a paver on a substrate material layer.
Allgemein läuft ein Straßenfertiger mit einem Kettenfahrwerk auf einem vorbereitetem Untergrund, auf den eine zu fertigende Straßendecke bzw. ein zu fertigender Straßenbelag aufzubringen ist. Im Regelfall handelt es sich bei dem eingebauten Straßenbelag um ein bituminöses Material, wobei aber ebenso sandige oder steinige Schichten oder Betonschichten eingebaut werden können. In Fahrtrichtung hinten am Straßenfertiger ist eine höhenverstellbare Bohle vorgesehen, an deren Vorderseite ein Vorrat des Straßenbelagmateriales angehäuft ist, der durch eine Fördereinrichtung gefördert und verteilt wird, die dafür Sorge trägt, dass auf der Vorderseite der Bohle immer eine ausreichende, jedoch nicht zu große Menge des Straßenbelagmateriales bevorratet gehalten wird. Die Höhe der Hinterkante der Bohle gegenüber der Oberfläche des vorbereiteten Untergrundes, der gegebenenfalls auch durch eine alte Straßenbelagdecke gebildet sein kann, legt die Dicke der gefertigten Straßendecke vor ihrer anschließenden weiteren Verfestigung durch Walzen fest. Die Bohle ist an einem Zugarm gehalten, der um einen im Mittenbereich des Straßenfertigers angeordneten Zugpunkt drehbeweglich gelagert ist, wobei die Höhenlage der Bohle von einer Hydraulikverstelleinrichtung festgelegt wird.In general, a paver with a tracked chassis runs on a prepared ground on which a road surface to be produced or a road surface to be produced is to be applied. As a rule, the built-in road surface is a bituminous material, but also sandy or stony layers or concrete layers can be installed. In the direction of travel behind the paver a height-adjustable screed is provided at the front of a stockpile of the pavement material is accumulated, which is promoted and distributed by a conveyor, which ensures that on the front of the screed always a sufficient, but not too large amount the paving material is kept stockpiled. The height of the trailing edge of the screed opposite the surface of the prepared ground, which may optionally also be formed by an old pavement, defines the thickness of the finished pavement prior to its subsequent further consolidation by rolling. The screed is held on a pulling arm, which is rotatably mounted about a arranged in the central region of the paver traction point, the altitude of the screed is set by a Hydraulikverstelleinrichtung.
Beim Bau einer Straße ist es erwünscht, die erzeugte Schicht möglichst kontinuierlich und in Echtzeit zu messen. Die Ermittlung der Schichtdicke ist beispielsweise erwünscht, um die Qualität des neu eingebauten Straßenbelags zu kontrollieren. Ist die berechnete Schichtdicke, beispielsweise einer bituminösen Schicht, zu gering, dann besteht die Gefahr, dass der Straßenbelag frühzeitig aufbricht, was kostspielige Nachbesserungen des Straßenbelags zur Folge hat. Andererseits ist die Schichtdicke im Hinblick auf die verbaute Materialmenge zu überprüfen, um nicht zu viel Material zu verbauen, was zu erhöhten Kosten führen würde.When building a road, it is desirable to measure the generated layer as continuously as possible and in real time. The determination of the layer thickness is desired, for example, to control the quality of the newly installed road surface. If the calculated layer thickness, for example a bituminous layer, is too low, then there is a risk that the road surface breaks up early, which results in costly repairs of the road surface. On the other hand, the layer thickness should be checked with regard to the amount of material used in order not to obstruct too much material, which would lead to increased costs.
Bekannte System zur Ermittlung der Schichtdicke eines neu eingebauten Straßenbelags werden beispielsweise in der
Die Aufgabe der vorliegenden Erfindung besteht darin einen verbesserten Ansatz zur Ermittlung der Schichtdicke einer durch einen Straßenfertiger eingebauten Materialschicht zu schaffen, der weniger aufwendig ist, und der es ermöglicht, die Schichtdicke mit erhöhter Genauigkeit zu ermitteln.The object of the present invention is to provide an improved approach for determining the layer thickness of a built-in material by a paver material layer, which is less expensive, and which makes it possible to determine the layer thickness with increased accuracy.
Diese Aufgabe wird durch einen Straßenfertiger nach Anspruch 1, und durch ein Verfahren nach Anspruch 15 gelöst.This object is achieved by a paver according to
Die vorliegende Erfindung schafft einen Straßenfertiger, mit:
- einer Bohle zum Einbau einer Materialschicht auf einem Untergrund; und
- einer Schichtdickenerfassungsvorrichtung zum Erfassen der Dicke der eingebauten Materialschicht,
- wobei die Schichtdickenerfassungsvorrichtung einen ersten Sensor in Fahrtrichtung hinter der Bohle zum Erfassen eines ersten Abstands zu der eingebauten Materialschicht und einen zweiten Sensor in Fahrtrichtung vor der Bohle zum Erfassen eines zweiten Abstands zu dem Untergrund umfasst, und
- wobei die Schichtdickenerfassungsvorrichtung fest an der Bohle befestigt ist.
- a screed for installing a layer of material on a substrate; and
- a film thickness detecting device for detecting the thickness of the built-in material layer,
- wherein the layer thickness detection device comprises a first sensor in the direction of travel behind the screed for detecting a first distance to the built-in material layer and a second sensor in the direction of travel in front of the screed for detecting a second distance to the ground, and
- wherein the layer thickness detecting device is fixedly secured to the screed.
Der erfindungsgemäße Straßenfertiger ist vorteilhaft, da die Schichtdickenerfassungsvorrichtung fest an der Bohle befestigt ist, so dass eine genauere Erfassung der Schichtdicke ermöglicht wird, da die Messvorrichtung an der Stelle befestigt ist, an der der tatsächliche Einbau erfolgt. Der Ursprung eines Koordinatensystems zur Erfassung der Schichtdicke liegt an eben der Stelle, an der der tatsächliche Einbau des Materials stattfindet. Ferner erleichtert der erfindungsgemäße Ansatz die Installation, da die Schichtdickenerfassungsvorrichtung lediglich an der Bohle befestigt werden muss, insbesondere ist keine Befestigung an einem anderen Bereich des Straßenfertigers erforderlich, was das Messsystem z.B. aufgrund der Bewegung des Straßenfertigers negativ beeinflusst.The paver according to the invention is advantageous because the layer thickness detection device is fixedly attached to the screed, so that a more accurate detection of the layer thickness is made possible, since the measuring device is mounted at the point at which the actual installation takes place. The origin of a coordinate system for detecting the layer thickness is just at the point where the actual installation of the material takes place. Furthermore, the approach according to the invention facilitates installation, since the layer thickness detection device only has to be fastened to the screed, in particular no attachment to another area of the paver is required, which makes the measuring system e.g. due to the movement of the paver negatively affected.
Gemäß Ausführungsbeispielen umfasst die Schichtdickenerfassungsvorrichtung eine Signalverarbeitungseinheit, die konfiguriert ist, um die Schichtdicke der eingebauten Materialschicht basierend auf den Sensorsignalen von dem ersten Sensor und von dem zweiten Sensor, den Abständen des ersten Sensors und des zweiten Sensors von der Bohlenhinterkante, und den Anbringungshöhen des ersten Sensors und des zweiten Sensors in Bezug zu der Bohlenhinterkante zu erfassen.According to embodiments, the film thickness detection device includes a signal processing unit configured to calculate the layer thickness of the built-in material layer based on the sensor signals from the first sensor and the second sensor, the distances of the first sensor and the second sensor from the screed trailing edge, and the mounting heights of the first Sensor and the second sensor with respect to the screed trailing edge to capture.
Der erfindungsgemäße Ansatz gemäß dem diesem Ausführungsbeispiel ist vorteilhaft, da lediglich einfach bestimmbare Größen in die Berechnung einfließen, nämlich die durch die Sensoren erfassten Abstandssignale sowie die gut bestimmbaren Abstände der Sensoren bezüglich der Bohlenhinterkante, so dass auf einfache Art und Weise mit geringem signalverarbeitungstechnischen Aufwand eine genaue Bestimmung der Schichtdicke bezogen auf den Punkt, an dem der Einbau der Schicht erfolgt, nämlich bezogen auf die Bohlenhinterkante, durchgeführt werden kann.The inventive approach according to this embodiment is advantageous because only easily determinable variables are included in the calculation, namely the distance signals detected by the sensors and the well-defined distances of the sensors with respect to the screed trailing edge, so that in a simple manner with low signal processing effort exact determination of the layer thickness to the point where the installation of the layer takes place, namely with respect to the screed trailing edge, can be performed.
