[go: up one dir, main page]

EP3431866B1 - Dual function light module - Google Patents

Dual function light module Download PDF

Info

Publication number
EP3431866B1
EP3431866B1 EP18183857.4A EP18183857A EP3431866B1 EP 3431866 B1 EP3431866 B1 EP 3431866B1 EP 18183857 A EP18183857 A EP 18183857A EP 3431866 B1 EP3431866 B1 EP 3431866B1
Authority
EP
European Patent Office
Prior art keywords
function
light
zone
lens
diopter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18183857.4A
Other languages
German (de)
French (fr)
Other versions
EP3431866A1 (en
Inventor
Nicolas Lefaudeux
Thomas Canonne
Antoine De Lamberterie
Samira MBATA
François-Xavier AMIEL
Van-Thai HOANG
Vincent Dubois
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Vision SAS
Original Assignee
Valeo Vision SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Vision SAS filed Critical Valeo Vision SAS
Publication of EP3431866A1 publication Critical patent/EP3431866A1/en
Application granted granted Critical
Publication of EP3431866B1 publication Critical patent/EP3431866B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/255Lenses with a front view of circular or truncated circular outline
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/265Composite lenses; Lenses with a patch-like shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/275Lens surfaces, e.g. coatings or surface structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/40Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by screens, non-reflecting members, light-shielding members or fixed shades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2102/00Exterior vehicle lighting devices for illuminating purposes
    • F21W2102/10Arrangement or contour of the emitted light
    • F21W2102/13Arrangement or contour of the emitted light for high-beam region or low-beam region
    • F21W2102/135Arrangement or contour of the emitted light for high-beam region or low-beam region the light having cut-off lines, i.e. clear borderlines between emitted regions and dark regions
    • F21W2102/16Arrangement or contour of the emitted light for high-beam region or low-beam region the light having cut-off lines, i.e. clear borderlines between emitted regions and dark regions having blurred cut-off lines

