[go: up one dir, main page]

EP3429784B1 - Verfahren zur herstellung eines turbinendeckbands für eine turbomaschine - Google Patents

Verfahren zur herstellung eines turbinendeckbands für eine turbomaschine Download PDF

Info

Publication number
EP3429784B1
EP3429784B1 EP17715221.2A EP17715221A EP3429784B1 EP 3429784 B1 EP3429784 B1 EP 3429784B1 EP 17715221 A EP17715221 A EP 17715221A EP 3429784 B1 EP3429784 B1 EP 3429784B1
Authority
EP
European Patent Office
Prior art keywords
layer
ring sector
turbine
abradable
equal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17715221.2A
Other languages
English (en)
French (fr)
Other versions
EP3429784A1 (de
Inventor
Jean-Baptiste Mottin
Yannick Marcel BEYNET
Geoffroy CHEVALLIER
Romain EPHERRE
Claude Estournes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Centre National de la Recherche Scientifique CNRS
Universite de Toulouse
Original Assignee
Safran Aircraft Engines SAS
Centre National de la Recherche Scientifique CNRS
Universite Toulouse III Paul Sabatier
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Aircraft Engines SAS, Centre National de la Recherche Scientifique CNRS, Universite Toulouse III Paul Sabatier filed Critical Safran Aircraft Engines SAS
Publication of EP3429784A1 publication Critical patent/EP3429784A1/de
Application granted granted Critical
Publication of EP3429784B1 publication Critical patent/EP3429784B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/009Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine components other than turbine blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/247Removing material: carving, cleaning, grinding, hobbing, honing, lapping, polishing, milling, shaving, skiving, turning the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2207/00Aspects of the compositions, gradients
    • B22F2207/01Composition gradients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/15Nickel or cobalt
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/12Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part
    • F01D11/122Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part with erodable or abradable material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/22Manufacture essentially without removing material by sintering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/60Assembly methods
    • F05D2230/61Assembly methods using limited numbers of standard modules which can be adapted by machining
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/11Shroud seal segments