Gemäß Ausführungsbeispielen sind die Abstände des ersten Sensors und des zweiten Sensors von der Bohlenhinterkante und die Anbringungshöhen des ersten Sensors und des zweiten Sensors in Bezug zu der Bohlenhinterkante gleich, und die Signalverarbeitungseinheit ist konfiguriert, um die Schichtdicke der eingebauten Materialschicht basierend auf den Sensorsignalen von dem ersten Sensor und von dem zweiten Sensor, und der Anbringungshöhe des ersten Sensors und des zweiten Sensors in Bezug zu der Bohlenhinterkante zu erfassen.According to embodiments, the distances of the first sensor and the second sensor from the screed trailing edge and the attachment heights of the first sensor and the second sensor with respect to the screed trailing edge are the same, and the signal processing unit is configured to increase the layer thickness of the incorporated material layer based on the sensor signals from the screed first sensor and the second sensor, and to detect the mounting height of the first sensor and the second sensor with respect to the screed trailing edge.
Der erfindungsgemäße Ansatz gemäß diesem Ausführungsbeispiel ist vorteilhaft, da unter der Annahme der gleichen Abstände der Sensoren bezüglich der Bohlenhinterkante die Bestimmung der Schichtdicke stark vereinfacht werden kann, wobei im Rahmen einer ersten, guten Näherung für kleine Winkeländerungen nur noch die Anbringungshöhe der Sensoren und die Sensorsignale in die Berechnung einfließen.The inventive approach according to this embodiment is advantageous since, assuming the same distances of the sensors with respect to the screed trailing edge, the determination of the layer thickness can be greatly simplified, in a first, good approximation for small changes in angle only the mounting height of the sensors and the sensor signals to be included in the calculation.
Die Schichtdicke der eingebauten Materialschicht kann wie folgt bestimmt werden:
- hB =
- Schichtdicke der eingebauten Materialschicht,
- s1 =
- von dem ersten Sensor erfasster erster Abstand zu der eingebauten Materialschicht,
- s2 =
- von dem zweiten Sensor erfasster zweiter Abstand zu dem Untergrund, und
- B =
- Anbringungshöhe des ersten Sensors und des zweiten Sensors in Bezug zu der Bohlenhinterkante.
- h B =
- Layer thickness of the incorporated material layer,
- s 1 =
- first distance to the built-in material layer detected by the first sensor,
- s 2 =
- second distance to the ground detected by the second sensor, and
- B =
- Attachment height of the first sensor and the second sensor with respect to the screed trailing edge.
Gemäß weiteren Ausführungsbeispielen sind die Anbringungshöhen des ersten Sensors und des zweiten Sensors in Bezug zu der Bohlenhinterkante gleich, und die Schichtdicke der eingebauten Materialschicht kann wie folgt bestimmt werden:
- hB =
- Schichtdicke der eingebauten Materialschicht,
- s1 =
- von dem ersten Sensor erfasster erster Abstand zu der eingebauten Materialschicht,
- s2 =
- von dem zweiten Sensor erfasster zweiter Abstand zu dem Untergrund,
- B =
- Anbringungshöhe des ersten Sensors und des zweiten Sensors in Bezug zu der Bohlenhinterkante,
- a =
- Abstand des ersten Sensors von der Bohlenhinterkante, und
- b =
- Abstand des zweiten Sensors von der Bohlenhinterkante.
- h B =
- Layer thickness of the incorporated material layer,
- s 1 =
- first distance to the built-in material layer detected by the first sensor,
- s 2 =
- second distance to the ground detected by the second sensor,
- B =
- Mounting height of the first sensor and the second sensor with respect to the screed trailing edge,
- a =
- Distance of the first sensor from the screed trailing edge, and
- b =
- Distance of the second sensor from the screed trailing edge.
Der erfindungsgemäße Ansatz gemäß diesem Ausführungsbeispiel ist vorteilhaft, da er auf einfache Art und Weise eine Berechnung der Schichtdicke ermöglicht, wobei die Sensoren abhängig von den Gegebenheiten auch mit unterschiedlichen Abständen zueinander bezüglich der Bohlenhinterkante angeordnet sein können, wobei die Berechnung vereinfacht ist, da die Sensoren mit gleicher Höhe bezüglich der Bohlenhinterkante eingebaut sind.The inventive approach according to this embodiment is advantageous because it allows a simple calculation of the layer thickness, the sensors can be arranged depending on the circumstances with different distances from each other with respect to the screed trailing edge, the calculation is simplified because the sensors are installed with the same height with respect to the screed trailing edge.
Gemäß weiteren Ausführungsbeispielen sind die Anbringungshöhen des ersten Sensors und des zweiten Sensors in Bezug zu der Bohlenhinterkante gleich, und die Schichtdicke der eingebauten Materialschicht kann wie folgt bestimmt werden:
Der erfindungsgemäße Ansatz gemäß diesem Ausführungsbeispiel ist vorteilhaft, da eine hochgenaue Bestimmung der Schichtdicke ermöglicht wird, wobei eine Optimierung des Berechnungsalgorithmus dadurch erreicht wird, dass der Drehpunkt der Messvorrichtung exakt an der Bohlenhinterkante angenommen wird.The inventive approach according to this embodiment is advantageous because a highly accurate determination of the layer thickness is made possible, wherein an optimization of the calculation algorithm is achieved in that the pivot point of the measuring device is exactly assumed at the screed trailing edge.
Der erfindungsgemäße Ansatz gemäß diesem Ausführungsbeispiel ist vorteilhaft, da aufgrund der Anbringung der Sensoren mit einer Höhe bezüglich der Bohlenhinterkante, die gleich der Dicke der Bohle ist, die Bestimmung der Anbringungshöhe stark vereinfacht ist, beispielsweise kann einfach die bekannte Dicke bzw. Höhe der Bohle als Anbringungshöhe angesetzt werden, ohne dass weitere Schritte zur Bestimmung derselben erforderlich wären.The inventive approach according to this embodiment is advantageous because, due to the mounting of the sensors with a height with respect to the screed trailing edge, which is equal to the thickness of the screed, the determination of the mounting height is greatly simplified, for example, simply the known thickness or height of the screed as Mounting height without further steps to determine the same would be required.
Gemäß weiteren Ausführungsbeispielen sind die Anbringungshöhen des ersten Sensors und des zweiten Sensors in Bezug zu der Bohlenhinterkante gleich, und die Signalverarbeitungseinheit ist konfiguriert, um eine Kalibrierung zum Bestimmen der Anbringungshöhe durchzuführen, wobei der erste Sensor bei der Kalibrierung den Abstand zu dem Untergrund erfasst.In further embodiments, the mounting heights of the first sensor and the second sensor with respect to the screed trailing edge are the same, and the signal processing unit is configured to perform a calibration for determining the mounting height, wherein the first sensor detects the distance to the ground during the calibration.
Der erfindungsgemäße Ansatz gemäß diesem Ausführungsbeispiel ist vorteilhaft, da auf einfache Art und Weise im Rahmen eines Kalibrierungsverfahrens die Anbringungshöhen des ersten Sensors und des zweiten Sensors, die gleich sind, bestimmt werden können, indem der erste Sensor im Rahmen der Kalibrierung ebenfalls den Abstand zu dem Untergrund erfasst. Erfindungsgemäß wird somit auf einfache Art und Weise eine genaue Bestimmung der Anbringungshöhe ermöglicht, was auch im Fall der Anbringung der Sensoren auf Höhe der Bohlenoberkante möglich ist, um eine möglichst genaue Anbringungshöhe zu bestimmen.The inventive approach according to this embodiment is advantageous because in a simple manner in a calibration process, the mounting heights of the first sensor and the second sensor, which are the same, can be determined by the first sensor in the calibration also the distance to the Underground recorded. According to the invention, a precise determination of the mounting height is thus made possible in a simple manner, which is also possible in the case of mounting the sensors at the level of the top of the screed, in order to determine the most accurate possible mounting height.
Die Anbringungshöhe des ersten Sensors und des zweiten Sensors in Bezug zu der Bohlenhinterkante kann wie folgt bestimmt werden:
Gemäß weiteren Ausführungsbeispielen umfasst die Schichtdickenerfassungsvorrichtung zumindest einen Träger, der an der Bohle befestigt ist, wobei der erste Sensor an dem Träger mit einem ersten Abstand von der Bohlenhinterkante angeordnet ist, und wobei der zweite Sensor an dem Träger mit einem zweiten Abstand von der Bohlenhinterkante angeordnet ist.According to further embodiments, the layer thickness detection device comprises at least one carrier attached to the screed, wherein the first sensor is disposed on the carrier at a first distance from the screed trailing edge, and wherein the second sensor is disposed on the carrier at a second distance from the screed trailing edge is.
Der erfindungsgemäße Ansatz gemäß diesem Ausführungsbeispiel ist vorteilhaft, da unter Verwendung des Trägers der Abstand der Sensoren bezüglich der Bohlenhinterkante ohne Weiteres eingestellt werden kann, so dass der erste Sensor sicher die eingebaute Materialschicht abtastet und der zweite Sensor sicher den Untergrund abtastet.The inventive approach according to this embodiment is advantageous because using the carrier, the distance of the sensors with respect to the screed trailing edge can be adjusted easily, so that the first sensor safely scans the built-material layer and the second sensor safely scans the ground.