Definitions

  • the invention relates to the field of headlights for motor vehicles which can provide, for example, the functions of high beam and/or dipped beam and/or fog lights.
  • the invention relates in particular to dual-function light modules, integrated into these headlights, and making it possible to provide at least two of the functions mentioned.
  • the projection of a light beam by a motor vehicle headlight is traditionally used to illuminate the road and thus increase visibility in the dark, for example at night. This allows the vehicle to be driven safely.
  • Dipped beam headlights usually perform the functions of dipped beam, main beam or fog lights. Dipped beam headlights are distinguished from other lights because they have a cut-off to avoid dazzling other road users, particularly those coming towards the vehicle. This cut-off, which takes the form of a "cut-off line", creates a transition zone between a lit area and a dark area.
  • the shape of the cut-off line is generally subject to regulations, for example regulation R123 ECE or R112 ECE.
  • High beams are "full" beams with no dark area.
  • dual-function light modules allowing a dipped beam function and one of the high beam or fog light functions.
  • Such a dual-function module includes a folder, allowing a cut-off line to be formed that complies with regulatory constraints. The cut-off line is created by the folder positioned in front of a light source so that the beam cut-off line is an image of the edge of the folder formed by the projection lens.
  • Such a dual-function light module comprising a folder is for example described in the patent applications WO2013-120121 A1 , FROM 10 2012 203 929 B3 , FROM 10 2016 122 860 A1 And CN 106 813 176 A .
  • a projector comprising at least one light module according to the invention is also provided.
  • the light module according to the invention improves the homogeneity of a light beam without interruption emitted by a dual-function light module.
  • the transition between the light emitted by the high beam function and the light emitted by the dipped beam function is continuous and smoothed.
  • the driver is no longer disturbed by this anomaly (a less illuminated or dark area) present in the light beam emitted by the light module.
  • the light module corrects the drop in light intensity at the high beam/dipped beam junction when the two functions are activated.
  • the projection lens that forms the light beam comprises a zone that modifies the trajectory of the light emitted mainly by the high beam function so that the light whose trajectory has been modified is folded back so that it is redirected towards the image of the edge of the folder in the light beam.
  • An overlap of the light emitted by the high beam and dipped beam functions is therefore created, without a separation at the lens for the two functions being necessary.
  • the efficiency of the light module is therefore improved thanks to a better light intensity at the range.
  • the projection lens capable of forming the light beam with or without cut-off can therefore be a single lens and it is not necessary to have a significant modification of the lens, unlike known solutions.
  • the area modifying the trajectory of the light is compatible with cases in which the high beam/low beam lighting is not decoupled, or only partially decoupled.
  • a dual-function light module for a motor vehicle is proposed.
  • the dual-function light module ensures the projection of a light beam onto a scene which is the environment of the vehicle likely to be illuminated.
  • the dual-function light module according to the invention can be adapted to motor vehicles that can be any type of land vehicle, for example a car, a motorcycle, or a truck.
  • the vehicle can be equipped with one or more front headlights and/or one or more rear headlights.
  • One or more of the front and/or rear headlights can each comprise one or more optical devices each configured to project a light beam.
  • the dual-function light module according to the invention provides at least the following two functions.
  • the dual-function light module is capable of ensuring, that is to say of executing, a first function of emitting a light beam with cut-off, the cut-off delimiting a dark zone and an illuminated zone.
  • An example of a light beam with cut-off is illustrated by the FIG. 1 .
  • a cut-off light beam 100 comprises a "cut-off line" 101.
  • the cut-off line is created by a folder positioned in front of one or more of the light sources of the dual-function light module such that the cut-off line of the beam is an image of the edge of the folder by the projection lens.
  • the cut-off line marks a separation between an illuminated area 102 on the one hand and a dark area 103 on the other hand.
  • the use of a light beam with a cut-off line makes it possible to avoid dazzling another user or the driver, for example a vehicle coming from the front.
  • This first function without cut-off is the dipped beam function fitted to the headlights of motor vehicles.
  • the cut-off line may extend along one or more axes, depending on the regulations.
  • the cut-off line extends along the two axes 101a and 101b.
  • the orientation of these axes may be identical or different. If their orientation is identical, the two axes may be the same or parallel to each other. If, on the contrary, their orientation is different, then the cut-off line includes an angle formed by the intersection of these two axes, as illustrated in the FIG. 1 .
  • the cut-off line is preferably horizontal on the left when the direction of traffic is on the left and forms an angle of 15° on the right with respect to the horizontal to have better visibility of the verges; conversely when the direction of traffic is on the right.
  • the horizontal axis designates an axis parallel to the horizon of the scene in a plane of the projected image.
  • This horizontal axis can also be defined as being orthogonal to an axis perpendicular to a flat support on which the light module is arranged.
  • the cut-off line extends along the two main axes 101a and 101b of different inclinations: axis 101b is horizontal and axis 101a forms an angle with axis 101b.
  • the dual-function light module also provides a second function of emitting a light beam without cut-off.
  • This beam is characterized by the fact that the dark area when emitting a cut-off light beam is illuminated when using this second function.
  • This second function is a high beam function.
  • the dual-function light module according to the invention comprises two or more light sources that emit light rays, for example white light.
  • the light sources may be filament, plasma or gas light sources.
  • the light sources may also be sources - for example solid-state lighting sources - that comprise elements electroluminescent.
  • An electroluminescent element may be, but is not limited to, a light-emitting diode LED, an organic light-emitting diode OLED, a polymeric light-emitting diode PLED.
  • any light source meeting the possible regulatory constraints of the automotive field and capable of emitting light rays can be used.
  • a first light source is used with the first function and a second light source is used with the second function of the dual-function light module. It is understood that this does not exclude the possibility that the first light source is used with the second function.
  • the first light source and the second light source are used simultaneously when using the second function of emitting a light beam without cutoff of the dual-function light module; and only the first light source is used when using the first function of emitting a light beam with cutoff.
  • the illustrated dual-function light module also comprises one or more optical elements comprising diopters, otherwise known as dioptric elements.
  • An element is said to be dioptric when it is composed of materials having an optical index different from that of air.
  • the element comprises at least one transparent medium limited by diopters - for example an entry diopter and an exit diopter - which may be for example planar, convex, or concave.
  • diopter designates the surfaces separating the medium of the dioptric element, for example glass, from the medium in which the lens is located, for example air.
  • entity diopter designates the first diopter of a dioptric element encountered by the light rays which will pass through this dioptric element.
  • the "exit diopter” designates the last diopter of a dioptric element encountered by the light rays which have passed through this dioptric element.
  • Dioptrics are, for example, prisms, lenses, glass plates and more generally any transparent element comprising dioptres.
  • Each optical element can be characterised by a focus - when it exists - or object focus, which is the object point whose image by the optical element is at infinity.
  • object focus which is the object point whose image by the optical element is at infinity.
  • the dual-function light module is composed of several optical elements, all of these optical elements, which can be called an optical system, are characterised by their focus, which is the object point whose image by all of the optical elements is at infinity.
  • the light module also comprises a folder, as known in the art.
  • the folder is an element of the light module arranged so as to create a cut-off line when emitting a cut-off beam.
  • the folder therefore plays a role of cover which limits the diffusion of the light emitted by the first light source in a determined zone of the scene which is the environment of the vehicle likely to be illuminated by a dipped beam function.
  • the folder can be planar.
  • the folder can have a more complex shape; for example, it can be formed of at least two planes in order to form the cut-off in a cut-off beam.
  • Another example of a folder comprises two parallel planes and an inclined plane which makes the transition between the two planes.
  • any folder can be implemented in the light module according to the invention.
  • the folder can be arranged so that one of its edges is at the focus of the optical element or all of the optical elements.
  • the first and second light sources are arranged on either side of the folder, such that the folder is located between the two light sources.
  • the folder is oriented substantially parallel to the optical axis of the optical element or the optical system as the case may be.
  • the folder may be reflective. To achieve this, it may be covered with a reflective coating, for example a reflective film, or may comprise a reflective material.
  • One of the edges of the folder is arranged so as to give the required shape to the cut-off line; this edge is generally the one that is closest to the optical element of the light module.
  • this edge is the image of the edge of the folder which defines the “cut-off line” 101 of the cut-off light beam 100.
  • This edge of the folder which defines the cut-off line is called the cut-off edge of the folder.
  • the projected uncut light beam 200 comprises an image of the cut-off edge of the folder.
  • the folder has a non-zero thickness, as a result of which a slight hole is formed between the code zone 102, 202 and the road zone 103, 203.
  • the folder forms a contrast between the code zone and the road zone, i.e. at the cut-off line, because the intensity of the road zone is much higher than the intensity of the code zone.
  • the folder is typically positioned between the two light sources - the first and second light sources - and the image 201 of the cutting edge of the folder is projected as illustrated in the example of a beam without a cut-off of the FIG. 2 . Still in reference to the FIG.
  • the light beam 200 also includes the image of the edge of the folder 201, which breaks the homogeneity of the beam without a break.
  • the solid line curve 606 illustrates the intensity of a light beam emitted by the second function as a function of the emission direction expressed in degrees.
  • the part of the curve to the left of the ordinate axis 602 represents the code zone which has a lower intensity than the part of the curve located to the right of the ordinate axis which represents the road zone.
  • the image of the edge of the folder in the emitted light beam produces a drop in intensity which is notably visible in the space 604 which corresponds to the cut-off line. This loss of intensity is reflected on the FIG.
  • the illustrated dual-function light module comprises one or more optical elements which are capable of forming the light beam with or without cut-off and are arranged so as to correct the homogeneity of the uncut light beam emitted by the dual-function light module.
  • At least one optical element of the illustrated dual-function light module comprises at least one diopter which comprises one or more zones, each zone modifying the trajectory of a portion of the light, emitted by the second light source, passing through the optical element.
  • at least one of the diopters among those of the optical elements comprises one or more zones, a zone being a delimited surface of the diopter on which the zone rests.
  • Each of these zones modifies the trajectory of a portion of the light passing through the optical element emitted by the second light source used with the second function.
  • the modification of the trajectory is carried out so as to deflect the rays in the direction of the image of the edge of the folder to thus restore the homogeneity of the beam without cutoff.
  • the optical element therefore comprises one or more zones which redirect part of the light emitted by the second source, when using the function of emitting a beam without cut-off, towards zone 201, of the image of the edge of the folder.
  • the rays coming from the second source and passing through the deflection zones are deflected downwards. It is understood that the deflection may not be perfect, and that some of these deflected rays then arrive below the cut-off, that is to say in zone 202 of the FIG. 2 .
  • the areas are chosen so that sufficient light flux can be diverted to the image of the edge of the folder when using the second function. These areas are preferably chosen so that they have little or no effect on the light beam emitted by the first function.
  • the determination of the position and dimensions of a zone can be carried out using an analysis of the distribution of the luminous flux which contributes to the concentration zone (zone 204 illustrated in the FIG. 2 ) through the projection lens. More precisely, the distributions of the first luminous flux emitted by the first function and the second luminous flux emitted by the second function are used for this determination. The measurement of the distribution of a flux is carried out for the diopter on which the zone will be located.
  • the zone which is in fact an altered part of the diopter, will be used so as to modify the trajectory of a sufficient quantity of light so as to fill the image of the folder, corresponding to the loss of intensity, without impacting the distribution of the luminous flux emitted by the first function, that is to say without reducing the maximum intensity of the first function or without creating a defect in the homogeneity of the beam associated with the first function.
  • the following example details the determination of the position and dimension of a zone located on a diopter of one of the optical elements of the dual-function light module. It is understood that this example is in no way limiting, and that the dual-function light module may comprise several zones. The case where several zones are determined will be detailed later.
  • the first step is the measurement of the distribution of the luminous flux emitted by the first function and the measurement of the distribution emitted by the second function passing through the diopter of the optical element on which the zone will be arranged.
  • the measurements of the respective distributions of the first and second luminous fluxes passing through the optical element of the light module are carried out using known instrumentation and techniques.
  • the measurement can be carried out for a part of the parts of the light beams emitted by the first function and the second function; for this, a diaphragm associated with a pupil can be used.
  • the part of the beam corresponding to the range of the beam is preferably selected: this means that the light rays of the range are selected which designate the light rays close to the cut-off line, in the axis of the road.
  • the range of the light module according to the invention is defined relative to an orthonormal reference frame comprising three axes X, Y, Z.
  • This reference frame is reported for all the figures.
  • This reference frame comprises an X axis, denoted 410, a Y axis denoted 412, and a Z axis denoted 414.
  • the X axis corresponds to an axis parallel to the horizon and passing through the optical center of the optical element.
  • the X axis is therefore coincident with the axis of the road, and therefore the optical axis of the module, and therefore of the projection lens.
  • the positive direction of this axis is oriented towards the reverse gear of the vehicle.
  • the Y axis is the axis perpendicular to the X axis and also passes through the optical center of the optical element.
  • the Z axis is the axis which is perpendicular to the X and Y axes, and which is coincident with the optical axis of the optical element.
  • the orthonormal reference frame is therefore preferably centered on the optical axis of the optical element of the light module. In another example, the orthonormal reference frame may be centered on an equivalent optical center when the module comprises a centered optical system.
  • the Z axis coincides with the optical axis of the light module; this Z axis is also the axis with which the folder may coincide.
  • the light rays contributing to the range are the light rays within the beam space defined by the intervals [-5°,5°] inclusive horizontally, on the X axis, and between [-2°;2°] inclusive vertically, on the Y axis.
  • the range is delimited by box 204 on the FIG. 2 .
  • Measurements of the distribution of luminous fluxes make it possible to obtain a map of the luminous flux at the exit of the diopter or at the exit of a part of the diopter in which the fluxes are represented with isolux curves: these are closed curves (or contour lines), composed of points that have the same illuminance value on the diopter.
  • the flux is the sum of the illuminances integrated on the surface of the diopter or on a zone of the diopter and can be noted
  • F ⁇ E dS with F being the flux, E being the illuminance and S being the surface. It will be understood that any other representation of these measurements is possible.
  • a graphical representation of the measurements is not mandatory, that is to say that only the values of the luminous flux measurements carried out must be kept because they will be used for the second step of determining the position and dimension of a zone, described later.
  • FIG. 4 And FIG. 5 illustrate two examples of measurements of the distributions of a luminous flux at the output of a dual-function light module comprising an optical element, for example a projection lens.
  • the FIG. 4 illustrates the distribution of the luminous flux of the beam emitted by the first function, i.e. the dipped beam function, passing through the diopter of the optical element on which the zone will be located.
  • the FIG. 5 illustrates the distribution of the luminous flux of the beam emitted by the second function, i.e. the high beam function, across the diopter of the optical element on which the zone will be located.
  • the measurement is carried out in these examples for the range of the beams emitted by the first function and emitted by the second function.
  • the Z axis of the ordinates 412 and the Y axis of the abscissas 410 represent the position for which the illumination is measured. More precisely, the axis of the abscissas 410 denoted Y corresponds to an axis parallel to the horizon passing for example through the optical center of the optical element comprising the diopter on which the zone will be located, and the axis of the ordinates 412 denoted Z is the axis perpendicular to the axis 410 which can also pass through the optical center of the optical element.
  • the axes Y and Z can in another example have as a common origin an equivalent optical center when the module comprises a centered optical system.
  • FIG. 4 And FIG. 5 therefore represent isolux curves representing different illumination values.
  • the FIG. 4 is divided into four strips 400, 401, 402, 403. Each of these strips is of regular shape (here rectangular) and is parallel to a horizontal axis of the range of the light module, which is noted Y in the figure.
  • the strips can all have the same dimension (lengths along the Y axis and heights along the Z axis identical), or else have different dimensions.
  • the number of strips can vary; for information purposes, the number of strips can be between 1 and 100, inclusive. Preferably, the number of strips is between 2 and 8, inclusive.
  • the strips do not overlap, that is, they can be placed at most one against the other.
  • the bands of FIG. 4 And 5 are identical, that is, they have the same dimensions and the same coordinates relative to the Y and Z axes of the reference frame.
  • the illuminance is summed to calculate the luminous flux passing through each band.
  • the calculated value is indicated on the right part of each of the bands 400 to 403. It appears that not all the bands have the same contribution to the emitted lighting.
  • the 400 band contributes little to overall illumination because the dipped beam function shown on the FIG. 4 must not emit any light above the cut-off line.
  • the 400 band is the one with the highest luminous flux because the high beam function shown on the FIG. 5 requires that light be strongly emitted above the cut-off line.
  • the 400 band contributes strongly to the FIG. 5 , that is to say the flux crossing the zone is high.
  • the 400 band contributes weakly on the FIG. 4 , that is to say that the flow crossing the area is weak.
  • band 403 has a contribution that is similar in both functions shown.
  • the band 400 can constitute an interesting zone for modifying the trajectory of a portion of the light, emitted by the second light source, passing through the optical element.
  • a zone (or even several zones) is located on the band. All or part of the band can serve as a zone. In all cases, a zone is located on a portion of the surface of the diopter.
  • the band 400 is an interesting zone; it offers the possibility of being able to deflect a sufficient luminous flux towards the image of the edge of the folder when using the second function, while modifying little or not at all the light beam emitted by the first function.
  • the band 400 can comprise and be chosen as a light deflection zone because it contributes strongly to the second function (high beam) and very weakly to the first function (low beam).
  • the division into bands of the projection of the luminous fluxes of the beams of the first function and of the second function can be carried out by relying on the distribution of the luminous flux of the light beam emitted by the second function, by identifying a region of the light beam emitted by the light module in which the luminous flux of the second function is high.
  • the upper part of the map is the one that presents the most interesting characteristics as explained previously.
  • a 400 band can therefore be defined at the level of this part of the map. It is understood that the division into bands can be carried out first of all on the distribution of the luminous flux of the first function, and then be carried over to the distribution of the luminous flux of the second function.
  • a second step includes the calculation of the position and dimension of the area.
  • the positioning and dimensioning of the area must be carried out (i) such that an area has a second luminous flux passing through it that is sufficient when using the second function of emitting a beam without cutoff so that a portion of the light whose trajectory will be modified by the area is sufficient to fill the image of the folder in order to eliminate the homogeneity defects of the beam without cutoff, and (ii) such that an area has a first luminous flux passing through it that is low when using the first function of emitting a light beam with cutoff so that little or no light emitted by the first function has its trajectory modified by the area.
  • a ratio between the measurement of the second luminous flux in the area emitted by the second function and the measurement of the first luminous flux in the same area emitted by the first function is calculated.
  • the higher this ratio the lower the luminous flux of the first function and the higher the luminous flux of the second function, which makes it possible to achieve the two conditions presented above.
  • this ratio decreases, the modification of the diopter in the area concerned will lead to a risk of a drop in performance for the first function with cut-off and insufficient homogeneity for the second function without cut-off.
  • the ratio is calculated for all points of the light beam exiting the diopter or part of the diopter for which the distribution of the luminous flux has been measured.
  • a graphical representation of the ratio thus calculated can be obtained; for example a map similar to that of FIG. 4 And FIG. 5 , where the curves would then represent the ratio between the luminous flux of the second function and the luminous flux of the first function.
  • Different regions can be identified on such a map according to the values of the calculated ratio. For example, a region having a higher value of the calculated ratio than the others can be identified; the region typically has a band shape and has a ratio value that is greater than a determined value.
  • a region therefore corresponds to an arbitrary surface of the diopter for which there is a high flux ratio, i.e. which is equal to or greater than a determined ratio value.
  • the arbitrary surface has an area that can be defined according to an average value of the calculated ratio.
  • the arbitrary surfaces can take the form of bands that extend parallel to the X axis 410 of the reference frame. These bands have a non-zero height along the Y axis 412 of the reference frame. Preferably, the height of a band is chosen such that the band encompasses the starting area of a peak of a calculated ratio.
  • the calculation of the ratio is carried out using the bands defined on the projection of the luminous fluxes of the beams of the first function and the second function, bands illustrated on the FIGs. 4 And 5 .
  • the result of the division of each emitted beam is identical: the bands have identical coordinates in the reference frame (X, Y, Z), regardless of the function performed by the module.
  • the divisions obtained on each of the two beams so that it is possible to create pairs of divisions, for example bands, in which each pair comprises two divisions having the same coordinates in the reference frame.
  • a ratio between the average luminous flux of the second function in one band of the pair and the average luminous flux of the first function in the other band of the pair can be calculated.
  • a zone is selected based on this calculation.
  • the selection of a area is now discussed. Several criteria may be used, alone or in combination, to determine which band(s) or area(s) is/are selected.
  • Selecting an area can include selecting the band with the highest calculated ratio, or selecting the arbitrary area with the highest ratio.
  • the selection of an area may comprise selecting one or more of the previously obtained bands having a high calculated ratio, or selecting one or more of the arbitrary surfaces around the regions that have a high density of points having a high luminous flux ratio.
  • a predetermined threshold i.e. a determined value
  • the threshold value may therefore be chosen arbitrarily, for example the ratio must be greater than or equal to 4.
  • zones are located at a distance greater than or equal to 10 millimeters from the center of the lens upwards - i.e. 10 mm from the horizontal axis 410. Indeed, these zones are located on a part of the diopter which is mainly used when using the second function. This distance ensures that these zones will modify the trajectory of a part of the light emitted by the second function, and will not modify the light emitted by the first function, or will only modify the trajectory of a very small part of the light emitted by the first function.
  • said one or more zones are preferably located outside a central zone of the lens which is the zone of the lens transmitting the most light of the light beam. It is therefore preferable for the zone(s) to be sufficiently far from the center of the lens
  • zones may be present in a dual-function light module.
  • the optical element comprises several zones, these zones may be arranged on the same diopter or on separate diopters of the optical element.
  • the determination of the position and dimensions of each zone is done sequentially, that is to say that a new ratio is calculated at each time a zone has been added to the diopter.
  • the measurement of the distribution of the luminous flux is carried out at the output of the diopter so as to have a flux measurement taking into account the effects of the presence of the previously determined zones.
  • the optical element according to the invention is a lens which is by definition the association of two diopters.
  • the diopters can be, but are not limited to, planar, concave, convex diopters.
  • FIG. 6 illustrates an example of correction 600 of the intensity at the output of the light module before and after correction by the optical element of the light module according to the invention.
  • the ordinate axis 602 represents a measurement of the intensity at the output of the light module and the abscissa axis 603 represents the angle of the direction towards which this intensity is evaluated.
  • the solid line curve 606 illustrates the intensity of a light beam emitted by the second function as a function of the emission direction expressed in degrees.
  • the image of the folder in the emitted light beam produces a drop in intensity which is notably visible in the space 604 which corresponds to the cut-off line.
  • This loss of intensity is reflected on the FIG. 6 by the fact that the curve 606, at the portion 608, does not increase.
  • the curve 605, in dotted lines, represents the measured intensity of a new light beam by a light module according to the invention for which a correction has been applied by the optical element of the light module.
  • the correction makes it possible to modify the beam only in the space 604, that is to say that the modified zone is located and dimensioned so that the intensity curve is smoothed to reduce the intensity "well" of the curve 606 at the space 604 which is caused by the image of the folder.
  • the zone(s) for altering the path of a portion of the light may include deformations of the diopter(s) at the zones.
  • a deformation at the zone means the presence of an alteration of the diopter or deformation of the diopter.
  • the thickness of the lens at the zone may be reduced so as to form a prism that alters the path of all light passing through it.
  • the prism may alter only a portion of the light passing through it.
  • FIGs. 3 , 7 And 10 Examples of areas are illustrated by the FIGs. 3 , 7 And 10 .
  • FIG. 3 illustrates an example not covered by the invention, of a cross-sectional view of a plano-convex lens which comprises a first planar diopter 314 and a second convex diopter 302.
  • This is a cross-sectional representation of the lens according to the plane (Y, Z) of the reference frame 314.
  • the convex diopter 302 comprises a zone 306 which was obtained after having deformed the surface 304 of the diopter: the material between the zone 306 and the surface 304 was removed.
  • the thickness 310 of the diopter at the level of zone 306 has been reduced compared to the thickness 312 of the undeformed diopter.
  • the deformation at the area 304 forms a prism that modifies the trajectory of all or part of the light passing through it.
  • the prism thus formed comprises a flat surface 306 which was obtained in this example by removing material from the lens at the area. This means that material between the edges of the area located on the diopter of the lens has been removed. It can be seen that the surface of the diopter 306 is inclined relative to the plane diopter 314 at an angle, called the inclination angle, between the area 306 and the plane diopter.
  • the inclination of the area 306 relative to the area 304 of the convex diopter 302 is greater, thus causing a modification of the trajectory of part of the light, emitted by the second light source, passing through the optical element: the light is deflected (one can also say folded down) downwards.
  • the edges of the lens are refined, so that the diopters of the lens are parallel.
  • the light is bent at an angle called the bending angle.
  • the bending angle is proportional to the inclination of the place face 306 of the prism. This angle is the angle formed by the respective normals between the surface 306 and the surface 304.
  • the deviation of the part of the light emitted by the second light source by the zone is a function of the distance of the zone from the horizontal axis passing through the optical center of the lens. On the FIG. 3 , this distance is measured on the Z axis which is perpendicular to the horizontal Y axis.
  • the function will take negative values when the distance of the zone is positive.
  • the distance of the zone is positive when the zone is located above the cut-off line; in practice, this is equivalent to saying that the function takes negative values when all or part of the zone is located above the horizontal Y axis.
  • the function can be a discontinuous function, or a continuous function that can be differentiable piecewise.
  • the modification of the trajectory of all or part of the light passing through the zone is a deviation of light.
  • the deviation is such that the light is deflected downwards to provide additional light rays at the dark spot created by the image of the folder in the light beam, and therefore to homogenize the light beam without cutoff emitted by the second function.
  • the area present on a diopter causes a change in the deflection angle at the output of the optical element, and therefore a modification of the trajectory compared to the case where the diopter of the optical element has not undergone any alteration or deformation.
  • FIG. 10 illustrates an example of an optical element that can be used with the dual-function light module according to the invention, and in which a zone is located on the plane diopter 1040 of a plano-convex lens.
  • the optical element is shown in sectional view in the plane (Y,Z) of the common reference frame 1014.
  • the surface of the convex diopter 1020 is not altered: the surface 1070 of the plane diopter has been altered by removing material between the zone 1010 and the surface 1070. In the figure, the material removed is between the lines shown in dotted lines.
  • the thickness 1080 of the lens has been reduced by a thickness 1090.
  • the zone(s) may be located on the input diopter and/or the output diopter of an optical element.
  • the area and the deformation associated with the area are located on the output diopter of the optical element, while on the FIG. 10 , and according to the invention, the zone and the deformation associated with the zone are located on the entrance diopter of the optical element.
  • FIG. 7 illustrates an example not covered by the invention, in which the optical element is a lens 700 which has zero or substantially zero optical power; in this example the optical element is a plate. In theory, only an ideal plate has zero optical power.
  • the FIG. 7 illustrates a cross-sectional view of the optical element in the plane (Y,Z) of the common reference frame 714.
  • the exit diopter of this optical element has a zone 702.
  • the diopter before alteration is indicated by the reference 710 and the material removed is shown in dotted lines.
  • the zone 702 forms a prism with the entrance diopter 712.
  • the edge 706 of the plate close to the prism has a thickness less than the opposite edge of the plate 708. As illustrated by the FIG.
  • the lens of zero power is associated with one or more lenses with non-zero powers forming the light beam emitted by the light module.
  • the lens of zero power can be placed before the other lens(es): the principle of adding optical effects therefore makes it possible to obtain, when using the second function, a homogeneous light beam.
  • FIG. 8 illustrates an example not covered by the invention of an optical element which is a lens 800 of substantially zero optical power, as in the example of the FIG. 7 .
  • the lens is represented in the common reference frame 814.
  • This lens 804 is a blade and comprises a zone 802 which modifies the trajectory of a portion of the light passing through the optical element.
  • Streaks are arranged on an upper part 803 of the optical element which encompasses the zone 802: the upper part 803 extends on either side of the zone 802 along the X axis of the reference frame.
  • the zone 802 is free of streaks.
  • the streaks are an optical structure whose function is to homogenize the light beam by creating a blur: the streaks locally deflect the incident light rays.
  • FIG. 9 illustrates the cross-sectional view of these striations in the plane (Y,Z), in the common reference frame 814, which are semi-circular structures 901, with a width 903 varying between 0.5 mm and 2 mm, limits included, and which are not covered by the invention.
  • These are shallow grooves, which may be lines, rectilinear or curved, varying the thickness 905 along the z axis of the reference frame 814. Still in the example of the FIG.
  • the portion 805 of the blade located under the zone 802 and the portion 804 of the blade located under the grooved upper part are devoid of grooves in order to prevent the grooves from altering the cut-off line: in fact, the zone 802 and the parts of the diopter 804 and 805 are crossed by rays participating in the range of the first function of emitting a cut-off beam.
  • the portion 805 defines the central zone mentioned above.
  • the light module according to the invention can be used within a vehicle.
  • a headlight can comprise one or more light modules, each of the light modules being a dual-function module.
  • the light modules can be identical, or different according to the examples described.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Description