Definitions

  • This disclosure relates to a method of manufacturing a turbine ring for a turbomachine.
  • the burnt gases from the combustion chamber enter the high-pressure turbine at very high temperature and pressure levels, which causes premature erosion of conventional abradable tracks.
  • thermal barrier type coating whose materials and high density, too high for the coating to be effectively abradable, make it possible to protect the ring against erosion and corrosion.
  • US 2013/177740 A1 discloses a method for the simultaneous manufacture of a porous/abradable layer on an element of a turbomachine, including a turbine ring, by the SPS method.
  • FR 2 941 965 A1 discloses a method in which a protective layer on a turbomachine part (blade) is deposited by the SPS method in which the powder is deposited on a curved surface of the turbomachine part and an undercut is positioned on the powder before SPS sintering.
  • the present disclosure relates to a method of manufacturing a turbine ring for a turbomachine according to claim 1.
  • the turbine ring is usually made in several parts, each part forming a turbine ring sector of reduced dimensions compared to the dimensions of the complete turbine ring. It is therefore simple to arrange a ring sector in a mold.
  • the inner surface of the turbine ring sector is the surface that faces the turbine wheel when the turbine ring is mounted in the turbine, so it is this inner surface on which the powder layer is deposited.
  • SPS sintering process in accordance with the English acronym for "Spark Plasma Sintering", also known as FAST sintering, in accordance with the English acronym for "Field Assisted Sintering Technology", or flash sintering, is a sintering process during which a powder is simultaneously subjected to a high intensity pulsed current and uniaxial pressure in order to form a sintered material.
  • SPS sintering is generally carried out in a controlled atmosphere and can be assisted by a heat treatment.
  • SPS sintering time is relatively short and SPS sintering allows a relatively unrestricted choice of starting powders.
  • SPS sintering allows in particular to sinter, i.e. to densify, materials whose welding is relatively complicated to achieve, or even impossible, because these materials crack easily when heated. Due to the choice of SPS sintering and the short duration of this sintering, it is therefore possible to produce an abradable layer with a very wide variety of materials.
  • the shrinkage due to sintering of the powder layer to give the abradable layer is limited to the direction of application of the pressure. Therefore, no shrinkage of the powder layer is observed in directions perpendicular to the direction of application of the pressure. Also, the abradable layer covers the entire internal surface of the ring sector.
  • the turbine ring is therefore covered with an abradable layer. It is therefore possible to provide a relatively small clearance between the turbine ring and the rotor, for example the blades of a turbine wheel, and to improve the performance of the turbine, without risking damage to the blades in the event of their rubbing on the stator ring.
  • SPS sintering allows the formation of a diffusion layer between the abradable layer and the material forming the ring sector so that the abradable layer is firmly attached to the material forming the ring sector.
  • the abradable layer thus formed cannot be removed from the ring sector unintentionally.
  • the abradable layer of each ring sector has a free surface which may not be in line with the free surface of the adjacent ring sector.
  • the free surfaces of the different ring sectors are machined so as to present a surface intended to face the turbine wheel which has the least possible discontinuity. Indeed, if such discontinuities are present, the blade wheel could come up against these discontinuities and thus cause shocks in the turbine, which is not desirable.
  • the lower mold may have a shape complementary to the outer surface of the turbine ring sector.
  • the lower mold applies a relatively uniform pressure to the outer surface of the ring sector.
  • the mold can accommodate variations in dimensions from one ring sector to another due to the manufacturing process of the ring sector.
  • the turbine sectors can for example be obtained by a casting process and the dimensions of each turbine sector can vary slightly from one turbine sector to another.
  • a layer of chemically inert material can be deposited on the lower mold and on the upper mold.
  • This layer of chemically inert material makes it possible to reduce chemical reactions between the powder layer and the turbine ring sector with the lower mold and the upper mold during SPS sintering.
  • the chemically inert material makes it possible to reduce or even avoid sticking of the abradable layer and/or the ring sector with the mold parts.
  • the chemically inert material also makes it possible to reduce, or even avoid, the formation of a carbide layer on the free surface of the abradable layer.
  • the aim is to avoid the formation of this carbide layer which, if it forms, must be removed from the abradable layer before use.
  • the chemically inert material can also be used to fill existing gaps between the lower mold and the outer surface of the turbine ring sector.
  • the uniformity of the pressure exerted by the lower mold on the turbine ring sector and therefore on the powder layer is improved.
  • the chemically inert material may for example comprise boron nitride or corundum.
  • a chemically inert material comprising boron nitride is understood to mean a material which comprises at least 95% by mass of boron nitride.
  • a chemically inert material comprising corundum is understood to mean a material which comprises at least 95% by mass of corundum.
  • the powder is a metallic powder based on cobalt or nickel.
  • Cobalt-based means a metal powder in which cobalt is the largest mass percentage.
  • nickel-based means a metal powder in which nickel is the largest mass percentage.
  • cobalt-based powder a metal powder containing 38% by mass of cobalt and 32% by mass of nickel will be referred to as a cobalt-based powder, cobalt being the chemical element in which the largest mass percentage is present in the metal powder.
  • Cobalt or nickel-based metal powders are powders that, once sintered, have good resistance to high temperatures. They can thus fulfill the dual function of abradable and heat shield. For example, we can cite CoNiCrAlY superalloys. These metal powders also have the advantage of having a chemical composition similar to the chemical composition of the material forming the turbine ring, for example AM1 or N5 superalloys.