Gemäß Ausführungsbeispielen umfasst der Träger einen Messbalken, der an der Bohle befestigt ist, wobei der erste Sensor an einem ersten Ende des Messbalkens mit dem ersten Abstand von der Bohlenhinterkante angeordnet ist, und wobei der zweite Sensor an einem zweiten Ende des Messbalkens mit dem zweiten Abstand von der Bohlenhinterkante angeordnet ist.According to embodiments, the carrier comprises a measuring beam fixed to the screed, wherein the first sensor is disposed at a first end of the measuring beam at the first distance from the screed trailing edge, and wherein the second sensor is at a second end of the measuring beam at the second distance is arranged from the screed trailing edge.
Gemäß Ausführungsbeispielen ist der Messbalken starr und an einer Oberseite der Bohle unbeweglich befestigt.According to embodiments, the measuring beam is rigid and immovably fixed to an upper side of the screed.
Die Verwendung eines Messbalkens gemäß diesem Ausführungsbeispiel ist vorteilhaft, da hierdurch eine einfache Befestigung der Messanordnung an der Bohle ermöglicht wird, wobei insbesondere aufgrund der Tatsache, dass der Messbalken bereits an seinen beiden Enden die jeweiligen Sensoren umfasst, eine einfache Befestigung an der Bohle und insbesondere auch eine einfache Ausrichtung der Sensoren bezüglich der Bohle sichergestellt ist. Bei anderen Ausführungsbeispielen kann vorgesehen sein, mehrere solcher Messbalken mit entsprechenden Sensoren entlang der Breite der Bohle anzuordnen. Aufgrund der starren Ausgestaltung des Messbalkens und der beweglichen Befestigung desselben an der Oberseite der Bohle wird eine einfache und sichere Messung sichergestellt.The use of a measuring beam according to this embodiment is advantageous, as this allows a simple attachment of the measuring arrangement to the screed, wherein in particular due to the fact that the measuring beam already comprises the respective sensors at its two ends, a simple attachment to the screed and in particular also a simple alignment of the sensors is ensured with respect to the screed. In other embodiments, it may be provided to arrange a plurality of such measuring bars with corresponding sensors along the width of the screed. Due to the rigid design of the measuring beam and the movable attachment of the same at the top of the screed a simple and reliable measurement is ensured.
Gemäß weiteren Ausführungsbeispielen umfasst der Träger einen ersten starren Träger, der der Bohle unbeweglich befestigt ist und an dem der erste Sensor mit dem ersten Abstand von der Bohlenhinterkante angeordnet ist, und einen zweiten starren Träger, der der Bohle unbeweglich befestigt ist und an dem der zweite Sensor mit dem zweiten Abstand von der Bohlenhinterkante angeordnet ist.According to further embodiments, the carrier comprises a first rigid carrier, which is immovably fixed to the screed and to which the first sensor is located at the first distance from the screed trailing edge, and a second rigid beam immovably fixed to the screed and to which the second sensor is located at the second distance from the screed trailing edge.
Dieses Ausführungsbeispiel ist vorteilhaft, da anstelle eines gemeinsamen Messbalkens zur Befestigung der zwei Sensoren auch getrennte Messbalken bzw. getrennte starre Träger vorgesehen sein können, um so, abhängig von den Gegebenheiten, den ersten Sensor und den zweiten Sensor an unterschiedlichen Positionen bezüglich der Bohlenhinterkante und bezüglich der Bohlenhinterkante anzuordnen, beispielsweise mit unterschiedlichen Abständen zur Bohlenhinterkante und/oder mit unterschiedlichen Anbringungshöhen.This exemplary embodiment is advantageous since, instead of a common measuring beam for fastening the two sensors, separate measuring beams or separate rigid supports can also be provided, depending on the circumstances, the first sensor and the second sensor at different positions with respect to the screed trailing edge and with respect to the screed trailing edge to arrange, for example, with different distances to the screed trailing edge and / or with different mounting heights.
Gemäß Ausführungsbeispielen umfassen der erste Sensor und der zweite Sensor Ultraschallsensoren, Lasersensoren, Mikrowellensensoren oder eine Kombination aus diesen.According to embodiments, the first sensor and the second sensor include ultrasonic sensors, laser sensors, microwave sensors or a combination thereof.
Die vorliegende Erfindung schafft ein Verfahren zum Erfassen der Dicke einer durch einen Straßenfertiger auf einen Untergrund eingebauten Materialschicht, mit folgenden Schritten:
- Erfassen eines ersten Abstands zu der eingebauten Materialschicht;
- Erfassen eines zweiten Abstands zu dem Untergrund umfasst; und
- Bestimmen der Schichtdicke der eingebauten Materialschicht basierend auf den erfassten ersten und zweiten Abständen, den Abständen eines ersten, fest an der Bohle des Straßenfertigers befestigten Sensors zum Erfassen des ersten Abstands und eines zweiten, fest an der Bohle des Straßenfertigers befestigten Sensors zum Erfassen des zweiten Abstands von der Bohlenhinterkante, und den Anbringungshöhen des ersten Sensors und des zweiten Sensors in Bezug zu der Hinterkante der Bohle des Straßenfertigers.
- Detecting a first distance to the incorporated material layer;
- Detecting a second distance to the ground comprises; and
- Determining the layer thickness of the built-in material layer based on the detected first and second distances, the distances of a first, fixed to the screed of the paver sensor for detecting the first distance and a second, fixedly attached to the screed of the paver sensor for detecting the second distance from the screed trailing edge, and the mounting heights of the first sensor and the second sensor with respect to the trailing edge of the screed of the paver.
Erfindungsgemäß wird somit ein Ansatz geschaffen, der eine kontinuierliche Bestimmung der Schichtdicke an einem Straßenfertiger ermöglicht, die eine der wichtigsten Aufgaben zur Ermittlung von Qualitätsparametern beim Asphalteinbau darstellt. Im Stand der Technik sind zwar die oben erwähnten, verschiedenen Messverfahren bekannt, um die Schichtdicke bei Asphalteinbau zu ermitteln, ohne jedoch eine Genauigkeit zu erreichen, die in einem akzeptablen Bereich liegt, der sinnvoll für die Anwendung genutzt werden kann. Erfindungsgemäß wird daher ein Ansatz gelehrt, bei dem die Schichtdickenmessung ein Messverfahren verwendet, welches eine erhöhte Genauigkeit aufweist, was insbesondere dadurch erreicht wird, dass eine Messvorrichtung vorgesehen ist, die fest an der Bohle installiert ist.Thus, according to the invention, an approach is provided which enables a continuous determination of the layer thickness on a road paver, which represents one of the most important tasks for determining quality parameters during asphalt paving. Although the above-mentioned various measuring methods are known in the prior art in order to determine the layer thickness during asphalt paving, without, however, achieving an accuracy which is within an acceptable range which can be usefully used for the application. According to the invention, therefore, an approach is taught in which the layer thickness measurement uses a measuring method which has an increased accuracy, which is achieved in particular by providing a measuring device which is permanently installed on the screed.
Ausführungsbeispiele der vorliegenden Erfindung werden nachfolgend unter Bezugnahme auf die Figuren näher erläutert. Es zeigen:
- Fig. 1
- einen bekannten Straßenfertiger;
- Fig, 2
- einen Straßenfertiger gemäß einem Ausführungsbeispiel der vorliegenden Erfindung;
- Fig. 3
- eine schematische Darstellung der Bohlengeometrie, wie sie beispielsweise bei einem Straßenfertiger, wie er in
Fig. 2 gezeigt ist, verwendet wird; - Fig. 4
- die Lage des XY-Koordinatensystems bezüglich der Bohlenhinterkante;
- Fig. 5
- das anhand der
Fig. 4 erläuterte Koordinatensystem (XY-Koordinatensystem) mit einer Abstraktion der Größen für die Schichtdickenmessung; - Fig. 6
- das in
Fig. 3 gezeigte, nunmehr geneigte Bohlengeometrie; - Fig. 7
- abstrakt die anhand der
Fig. 6 erläuterten Messgrößen und deren geometrischen Zusammenhang; - Fig. 8
- schematisch die geometrischen Kenngrößen, die zur Bestimmung der Schichtdicke mit erhöhter Genauigkeit herangezogen werden;
- Fig. 9
- eine schematische Bohlengeometrie ähnlich wie in
Fig. 8 , jedoch bei einer um den Winkel Δα gegenüber der Y-Achse verkippten Bohle; - Fig. 10
- eine schematische Draufsichtdarstellung auf eine mögliche Installation des Schichtdickenmesssystems gemäß der vorliegenden Erfindung; und
- Fig. 11
- eine alternative Ausgestaltung der erfindungsgemäßen Messvorrichtung, bei der die Sensoren über getrennte, starre Träger an der Bohlenstruktur befestigt sind
- Fig. 1
- a known paver;
- Fig. 2
- a paver according to an embodiment of the present invention;
- Fig. 3
- a schematic representation of the screed geometry, as for example in a paver, as in
Fig. 2 shown is used; - Fig. 4
- the location of the XY coordinate system with respect to the screed trailing edge;
- Fig. 5
- that on the basis of
Fig. 4 explained coordinate system (XY coordinate system) with an abstraction of the sizes for the coating thickness measurement; - Fig. 6
- this in
Fig. 3 shown, now inclined plank geometry; - Fig. 7
- abstract the basis of the
Fig. 6 explained measurands and their geometric context; - Fig. 8
- schematically the geometric parameters that are used to determine the layer thickness with increased accuracy;
- Fig. 9
- a schematic plank geometry similar to in
Fig. 8 but at a plank tilted by the angle Δα with respect to the Y-axis; - Fig. 10
- a schematic plan view of a possible installation of the layer thickness measuring system according to the present invention; and
- Fig. 11
- an alternative embodiment of the measuring device according to the invention, in which the sensors are attached via separate, rigid carrier to the plank structure
Bei der nachfolgenden Beschreibung von Ausführungsbeispielen der Erfindung werden gleiche oder gleichwirkende Elemente mit den gleichen Bezugszeichen versehen.In the following description of exemplary embodiments of the invention, identical or equivalent elements are provided with the same reference numerals.