DOMAINE DE L'INVENTIONFIELD OF THE INVENTION

L'invention se rapporte au domaine des projecteurs pour véhicule automobile pouvant assurer par exemple les fonctions de feux de route et/ou de croisement et/ou de brouillard. L'invention se rapporte en particulier aux modules lumineux bifonction, intégrés à ces projecteurs, et permettant d'assurer au moins deux des fonctions citées.The invention relates to the field of headlights for motor vehicles which can provide, for example, the functions of high beam and/or dipped beam and/or fog lights. The invention relates in particular to dual-function light modules, integrated into these headlights, and making it possible to provide at least two of the functions mentioned.

ARRIÈRE-PLANBACKGROUND

La projection d'un faisceau lumineux par un projecteur de véhicule automobile permet classiquement d'éclairer la route et ainsi d'augmenter la visibilité en cas d'obscurité, par exemple de nuit. Cela permet une conduite sécurisée du véhicule.The projection of a light beam by a motor vehicle headlight is traditionally used to illuminate the road and thus increase visibility in the dark, for example at night. This allows the vehicle to be driven safely.

Les projecteurs exécutent habituellement des fonctions de feux de croisement, de feux de route, ou encore de feux de brouillard. Les feux de croisement se distinguent des autres feux car ils comportent une coupure pour ne pas éblouir les autres usagers, notamment ceux venant en face du véhicule. Cette coupure, qui se matérialise sous la forme d'une « ligne de coupure », crée une zone de transition entre une zone éclairée et une zone sombre. La forme de la ligne de coupure est généralement soumise à une règlementation, par exemple le règlement R123 ECE ou R112 ECE.Headlights usually perform the functions of dipped beam, main beam or fog lights. Dipped beam headlights are distinguished from other lights because they have a cut-off to avoid dazzling other road users, particularly those coming towards the vehicle. This cut-off, which takes the form of a "cut-off line", creates a transition zone between a lit area and a dark area. The shape of the cut-off line is generally subject to regulations, for example regulation R123 ECE or R112 ECE.

Les feux de route sont des faisceaux « pleins » ne comportant pas de zone sombre. Ainsi, il existe des modules lumineux bifonctions, permettant d'assurer une fonction de feu de croisement et une des fonctions de feu de route ou de feu de brouillard. Un tel module bifonction comporte une plieuse, permettant de former une ligne de coupure qui respecte les contraintes règlementaires. La ligne de coupure est créée par la plieuse positionnée devant une source lumineuse de sorte que la ligne de coupure du faisceau est une image du bord de la plieuse formée par la lentille de projection.High beams are "full" beams with no dark area. Thus, there are dual-function light modules, allowing a dipped beam function and one of the high beam or fog light functions. Such a dual-function module includes a folder, allowing a cut-off line to be formed that complies with regulatory constraints. The cut-off line is created by the folder positioned in front of a light source so that the beam cut-off line is an image of the edge of the folder formed by the projection lens.

Un tel module lumineux bifonction comprenant une plieuse est par exemple décrit dans les demandes de brevet WO2013-120121 A1 , DE 10 2012 203 929 B3 , DE 10 2016 122 860 A1 et CN 106 813 176 A .Such a dual-function light module comprising a folder is for example described in the patent applications WO2013-120121 A1 , FROM 10 2012 203 929 B3 , FROM 10 2016 122 860 A1 And CN 106 813 176 A .

Néanmoins, de tels modules lumineux bifonctions ont un inconvénient majeur. La plieuse est fixe, c'est-à-dire qu'elle reste présente lorsque la fonction feux de route est exécutée. Ainsi, lorsqu'une fonction de feu de route est utilisée, une image de la plieuse est projetée, créant un espace sombre de la forme de cette plieuse dans le faisceau projeté. Le contraster ainsi créé dans le faisceau est inconfortable pour l'usager du véhicule.However, such dual-function light modules have a major drawback. The bender is fixed, i.e. it remains present when the high beam function is executed. Thus, when a high beam function is used, an image of the bender is projected, creating a dark space of the shape of this bender in the projected beam. The contrast thus created in the beam is uncomfortable for the vehicle user.

Dans ce contexte, il existe un besoin pour améliorer l'homogénéité d'un faisceau lumineux sans coupure émis par un module lumineux bifonction.In this context, there is a need to improve the homogeneity of an uncut light beam emitted by a dual-function light module.

RÉSUMÉ DE L'INVENTIONSUMMARY OF THE INVENTION

Il est proposé un module lumineux pour véhicule automobile selon la revendication 1.There is provided a light module for a motor vehicle according to claim 1.

Le module lumineux peut en outre comprendre :

  • le prisme formé comprenant une surface plane obtenue par retrait de matière de la lentille optique comprenant les dioptres ;
  • la plieuse comprend des surfaces réfléchissantes ;
The light module may further include:
  • the formed prism comprising a flat surface obtained by removal of material from the optical lens comprising the diopters;
  • the folder includes reflective surfaces;

Il est également proposé un projecteur comprenant au moins un module lumineux selon l'invention.A projector comprising at least one light module according to the invention is also provided.

Le module lumineux selon l'invention améliore l'homogénéité d'un faisceau lumineux sans coupure émis par un module lumineux bifonction. La transition entre la lumière émise par la fonction feu de route et la lumière émise par la fonction feu de croisements se fait de manière continue et est lissée. Le conducteur n'est plus dérangé par cette anomalie (une zone moins éclairée ou sombre) présente dans le faisceau lumineux émis par le module lumineux. En effet, le module lumineux corrige la chute d'intensité lumineuse au niveau de la jonction feu de route/feu de croisement lorsque les deux fonctions sont activées. Notamment, la lentille de projection qui forme le faisceau lumineux comprend une zone qui modifie la trajectoire de la lumière émise principalement par la fonction feu de route de sorte que la lumière donc la trajectoire a été modifiée est rabattue pour qu'elle soit redirigée vers l'image du bord de la plieuse dans le faisceau lumineux. Un recouvrement de la lumière émise par les fonctions feu de route et feu de croisement est donc créé, sans qu'une séparation au niveau de la lentille pour les deux fonctions ne soit nécessaire. L'efficacité du module lumineux est donc améliorée grâce à une meilleure intensité lumineuse au niveau de la portée. La lentille de projection apte à former le faisceau lumineux avec ou sans coupure, peut donc être une unique lentille et il n'est pas nécessaire d'avoir une modification importante de la lentille, à l'inverse des solutions connues. La zone modifiant la trajectoire de la lumière est compatible avec des cas dans lesquels l'éclairage feu de route/feu de croisement n'est pas découplé, ou seulement partiellement découplé.The light module according to the invention improves the homogeneity of a light beam without interruption emitted by a dual-function light module. The transition between the light emitted by the high beam function and the light emitted by the dipped beam function is continuous and smoothed. The driver is no longer disturbed by this anomaly (a less illuminated or dark area) present in the light beam emitted by the light module. Indeed, the light module corrects the drop in light intensity at the high beam/dipped beam junction when the two functions are activated. In particular, the projection lens that forms the light beam comprises a zone that modifies the trajectory of the light emitted mainly by the high beam function so that the light whose trajectory has been modified is folded back so that it is redirected towards the image of the edge of the folder in the light beam. An overlap of the light emitted by the high beam and dipped beam functions is therefore created, without a separation at the lens for the two functions being necessary. The efficiency of the light module is therefore improved thanks to a better light intensity at the range. The projection lens capable of forming the light beam with or without cut-off can therefore be a single lens and it is not necessary to have a significant modification of the lens, unlike known solutions. The area modifying the trajectory of the light is compatible with cases in which the high beam/low beam lighting is not decoupled, or only partially decoupled.

BRÈVE DESCRIPTION DES FIGURESBRIEF DESCRIPTION OF THE FIGURES

Différents exemples de l'invention, nullement limitatifs, vont maintenant être décrits en se référant aux dessins annexés dans lesquels :

  • FIG. 1 illustre un exemple de faisceau lumineux à coupure projeté par un module bifonction ;
  • FIG. 2 illustre un exemple de faisceau lumineux sans coupure projeté par un module bifonction ;
  • FIG. 3 illustre un premier exemple d'élément optique non couvert par l'invention ;
  • FIG. 4 illustre un exemple de répartition de l'éclairement sur la lentille de projection du module Bifonction crée par les rayons lumineux qui contribuent à la zone de concentration du faisceau en position de feu de croisement ;
  • FIG. 5 illustre un exemple de répartition de l'éclairement sur la lentille de projection du module Bifonction crée par les rayons lumineux qui contribuent à la zone de concentration du faisceau en position de feu de route ;
  • FIG. 6 illustre un exemple de l'intensité en sortie du module lumineux avant et après correction par l'élément optique du module lumineux selon l'invention ;
  • FIG. 7 illustre un deuxième exemple d'élément optique non couvert par l'invention ;
  • FIG. 8 illustre un troisième exemple d'élément optique non couvert par l'invention ;
  • FIG. 9 illustre une vue en coupe d'un exemple de stries pouvant être disposées sur l'élément optique, non couvert par l'invention ;
  • FIG. 10 illustre un quatrième exemple d'élément optique selon l'invention.
Various examples of the invention, which are not limiting in any way, will now be described with reference to the attached drawings in which:
  • FIG. 1 illustrates an example of a cut-off light beam projected by a dual-function module;
  • FIG. 2 illustrates an example of an uninterrupted light beam projected by a dual-function module;
  • FIG. 3 illustrates a first example of an optical element not covered by the invention;
  • FIG. 4 illustrates an example of the distribution of illumination on the projection lens of the Bifunction module created by the light rays which contribute to the beam concentration zone in the dipped beam position;
  • FIG. 5 illustrates an example of the distribution of illumination on the projection lens of the Bifunction module created by the light rays which contribute to the beam concentration zone in the high beam position;
  • FIG. 6 illustrates an example of the output intensity of the light module before and after correction by the optical element of the light module according to the invention;
  • FIG. 7 illustrates a second example of an optical element not covered by the invention;
  • FIG. 8 illustrates a third example of an optical element not covered by the invention;
  • FIG. 9 illustrates a cross-sectional view of an example of striations that can be arranged on the optical element, not covered by the invention;
  • FIG. 10 illustrates a fourth example of an optical element according to the invention.

DESCRIPTION DETAILLEEDETAILED DESCRIPTION

II est proposé un module lumineux bifonction pour véhicule automobile. Le module lumineux bifonction assure la projection d'un faisceau lumineux sur une scène qui est l'environnement du véhicule susceptible d'être éclairé.A dual-function light module for a motor vehicle is proposed. The dual-function light module ensures the projection of a light beam onto a scene which is the environment of the vehicle likely to be illuminated.

Le module lumineux bifonction selon l'invention peut être adapté aux véhicules automobiles pouvant être tout type de véhicule terrestre, par exemple une automobile voiture, une motocyclette, ou un camion. Le véhicule peut être équipé d'un ou plusieurs projecteurs avant et/ou d'un ou plusieurs projecteurs arrière. L'un ou plusieurs des projecteurs avant et/ou arrière peuvent comprendre chacun un ou plusieurs dispositifs optiques configurés chacun pour projeter un faisceau lumineux. Le module lumineux bifonction selon l'invention assure au moins les deux fonctions suivantes.The dual-function light module according to the invention can be adapted to motor vehicles that can be any type of land vehicle, for example a car, a motorcycle, or a truck. The vehicle can be equipped with one or more front headlights and/or one or more rear headlights. One or more of the front and/or rear headlights can each comprise one or more optical devices each configured to project a light beam. The dual-function light module according to the invention provides at least the following two functions.