  • SPS sintering can be carried out for a period of less than or equal to 60 minutes, preferably less than or equal to 30 minutes, even more preferably less than or equal to 15 minutes.
  • the SPS sintering time is therefore relatively short.
  • the upper mold and the lower mold are made of tungsten carbide, and the SPS sintering can be carried out at a temperature greater than or equal to 500°C, preferably greater than or equal to 600°C.
  • SPS sintering is carried out at a pressure greater than or equal to 100 MPa, preferably greater than or equal to 200 MPa, even more preferably greater than or equal to 300 MPa.
  • the abradable layer may have an open porosity less than or equal to 20%, preferably less than or equal to 15%, even more preferably less than or equal to 10%.
  • the abradable layer may have a thickness greater than or equal to 0.5 mm, preferably greater than or equal to 4 mm and less than or equal to 15 mm, preferably less than or equal to 10 mm, even more preferably less than or equal to 5 mm.
  • the turbine ring may comprise a number of turbine ring sectors greater than or equal to 20, preferably greater than or equal to 30, even more preferably greater than or equal to 40.
  • FIG. 1 represents, in section along a vertical plane passing through its main axis A, a dual-flow turbojet 10.
  • the dual-flow turbojet 10 comprises, from upstream to downstream according to the circulation of the air flow, a fan 12, a low-pressure compressor 14, a high-pressure compressor 16, a combustion chamber 18, a high-pressure turbine 20, and a low-pressure turbine 22.
  • the high-pressure turbine 20 comprises a plurality of moving blades 20A rotating with the rotor and rectifiers 20B mounted on the stator.
  • the stator of the turbine 20 comprises a plurality of stator rings 24 arranged opposite the moving blades 20A of the turbine 20.
  • each stator ring 24 is made of several ring sectors 26.
  • Each ring sector 26 has an internal surface 28, an external surface 30 and an abradable layer 32 on which the moving blades 20A of the rotor can rub.
  • the ring sector 26 is made of a cobalt- or nickel-based superalloy, such as the AM1 superalloy or the N5 superalloy, and the abradable layer 32 is obtained from a cobalt- or nickel-based metal powder.
  • the method of manufacturing the turbine ring 24 comprises a first step of manufacturing at least one turbine ring sector 26, for example by a foundry method.
  • FIG. 3 shows a sectional view of the turbine ring sector 26 in a mold for SPS sintering.
  • the mold comprises a lower mold 34 of a shape complementary to the external surface 30 of the ring sector 26.
  • the ring sector 26 is positioned in a lower mold 34 such that the outer surface 30 of the ring sector 26 is in contact at least partially with the lower mold 34.
  • the lower mold 34 is therefore not in contact with the ring sector 26 over the entire outer surface 30 of the ring sector 26.
  • the visible spaces between the ring sector 26 and the lower mold 34 make it possible to accommodate the variations in dimensions due to the manufacturing process of the different ring sectors 26.
  • the shape of the lower mold 34 being complementary to the outer surface 30 of the ring sector 26, the pressure exerted by the lower mold 34 on the ring sector 26 is relatively uniform.
  • a layer of powder 36 is then deposited on the internal surface 28 of the ring sector 26 and the upper mold 38 is positioned on the layer of powder 36.
  • the SPS sintering step is then carried out, which makes it possible to obtain an abradable layer 32 made directly on the ring sector 26.
  • the upper mold 38 and the lower mold 34 can be made of graphite. They can also be made of tungsten carbide.
  • a layer of chemically inert material may be deposited in the lower mold 34 and on the upper mold 38.
  • the chemically inert material may be boron nitride applied using a spray. Boron nitride powder may also be added to fill the spaces between the ring sector 26 and the lower mold 34.
  • the chemically inert material can also be corundum.
  • the ring sector 26 coated with the abradable layer 32 is then removed from the mold.
  • each ring sector 26 is covered with a layer of abradable 32.
  • the layer of abradable 32 of each ring sector has a free surface 44 which may not be in the extension of the free surface 44 of the adjacent ring sector 26.
  • the free surfaces 44 of the different ring sectors 26 are machined so as to have a machined surface 46 intended to face the turbine wheel. This machined surface 46 has the least possible discontinuity. Indeed, if such discontinuities are present, the blade wheel could come up against these discontinuities and thus cause shocks in the turbine, which is not desirable.
  • FIG. 5 is an image taken using a scanning electron microscope of an interface between a ring sector 26 and an abradable layer 32.
  • this abradable layer 32 is sintered on the ring sector 26 at 950°C, under a pressure of 40 MPa for 30 minutes.
  • the pressure can be applied cold, that is to say from the start of the cycle, or hot, during the sintering stage.
  • the chemical composition evolves progressively, along line 40 of the figure 5 , starting from the ring sector 26 towards the abradable layer 32, defining a diffusion zone 42 at the interface between the ring sector 26 and the abradable layer 32.
  • FIGS. 7A-7D represent different microstructures of abradable layers 32 whose open porosity is respectively approximately 10%, approximately 7%, approximately 3% and almost zero.
  • the Figure 7A represents a layer of abradable 32 obtained during an SPS sintering step at 925°C for 10 minutes by applying a pressure of 20 MPa.
  • the Figure 7D represents a layer of abradable 32 obtained during an SPS sintering step at 950°C for 30 minutes applying a pressure of 40 MPa.
  • the thickness of the abradable layer 32 obtained after SPS sintering depends in particular on the thickness of the powder layer 36 deposited on the internal surface 28 of the ring sector 26 as well as on the SPS sintering parameters.
  • the thickness of the abradable layer 32 obtained after SPS sintering may also depend on the particle size and morphology of the powder used. In particular, the morphology of the powder may depend on the method of manufacturing the powder. Thus, a powder manufactured by gas atomization or rotating electrode will have grains of substantially spherical shape while a powder manufactured by liquid atomization will have grains of less regular shape.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Powder Metallurgy (AREA)