Bei dem in
Der erfindungsgemäße Ansatz zur Schichtdickenmessung, beispielsweise beim Asphalteinbau mit dem in
Nachfolgend wird anhand der
Für die Herleitung der gemäß dem ersten Ausführungsbeispiel verwendeten Berechnungsgleichung für die Schichtdicke hB sei nachfolgend auf die
Ändert sich die Neigung der Bezugslinie L1 (siehe
- die Abstände a,
38, 40 zur Bohlenhinterkante 26 (zum Symmetriepunkt S) sind gleich, d.h. a = bb der Sensoren - die
Sensoren 38und 40 befinden sich auf der gedachten Linie L1 und sind starrmit der Bohle 16, beispielsweise mittels desTrägers 36, verbunden, der Sensor 38 misst den Abstand s1 zur Asphaltoberfläche 42ader Sensor 40 misst den Abstands2 zum Untergrund 14,- der Abstand B ist konstant und stellt die Entfernung zwischen der Linie L1 und der Hinterkante 26
der Bohle 16 in Y-Richtung dar, und - die Linie L1 verläuft zunächst
parallel zum Untergrund 14.
- the distances a, b of the
38, 40 to the screed trailing edge 26 (to the point of symmetry S) are equal, ie a = bsensors - the
38 and 40 are located on the imaginary line L1 and are rigidly connected to thesensors screed 16, for example by means of thecarrier 36, - the
sensor 38 measures the distance s1 to theasphalt surface 42a - the
sensor 40 measures the distance s 2 to theground 14, - the distance B is constant and represents the distance between the line L1 and the trailing
edge 26 of theplank 16 in the Y direction, and - the line L1 initially runs parallel to the
ground 14.
Aus der
Aufgrund einer Bewegung der Bohle kann es nun zu einer Neigung der Linie L1 kommen, wobei eine Änderung der Neigung des Messsystems anhand der
Setzt man die Gleichung (3) in die Gleichung (2) ein, so erhält man:
Der, wie oben erwähnt, nicht direkt messbare Wert Δs2 wird nun unter Verwendung des Messwerts s1' des ersten Sensors 38 und der Anbringungshöhe B beschrieben, wobei, wie sich aus
Setzt man die Gleichung 5 in die Gleichung 4 ein, so erhält man:
Nach Auflösen ergibt sich dann:
In Gleichung (7) sind s1' und s2' die von den Sensoren gemessenen Abstände, wobei sich durch Verallgemeinerung der Messwerte s1' und s2' zu den Messwerten s1 und s2 die Gleichung 1 ergibt, nämlich
Erfindungsgemäß wird somit die Schichtdicke gemäß dem dargestellten Ausführungsbeispiel durch Addieren der von den Sensoren erhaltenen Messwerte und der Subtraktion der doppelten Konstante B erhalten, wie dies oben dargelegt wurde. Gemäß dem Ausführungsbeispiel ist somit eine einfache Berechnungsvorschrift bereitgestellt, die eine Schichtdickenbestimmung mit hoher Genauigkeit bei einfacher mechanischer Ausgestaltung der Messvorrichtung und mit einem einfachen Berechnungsalgorithmus ermöglicht.According to the invention, the layer thickness is thus obtained according to the illustrated embodiment by adding the measured values obtained from the sensors and the subtraction of the double constant B, as stated above. Thus, according to the exemplary embodiment, a simple calculation rule is provided which enables a layer thickness determination with high accuracy with a simple mechanical design of the measuring device and with a simple calculation algorithm.
Bei den oben beschriebenen Ausführungsbeispielen wurde der Einfachheit halber davon ausgegangen, dass die Abstände der Sensoren 38, 40 von der Bohlenhinterkante 26 gleich sind, was jedoch nicht zwingend erforderlich ist, und insbesondere abhängig von Gegebenheiten, die durch den Aufbau des Straßenfertigers vorgegeben sein können, auch nicht möglich sein kann. Der erfindungsgemäße Ansatz gilt jedoch gleichermaßen für einen unsymmetrischen Aufbau, bei dem die Abstände a und b der Sensoren 38 und 40 von der Bohlenhinterkante 26 unterschiedlich sind. In diesem Fall muss lediglich eine Korrektur der oben genannten Korrekturgrößen Δs2 bzw. Δs1 nach dem Strahlensatz erfolgen, und es ergibt sich folgender Zusammenhang:
Aus der Gleichung (9) folgt:
Führt man die obige Herleitung der Gleichungen 3 bis 8 nochmals durch, jetzt unter Verwendung der Gleichung 9, so erhält man:
In Gleichung 11 gibt die Konstante B die Anbringungshöhe der Sensoren 38 und 40 in Bezug auf die Bohlenhinterkante 26 wieder, wie dies oben anhand der
Gemäß Ausführungsbeispielen kann vorgesehen sein, vor dem Beginn des Einbaus eine Kalibrierung des Systems durchzuführen, um die Konstante B für die nachfolgende Bestimmung der Schichtdicke sicher zu ermitteln. Ausgehend von der Gleichung 1 lässt sich die Konstante B wie folgt berechnen:
Diese Konstante kann während einer Systemkalibrierung ermittelt werden und bleibt als konstante Kenngröße im Schichtdickenmesssystem gespeichert. Im Rahmen der Systemkalibrierung, die vor dem eigentlichen Einbau der Schicht 42 durchgeführt wird, erfolgt eine Messung mittels der Sensoren 38 und 40, die nunmehr beide auf den Untergrund 14 Bezug nehmen, da aufgrund der fehlenden Schicht 42 die in Gleichung 12 angegebene Schichtdicke zu null wird, so dass im Rahmen der Systemkalibrierung die Konstante B wie folgt bestimmt werden kann:
Die oben beschriebenen Ausführungsbeispiele stellen eine erste, gute Annäherung für die Schichtdickenberechnung dar, die insbesondere bei kleinen Winkeländerungen sehr gute und genaue Ergebnisse liefert, wie entsprechende Versuchsreihen und Tests zeigen. Ferner eignet sich dieser vereinfachte Ansatz zur Ermittlung der Konstante B im Rahmen einer Systemkalibrierung. Nachfolgend werden Ausführungsbeispiele beschrieben, bei denen eine noch genauere Berechnung der Schichtdicke ermöglicht wird, wobei für eine weitere Optimierung, ausgehend von dem oben beschriebenen, ersten Ausführungsbeispiel, der Drehpunkt der Messvorrichtung exakt an der Bohlenhinterkante 26 angenommen wird.
In der
Die in
Unter Berücksichtigung der bekannten Werte a, b und B ergeben sich die Winkel wie folgt:
Aus α1' und α1 lässt sich der Verdrehwinkel Δα wie folgt bestimmen:
Betrachtet man B, C1 und C2 als Ortsvektoren, so wirkt dieser Verdrehwinkel Δα in gleicher Weise auf diese Ortsvektoren, so dass sich für a2' folgende Beziehung ergibt:
Aus der
Die oben erwähnten Ausführungsbeispiele des erfindungsgemäßen Ansatzes zur Schichtdickenerfassung sind gegenüber herkömmlichen Ansätzen vorteilhaft, da der erfindungsgemäße Messaufbau auf besonders einfache Art und Weise an der Bohle 16 (siehe
Gemäß bevorzugten Ausführungsbeispielen werden die Sensoren möglichst symmetrisch zu der Bohlenhinterkante montiert, so dass sich bei Einsatz der Berechnungsvorschrift gemäß dem ersten Ausführungsbeispiel ausreichend genaue Ergebnisse ergeben, ohne dass ein Einsatz des hochgenauen Berechnungsalgorithmus erforderlich ist. Gemäß Ausführungsbeispielen kann vorgesehen sein, dass der erfindungsgemäße Berechnungsalgorithmus sowohl den ersten Algorithmus als auch den zweiten, genaueren Algorithmus implementiert, wobei beispielsweise abhängig von einer erkannten Verstellung der Bohle, beispielsweise bei Überschreitung eines Grenzwinkels, oder wenn ganz genaue Ergebnisse erwünscht sind die Berechnung der Schichtdicke von dem ersten Algorithmus zu dem zweiten, genaueren Algorithmus umgeschaltet werden kann.According to preferred embodiments, the sensors are mounted as symmetrically as possible to the screed trailing edge, so that when using the calculation rule according to the first embodiment sufficiently accurate results, without the use of highly accurate calculation algorithm is required. According to embodiments, it can be provided that the calculation algorithm according to the invention implements both the first algorithm and the second, more accurate algorithm, wherein, for example, depending on a detected adjustment of the screed, for example, when exceeding a critical angle, or if very accurate results are desired, the calculation of the layer thickness from the first algorithm to the second, more accurate algorithm.