Le module lumineux bifonction est apte à assurer, c'est-à-dire à exécuter, une première fonction d'émission d'un faisceau lumineux à coupure, la coupure délimitant une zone sombre et une zone éclairée. Un exemple de faisceau lumineux à coupure est illustré par la FIG. 1. Un faisceau lumineux à coupure 100 comprend une « ligne de coupure » 101. La ligne de coupure est créée par une plieuse positionnée devant une ou plusieurs des sources lumineuses du module lumineux bifonction de sorte que la ligne de coupure du faisceau est une image du bord de la plieuse par la lentille de projection. La ligne de coupure marque une séparation entre une zone éclairée 102 d'une part et une zone sombre 103 d'autre part. L'utilisation d'un faisceau lumineux à ligne de coupure permet d'éviter l'éblouissement d'un autre usager ou du conducteur, par exemple un véhicule venant de face. Cette première fonction sans coupure est la fonction de feu de croisement équipant les projecteurs des véhicules automobiles.The dual-function light module is capable of ensuring, that is to say of executing, a first function of emitting a light beam with cut-off, the cut-off delimiting a dark zone and an illuminated zone. An example of a light beam with cut-off is illustrated by the FIG. 1 . A cut-off light beam 100 comprises a "cut-off line" 101. The cut-off line is created by a folder positioned in front of one or more of the light sources of the dual-function light module such that the cut-off line of the beam is an image of the edge of the folder by the projection lens. The cut-off line marks a separation between an illuminated area 102 on the one hand and a dark area 103 on the other hand. The use of a light beam with a cut-off line makes it possible to avoid dazzling another user or the driver, for example a vehicle coming from the front. This first function without cut-off is the dipped beam function fitted to the headlights of motor vehicles.

Comme illustré sur la FIG. 1, la ligne de coupure peut s'étendre suivant un ou plusieurs axes, dépendant des règlementations. Dans l'exemple de la FIG. 1, la ligne de coupure s'étend selon les deux axes 101a et 101b. L'orientation de ces axes peut être identique ou différente. Si leur orientation est identique, les deux axes peuvent être confondus ou bien parallèles entre eux. Si au contraire leur orientation est différente, alors la ligne de coupure comprend un angle formé par l'intersection de ces deux axes, comme illustré sur la FIG. 1. La ligne de coupure est de préférence horizontale à gauche lorsque le sens de circulation est à gauche et forme un angle de 15° à droite par rapport à l'horizontale pour avoir une meilleure visibilité des bas-côtés; inversement lorsque le sens de circulation est à droite. Ici, l'axe horizontal désigne un axe parallèle à l'horizon de la scène dans un plan de l'image projetée. Cet axe horizontal peut être également défini comme étant orthogonal à un axe perpendiculaire à un support plan sur lequel est disposé le module lumineux. Toujours dans l'exemple de la FIG. 1, la ligne de coupure s'étend selon les deux axes principaux 101a et 101b d'inclinaison différentes : l'axe 101b est horizontal et l'axe 101a forme un angle avec l'axe 101b.As illustrated in the FIG. 1 , the cut-off line may extend along one or more axes, depending on the regulations. In the example of the FIG. 1 , the cut-off line extends along the two axes 101a and 101b. The orientation of these axes may be identical or different. If their orientation is identical, the two axes may be the same or parallel to each other. If, on the contrary, their orientation is different, then the cut-off line includes an angle formed by the intersection of these two axes, as illustrated in the FIG. 1 . The cut-off line is preferably horizontal on the left when the direction of traffic is on the left and forms an angle of 15° on the right with respect to the horizontal to have better visibility of the verges; conversely when the direction of traffic is on the right. Here, the horizontal axis designates an axis parallel to the horizon of the scene in a plane of the projected image. This horizontal axis can also be defined as being orthogonal to an axis perpendicular to a flat support on which the light module is arranged. Still in the example of the FIG. 1 , the cut-off line extends along the two main axes 101a and 101b of different inclinations: axis 101b is horizontal and axis 101a forms an angle with axis 101b.

Le module lumineux bifonction assure également une deuxième fonction d'émission d'un faisceau lumineux sans coupure. Ce faisceau est caractérisé par le fait que la zone sombre lors de l'émission d'un faisceau lumineux à coupure est éclairée lors de l'utilisation de cette deuxième fonction. Cette deuxième fonction est une fonction de feu de route
Le module lumineux bifonction selon l'invention comprend deux ou plus sources lumineuses qui émettent des rayons lumineux, par exemple de la lumière blanche. Les sources lumineuses peuvent être des sources lumineuses à filament, à plasma, ou encore à gaz. Les sources lumineuses peuvent également être des sources - par exemple des sources lumineuses à état solide acronyme de l'anglais solid-state lighting - qui comprennent des éléments électroluminescents. Un élément électroluminescent peut-être, mais n'est pas limité à, une diode électroluminescente LED, une diode électroluminescente organique OLED, une diode électroluminescente polymérique PLED. Ainsi, on comprend que toute source lumineuse répondant aux éventuelles contraintes règlementaires du domaine automobile et apte à émettre des rayons lumineux peut être utilisée.
The dual-function light module also provides a second function of emitting a light beam without cut-off. This beam is characterized by the fact that the dark area when emitting a cut-off light beam is illuminated when using this second function. This second function is a high beam function.
The dual-function light module according to the invention comprises two or more light sources that emit light rays, for example white light. The light sources may be filament, plasma or gas light sources. The light sources may also be sources - for example solid-state lighting sources - that comprise elements electroluminescent. An electroluminescent element may be, but is not limited to, a light-emitting diode LED, an organic light-emitting diode OLED, a polymeric light-emitting diode PLED. Thus, it is understood that any light source meeting the possible regulatory constraints of the automotive field and capable of emitting light rays can be used.

Une première source lumineuse est utilisée avec la première fonction et une deuxième source lumineuse est utilisée avec la deuxième fonction du module lumineux bifonction. On comprend que cela n'exclut pas la possibilité que la première source lumineuse soit utilisée avec la deuxième fonction. Ainsi, la première source lumineuse et la deuxième source lumineuse sont utilisées simultanément lors de l'utilisation de la deuxième fonction d'émission d'un faisceau lumineux sans coupure du module lumineux bifonction ; et seule la première source lumineuse est utilisée lors de l'utilisation de la première fonction d'émission d'un faisceau lumineux à coupure.A first light source is used with the first function and a second light source is used with the second function of the dual-function light module. It is understood that this does not exclude the possibility that the first light source is used with the second function. Thus, the first light source and the second light source are used simultaneously when using the second function of emitting a light beam without cutoff of the dual-function light module; and only the first light source is used when using the first function of emitting a light beam with cutoff.

Le module lumineux bifonction illustré comprend également un ou plusieurs éléments optiques comprenant des dioptres, autrement dits des éléments dioptriques. Un élément est dit dioptrique lorsqu'il est composé de matériaux ayant un indice optique différente de celui de l'air. L'élément comprend au moins un milieu transparent limité par des dioptres -par exemple un dioptre d'entrée et un dioptre de sortie- qui peuvent être par exemple plans, convexes, ou concaves. Le terme dioptre désigne les surfaces séparant le milieu de l'élément dioptrique, par exemple le verre, avec le milieu dans lequel se trouve la lentille, par exemple l'air. La terminologie « dioptre d'entrée » désigne le premier dioptre d'un élément dioptrique rencontré par les rayons lumineux qui vont traverser cet élément dioptrique. Par analogie, le « dioptre de sortie » désigne le dernier dioptre d'un élément dioptrique rencontré par les rayons lumineux qui ont traversé cet élément dioptrique. Sont par exemple dioptriques des prismes, lentilles, plaques de verre et plus généralement tout élément transparent comportant des dioptres. Chaque élément optique peut être caractérisé par un foyer - lorsqu'il existe -, ou foyer objet, qui est le point objet dont l'image par l'élément optique se trouve à l'infini. Lorsque le module lumineux bifonction est composé de plusieurs éléments optiques, l'ensemble de ces éléments optiques, pouvant être appelé système optique, est caractérisé par son foyer, qui est le point objet dont l'image par l'ensemble des éléments optiques se trouve à l'infini.The illustrated dual-function light module also comprises one or more optical elements comprising diopters, otherwise known as dioptric elements. An element is said to be dioptric when it is composed of materials having an optical index different from that of air. The element comprises at least one transparent medium limited by diopters - for example an entry diopter and an exit diopter - which may be for example planar, convex, or concave. The term diopter designates the surfaces separating the medium of the dioptric element, for example glass, from the medium in which the lens is located, for example air. The terminology "entry diopter" designates the first diopter of a dioptric element encountered by the light rays which will pass through this dioptric element. By analogy, the "exit diopter" designates the last diopter of a dioptric element encountered by the light rays which have passed through this dioptric element. Dioptrics are, for example, prisms, lenses, glass plates and more generally any transparent element comprising dioptres. Each optical element can be characterised by a focus - when it exists - or object focus, which is the object point whose image by the optical element is at infinity. When the dual-function light module is composed of several optical elements, all of these optical elements, which can be called an optical system, are characterised by their focus, which is the object point whose image by all of the optical elements is at infinity.

Le module lumineux comprend également une plieuse, comme connu dans l'art. Comme évoqué précédemment, la plieuse est un élément du module lumineux agencée de sorte à créer une ligne de coupure lors de l'émission d'un faisceau à coupure. La plieuse joue donc un rôle de cache qui limite la diffusion de la lumière émise par la première source lumineuse dans une zone déterminée de la scène qui est l'environnement du véhicule susceptible d'être éclairé par une fonction feu de croisement. La plieuse peut être plane. La plieuse peut avoir une forme plus complexe ; par exemple, elle peut être formée d'au moins deux plans afin de former la coupure dans un faisceau à coupure. Un autre exemple de plieuse comprend deux plans parallèle et un plan incliné qui fait la transition entre les deux plans. Bien entendu, n'importe quelle plieuse peut être implémentées dans le module lumineux selon l'invention. La plieuse peut être disposée de sorte que l'un de ses bords se trouve au foyer de l'élément optique ou l'ensemble des éléments optique. Dans un exemple, les première et deuxième sources lumineuses sont disposées de part et d'autre de la plieuse, de sorte que la plieuse se situe entre les deux sources lumineuses. La plieuse est orientée sensiblement parallèlement à l'axe optique de l'élément optique ou du système optique dans le cas échéant. La plieuse peut être réfléchissante. Pour ce faire, elle peut être recouverte d'un revêtement réfléchissant, par exemple un film réfléchissant, ou encore comprendre un matériau réfléchissant. Ainsi, la propagation de la lumière émise par la première et/ou deuxième sources lumineuse est améliorée, ce qui accroît l'apport de lumière, permettant ainsi d'augmenter l'intensité du faisceau lumineux émis. L'un des bords de la plieuse est agencé de sorte donner la forme requise à la ligne de coupure ; ce bord est généralement celui qui est au plus près de l'élément optique du module lumineux. Dans l'exemple du faisceau à coupure présenté à la FIG. 1, c'est l'image du bord de la plieuse qui définit la « ligne de coupure » 101 du faisceau lumineux à coupure 100. Ce bord de la plieuse qui définit la ligne de coupure est appelé bord de coupure de la plieuse.The light module also comprises a folder, as known in the art. As previously mentioned, the folder is an element of the light module arranged so as to create a cut-off line when emitting a cut-off beam. The folder therefore plays a role of cover which limits the diffusion of the light emitted by the first light source in a determined zone of the scene which is the environment of the vehicle likely to be illuminated by a dipped beam function. The folder can be planar. The folder can have a more complex shape; for example, it can be formed of at least two planes in order to form the cut-off in a cut-off beam. Another example of a folder comprises two parallel planes and an inclined plane which makes the transition between the two planes. Of course, any folder can be implemented in the light module according to the invention. The folder can be arranged so that one of its edges is at the focus of the optical element or all of the optical elements. In one example, the first and second light sources are arranged on either side of the folder, such that the folder is located between the two light sources. The folder is oriented substantially parallel to the optical axis of the optical element or the optical system as the case may be. The folder may be reflective. To achieve this, it may be covered with a reflective coating, for example a reflective film, or may comprise a reflective material. Thus, the propagation of the light emitted by the first and/or second light sources is improved, which increases the light input, thereby making it possible to increase the intensity of the emitted light beam. One of the edges of the folder is arranged so as to give the required shape to the cut-off line; this edge is generally the one that is closest to the optical element of the light module. In the example of the cut-off beam presented in FIG. 1 , it is the image of the edge of the folder which defines the “cut-off line” 101 of the cut-off light beam 100. This edge of the folder which defines the cut-off line is called the cut-off edge of the folder.

Dans le cas d'un module bifonction connu, le faisceau lumineux sans coupure 200 projeté comprend une image du bord de coupure de la plieuse. En effet, la plieuse a une épaisseur non nulle, en conséquence de quoi donc il se forme un léger trou entre la zone code 102, 202 et la zone route 103, 203. Ainsi, la plieuse forme un contraste entre la zone code et la zone route, c'est-à-dire au niveau de la ligne de coupure, car l'intensité de la zone route est très supérieure à l'intensité de la zone code. La plieuse est typiquement positionnée entre les deux sources lumineuses - la première et deuxième sources lumineuses - et l'image 201 du bord de coupure de la plieuse est projetée comme l'illustre l'exemple de faisceau sans coupure de la FIG. 2. Toujours en référence à la FIG. 2, la zone 203 du faisceau qui était précédemment sombre -cette zone sombre est notée 103 dans la FIG. 1- est maintenant éclairée tout comme la zone éclairée 202. Le faisceau lumineux 200 comprend également l'image du bord de la plieuse 201, qui rompt l'homogénéité du faisceau sans coupure.In the case of a known dual-function module, the projected uncut light beam 200 comprises an image of the cut-off edge of the folder. Indeed, the folder has a non-zero thickness, as a result of which a slight hole is formed between the code zone 102, 202 and the road zone 103, 203. Thus, the folder forms a contrast between the code zone and the road zone, i.e. at the cut-off line, because the intensity of the road zone is much higher than the intensity of the code zone. The folder is typically positioned between the two light sources - the first and second light sources - and the image 201 of the cutting edge of the folder is projected as illustrated in the example of a beam without a cut-off of the FIG. 2 . Still in reference to the FIG. 2 , the area 203 of the beam which was previously dark - this dark area is noted 103 in the FIG. 1 - is now illuminated as is the illuminated area 202. The light beam 200 also includes the image of the edge of the folder 201, which breaks the homogeneity of the beam without a break.