Claims (5)

  1. Verfahren zur Herstellung eines Turbinenrings (24) für eine Turbomaschine, umfassend die folgenden Schritte:
    - Herstellen von mindestens einem Turbinenringabschnitt (26),
    - Positionieren des Turbinenringabschnittes (26) in einer unteren Form (34), sodass eine Außenfläche (30) des Turbinenringabschnittes (26) zumindest teilweise in Kontakt mit der unteren Form (34) ist,
    - Abscheiden einer Pulverschicht (36) auf einer Innenfläche (28) des Turbinenringabschnittes (26), wobei das Pulver ein metallisches Pulver auf Basis von Kobalt oder Nickel ist,
    - Positionieren einer oberen Form (38) auf der Pulverschicht (36), und
    - Umsetzen einer Abriebschicht (32) auf der Innenfläche (28) durch einen SPS-Sintervorgang der Pulverschicht (36), wobei die Abriebschicht (32) dazu gedacht ist, gegenüber einem Turbinenrad angeordnet zu sein,
    wobei die obere Form (38) und die untere Form (34) aus Wolframkarbid sind und wobei das SPS-Sintern bei einer Temperatur größer als oder gleich 500 °C, vorzugsweise größer als oder gleich 600 °C umgesetzt wird und wobei das SPS-Sintern bei einem Druck größer als oder gleich 100 MPa, vorzugsweise größer als oder gleich 200 MPa, noch bevorzugter größer als oder gleich 300 MPa umgesetzt wird.
  2. Verfahren nach Anspruch 1, ferner umfassend die folgenden Schritte:
    - Zusammenfügen von mehreren Turbinenringabschnitten (26), wobei die Innenfläche (28) jedes Turbinenringabschnittes (26) mit einer Abriebschicht (32) bedeckt ist, und
    - Bearbeiten einer Freifläche (44) der Abriebschicht (32).
  3. Verfahren nach Anspruch 1 oder 2, wobei die untere Form (34) eine Form komplementär zu der Außenfläche (30) des Turbinenringabschnittes (26) aufweist.
  4. Verfahren nach einem der Ansprüche 1 bis 3, wobei vor dem Positionieren des Turbinenringabschnittes (26) in der unteren Form (34) und der oberen Form (38) eine Schicht aus chemisch inertem Material auf der unteren Form (34) und auf der oberen Form (38) abgeschieden wird, sodass das Haften der Abriebschicht und/oder des Ringabschnittes an den Teilen der Form reduziert wird.
  5. Verfahren nach einem der vorhergehenden Ansprüche, wobei das SPS-Sintern während einer Dauer von weniger als oder gleich 60 Minuten, vorzugsweise weniger als oder gleich 30 Minuten, noch bevorzugter weniger als oder gleich 15 Minuten umgesetzt wird.
EP17715221.2A 2016-03-14 2017-03-10 Verfahren zur herstellung eines turbinendeckbands für eine turbomaschine Active EP3429784B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1652102A FR3048629B1 (fr) 2016-03-14 2016-03-14 Procede de fabrication d'un anneau de turbine pour turbomachine
PCT/FR2017/050546 WO2017158264A1 (fr) 2016-03-14 2017-03-10 Procede de fabrication d'un anneau de turbine pour turbomachine

Publications (2)

Publication Number Publication Date
EP3429784A1 EP3429784A1 (de) 2019-01-23
EP3429784B1 true EP3429784B1 (de) 2024-10-09

Family

ID=56511658

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17715221.2A Active EP3429784B1 (de) 2016-03-14 2017-03-10 Verfahren zur herstellung eines turbinendeckbands für eine turbomaschine

Country Status (5)