Ferner kann bei Ausführungsbeispielen der Erfindung vorgesehen sein, die von der Schichtdickenmessvorrichtung erfassten Daten betreffend die Schichtdicke für eine aktive Regelung des Straßenfertigers im Hinblick auf eine Position der Bohle zu verwenden, um eine vorgegebene Schichtdicke einzuhalten.Furthermore, in embodiments of the invention, it may be provided to use the data recorded by the layer thickness measuring device regarding the layer thickness for active control of the paver with respect to a position of the screed in order to maintain a predetermined layer thickness.
Nachfolgend werden Ausführungsbeispiele beschrieben, die angeben, auf welche Art und Weise die Installation der Sensoren erfolgen kann.
Bei den oben beschriebenen Sensoren kann es sich vorzugsweise um Ultraschallsensoren handeln, jedoch können ebenso Laserscanner eingesetzt werden, die dann orthogonale Vektoren zum Untergrund bzw. zur Schicht 42 für die Berechnung der Schichtdicke bereitstellen. Weitere Sensorkonfigurationen können eine Kombination von Ultraschallsensoren und Laserscannern umfassen, wobei auch nur eine einfache Laserabstandsmessung an beiden Messpositionen möglich ist.The above-described sensors may preferably be ultrasonic sensors, but laser scanners may also be used which then provide orthogonal vectors to the substrate or to the
Obwohl manche Aspekte im Zusammenhang mit einer Vorrichtung beschrieben wurden, versteht es sich, dass diese Aspekte auch eine Beschreibung des entsprechenden Verfahrens darstellen, sodass ein Block oder ein Bauelement einer Vorrichtung auch als ein entsprechender Verfahrensschritt oder als ein Merkmal eines Verfahrensschrittes zu verstehen ist. Analog dazu stellen Aspekte, die im Zusammenhang mit einem oder als ein Verfahrensschritt beschrieben wurden, auch eine Beschreibung eines entsprechenden Blocks oder Details oder Merkmals einer entsprechenden Vorrichtung dar.Although some aspects have been described in the context of a device, it will be understood that these aspects also constitute a description of the corresponding method, so that a block or a component of a device is also to be understood as a corresponding method step or as a feature of a method step. Similarly, aspects described in connection with or as a method step also represent a description of a corresponding block or detail or feature of a corresponding device.
Je nach bestimmten Implementierungsanforderungen können Ausführungsbeispiele der Erfindung in Hardware oder in Software implementiert sein. Die Implementierung kann unter Verwendung eines digitalen Speichermediums, beispielsweise einer Floppy-Disk, einer DVD, einer Blu-ray Disc, einer CD, eines ROM, eines PROM, eines EPROM, eines EEPROM oder eines FLASH-Speichers, einer Festplatte oder eines anderen magnetischen oder optischen Speichers durchgeführt werden, auf dem elektronisch lesbare Steuersignale gespeichert sind, die mit einem programmierbaren Computersystem derart zusammenwirken können oder zusammenwirken, dass das jeweilige Verfahren durchgeführt wird. Deshalb kann das digitale Speichermedium computerlesbar sein. Manche Ausführungsbeispiele gemäß der Erfindung umfassen also einen Datenträger, der elektronisch lesbare Steuersignale aufweist, die in der Lage sind, mit einem programmierbaren Computersystem derart zusammenzuwirken, dass eines der hierin beschriebenen Verfahren durchgeführt wird.Depending on particular implementation requirements, embodiments of the invention may be implemented in hardware or in software. The implementation may be performed using a digital storage medium, such as a floppy disk, a DVD, a Blu-ray Disc, a CD, a ROM, a PROM, an EPROM, a EEPROM or a FLASH memory, a hard disk or other magnetic or optical storage are stored on the electronically readable control signals that can cooperate with a programmable computer system or cooperate, that the respective method is performed. Therefore, the digital storage medium can be computer readable. Thus, some embodiments according to the invention include a data carrier having electronically readable control signals capable of interacting with a programmable computer system such that one of the methods described herein is performed.
Allgemein können Ausführungsbeispiele der vorliegenden Erfindung als Computerprogrammprodukt mit einem Programmcode implementiert sein, wobei der Programmcode dahin gehend wirksam ist, eines der Verfahren durchzuführen, wenn das Computerprogrammprodukt auf einem Computer abläuft. Der Programmcode kann beispielsweise auch auf einem maschinenlesbaren Träger gespeichert sein.In general, embodiments of the present invention may be implemented as a computer program product having a program code, wherein the program code is operable to perform one of the methods when the computer program product runs on a computer. The program code can also be stored, for example, on a machine-readable carrier.
Andere Ausführungsbeispiele umfassen das Computerprogramm zum Durchführen eines der hierin beschriebenen Verfahren, wobei das Computerprogramm auf einem maschinenlesbaren Träger gespeichert ist.Other embodiments include the computer program for performing any of the methods described herein, wherein the computer program is stored on a machine-readable medium.
Mit anderen Worten ist ein Ausführungsbeispiel des erfindungsgemäßen Verfahrens somit ein Computerprogramm, das einen Programmcode zum Durchführen eines der hierin beschriebenen Verfahren aufweist, wenn das Computerprogramm auf einem Computer abläuft. Ein weiteres Ausführungsbeispiel der erfindungsgemäßen Verfahren ist somit ein Datenträger (oder ein digitales Speichermedium oder ein computerlesbares Medium), auf dem das Computerprogramm zum Durchführen eines der hierin beschriebenen Verfahren aufgezeichnet ist.In other words, an embodiment of the method according to the invention is thus a computer program which has a program code for performing one of the methods described herein when the computer program runs on a computer. A further embodiment of the inventive method is thus a data carrier (or a digital storage medium or a computer-readable medium) on which the computer program is recorded for carrying out one of the methods described herein.
Ein weiteres Ausführungsbeispiel des erfindungsgemäßen Verfahrens ist somit ein Datenstrom oder eine Sequenz von Signalen, der bzw. die das Computerprogramm zum Durchführen eines der hierin beschriebenen Verfahren darstellt bzw. darstellen. Der Datenstrom oder die Sequenz von Signalen kann bzw. können beispielsweise dahin gehend konfiguriert sein, über eine Datenkommunikationsverbindung, beispielsweise über das Internet, transferiert zu werden.A further embodiment of the method according to the invention is thus a data stream or a sequence of signals, which represent the computer program for performing one of the methods described herein. The data stream or the sequence of signals may be configured, for example, to be transferred via a data communication connection, for example via the Internet.
Ein weiteres Ausführungsbeispiel umfasst eine Verarbeitungseinrichtung, beispielsweise einen Computer oder ein programmierbares Logikbauelement, die dahin gehend konfiguriert oder angepasst ist, eines der hierin beschriebenen Verfahren durchzuführen.Another embodiment includes a processing device, such as a computer or a programmable logic device, that is configured or adapted to perform one of the methods described herein.
Ein weiteres Ausführungsbeispiel umfasst einen Computer, auf dem das Computerprogramm zum Durchführen eines der hierin beschriebenen Verfahren installiert ist.Another embodiment includes a computer on which the computer program is installed to perform one of the methods described herein.
Bei manchen Ausführungsbeispielen kann ein programmierbares Logikbauelement (beispielsweise ein feldprogrammierbares Gatterarray, ein FPGA) dazu verwendet werden, manche oder alle Funktionalitäten der hierin beschriebenen Verfahren durchzuführen. Bei manchen Ausführungsbeispielen kann ein feldprogrammierbares Gatterarray mit einem Mikroprozessor zusammenwirken, um eines der hierin beschriebenen Verfahren durchzuführen. Allgemein werden die Verfahren bei einigen Ausführungsbeispielen seitens einer beliebigen Hardwarevorrichtung durchgeführt. Diese kann eine universell einsetzbare Hardware wie ein Computerprozessor (CPU) sein oder für das Verfahren spezifische Hardware, wie beispielsweise ein ASIC.In some embodiments, a programmable logic device (eg, a field programmable gate array, an FPGA) may be used to perform some or all of the functionality of the methods described herein. In some embodiments, a field programmable gate array may cooperate with a microprocessor to perform one of the methods described herein. In general, in some embodiments, the methods are performed by any hardware device. This may be a universal hardware such as a computer processor (CPU) or hardware specific to the process, such as an ASIC.