En référence à la FIG. 6, la courbe en trait plein 606 illustre l'intensité d'un faisceau lumineux émis par la deuxième fonction en fonction de la direction d'émission exprimée en degré. La partie de la courbe à gauche de l'axe des ordonnées 602 représente la zone code qui a une intensité plus faible que la partie de la courbe située droite de l'axe des ordonnées qui représente la zone route. De manière intéressante, on peut observer que l'image du bord de la plieuse dans le faisceau lumineux émis produit une baisse d'intensité qui est notamment visible dans l'espace 604 qui correspond à la ligne de coupure. Cette perte d'intensité se traduit sur la FIG. 6 par le fait que la courbe 606, au niveau de la portion 608, n'augmente pas de manière régulière ; dans l'espace 608 à gauche de l'axe 602, la courbe 606 ne croit pas. Il y a donc au niveau de l'espace 604 une zone de contraste qui se forme, c'est-à-dire à la frontière entre la zone feux de croisement et la zone feux de route. Ce contraste est mauvais pour l'homogénéité du faisceau.In reference to the FIG. 6 , the solid line curve 606 illustrates the intensity of a light beam emitted by the second function as a function of the emission direction expressed in degrees. The part of the curve to the left of the ordinate axis 602 represents the code zone which has a lower intensity than the part of the curve located to the right of the ordinate axis which represents the road zone. Interestingly, it can be observed that the image of the edge of the folder in the emitted light beam produces a drop in intensity which is notably visible in the space 604 which corresponds to the cut-off line. This loss of intensity is reflected on the FIG. 6 by the fact that the curve 606, at the level of the portion 608, does not increase in a regular manner; in the space 608 to the left of the axis 602, the curve 606 does not increase. There is therefore at the level of the space 604 a contrast zone which forms, that is to say at the border between the dipped beam zone and the main beam zone. This contrast is bad for the homogeneity of the beam.

Le module lumineux bifonction illustré comprend un ou plusieurs éléments optiques qui sont aptes à former le faisceau lumineux avec ou sans coupure et sont agencés de manière à corriger l'homogénéité du faisceau lumineux sans coupure émis par le module lumineux bifonction.The illustrated dual-function light module comprises one or more optical elements which are capable of forming the light beam with or without cut-off and are arranged so as to correct the homogeneity of the uncut light beam emitted by the dual-function light module.

Au moins un élément optique du module lumineux bifonction illustré comprend au moins un dioptre qui comprend une ou plusieurs zones, chaque zone modifiant la trajectoire d'une partie de la lumière, émise par la deuxième source lumineuse, traversant l'élément optique. Ainsi, au moins un des dioptres parmi ceux des éléments optiques comporte une ou plusieurs zones, une zone étant une surface délimitée du dioptre sur lequel la zone repose. Chacune de ces zones modifie la trajectoire d'une partie de la lumière traversant l'élément optique émise par la deuxième source lumineuse utilisée avec la deuxième fonction. La modification de la trajectoire est réalisée de manière à dévier les rayons en direction de l'image du bord de la plieuse pour ainsi rétablir l'homogénéité du faisceau sans coupure. L'élément optique comporte donc une ou plusieurs zones qui redirigent une partie de la lumière émise par la deuxième source, lors de l'utilisation de la fonction d'émission d'un faisceau sans coupure, vers la zone 201, de l'image du bord de la plieuse. En d'autres termes, les rayons issus de la deuxième source et passant à travers les zones de déviation sont déviés vers le bas. On comprend que la déviation peut ne pas être parfaite, et que certains de ces rayons déviés arrivent alors sous la coupure c'est-à-dire dans la zone 202 de la FIG. 2. Les zones sont choisies de sorte à pouvoir dévier un flux lumineux suffisant vers l'image du bord de la plieuse lors de l'utilisation de la deuxième fonction. Ces zones sont de préférence choisies pour qu'elles ne modifient peu ou pas le faisceau lumineux émis par la première fonction.At least one optical element of the illustrated dual-function light module comprises at least one diopter which comprises one or more zones, each zone modifying the trajectory of a portion of the light, emitted by the second light source, passing through the optical element. Thus, at least one of the diopters among those of the optical elements comprises one or more zones, a zone being a delimited surface of the diopter on which the zone rests. Each of these zones modifies the trajectory of a portion of the light passing through the optical element emitted by the second light source used with the second function. The modification of the trajectory is carried out so as to deflect the rays in the direction of the image of the edge of the folder to thus restore the homogeneity of the beam without cutoff. The optical element therefore comprises one or more zones which redirect part of the light emitted by the second source, when using the function of emitting a beam without cut-off, towards zone 201, of the image of the edge of the folder. In other words, the rays coming from the second source and passing through the deflection zones are deflected downwards. It is understood that the deflection may not be perfect, and that some of these deflected rays then arrive below the cut-off, that is to say in zone 202 of the FIG. 2 . The areas are chosen so that sufficient light flux can be diverted to the image of the edge of the folder when using the second function. These areas are preferably chosen so that they have little or no effect on the light beam emitted by the first function.

La détermination de la position et des dimensions d'une zone peut être réalisée à l'aide d'une analyse de la répartition du flux lumineux qui contribue à la zone de concentration (zone 204 illustrée dans la FIG. 2) à travers la lentille de projection. Plus précisément, les répartitions du premier flux lumineux émis par la première fonction et du deuxième flux lumineux émis par la deuxième fonction sont utilisées pour cette détermination. La mesure de la répartition d'un flux est réalisée pour le dioptre sur lequel sera localisée la zone. La zone, qui est en fait une partie du dioptre altérée, va être utilisée de sorte à modifier la trajectoire d'une quantité suffisante de lumière de sorte à combler l'image de la plieuse, correspondant à la perte d'intensité, sans impacter la répartition du flux lumineux émis par la première fonction c'est-à-dire sans réduire l'intensité maximale de la première fonction ou sans créer de défaut d'homogénéité du faisceau associé à la première fonction.The determination of the position and dimensions of a zone can be carried out using an analysis of the distribution of the luminous flux which contributes to the concentration zone (zone 204 illustrated in the FIG. 2 ) through the projection lens. More precisely, the distributions of the first luminous flux emitted by the first function and the second luminous flux emitted by the second function are used for this determination. The measurement of the distribution of a flux is carried out for the diopter on which the zone will be located. The zone, which is in fact an altered part of the diopter, will be used so as to modify the trajectory of a sufficient quantity of light so as to fill the image of the folder, corresponding to the loss of intensity, without impacting the distribution of the luminous flux emitted by the first function, that is to say without reducing the maximum intensity of the first function or without creating a defect in the homogeneity of the beam associated with the first function.

L'exemple qui suit détaille la détermination de la position et de la dimension d'une zone située sur un dioptre d'un des éléments optiques du module lumineux bifonction. On comprend que cet exemple n'est nullement limitatif, et que le module lumineux bifonction peut comprendre plusieurs zones. Le cas où plusieurs zones sont déterminées sera détaillé par la suite.The following example details the determination of the position and dimension of a zone located on a diopter of one of the optical elements of the dual-function light module. It is understood that this example is in no way limiting, and that the dual-function light module may comprise several zones. The case where several zones are determined will be detailed later.

La première étape est la mesure de la répartition du flux lumineux émis par la première fonction et la mesure de la répartition émis par la deuxième fonction traversant le dioptre de l'élément optique sur lequel sera disposée la zone. Les mesures des répartitions respectives des premier et deuxième flux lumineux traversant l'élément optique du module lumineux sont réalisées à l'aide des instrumentations et techniques connues. La mesure peut être réalisée pour une partie des parties des faisceaux lumineux émis par la première fonction et la deuxième fonction ; pour cela, un diaphragme associé à une pupille peut être utilisé. On sélectionne de préférence la partie du faisceau correspondant à la portée du faisceau : cela signifie que l'on sélectionne les rayons lumineux de la portée qui désignent les rayons lumineux proches de la ligne de coupure, dans l'axe de la route.The first step is the measurement of the distribution of the luminous flux emitted by the first function and the measurement of the distribution emitted by the second function passing through the diopter of the optical element on which the zone will be arranged. The measurements of the respective distributions of the first and second luminous fluxes passing through the optical element of the light module are carried out using known instrumentation and techniques. The measurement can be carried out for a part of the parts of the light beams emitted by the first function and the second function; for this, a diaphragm associated with a pupil can be used. The part of the beam corresponding to the range of the beam is preferably selected: this means that the light rays of the range are selected which designate the light rays close to the cut-off line, in the axis of the road.

La portée du module lumineux selon l'invention est définie par rapport à un référentiel orthonormé comprenant trois axes X, Y, Z. Ce référentiel est reporté pour toutes les figures. Ce référentiel comporte un axe X, noté 410, un axe Y noté 412, et un axe Z noté 414. L'axe X correspond à un axe parallèle à l'horizon et passant par le centre optique de l'élément optique. L'axe X est donc confondu avec axe de la route, et donc l'axe optique du module, et donc de la lentille de projection. Par convention, le sens positif de cet axe est orienté vers la marche arrière du véhicule. L'axe Y est l'axe perpendiculaire l'axe X et passe également par le centre optique de l'élément optique. Lorsque l'on parle d'horizontale, on désigne une direction parallèle à l'horizon. La verticale est alors un axe perpendiculaire à l'horizontale. L'axe Z est l'axe qui est perpendiculaire aux axes X et Y, et qui est confondu avec l'axe optique de l'élément optique. Le référentiel orthonormé est donc de préférence centré sur l'axe optique de l'élément optique du module lumineux. Dans un autre exemple, le référentiel orthonormé peut être centré sur un centre optique équivalent lorsque le module comprend un système optique centré. De manière générale, l'axe Z est confondu avec l'axe optique du module lumineux; cet axe Z est également l'axe avec lequel la plieuse peut être confondu.The range of the light module according to the invention is defined relative to an orthonormal reference frame comprising three axes X, Y, Z. This reference frame is reported for all the figures. This reference frame comprises an X axis, denoted 410, a Y axis denoted 412, and a Z axis denoted 414. The X axis corresponds to an axis parallel to the horizon and passing through the optical center of the optical element. The X axis is therefore coincident with the axis of the road, and therefore the optical axis of the module, and therefore of the projection lens. By convention, the positive direction of this axis is oriented towards the reverse gear of the vehicle. The Y axis is the axis perpendicular to the X axis and also passes through the optical center of the optical element. When we speak of horizontal, we mean a direction parallel to the horizon. The vertical is then an axis perpendicular to the horizontal. The Z axis is the axis which is perpendicular to the X and Y axes, and which is coincident with the optical axis of the optical element. The orthonormal reference frame is therefore preferably centered on the optical axis of the optical element of the light module. In another example, the orthonormal reference frame may be centered on an equivalent optical center when the module comprises a centered optical system. Generally, the Z axis coincides with the optical axis of the light module; this Z axis is also the axis with which the folder may coincide.

Les rayons lumineux qui contribuent à la portée sont les rayons lumineux compris dans l'espace du faisceau défini par les intervalles [-5°,5°] bornes incluses à l'horizontale, sur l'axe X, et entre [-2° ;2°] bornes incluses à la verticale, sur l'axe Y. Par exemple, la portée est délimitée par l'encadré 204 sur la FIG. 2. En plaçant un diaphragme correspondant à ce champ peut donc être placé sur le plan focal de la lentille de telle façon que seuls les rayons lumineux passant au niveau la portée soient conservés lors la mesure de la répartition du flux lumineux sur l'un des dioptres du système optique de projection. Cela permet de ne réaliser les mesures des deux flux que dans la partie du faisceau lumineux projeté par le module lumineux pour laquelle le manque d'homogénéité est le plus critique, et donc la correction apportée ne concernera tout au plus que la portée du faisceau émis par le module.The light rays contributing to the range are the light rays within the beam space defined by the intervals [-5°,5°] inclusive horizontally, on the X axis, and between [-2°;2°] inclusive vertically, on the Y axis. For example, the range is delimited by box 204 on the FIG. 2 . By placing a diaphragm corresponding to this field can therefore be placed on the focal plane of the lens in such a way that only the light rays passing at the range level are preserved when measuring the distribution of the luminous flux on one of the diopters of the optical projection system. This makes it possible to carry out measurements of the two fluxes only in the part of the light beam projected by the light module for which the lack of homogeneity is the most critical, and therefore the correction made will at most only concern the range of the beam emitted by the module.

Les mesures des répartitions des flux lumineux permettent d'obtenir une carte du flux lumineux en sortie du dioptre ou en sortie d'une partie du dioptre dans laquelle les flux sont représentés avec des courbes isolux : il s'agit de courbe fermées (ou ligne de niveau), composée par les points qui présentent la même valeur d'éclairement sur le dioptre. Le flux est la somme des éclairements intégrées sur la surface du dioptre ou sur une zone du dioptre et peut être noté F = E dS avec F qui est le flux, E qui est l'éclairement et S qui est la surface. On comprendra que tout autre représentation de ses mesures sont possibles. De même, on comprendra qu'une représentation graphique des mesures n'est pas obligatoire, c'est-à-dire que seules les valeurs des mesures des flux lumineux effectuées doivent être conservées car elles seront utilisées pour la deuxième étape de la détermination de la position et de la dimension d'une zone, décrite par la suite.Measurements of the distribution of luminous fluxes make it possible to obtain a map of the luminous flux at the exit of the diopter or at the exit of a part of the diopter in which the fluxes are represented with isolux curves: these are closed curves (or contour lines), composed of points that have the same illuminance value on the diopter. The flux is the sum of the illuminances integrated on the surface of the diopter or on a zone of the diopter and can be noted F = E dS with F being the flux, E being the illuminance and S being the surface. It will be understood that any other representation of these measurements is possible. Similarly, it will be understood that a graphical representation of the measurements is not mandatory, that is to say that only the values of the luminous flux measurements carried out must be kept because they will be used for the second step of determining the position and dimension of a zone, described later.

Les FIG. 4 et FIG. 5 illustrent deux exemples de mesures des répartitions d'un flux lumineux en sortie d'un module lumineux bifonction comprenant un élément optique, par exemple une lentille de projection. La FIG. 4 illustre la répartition du flux lumineux du faisceau émis par la première fonction, c'est-à-dire la fonction de feu de croisement, passant à travers le dioptre de l'élément optique sur lequel sera située la zone. La FIG. 5 illustre la répartition du flux lumineux du faisceau émis par la deuxième fonction, c'est-à-dire la fonction de feu de route, à travers le dioptre de l'élément optique sur lequel sera située la zone. La mesure est réalisée dans ces exemples pour la portée des faisceaux émis par la première fonction et émis par la deuxième fonction. L'axe Z des ordonnées 412 et l'axe Y des abscisses 410 représentent la position pour laquelle l'éclairement est mesuré. Plus précisément, l'axe des abscisses 410 noté Y correspond à un axe parallèle à l'horizon passant par exemple par le centre optique de l'élément optique comprenant le dioptre sur lequel sera située la zone, et l'axe des ordonnées 412 noté Z est l'axe perpendiculaire à l'axe 410 qui peut également passer par le centre optique de l'élément optique. Les axes Y et Z peuvent dans un autre exemple avoir pour origine commune un centre optique équivalent lorsque le module comprend un système optique centré.THE FIG. 4 And FIG. 5 illustrate two examples of measurements of the distributions of a luminous flux at the output of a dual-function light module comprising an optical element, for example a projection lens. The FIG. 4 illustrates the distribution of the luminous flux of the beam emitted by the first function, i.e. the dipped beam function, passing through the diopter of the optical element on which the zone will be located. The FIG. 5 illustrates the distribution of the luminous flux of the beam emitted by the second function, i.e. the high beam function, across the diopter of the optical element on which the zone will be located. The measurement is carried out in these examples for the range of the beams emitted by the first function and emitted by the second function. The Z axis of the ordinates 412 and the Y axis of the abscissas 410 represent the position for which the illumination is measured. More precisely, the axis of the abscissas 410 denoted Y corresponds to an axis parallel to the horizon passing for example through the optical center of the optical element comprising the diopter on which the zone will be located, and the axis of the ordinates 412 denoted Z is the axis perpendicular to the axis 410 which can also pass through the optical center of the optical element. The axes Y and Z can in another example have as a common origin an equivalent optical center when the module comprises a centered optical system.