Die oben beschriebenen Ausführungsbeispiele stellen lediglich eine Veranschaulichung der Prinzipien der vorliegenden Erfindung dar. Es versteht sich, dass Modifikationen und Variationen der hierin beschriebenen Anordnungen und Einzelheiten anderen Fachleuten einleuchten werden. Deshalb ist beabsichtigt, dass die Erfindung lediglich durch den Schutzumfang der nachstehenden Patentansprüche und nicht durch die spezifischen Einzelheiten, die anhand der Beschreibung und der Erläuterung der Ausführungsbeispiele hierin präsentiert wurden, beschränkt sei.The embodiments described above are merely illustrative of the principles of the present invention. It will be understood that modifications and variations of the arrangements and details described herein will be apparent to others of ordinary skill in the art. Therefore, it is intended that the invention be limited only by the scope of the appended claims and not by the specific details presented in the description and explanation of the embodiments herein.
Claims (13)
die Abstände (a, b) des ersten Sensors (38) und des zweiten Sensors (40) von der Bohlenhinterkante (26) gleich sind,
die Anbringungshöhen des ersten Sensors (38) und des zweiten Sensors (40) in Bezug zu der Bohlenhinterkante (26) gleich sind, und
die Signalverarbeitungseinheit (44) konfiguriert ist, um die Schichtdicke (hB) der eingebauten Materialschicht (42) basierend auf den Sensorsignalen (s1, s2) von dem ersten Sensor (38) und von dem zweiten Sensor (40), und der Anbringungshöhe des ersten Sensors (38) und des zweiten Sensors (40) in Bezug zu der Bohlenhinterkante (26) zu erfassen.Road paver according to claim 1, wherein
the distances (a, b) of the first sensor (38) and the second sensor (40) from the screed trailing edge (26) are equal,
the mounting heights of the first sensor (38) and the second sensor (40) are equal with respect to the screed trailing edge (26), and
the signal processing unit (44) is configured to determine the layer thickness (h B ) of the incorporated material layer (42) based on the sensor signals (s 1 , s 2 ) from the first sensor (38) and the second sensor (40) and Attachment height of the first sensor (38) and the second sensor (40) with respect to the screed trailing edge (26) to detect.
die Anbringungshöhen des ersten Sensors (38) und des zweiten Sensors (40) in Bezug zu der Bohlenhinterkante (26) gleich sind, und
die Schichtdicke (hB) der eingebauten Materialschicht (42) wie folgt bestimmt wird:
the mounting heights of the first sensor (38) and the second sensor (40) are equal with respect to the screed trailing edge (26), and
the layer thickness (h B ) of the incorporated material layer (42) is determined as follows:
die Anbringungshöhen des ersten Sensors (38) und des zweiten Sensors (40) in Bezug zu der Bohlenhinterkante (26) gleich sind, und
die Schichtdicke (hB) der eingebauten Materialschicht (42) wie folgt bestimmt wird:
the mounting heights of the first sensor (38) and the second sensor (40) are equal with respect to the screed trailing edge (26), and
the layer thickness (h B ) of the incorporated material layer (42) is determined as follows:
die Anbringungshöhen des ersten Sensors (38) und des zweiten Sensors (40) in Bezug zu der Bohlenhinterkante (26) gleich sind, und
die Signalverarbeitungseinheit (44) konfiguriert ist, um eine Kalibrierung zum Bestimmen der Anbringungshöhe durchzuführen, wobei der erste Sensor (38) bei der Kalibrierung den Abstand zu dem Untergrund (14) erfasst.Road paver according to one of claims 1 to 6, wherein
the mounting heights of the first sensor (38) and the second sensor (40) are equal with respect to the screed trailing edge (26), and
the signal processing unit (44) is configured to perform a calibration for determining the mounting height, wherein the first sensor (38) detects the distance to the ground (14) during the calibration.
wobei der erste Sensor (38) an einem ersten Ende des Messbalkens mit dem ersten Abstand von der Bohlenhinterkante (26) angeordnet ist, und
wobei der zweite Sensor (40) an einem zweiten Ende des Messbalkens mit dem zweiten Abstand von der Bohlenhinterkante (26) angeordnet ist.A paver according to any one of claims 1 to 8, wherein the carrier comprises a measuring beam fixed to the screed (16),
wherein the first sensor (38) is disposed at a first end of the measuring beam at the first distance from the screed trailing edge (26), and
wherein the second sensor (40) is disposed at a second end of the measuring beam at the second distance from the screed trailing edge (26).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18192758.3A EP3431925A1 (en) | 2014-03-18 | 2014-03-18 | Road finisher with layer thickness detection device and method for detecting the thickness of an installed material layer |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15193387.6A EP3048199B2 (en) | 2014-03-18 | 2014-03-18 | Road finisher with layer thickness detection device and method for detecting the thickness of an installed material layer |
EP18192758.3A EP3431925A1 (en) | 2014-03-18 | 2014-03-18 | Road finisher with layer thickness detection device and method for detecting the thickness of an installed material layer |
EP17156219.2A EP3228981B1 (en) | 2014-03-18 | 2014-03-18 | Road finisher with layer thickness detection device and method for detecting the thickness of an installed material layer |
EP14160503.0A EP2921588B1 (en) | 2014-03-18 | 2014-03-18 | Road finisher with layer thickness detection device and method for detecting the thickness of an installed material layer |
Related Parent Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15193387.6A Division-Into EP3048199B2 (en) | 2014-03-18 | 2014-03-18 | Road finisher with layer thickness detection device and method for detecting the thickness of an installed material layer |
EP15193387.6A Division EP3048199B2 (en) | 2014-03-18 | 2014-03-18 | Road finisher with layer thickness detection device and method for detecting the thickness of an installed material layer |
EP14160503.0A Division EP2921588B1 (en) | 2014-03-18 | 2014-03-18 | Road finisher with layer thickness detection device and method for detecting the thickness of an installed material layer |
EP17156219.2A Division-Into EP3228981B1 (en) | 2014-03-18 | 2014-03-18 | Road finisher with layer thickness detection device and method for detecting the thickness of an installed material layer |
EP17156219.2A Division EP3228981B1 (en) | 2014-03-18 | 2014-03-18 | Road finisher with layer thickness detection device and method for detecting the thickness of an installed material layer |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3431925A1 true EP3431925A1 (en) | 2019-01-23 |
Family
ID=50289507
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15193387.6A Active EP3048199B2 (en) | 2014-03-18 | 2014-03-18 | Road finisher with layer thickness detection device and method for detecting the thickness of an installed material layer |
EP17156219.2A Active EP3228981B1 (en) | 2014-03-18 | 2014-03-18 | Road finisher with layer thickness detection device and method for detecting the thickness of an installed material layer |
EP18192758.3A Withdrawn EP3431925A1 (en) | 2014-03-18 | 2014-03-18 | Road finisher with layer thickness detection device and method for detecting the thickness of an installed material layer |
EP14160503.0A Active EP2921588B1 (en) | 2014-03-18 | 2014-03-18 | Road finisher with layer thickness detection device and method for detecting the thickness of an installed material layer |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15193387.6A Active EP3048199B2 (en) | 2014-03-18 | 2014-03-18 | Road finisher with layer thickness detection device and method for detecting the thickness of an installed material layer |
EP17156219.2A Active EP3228981B1 (en) | 2014-03-18 | 2014-03-18 | Road finisher with layer thickness detection device and method for detecting the thickness of an installed material layer |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14160503.0A Active EP2921588B1 (en) | 2014-03-18 | 2014-03-18 | Road finisher with layer thickness detection device and method for detecting the thickness of an installed material layer |
Country Status (6)
Country | Link |
---|---|
US (3) | US9534349B2 (en) |
EP (4) | EP3048199B2 (en) |
JP (1) | JP6212656B2 (en) |
CN (1) | CN106460350B (en) |
DK (3) | DK2921588T5 (en) |
WO (1) | WO2015140166A1 (en) |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DK2921588T5 (en) * | 2014-03-18 | 2017-06-19 | Moba - Mobile Automation Ag | Road finishing machine with layer thickness sensing device and method for recording the thickness of an applied material layer |
WO2015180774A1 (en) * | 2014-05-28 | 2015-12-03 | Joseph Vögele AG | Screed assembly comprising a work station |
US9618437B2 (en) * | 2015-04-29 | 2017-04-11 | Caterpillar Paving Products Inc. | System and method for monitoring wear of a screed plate |
US9803324B2 (en) | 2016-01-26 | 2017-10-31 | Deere & Company | Ejector control for spreading material according to a profile |
PL3208380T3 (en) * | 2016-02-17 | 2022-01-17 | Joseph Vögele AG | Method of controlling a road paver with wheel running gear and road paver with wheel running gear |
PL3214223T3 (en) * | 2016-03-04 | 2019-11-29 | Joseph Voegele Ag | Road finisher with lateral operating unit |
US9932714B2 (en) | 2016-04-27 | 2018-04-03 | Caterpillar Paving Products Inc. | Systems, apparatuses and methods for material flow control for wide-width paving |
DE102016207841B4 (en) | 2016-05-06 | 2018-01-04 | Moba Mobile Automation Aktiengesellschaft | Layer thickness measuring device and method for coating thickness measurement |
GB2554872B (en) * | 2016-10-07 | 2019-12-04 | Kelly Anthony | A compaction compensation system |
DE102016225502B4 (en) | 2016-12-19 | 2019-01-03 | Moba Mobile Automation Ag | Measuring system for coating thickness detection |
CN107245928B (en) * | 2017-07-06 | 2019-05-24 | 河海大学 | A kind of bituminous pavement paving compacted thickness measurement device |
CN107419643A (en) * | 2017-08-31 | 2017-12-01 | 合肥益企学科技有限公司 | A kind of pitch spreads out and puts on the leveling unit of machine |
CN107858900B (en) * | 2017-10-26 | 2019-12-24 | 雨发建设集团有限公司 | Real-time asphalt paving thickness detection device and detection method thereof |
US11242658B2 (en) * | 2018-01-03 | 2022-02-08 | Volvo Construction Equipment Ab | Paver machine and a method for paver screed height calibration |
EP3769038A1 (en) | 2018-03-19 | 2021-01-27 | Ricoh Company, Ltd. | Information processing apparatus, image capture apparatus, image processing system, and method of processing information |
US10407844B1 (en) | 2018-04-23 | 2019-09-10 | Caterpillar Paving Products Inc. | Material feed system for a paving machine |
US10407845B1 (en) * | 2018-08-22 | 2019-09-10 | Caterpillar Paving Products Inc. | Oscillation assembly for a paving machine |
US11536827B2 (en) * | 2019-02-08 | 2022-12-27 | Geophysical Survey Systems, Inc. | Method for assessing the amount of rolling required to achieve optimal compaction of pre-rolled asphalt pavement |
EP3739122B1 (en) * | 2019-05-14 | 2021-04-28 | Joseph Vögele AG | Road finisher and method for determining a thickness of a layer of an established installation layer |
US10889942B2 (en) * | 2019-05-28 | 2021-01-12 | Caterpillar Paving Products Inc. | Method and system for positioning screed plates |
US11674271B2 (en) | 2019-06-26 | 2023-06-13 | Caterpillar Paving Products Inc. | Control system for a paving machine |
US11313086B2 (en) | 2019-12-16 | 2022-04-26 | Caterpillar Paving Products Inc. | Material density measurement for paver application |
EP3851584B1 (en) * | 2020-01-16 | 2022-11-09 | Joseph Vögele AG | Road finisher with compression control |
CN111811367B (en) * | 2020-07-08 | 2022-01-11 | 广东筑成工程管理有限公司 | Supervision is with bituminous paving thickness monitoring device |
WO2022037764A1 (en) | 2020-08-18 | 2022-02-24 | Moba Mobile Automation Ag | Measuring system for a road-building machine |
EP3981918B1 (en) * | 2020-10-08 | 2024-03-13 | Joseph Vögele AG | Road finisher and method for levelling the screed of a finisher |
EP4083322A1 (en) | 2021-04-27 | 2022-11-02 | Leica Geosystems AG | System and method for controlling a road construction process |
CN113235548B (en) * | 2021-05-13 | 2022-06-17 | 王运华 | Roadbed structure layer thickness detection device |
CN115538259A (en) * | 2021-06-29 | 2022-12-30 | 江苏奥新科技有限公司 | An automatic thickness measurement balance beam and thickness measurement leveling method |
US12078997B2 (en) | 2021-09-08 | 2024-09-03 | Caterpillar Paving Products Inc. | Optimum screed angle of attack setting and automatic adjustment |
DE102022201294A1 (en) | 2022-02-08 | 2023-08-10 | Moba Mobile Automation Aktiengesellschaft | Leveling system for a construction machine |
CN116145522B (en) * | 2023-04-23 | 2023-07-18 | 中交二公局工程检测技术有限公司 | Asphalt layer thickness detection device for asphalt road pavement |
CN117516327B (en) * | 2024-01-08 | 2024-03-08 | 洛阳展尚建筑工程有限公司 | Thickness measuring equipment for road pavement |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0542297A1 (en) | 1991-11-15 | 1993-05-19 | MOBA-electronic Gesellschaft für Mobil-Automation mbH | Ultrasonic control device for a road-finisher |
DE10025462A1 (en) * | 2000-05-23 | 2001-12-06 | Moba Mobile Automation Gmbh | Determination of layer thickness of final surface coat applied by surface finishing machine using inclination sensor |
JP2002339314A (en) * | 2001-05-14 | 2002-11-27 | Topcon Corp | Pavement thickness control device for asphalt finisher, asphalt finisher and pavement construction system |
US7172363B2 (en) * | 2004-08-31 | 2007-02-06 | Caterpillar Paving Products Inc | Paving machine output monitoring system |
EP2535457A1 (en) | 2011-06-15 | 2012-12-19 | Joseph Vögele AG | Road finisher with coating measuring device |
EP2535458A1 (en) | 2011-06-15 | 2012-12-19 | Joseph Vögele AG | Road finisher with coating measuring device |
EP2535456A1 (en) | 2011-06-15 | 2012-12-19 | Joseph Vögele AG | Road finisher with coating measuring device |
Family Cites Families (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2838123A1 (en) | 1978-09-01 | 1980-03-13 | Willi J Grimm | Road surface thickness measurement device - uses marks on height adjustable smoothing board component and cooperating indicators on machine frame |
JP2584823B2 (en) | 1988-04-22 | 1997-02-26 | 株式会社トキメック | Pavement thickness measuring device |
JPH01278603A (en) * | 1988-04-27 | 1989-11-09 | Sumitomo Heavy Ind Ltd | Pavement thickness detecting device |
JPH02136405A (en) | 1988-11-15 | 1990-05-25 | Sumitomo Heavy Ind Ltd | Detector of pavement thickness |
JPH03225213A (en) * | 1990-01-31 | 1991-10-04 | Sumitomo Constr Mach Co Ltd | Device for detecting thickness of pavement |
DE69126017T2 (en) | 1990-11-14 | 1997-11-06 | Niigata Engineering Co Ltd | Device for regulating the road surface thickness |
JPH0749642B2 (en) * | 1990-11-14 | 1995-05-31 | 株式会社新潟鐵工所 | Pavement thickness control method for leveling machine |
JPH0743130Y2 (en) * | 1990-11-19 | 1995-10-04 | 株式会社新潟鐵工所 | Laying machine |
DE4040027A1 (en) | 1990-12-14 | 1992-06-17 | Joseph Voegele Ag | METHOD FOR ADJUSTING THE THICKNESS OF A PAVING LAYER WITH A PAVER |
JPH0672406B2 (en) * | 1991-04-19 | 1994-09-14 | 株式会社新潟鉄工所 | A method for controlling the amount of composite material delivered in a paving machine |
DE9114281U1 (en) * | 1991-11-15 | 1992-01-09 | Moba-Electronic Gesellschaft für Mobil-Automation mbH, 6254 Elz | Ultrasonic distance measuring device for a construction machine |
US5356238A (en) * | 1993-03-10 | 1994-10-18 | Cedarapids, Inc. | Paver with material supply and mat grade and slope quality control apparatus and method |
JP2612666B2 (en) * | 1993-05-14 | 1997-05-21 | 日本無線株式会社 | Asphalt finisher |
US5549412A (en) * | 1995-05-24 | 1996-08-27 | Blaw-Knox Construction Equipment Corporation | Position referencing, measuring and paving method and apparatus for a profiler and paver |
US5752783A (en) | 1996-02-20 | 1998-05-19 | Blaw-Knox Construction Equipment Corporation | Paver with radar screed control |
DE19647150C2 (en) * | 1996-11-14 | 2001-02-01 | Moba Mobile Automation Gmbh | Device and method for controlling the installation height of a road finisher |
DE29619831U1 (en) | 1996-11-14 | 1997-01-09 | MOBA-electronic Gesellschaft für Mobil-Automation mbH, 65604 Elz | Device for controlling the installation height of a paver |
DE19709131C2 (en) | 1997-03-06 | 2003-02-20 | Abg Allg Baumaschinen Gmbh | pavers |