Les FIG. 4 et FIG. 5 représentent donc des courbes isolux représentant différentes valeurs d'éclairement. La FIG. 4 est divisée en quatre bandes 400, 401, 402, 403. Chacune de ces bandes est de forme régulière (ici rectangulaire) et est parallèle à un axe horizontal de la portée du module lumineux, qui est noté Y sur la figure. Les bandes peuvent avoir toute la même dimension (longueurs selon l'axe Y et hauteurs selon l'axe Z identiques), ou bien encore avoir des dimensions différentes. Le nombre de bandes peut varier ; à titre indicatif, le nombre de bandes peut être compris entre 1 et 100, bornes incluses. De préférence, le nombre de bandes est compris entre 2 et 8, bandes incluses. Les bandes ne se superposent pas, c'est-à-dire qu'elles peuvent être tout au plus que placées l'une contre l'autre.THE FIG. 4 And FIG. 5 therefore represent isolux curves representing different illumination values. The FIG. 4 is divided into four strips 400, 401, 402, 403. Each of these strips is of regular shape (here rectangular) and is parallel to a horizontal axis of the range of the light module, which is noted Y in the figure. The strips can all have the same dimension (lengths along the Y axis and heights along the Z axis identical), or else have different dimensions. The number of strips can vary; for information purposes, the number of strips can be between 1 and 100, inclusive. Preferably, the number of strips is between 2 and 8, inclusive. The strips do not overlap, that is, they can be placed at most one against the other.

Les bandes des FIG. 4 et 5 sont identiques, c'est-à-dire qu'elles ont les mêmes dimensions et les mêmes coordonnées par rapport aux axes Y et Z du référentiel.The bands of FIG. 4 And 5 are identical, that is, they have the same dimensions and the same coordinates relative to the Y and Z axes of the reference frame.

Pour chaque bande, l'éclairement est sommé pour calculer le flux lumineux passant par chaque bande. Sur les FIGs. 4 et 5, la valeur calculée est indiquée sur la partie droite de chacune des bandes 400 à 403. Il apparait que toutes les bandes n'ont pas la même contribution à l'éclairage émis. Par exemple, sur la FIG. 4, la bande 400 contribue peu l'illumination globale car la fonction feux de croisement représentée sur la FIG. 4 ne doit émettre aucune lumière au-dessus de la ligne de coupure. Au contraire, sur la FIG. 5, la bande 400 est celle qui présente le plus important flux lumineux car la fonction feux de route représentée sur la FIG. 5 requiert que de la lumière soit fortement émise au-dessus de la ligne de coupure. Ainsi, la bande 400 contribue fortement sur la FIG. 5, c'est à dire le flux traversant la zone est élevé. Et par opposition, la bande 400 contribue faiblement sur la FIG. 4, c'est-à-dire que le flux qui traverse la zone est faible. Toujours en référence aux FIGs. 4 et 5, la bande 403 a une contribution qui est semblable dans les deux fonctions représentées.For each band, the illuminance is summed to calculate the luminous flux passing through each band. On the FIGs. 4 And 5 , the calculated value is indicated on the right part of each of the bands 400 to 403. It appears that not all the bands have the same contribution to the emitted lighting. For example, on the FIG. 4 , the 400 band contributes little to overall illumination because the dipped beam function shown on the FIG. 4 must not emit any light above the cut-off line. On the contrary, on the FIG. 5 , the 400 band is the one with the highest luminous flux because the high beam function shown on the FIG. 5 requires that light be strongly emitted above the cut-off line. Thus, the 400 band contributes strongly to the FIG. 5 , that is to say the flux crossing the zone is high. And in contrast, the 400 band contributes weakly on the FIG. 4 , that is to say that the flow crossing the area is weak. Still with reference to the FIGs. 4 And 5 , band 403 has a contribution that is similar in both functions shown.

Ainsi, la bande 400 peut constituer une zone intéressante pour la modification de la trajectoire d'une partie de la lumière, émise par la deuxième source lumineuse, traversant l'élément optique. Une zone (voire plusieurs zones) est située sur la bande. Tout ou partie de la bande peut servir de zone. Dans tous les cas, une zone est située sur une partie de la surface du dioptre. La bande 400 est une zone intéressante elle offre la possibilité de pouvoir dévier un flux lumineux suffisant vers l'image du bord de la plieuse lors de l'utilisation de la deuxième fonction, tout en modifiant peu ou pas le faisceau lumineux émis par la première fonction. Dis autrement, la bande 400 peut comprendre et être choisie comme zone de déviation de la lumière car elle contribue fortement à la deuxième fonction (feu de route) et très faiblement à la première fonction ( feu de croisement ).La division en bandes de la projection des flux lumineux des faisceaux de la première fonction et de la deuxième fonction peut être réalisée en s'appuyant sur la répartition du flux lumineux du faisceau lumineux émis par la deuxième fonction, en identifiant une région du faisceau lumineux émis par le module lumineux dans laquelle le flux lumineux de la deuxième fonction est élevé. Ainsi, dans l'exemple de la FIG. 5, la partie haute de la carte est celle qui présente les caractéristiques les plus intéressantes comme expliqué précédemment. Une bande 400 peut donc été définie au niveau de cette partie de la carte. On comprend que la division en bande peut être réalisée tout d'abord sur la répartition du flux lumineux de la première fonction, et être ensuite reportée sur la répartition du flux lumineux de la deuxième fonction.Thus, the band 400 can constitute an interesting zone for modifying the trajectory of a portion of the light, emitted by the second light source, passing through the optical element. A zone (or even several zones) is located on the band. All or part of the band can serve as a zone. In all cases, a zone is located on a portion of the surface of the diopter. The band 400 is an interesting zone; it offers the possibility of being able to deflect a sufficient luminous flux towards the image of the edge of the folder when using the second function, while modifying little or not at all the light beam emitted by the first function. In other words, the band 400 can comprise and be chosen as a light deflection zone because it contributes strongly to the second function (high beam) and very weakly to the first function (low beam). The division into bands of the projection of the luminous fluxes of the beams of the first function and of the second function can be carried out by relying on the distribution of the luminous flux of the light beam emitted by the second function, by identifying a region of the light beam emitted by the light module in which the luminous flux of the second function is high. Thus, in the example of the FIG. 5 , there The upper part of the map is the one that presents the most interesting characteristics as explained previously. A 400 band can therefore be defined at the level of this part of the map. It is understood that the division into bands can be carried out first of all on the distribution of the luminous flux of the first function, and then be carried over to the distribution of the luminous flux of the second function.

Il existe de fortes disparités dans la répartition du flux lumineux émis par les fonctions d'un module bifonction, comme illustrés sur les exemples des FIGS. 4 et 5. Ces disparités sont exploitées dans la présente invention pour corriger l'inhomogénéité du faisceau lumineux feux de route émis par un module lumineux bifonction.There are significant disparities in the distribution of luminous flux emitted by the functions of a dual-function module, as illustrated in the examples of FIGS. 4 And 5 . These disparities are exploited in the present invention to correct the inhomogeneity of the high beam light beam emitted by a dual-function light module.

Après avoir déterminé la répartition des flux lumineux des faisceaux de la première et de la deuxième fonction, une deuxième étape comprend le calcul de la position et de la dimension de la zone.After determining the distribution of the luminous fluxes of the beams of the first and second function, a second step includes the calculation of the position and dimension of the area.

Comme expliqué précédemment, le positionnement et le dimensionnement de la zone doit être réalisé (i) de sorte qu'une zone présente un deuxième flux lumineux la traversant qui est suffisant lors de l'utilisation de la deuxième fonction d'émission d'un faisceau sans coupure pour qu'une partie de la lumière dont la trajectoire sera modifiée par la zone suffise à combler l'image de la plieuse afin de supprimer les défauts d'homogénéité du faisceau sans coupure, et (ii) qu'une zone présente un premier flux lumineux la traversant qui est faible lors de l'utilisation de la première fonction d'émission d'un faisceau lumineux avec coupure pour que peu ou pas de lumière émise par la première fonction ait sa trajectoire modifiée par la zone. Dans ce but, un rapport entre la mesure du deuxième flux lumineux dans la zone émis par la deuxième fonction et la mesure du premier flux lumineux dans la même zone émis par la première fonction est calculé. Plus ce rapport est élevé, plus le flux lumineux de la première fonction est faible et le flux lumineux de la deuxième fonction élevé, ce qui permet de réaliser les deux conditions présentées ci-dessus. Au contraire, lorsque ce rapport diminue, la modification du dioptre dans la zone concernée entrainera un risque de baisse de performance pour la première fonction avec coupure et une homogénéité insuffisante pour la deuxième fonction sans coupure.As explained above, the positioning and dimensioning of the area must be carried out (i) such that an area has a second luminous flux passing through it that is sufficient when using the second function of emitting a beam without cutoff so that a portion of the light whose trajectory will be modified by the area is sufficient to fill the image of the folder in order to eliminate the homogeneity defects of the beam without cutoff, and (ii) such that an area has a first luminous flux passing through it that is low when using the first function of emitting a light beam with cutoff so that little or no light emitted by the first function has its trajectory modified by the area. For this purpose, a ratio between the measurement of the second luminous flux in the area emitted by the second function and the measurement of the first luminous flux in the same area emitted by the first function is calculated. The higher this ratio, the lower the luminous flux of the first function and the higher the luminous flux of the second function, which makes it possible to achieve the two conditions presented above. On the contrary, when this ratio decreases, the modification of the diopter in the area concerned will lead to a risk of a drop in performance for the first function with cut-off and insufficient homogeneity for the second function without cut-off.

Deux exemples non limitatifs de méthodes de calcul du rapport entre le deuxième et le premier flux lumineux sont maintenant présentés.Two non-limiting examples of methods for calculating the ratio between the second and first luminous flux are now presented.

Dans un premier exemple, le rapport est calculé pour tous les points du faisceau lumineux en sortie du dioptre ou de la partie du dioptre pour lesquels la répartition du flux lumineux a été mesurée. Dans cet exemple, une représentation graphique du rapport ainsi calculé peut être obtenue ; par exemple une carte similaire à celle des FIG. 4 et FIG. 5, où les courbes représenteraient alors le rapport entre le flux lumineux de la deuxième fonction et le flux lumineux de la première fonction. Différentes régions peuvent être identifiées sur une telle carte en fonction des valeurs du rapport calculé. Par exemple, une région présentant une valeur du rapport calculé plus importante que les autres peut être identifiée ; la région a typiquement une forme de bande et présente une valeur de rapport qui est supérieure à une valeur déterminée. Une région correspond donc à une surface arbitraire du dioptre pour laquelle il existe un rapport de flux élevé, c'est-à-dire qui est égal ou supérieur à une valeur de rapport déterminée. La surface arbitraire a une aire qui peut être définie en fonction d'une valeur moyenne du rapport calculé. Les surfaces arbitraires peuvent prendre la forme de bandes qui s'étendent parallèlement à l'axe X 410 du référentiel. Ces bandes présentent une hauteur non nulle selon l'axe Y 412 du référentiel. De préférence, la hauteur d'une bande est choisie de telle sorte que la bande englobe l'aire de départ d'un pic d'un rapport calculé.In a first example, the ratio is calculated for all points of the light beam exiting the diopter or part of the diopter for which the distribution of the luminous flux has been measured. In this example, a graphical representation of the ratio thus calculated can be obtained; for example a map similar to that of FIG. 4 And FIG. 5 , where the curves would then represent the ratio between the luminous flux of the second function and the luminous flux of the first function. Different regions can be identified on such a map according to the values of the calculated ratio. For example, a region having a higher value of the calculated ratio than the others can be identified; the region typically has a band shape and has a ratio value that is greater than a determined value. A region therefore corresponds to an arbitrary surface of the diopter for which there is a high flux ratio, i.e. which is equal to or greater than a determined ratio value. The arbitrary surface has an area that can be defined according to an average value of the calculated ratio. The arbitrary surfaces can take the form of bands that extend parallel to the X axis 410 of the reference frame. These bands have a non-zero height along the Y axis 412 of the reference frame. Preferably, the height of a band is chosen such that the band encompasses the starting area of a peak of a calculated ratio.

Dans un deuxième exemple, le calcul du rapport est réalisé en utilisant les bandes définies sur la projection des flux lumineux des faisceaux de la première fonction et de la deuxième fonctions, bandes illustrées sur les FIGs. 4 et 5. Dans les deux exemples des FIGs. 4 et 5, le résultat de la division de chaque faisceau émis est identique : les bandes ont des coordonnées identiques dans le référentiel (X, Y, Z), indépendamment de la fonction exécutée par le module. Ainsi, il existe une correspondance entre les divisions obtenues sur chacun des deux faisceaux de sorte qu'il est possible de créer des couples de divisions, par exemple de bandes, dans lesquels chaque couple comprend deux divisions ayant les mêmes coordonnées dans le référentiel. Pour chaque couple de bandes, un rapport entre le flux lumineux moyen de la deuxième fonction dans une bande du couple et le flux lumineux moyen de la première fonction dans l'autre bande du couple peut être calculé.In a second example, the calculation of the ratio is carried out using the bands defined on the projection of the luminous fluxes of the beams of the first function and the second function, bands illustrated on the FIGs. 4 And 5 . In both examples of the FIGs. 4 And 5 , the result of the division of each emitted beam is identical: the bands have identical coordinates in the reference frame (X, Y, Z), regardless of the function performed by the module. Thus, there is a correspondence between the divisions obtained on each of the two beams so that it is possible to create pairs of divisions, for example bands, in which each pair comprises two divisions having the same coordinates in the reference frame. For each pair of bands, a ratio between the average luminous flux of the second function in one band of the pair and the average luminous flux of the first function in the other band of the pair can be calculated.