DE29721457U1 (en) | 1997-12-04 | 1998-01-29 | Joseph Vögele AG, 68163 Mannheim | Leveling device of a screed of a paver |
US5975473A (en) | 1998-03-12 | 1999-11-02 | Topcon Laser Systems, Inc. | Mounting device for non-contacting sensors |
DE19836269C1 (en) | 1998-08-11 | 1999-08-26 | Abg Allg Baumaschinen Gmbh | Road building machine with undercarriage |
JP2000144626A (en) * | 1998-11-12 | 2000-05-26 | Tokimec Inc | Pavement thickness control device |
DE10025474B4 (en) | 2000-05-23 | 2011-03-10 | Moba - Mobile Automation Gmbh | Coating thickness determination by relative position detection between the tractor and the traction arm of a paver |
US6406970B1 (en) | 2001-08-31 | 2002-06-18 | Infineon Technologies North America Corp. | Buried strap formation without TTO deposition |
DE10234217B4 (en) | 2002-07-27 | 2009-02-05 | Hermann Kirchner Gmbh & Co Kg | Method and device for determining the thickness of an asphalt layer |
DE102005022266A1 (en) | 2005-05-10 | 2006-11-16 | Abg Allgemeine Baumaschinen-Gesellschaft Mbh | Paver for floor-level installation of layers for roads or the like. |
EP2025811B1 (en) | 2007-08-16 | 2019-04-24 | Joseph Vögele AG | Method for laying a road paving and paver for carrying out this method |
US8070385B2 (en) * | 2008-07-21 | 2011-12-06 | Caterpillar Trimble Control Technologies, Llc | Paving machine control and method |
US20100129152A1 (en) * | 2008-11-25 | 2010-05-27 | Trimble Navigation Limited | Method of covering an area with a layer of compressible material |
US8371769B2 (en) * | 2010-04-14 | 2013-02-12 | Caterpillar Trimble Control Technologies Llc | Paving machine control and method |
EP2514871B1 (en) * | 2011-04-18 | 2016-05-11 | Joseph Vögele AG | Method for laying and compacting an asphalt layer |
US9004811B2 (en) * | 2012-02-24 | 2015-04-14 | Caterpillar Paving Products Inc. | Systems and methods for aiming asphalt material feed sensors |
US8979423B2 (en) * | 2012-10-10 | 2015-03-17 | Caterpillar Paving Products Inc. | Automatic material height sensor for asphalt pavers |
US8944719B2 (en) * | 2012-11-09 | 2015-02-03 | Caterpillar Paving Products Inc. | Tracking of machine system movements in paving machine |
DK2921588T5 (en) * | 2014-03-18 | 2017-06-19 | Moba - Mobile Automation Ag | Road finishing machine with layer thickness sensing device and method for recording the thickness of an applied material layer |
US9382675B2 (en) * | 2014-06-16 | 2016-07-05 | Caterpillar Paving Products Inc. | Electric powered systems for paving machines |
DE102014018113A1 (en) | 2014-10-10 | 2016-04-14 | Dynapac Gmbh | Road paver and method of making a pavement |
-
2014
- 2014-03-18 DK DK14160503.0T patent/DK2921588T5/en active
- 2014-03-18 EP EP15193387.6A patent/EP3048199B2/en active Active
- 2014-03-18 EP EP17156219.2A patent/EP3228981B1/en active Active
- 2014-03-18 EP EP18192758.3A patent/EP3431925A1/en not_active Withdrawn
- 2014-03-18 EP EP14160503.0A patent/EP2921588B1/en active Active
- 2014-03-18 DK DK15193387.6T patent/DK3048199T4/en active
- 2014-03-18 DK DK17156219.2T patent/DK3228981T3/en active
-
2015
- 2015-01-30 US US14/609,481 patent/US9534349B2/en active Active
- 2015-03-17 JP JP2016557929A patent/JP6212656B2/en active Active
- 2015-03-17 WO PCT/EP2015/055555 patent/WO2015140166A1/en active Application Filing
- 2015-03-17 CN CN201580014565.8A patent/CN106460350B/en active Active
-
2016
- 2016-09-14 US US15/264,640 patent/US9988773B2/en active Active
-
2018
- 2018-04-27 US US15/964,143 patent/US10227738B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0542297A1 (en) | 1991-11-15 | 1993-05-19 | MOBA-electronic Gesellschaft für Mobil-Automation mbH | Ultrasonic control device for a road-finisher |
DE10025462A1 (en) * | 2000-05-23 | 2001-12-06 | Moba Mobile Automation Gmbh | Determination of layer thickness of final surface coat applied by surface finishing machine using inclination sensor |
JP2002339314A (en) * | 2001-05-14 | 2002-11-27 | Topcon Corp | Pavement thickness control device for asphalt finisher, asphalt finisher and pavement construction system |
US7172363B2 (en) * | 2004-08-31 | 2007-02-06 | Caterpillar Paving Products Inc | Paving machine output monitoring system |
EP2535457A1 (en) | 2011-06-15 | 2012-12-19 | Joseph Vögele AG | Road finisher with coating measuring device |
EP2535458A1 (en) | 2011-06-15 | 2012-12-19 | Joseph Vögele AG | Road finisher with coating measuring device |
EP2535456A1 (en) | 2011-06-15 | 2012-12-19 | Joseph Vögele AG | Road finisher with coating measuring device |
Also Published As
Publication number | Publication date |
---|---|
EP2921588A1 (en) | 2015-09-23 |
CN106460350A (en) | 2017-02-22 |
WO2015140166A1 (en) | 2015-09-24 |
EP2921588B1 (en) | 2016-12-14 |
DK3228981T3 (en) | 2019-01-21 |
EP3048199B2 (en) | 2020-01-22 |
EP3048199B1 (en) | 2017-03-29 |
EP3228981B1 (en) | 2018-10-17 |
DK2921588T5 (en) | 2017-06-19 |
US9534349B2 (en) | 2017-01-03 |
US9988773B2 (en) | 2018-06-05 |
US20170002525A1 (en) | 2017-01-05 |
US10227738B2 (en) | 2019-03-12 |
JP2017508088A (en) | 2017-03-23 |
US20180245295A1 (en) | 2018-08-30 |
DK3048199T3 (en) | 2017-06-19 |
CN106460350B (en) | 2019-10-15 |
EP3048199A1 (en) | 2016-07-27 |
EP3228981A1 (en) | 2017-10-11 |
DK3048199T4 (en) | 2020-04-27 |
DK2921588T3 (en) | 2017-03-13 |
JP6212656B2 (en) | 2017-10-11 |
US20150267361A1 (en) | 2015-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3228981B1 (en) | Road finisher with layer thickness detection device and method for detecting the thickness of an installed material layer | |
EP2738309B1 (en) | Street construction machine and method for measuring milling cutter depth | |
EP0542297B1 (en) | Ultrasonic control device for a road-finisher | |
EP2927372B1 (en) | Self-propelled construction machine and method for controlling the same | |
EP2025811B1 (en) | Method for laying a road paving and paver for carrying out this method | |
EP2535456B1 (en) | Road finisher with coating measuring device | |
EP3739122B1 (en) | Road finisher and method for determining a thickness of a layer of an established installation layer | |
EP1339920B1 (en) | Laser height adjustment device for a construction machine | |
EP2562309B1 (en) | Road finisher with measuring device | |
DE102011001542A1 (en) | Control and corresponding method for a tar machine | |
EP3647494B1 (en) | Road construction machine and method for operating a road construction machine | |
DE102016207584B3 (en) | DEVICE AND METHOD FOR DETERMINING THE TEMPERATURE OF A ROAD TREE MATERIAL RAISED BY A CONSTRUCTION MACHINE AND A CONSTRUCTION MACHINE WITH SUCH A DEVICE | |
EP3498914B1 (en) | Adjustment of the levelling cylinder in a road finisher | |
DE102017005015A1 (en) | Machine train comprising a road milling machine and a road paver and method of operating a road milling machine and a road paver | |
EP2535457A1 (en) | Road finisher with coating measuring device | |
EP1825064A1 (en) | Method and device for monitoring a road processing machine | |
EP3130939A1 (en) | Road finisher with a radar based levelling device and control method | |
DE102016207841B4 (en) | Layer thickness measuring device and method for coating thickness measurement | |
DE102016225502B4 (en) | Measuring system for coating thickness detection | |
EP3874296B1 (en) | Sensor system for a road paver | |
DE10025462A1 (en) | Determination of layer thickness of final surface coat applied by surface finishing machine using inclination sensor | |
EP3670747B1 (en) | Self-propelled construction machine and method for processing a floor lining | |
DE10025474A1 (en) | Determination of layer thickness by relative position detection between tractor and tow arm of road finishing machine based on known height of tractor reference axis above sub-surface and skimming tool vertical dimension | |
WO2020038567A1 (en) | System for measuring compaction | |
EP3712328B1 (en) | Construction maschine with measuring system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 3048199 Country of ref document: EP Kind code of ref document: P Ref document number: 3228981 Country of ref document: EP Kind code of ref document: P Ref document number: 2921588 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
17P | Request for examination filed |
Effective date: 20190723 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Effective date: 20191001 |