Suite au calcul du rapport entre la mesure de la répartition du deuxième flux lumineux émis par la deuxième fonction et la mesure de la répartition du premier flux lumineux émis par la première fonction, une zone est sélectionnée en fonction de ce calcul. La sélection d'une zone est maintenant discutée. Plusieurs critères peuvent être utilisés, seuls ou en combinaison, pour déterminer quelle(s) bande(s) ou quelle(s) zone(s) est(sont) sélectionnée(s).Following the calculation of the ratio between the measurement of the distribution of the second luminous flux emitted by the second function and the measurement of the distribution of the first luminous flux emitted by the first function, a zone is selected based on this calculation. The selection of a area is now discussed. Several criteria may be used, alone or in combination, to determine which band(s) or area(s) is/are selected.

La sélection d'une zone peut comprendre la sélection de la bande ayant le rapport calculé le plus élevé, ou encore la sélection de la surface arbitraire dont le rapport est le plus élevé.Selecting an area can include selecting the band with the highest calculated ratio, or selecting the arbitrary area with the highest ratio.

La sélection d'une zone peut comprendre la sélection d'une ou plusieurs des bandes précédemment obtenues ayant un rapport calculé élevé, ou encore la sélection d'une ou plusieurs des surfaces arbitraires autour des régions qui comportent une densité élevée de points ayant un rapport de flux lumineux élevé. Afin de discriminer entre elles les bandes ou les surfaces arbitraires ayant les rapports les plus élevés parmi les rapports calculés, un seuil prédéterminé (c'est-à-dire une valeur déterminée) peut être défini et utilisé : seules sont sélectionnées les bandes ou les surfaces arbitraires ayant un rapport supérieur ou égal à une valeur seuil. La valeur seuil peut être choisie donc être choisie de manière arbitraire, par exemple le rapport doit être supérieur ou égal 4.The selection of an area may comprise selecting one or more of the previously obtained bands having a high calculated ratio, or selecting one or more of the arbitrary surfaces around the regions that have a high density of points having a high luminous flux ratio. In order to discriminate between them the arbitrary bands or surfaces having the highest ratios among the calculated ratios, a predetermined threshold (i.e. a determined value) may be defined and used: only the arbitrary bands or surfaces having a ratio greater than or equal to a threshold value are selected. The threshold value may therefore be chosen arbitrarily, for example the ratio must be greater than or equal to 4.

Il a été observé que de bons résultats sont obtenus lorsque les zones se situent à une distance supérieure ou égale à 10 millimètre du centre de la lentille vers le haut - soit à 10 mm de l'axe horizontal 410. En effet, ces zones sont situées sur une partie du dioptre qui est principalement mise à contribution lors de l'utilisation de la deuxième fonction. Cette distance permet d'assurer que ces zones vont modifier la trajectoire d'une partie de la lumière émise par la deuxième fonction, et ne vont pas modifier la lumière émise par la première fonction, ou encore ne vont modifier la trajectoire que d'une très faible partie de la lumière émise par la première fonction. De cette manière, lesdites une ou plusieurs zones sont situées de préférence en dehors d'une zone centrale de la lentille qui est la zone de la lentille transmettant le plus de lumière du faisceau lumineux. Il est donc préférable que la ou les zones soient suffisamment éloignées du centre de la lentilleIt has been observed that good results are obtained when the zones are located at a distance greater than or equal to 10 millimeters from the center of the lens upwards - i.e. 10 mm from the horizontal axis 410. Indeed, these zones are located on a part of the diopter which is mainly used when using the second function. This distance ensures that these zones will modify the trajectory of a part of the light emitted by the second function, and will not modify the light emitted by the first function, or will only modify the trajectory of a very small part of the light emitted by the first function. In this way, said one or more zones are preferably located outside a central zone of the lens which is the zone of the lens transmitting the most light of the light beam. It is therefore preferable for the zone(s) to be sufficiently far from the center of the lens

Plusieurs zones peuvent être présentes dans un module lumineux bifonction. Lorsque l'élément optique comprend plusieurs zones, celles-ci peuvent être disposées sur le même dioptre ou bien encore sur des dioptres distincts de l'élément optique. Dans le cas où l'élément optique comprend plusieurs zones, la détermination de la position et des dimensions de chaque zone se fait de manière séquentielle, c'est-à-dire qu'un nouveau rapport est calculé à chaque fois qu'une zone a été ajoutée au dioptre. De cette manière, lorsque plusieurs zones sont situées sur le même dioptre, la mesure de la répartition du flux lumineux est réalisée en sortie du dioptre de manière à avoir une mesure de flux prenant en compte les effets de la présence des zones précédemment déterminées.Several zones may be present in a dual-function light module. When the optical element comprises several zones, these zones may be arranged on the same diopter or on separate diopters of the optical element. In the case where the optical element comprises several zones, the determination of the position and dimensions of each zone is done sequentially, that is to say that a new ratio is calculated at each time a zone has been added to the diopter. In this way, when several zones are located on the same diopter, the measurement of the distribution of the luminous flux is carried out at the output of the diopter so as to have a flux measurement taking into account the effects of the presence of the previously determined zones.

L'élément optique selon l'invention est une lentille qui est par définition l'association de deux dioptres. Les dioptres peuvent être, mais ne sont pas limités à, des dioptres plans, concaves, convexes.The optical element according to the invention is a lens which is by definition the association of two diopters. The diopters can be, but are not limited to, planar, concave, convex diopters.

La ou les zones contribuent à rétablir l'homogénéité du faisceau lumineux émis par la deuxième fonction, c'est-à-dire lorsque le module bifonction exécute une fonction de feu de route. La FIG. 6 illustre un exemple de correction 600 de l'intensité en sortie du module lumineux avant et après correction par l'élément optique du module lumineux selon l'invention. Sur cette figure, l'axe des ordonnées 602 représente une mesure de l'intensité en sortie du module lumineux et l'axe des abscisses 603 représente l'angle de la direction vers laquelle cette intensité est évaluée. La courbe en trait plein 606 illustre l'intensité d'un faisceau lumineux émis par la deuxième fonction en fonction de la direction d'émission exprimée en degré. L'image de la plieuse dans le faisceau lumineux émis produit une baisse d'intensité qui est notamment visible dans l'espace 604 qui correspond à la ligne de coupure. Cette perte d'intensité se traduit sur la FIG. 6 par le fait que la courbe 606, au niveau de la portion 608, n'augmente pas. La courbe 605, en pointillés, représente l'intensité mesurée d'un nouveau faisceau lumineux par un module lumineux selon l'invention pour lequel une correction a été appliquée par l'élément optique du module lumineux. La correction permet de ne modifier le faisceau que dans l'espace 604, c'est-à-dire que la zone modifiée est localisée et dimensionnée de sorte que la courbe d'intensité est lissée pour réduire le « puits » d'intensité de la courbe 606 au niveau de l'espace 604 qui est causée par l'image de la plieuse.The zone(s) contribute to restoring the homogeneity of the light beam emitted by the second function, i.e. when the dual-function module performs a high beam function. FIG. 6 illustrates an example of correction 600 of the intensity at the output of the light module before and after correction by the optical element of the light module according to the invention. In this figure, the ordinate axis 602 represents a measurement of the intensity at the output of the light module and the abscissa axis 603 represents the angle of the direction towards which this intensity is evaluated. The solid line curve 606 illustrates the intensity of a light beam emitted by the second function as a function of the emission direction expressed in degrees. The image of the folder in the emitted light beam produces a drop in intensity which is notably visible in the space 604 which corresponds to the cut-off line. This loss of intensity is reflected on the FIG. 6 by the fact that the curve 606, at the portion 608, does not increase. The curve 605, in dotted lines, represents the measured intensity of a new light beam by a light module according to the invention for which a correction has been applied by the optical element of the light module. The correction makes it possible to modify the beam only in the space 604, that is to say that the modified zone is located and dimensioned so that the intensity curve is smoothed to reduce the intensity "well" of the curve 606 at the space 604 which is caused by the image of the folder.

La ou les zones permettant de modifier la trajectoire d'une partie de la lumière peuvent comprendre des déformations du ou des dioptres au niveau des zones. Une déformation au niveau de la zone signifie la présence d'une altération du dioptre ou encore déformation du dioptre. Comme exemple de déformation, l'épaisseur de la lentille au niveau de la zone peut être réduite de manière à former un forme un prisme qui modifie la trajectoire de toute la lumière qui le traverse. Ou encore, le prisme peut ne modifier qu'une partie de la lumière qui le traverse.The zone(s) for altering the path of a portion of the light may include deformations of the diopter(s) at the zones. A deformation at the zone means the presence of an alteration of the diopter or deformation of the diopter. As an example of deformation, the thickness of the lens at the zone may be reduced so as to form a prism that alters the path of all light passing through it. Or, the prism may alter only a portion of the light passing through it.

Des exemples de zones sont illustrés par les FIGs. 3, 7 et 10.Examples of areas are illustrated by the FIGs. 3 , 7 And 10 .

La FIG. 3 illustre un exemple non couvert par l'invention, d'une vue en coupe une lentille plan-convexe qui comprend un premier dioptre plan 314 et un second dioptre convexe 302. Il s'agit d'une représentation en coupe de la lentille selon le plan (Y, Z) du référentiel 314. Le dioptre convexe 302 comprend une zone 306 qui a été obtenue après avoir déformé la surface 304 du dioptre : la matière comprise entre la zone 306 et la surface 304 a été retirée. Comme représenté sur la FIG. 3, l'épaisseur 310 du dioptre au niveau de la zone 306 a été réduite par rapport à l'épaisseur 312 du dioptre non déformé.There FIG. 3 illustrates an example not covered by the invention, of a cross-sectional view of a plano-convex lens which comprises a first planar diopter 314 and a second convex diopter 302. This is a cross-sectional representation of the lens according to the plane (Y, Z) of the reference frame 314. The convex diopter 302 comprises a zone 306 which was obtained after having deformed the surface 304 of the diopter: the material between the zone 306 and the surface 304 was removed. As shown in the FIG. 3 , the thickness 310 of the diopter at the level of zone 306 has been reduced compared to the thickness 312 of the undeformed diopter.

La déformation au niveau de la zone 304 forme un prisme qui modifie la trajectoire de tout ou une partie de la lumière qui le traverse. Le prisme ainsi formé comprend une surface plane 306 qui a été obtenue dans cet exemple par retrait de matière de la lentille au niveau de la zone. Cela veut dire que de la matière comprise entre les bords de la zone située sur le dioptre de la lentille a été retirée. On peut observer que la surface du dioptre 306 est inclinée par rapport au dioptre plan 314 selon un angle, appelé l'angle d'inclinaison, entre la zone 306 et le dioptre plan. L'inclinaison de la zone 306 par rapport à la zone 304 du dioptre convexe 302 est plus importante, causant ainsi une modification de la trajectoire d'une partie de la lumière, émise par la deuxième source lumineuse, traversant l'élément optique : la lumière est déviée (on peut encore dire rabattue) vers le bas. De préférence, comme indiqué par la référence 308, les bords de la lentille sont affinés, de sorte que les dioptres de la lentille soient parallèles. La lumière est rabattue selon un angle dit angle de rabattement. L'angle de rabattement est proportionnel à l'inclinaison de la face place 306 du prisme. Cet angle est l'angle formé par les normales respectives entre la surface 306 et la surface 304. Ainsi, la déviation de la partie de la lumière émise par la deuxième source lumineuse par la zone, ici formant un prisme, est une fonction de la distance de la zone par rapport à l'axe horizontal passant par le centre optique de la lentille. Sur la FIG. 3, cette distance se mesure sur l'axe Z qui est perpendiculaire à l'axe horizontal Y. La fonction va prendre des valeurs négatives lorsque la distance de la zone est positive. La distance de la zone est positive lorsque la zone se situe au-dessus de la ligne de coupure ; en pratique, cela équivaut à dire que la fonction prend des valeurs négatives lorsque tout ou partie de la zone est située au-dessus de l'axe horizontal Y. La fonction peut être une fonction discontinue, ou encore une fonction continue dérivable par morceau. La modification de la trajectoire de toute ou d'une partie de la lumière traversant la zone est une déviation de la lumière. La déviation est telle que la lumière est déviée vers le bas pour apporter un supplément de rayons lumineux au niveau de la tâche sombre créée par l'image de la plieuse dans le faisceau lumineux, et donc d'homogénéiser le faisceau lumineux sans coupure émis par la deuxième fonction. La zone présente sur un dioptre cause un changement de l'angle de déviation en sortie de l'élément optique, et donc d'une modification de la trajectoire par rapport au cas où le dioptre de l'élément optique n'a pas subi une altération ou déformation. La FIG. 10 illustre un exemple d'élément optique pouvant être utilisé avec le module lumineux bifonction selon l'invention, et dans lequel une zone est située sur le dioptre plan 1040 d'une lentille plan-convexe. L'élément optique est représenté en vue en coupe dans le plan (Y,Z) du référentiel commun 1014. Contrairement à l'exemple de la FIG. 3, la surface du dioptre convexe 1020 n'est pas altérée : la surface 1070 du dioptre plan a été altérée en retirant de la matière comprise entre la zone 1010 et la surface 1070. Sur la figure, la matière retirée est comprise entre les lignes représentées en pointillés. Ainsi, et pour un point donné sur la zone 1070 du dioptre plan 1040, l'épaisseur 1080 de la lentille a été réduite d'une épaisseur 1090.The deformation at the area 304 forms a prism that modifies the trajectory of all or part of the light passing through it. The prism thus formed comprises a flat surface 306 which was obtained in this example by removing material from the lens at the area. This means that material between the edges of the area located on the diopter of the lens has been removed. It can be seen that the surface of the diopter 306 is inclined relative to the plane diopter 314 at an angle, called the inclination angle, between the area 306 and the plane diopter. The inclination of the area 306 relative to the area 304 of the convex diopter 302 is greater, thus causing a modification of the trajectory of part of the light, emitted by the second light source, passing through the optical element: the light is deflected (one can also say folded down) downwards. Preferably, as indicated by reference 308, the edges of the lens are refined, so that the diopters of the lens are parallel. The light is bent at an angle called the bending angle. The bending angle is proportional to the inclination of the place face 306 of the prism. This angle is the angle formed by the respective normals between the surface 306 and the surface 304. Thus, the deviation of the part of the light emitted by the second light source by the zone, here forming a prism, is a function of the distance of the zone from the horizontal axis passing through the optical center of the lens. On the FIG. 3 , this distance is measured on the Z axis which is perpendicular to the horizontal Y axis. The function will take negative values when the distance of the zone is positive. The distance of the zone is positive when the zone is located above the cut-off line; in practice, this is equivalent to saying that the function takes negative values when all or part of the zone is located above the horizontal Y axis. The function can be a discontinuous function, or a continuous function that can be differentiable piecewise. The modification of the trajectory of all or part of the light passing through the zone is a deviation of light. The deviation is such that the light is deflected downwards to provide additional light rays at the dark spot created by the image of the folder in the light beam, and therefore to homogenize the light beam without cutoff emitted by the second function. The area present on a diopter causes a change in the deflection angle at the output of the optical element, and therefore a modification of the trajectory compared to the case where the diopter of the optical element has not undergone any alteration or deformation. FIG. 10 illustrates an example of an optical element that can be used with the dual-function light module according to the invention, and in which a zone is located on the plane diopter 1040 of a plano-convex lens. The optical element is shown in sectional view in the plane (Y,Z) of the common reference frame 1014. Unlike the example of the FIG. 3 , the surface of the convex diopter 1020 is not altered: the surface 1070 of the plane diopter has been altered by removing material between the zone 1010 and the surface 1070. In the figure, the material removed is between the lines shown in dotted lines. Thus, and for a given point on the zone 1070 of the plane diopter 1040, the thickness 1080 of the lens has been reduced by a thickness 1090.

La ou les zones peuvent être situées sur le dioptre d'entrée et/ou le dioptre de sortie d'un élément optique. Ainsi, sur la FIG. 3, la zone et la déformation associée à la zone sont situées sur le dioptre de sortie de l'élément optique, tandis que sur la FIG. 10, et selon l'invention, la zone et la déformation associée à la zone sont situées sur le dioptre d'entrée de l'élément optique.The zone(s) may be located on the input diopter and/or the output diopter of an optical element. Thus, on the FIG. 3 , the area and the deformation associated with the area are located on the output diopter of the optical element, while on the FIG. 10 , and according to the invention, the zone and the deformation associated with the zone are located on the entrance diopter of the optical element.

La FIG. 7 illustre un exemple non couvert par l'invention, dans lequel l'élément optique est une lentille 700 qui a une puissance optique nulle ou sensiblement nulle ; dans cet exemple l'élément optique est une lame. En théorie, seule une lame idéale présente une puissance optique nulle. La FIG. 7 illustre une vue en coupe de l'élément optique dans le plan (Y,Z) du référentiel commun 714. Le dioptre de sortie de cet élément optique présente une zone 702. Le dioptre avant altération est indiqué par la référence 710 et la matière retirée est représentée en pointillés. La zone 702 forme un prisme avec le dioptre d'entrée 712. Le bord 706 de la lame proche du prisme présente une épaisseur inférieure au bord opposé de la lame 708. Comme illustré par la FIG. 7, une partie des rayons lumineux 704 sont déviés. On comprend que, lorsqu'une ou plusieurs zones sont comprises sur le dioptre d'une lentille de puissance optique nulle, la lentille de puissance nulle est associée à une ou plusieurs lentilles à puissances non nulles formant le faisceau lumineux émis par le module lumineux. Dans ce cas, la lentille de puissance nulle peut être disposée avant la ou les autres lentilles : le principe d'addition des effets optiques permet donc d'obtenir, lors de l'utilisation de la deuxième fonction, un faisceau lumineux homogène.There FIG. 7 illustrates an example not covered by the invention, in which the optical element is a lens 700 which has zero or substantially zero optical power; in this example the optical element is a plate. In theory, only an ideal plate has zero optical power. The FIG. 7 illustrates a cross-sectional view of the optical element in the plane (Y,Z) of the common reference frame 714. The exit diopter of this optical element has a zone 702. The diopter before alteration is indicated by the reference 710 and the material removed is shown in dotted lines. The zone 702 forms a prism with the entrance diopter 712. The edge 706 of the plate close to the prism has a thickness less than the opposite edge of the plate 708. As illustrated by the FIG. 7 , a portion of the light rays 704 are deflected. It is understood that, when one or more zones are included on the diopter of a lens of zero optical power, the lens of zero power is associated with one or more lenses with non-zero powers forming the light beam emitted by the light module. In this case, the lens of zero power can be placed before the other lens(es): the principle of adding optical effects therefore makes it possible to obtain, when using the second function, a homogeneous light beam.

La FIG. 8 illustre un exemple non couvert par l'invention d'élément optique qui est une lentille 800 de puissance optique sensiblement nulle, comme dans l'exemple de la FIG. 7. La lentille est représentée dans le référentiel commun 814. Cette lentille 804 est une lame et comporte une zone 802 qui modifie la trajectoire d'une partie de la lumière traversant l'élément optique. Des stries sont disposées sur une partie haute 803 de l'élément optique qui englobe la zone 802 : la partie haute 803 s'étend de part et d'autre de la zone 802 selon l'axe X du référentiel. La zone 802 est dépourvue de stries. Les stries sont une structure optique ayant pour fonction d'homogénéiser le faisceau lumineux en créant un flou : les stries dévient localement les rayons lumineux incidents. La FIG. 9 illustre la vue en coupe de ces stries dans le plan (Y,Z), dans le référentiel commun 814, qui sont des structures de forme demi-circulaire 901, d'une largeur 903 variant entre 0,5 mm et 2 mm, bornes incluses, et qui ne sont pas couvertes par l'invention. Il s'agit de sillons peut profonds, pouvant être des lignes, rectilignes ou courbes, faisant varier l'épaisseur 905 selon l'axe z du référentiel 814. Toujours dans l'exemple de la FIG. 8, la portion 805 de la lame située sous la zone 802 et la portion 804 de la lame située sous la partie haute striée sont dépourvues de stries afin d'éviter que les stries n'altèrent la ligne de coupure : en effet, la zone 802 et les parties du dioptre 804 et 805 sont traversées par des rayons participant à la portée de la première fonction d'émission d'un faisceau à coupure. La portion 805 définit la zone centrale évoquée plus haut.There FIG. 8 illustrates an example not covered by the invention of an optical element which is a lens 800 of substantially zero optical power, as in the example of the FIG. 7 . The lens is represented in the common reference frame 814. This lens 804 is a blade and comprises a zone 802 which modifies the trajectory of a portion of the light passing through the optical element. Streaks are arranged on an upper part 803 of the optical element which encompasses the zone 802: the upper part 803 extends on either side of the zone 802 along the X axis of the reference frame. The zone 802 is free of streaks. The streaks are an optical structure whose function is to homogenize the light beam by creating a blur: the streaks locally deflect the incident light rays. The FIG. 9 illustrates the cross-sectional view of these striations in the plane (Y,Z), in the common reference frame 814, which are semi-circular structures 901, with a width 903 varying between 0.5 mm and 2 mm, limits included, and which are not covered by the invention. These are shallow grooves, which may be lines, rectilinear or curved, varying the thickness 905 along the z axis of the reference frame 814. Still in the example of the FIG. 8 , the portion 805 of the blade located under the zone 802 and the portion 804 of the blade located under the grooved upper part are devoid of grooves in order to prevent the grooves from altering the cut-off line: in fact, the zone 802 and the parts of the diopter 804 and 805 are crossed by rays participating in the range of the first function of emitting a cut-off beam. The portion 805 defines the central zone mentioned above.

Le module lumineux selon l'invention peut être utilisé au sein d'un véhicule. Ainsi, un projecteur peut comprendre un ou plusieurs modules lumineux, chacun des modules lumineux étant un module bifonction. Les modules lumineux peuvent être identiques, ou différents selon les exemples décrits.The light module according to the invention can be used within a vehicle. Thus, a headlight can comprise one or more light modules, each of the light modules being a dual-function module. The light modules can be identical, or different according to the examples described.

Claims (4)

  1. Luminous motor-vehicle module capable of being configured to execute a first function emitting a cutoff-containing light beam (100), the cutoff delineating an illuminated region (102) and a dark region (103), and a second function emitting a cutoff-free light beam (200), the dark region (203) then being illuminated, comprising:
    - a first light source capable of being used with the first function and a second light source capable of being used with the second function, the first function being a low-beam function and the second function being a high-beam function;
    - a deflector arranged to create the cutoff of the cutoff-containing light beam when the first function is executed;
    - a planar-convex projecting lens comprising an optical centre, a planar entrance dioptric interface (1040) and a convex exit dioptric interface (1020), which are capable of forming the light beam with or without cutoff, the planar entrance dioptric interface (1040) comprising a region (1070) that modifies the path of one portion of the light, emitted by the second light source, passing through the lens, so as to redirect one portion of the light emitted by the second source during emission of the cutoff-free light beam toward an image of the edge of the deflector, characterized in that the region is a deformation of the entrance dioptric interface of the lens, the deformation corresponding to a reduction in the thickness of the lens in the region (1070) so as to form a prism that modifies the path of all or some of the light that passes through it,
    the region being located at a distance greater than or equal to 10 mm from the horizontal axis passing through the optical centre of the lens upwards when the luminous module is placed in the vehicle, in a portion of the dioptric interface that is mainly employed during use of the second function.
  2. Luminous module according to Claim 1, wherein the prism formed comprises a planar surface obtained by removing material from the optical lens comprising the dioptric interfaces.
  3. Luminous module according to one of Claims 1 to 2, wherein the deflector comprises reflective surfaces.
  4. Headlamp comprising at least one luminous module according to one of the preceding claims.
EP18183857.4A 2017-07-17 2018-07-17 Dual function light module Active EP3431866B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1756737A FR3069046B1 (en) 2017-07-17 2017-07-17 BIFUNCTIONAL LIGHT MODULE

Publications (2)

Publication Number Publication Date
EP3431866A1 EP3431866A1 (en) 2019-01-23
EP3431866B1 true EP3431866B1 (en) 2024-09-04

Family

ID=59859338

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18183857.4A Active EP3431866B1 (en) 2017-07-17 2018-07-17 Dual function light module

Country Status (2)

Country Link
EP (1) EP3431866B1 (en)
FR (1) FR3069046B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012203929B3 (en) * 2012-03-13 2013-09-19 Automotive Lighting Reutlingen Gmbh Light module of a lighting device of a motor vehicle
DE102016122860A1 (en) * 2015-12-04 2017-06-08 Panasonic Intellectual Property Management Co., Ltd. Headlight and moving object
CN106813176A (en) * 2015-11-27 2017-06-09 欧司朗有限公司 A kind of headlight

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5537989B2 (en) * 2010-02-24 2014-07-02 スタンレー電気株式会社 Headlamp and bifocal lens
DE102010035767A1 (en) * 2010-08-20 2012-02-23 Automotive Lighting Reutlingen Gmbh Projection headlamps with deliberately attenuated light intensity gradients at the cut-off line
JP5752982B2 (en) * 2011-04-15 2015-07-22 株式会社小糸製作所 Lighting fixtures for vehicles
AT512468B1 (en) * 2012-02-13 2014-01-15 Zizala Lichtsysteme Gmbh LIGHTING MODULE FOR A MOTOR VEHICLE
KR102099792B1 (en) * 2013-12-11 2020-04-10 에스엘 주식회사 Head lamp for vehicles
JP6517556B2 (en) * 2015-03-24 2019-05-22 スタンレー電気株式会社 Vehicle lamp

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012203929B3 (en) * 2012-03-13 2013-09-19 Automotive Lighting Reutlingen Gmbh Light module of a lighting device of a motor vehicle
CN106813176A (en) * 2015-11-27 2017-06-09 欧司朗有限公司 A kind of headlight
DE102016122860A1 (en) * 2015-12-04 2017-06-08 Panasonic Intellectual Property Management Co., Ltd. Headlight and moving object

Also Published As

Publication number Publication date
FR3069046B1 (en) 2020-11-13
FR3069046A1 (en) 2019-01-18
EP3431866A1 (en) 2019-01-23

Similar Documents

Publication Publication Date Title
EP3167226B1 (en) Lighting module for a motor vehicle
EP3147557B1 (en) Primary optical element for lighting module of a vehicle
EP3708904B1 (en) Lighting device illustrating the lit surfaces of at least two manifolds
EP2422130B1 (en) Headlamp module for vehicle, having an improved high beam function
FR3026461A1 (en) LUMINOUS MODULE FOR LIGHTING AND / OR SIGNALING OF A MOTOR VEHICLE
FR3072445A1 (en) LUMINOUS MODULE FOR MOTOR VEHICLE
EP2792938A2 (en) Optical module and lighting and/or signalling device for a motor vehicle
EP2415636A2 (en) Lighting system for a vehicle
EP3708905B1 (en) Lighting device imaging the mirrored image of a light collector
WO2021099430A1 (en) Combined luminous module that images the illuminated surface of a collector
EP2867717A1 (en) Method for defining an aspherical lens and lighting module for a motor vehicle headlight comprising such a lens
WO2022129426A1 (en) Motor-vehicle lighting module
EP0256930A1 (en) Fog lamp with transverse filament for motor vehicles
EP3379143A1 (en) Light module with chromatism correction
EP3454096B1 (en) Fresnel lens with variable draw angle
EP3453955B1 (en) Light-emitting module for lighting and/or signalling of a motor vehicle
EP2436968B1 (en) Light-emitting device for an automobile headlight
EP2565522B1 (en) Headlight for automobile
EP3431866B1 (en) Dual function light module
EP3453946A1 (en) Light module for a motor vehicle, and lighting and/or signalling device comprising such a module
FR3055691A1 (en) DIFFRACTIVE SCREEN LIGHTING MODULE FOR MOTOR VEHICLE
EP2944514A1 (en) Lighting system for a motor vehicle headlight comprising a plurality of lighting modules
FR3035704A1 (en) METHOD FOR MANUFACTURING A REFLECTOR FOR A LIGHTING AND / OR SIGNALING DEVICE
FR3056695A1 (en) LIGHTING DEVICE FOR A MOTOR VEHICLE HAVING A LIGHT GUIDE
WO2022129427A1 (en) Dual-function lighting device with rotating lens

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180717

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220119

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240507

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018073871

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20240904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20241204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240904

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240904

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20241205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240904

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20241204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20241204

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240904

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20241204

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240904

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240904

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20241205

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240904

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240904

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240904

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1720734

Country of ref document: AT

Kind code of ref document: T

Effective date: 20240904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240904