Country Link
US (1) US10843271B2 (de)
EP (1) EP3429784B1 (de)
CN (1) CN109070219B (de)
FR (1) FR3048629B1 (de)
WO (1) WO2017158264A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3048018B1 (fr) * 2016-02-22 2018-03-02 Safran Aircraft Engines Dispositif d'application de materiau abradable sur une surface d'un carter de turbomachine
FR3082765B1 (fr) * 2018-06-25 2021-04-30 Safran Aircraft Engines Procede de fabrication d'une couche abradable
FR3088839B1 (fr) * 2018-11-23 2022-09-09 Safran Aircraft Engines Procede de fabrication d’une piece metallique pour une turbomachine d’aeronef
FR3095973B1 (fr) * 2019-05-16 2021-05-07 Safran Aircraft Engines Procédé de de fabrication additive pour une pièce métallique
US12055056B2 (en) 2021-06-18 2024-08-06 Rtx Corporation Hybrid superalloy article and method of manufacture thereof
US12037912B2 (en) 2021-06-18 2024-07-16 Rtx Corporation Advanced passive clearance control (APCC) control ring produced by field assisted sintering technology (FAST)
US20220403742A1 (en) * 2021-06-18 2022-12-22 Raytheon Technologies Corporation Hybrid superalloy article and method of manufacture thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6976532B2 (en) * 2003-06-26 2005-12-20 The Regents Of The University Of California Anisotropic thermal applications of composites of ceramics and carbon nanotubes
US8365405B2 (en) * 2008-08-27 2013-02-05 United Technologies Corp. Preforms and related methods for repairing abradable seals of gas turbine engines
FR2941965B1 (fr) * 2009-02-10 2011-05-13 Snecma Procede de depot d'une couche de protection sur une piece
US20120107103A1 (en) * 2010-09-28 2012-05-03 Yoshitaka Kojima Gas turbine shroud with ceramic abradable layer
US20130017072A1 (en) * 2011-07-14 2013-01-17 General Electric Company Pattern-abradable/abrasive coatings for steam turbine stationary component surfaces
US9056354B2 (en) * 2011-08-30 2015-06-16 Siemens Aktiengesellschaft Material system of co-sintered metal and ceramic layers
US9149777B2 (en) * 2011-10-10 2015-10-06 Baker Hughes Incorporated Combined field assisted sintering techniques and HTHP sintering techniques for forming polycrystalline diamond compacts and earth-boring tools
US9186866B2 (en) * 2012-01-10 2015-11-17 Siemens Aktiengesellschaft Powder-based material system with stable porosity
ITFI20120035A1 (it) * 2012-02-23 2013-08-24 Nuovo Pignone Srl "produzione di giranti per turbo-macchine"
US9102015B2 (en) * 2013-03-14 2015-08-11 Siemens Energy, Inc Method and apparatus for fabrication and repair of thermal barriers
US20170009329A1 (en) * 2015-07-06 2017-01-12 Ngimat Co. Conductive Additive Electric Current Sintering

Also Published As

Publication number Publication date
EP3429784A1 (de) 2019-01-23
FR3048629A1 (fr) 2017-09-15
US20190054537A1 (en) 2019-02-21
CN109070219A (zh) 2018-12-21
CN109070219B (zh) 2021-08-17
WO2017158264A1 (fr) 2017-09-21
FR3048629B1 (fr) 2018-04-06
US10843271B2 (en) 2020-11-24

Similar Documents

Publication Publication Date Title
EP3429784B1 (de) Verfahren zur herstellung eines turbinendeckbands für eine turbomaschine
EP3429787B1 (de) Verfahren zur herstellung und zu reparatur eines abschleifbarenschichte eines turbinesring
CA3018664C (fr) Ensemble d'anneau de turbine sans jeu de montage a froid
EP1911549B1 (de) Schutzmaske für die Oberflächenbehandlung von Strömungsmaschinen-Leitschaufeln
EP1312761B1 (de) Abreibbare Beschichtung für Mantelringe von Gasturbinen
CA3008316C (fr) Revetement abradable a densite variable
EP0795377B1 (de) Verfahren zum Herstellen von Ablagerungen auf lokalen Stellen von Werkstücken aus Superlegierungen
EP3389903B1 (de) Verfahren zur herstellung einer abreibbaren beschichtung mit variablen dichten
WO2010026181A1 (fr) Procede de fabrication d'une piece thermomecanique de revolution circulaire comportant un substrat porteur a base de titane revetu d'acier ou superalliage, carter de compresseur de turbomachine resistant au feu de titane obtenu selon ce procede
FR3059323A1 (fr) Ensemble d'une piece cmc assemblee sur un element metallique, procede de fabrication d'un tel ensemble
WO2010026179A1 (fr) Procede de fabrication d'une piece thermomecanique de revolution circulaire comportant un substrat porteur a base de titane revetu d'acier ou superalliage, carter de compresseur de turbomachine resistant au feu de titane obtenu selon ce procede
FR2935624A1 (fr) Procede de fabrication d'une piece thermomecanique de revolution circulaire comportant un substrat porteur a base de titane revetu d'acier ou superalliage, carter de compresseur de turbomachine resistant au feu de titane
EP2326845B1 (de) Gegen titanfeuer beständiges kompressorgehäuse, hochdruckkompressor mit solch einem gehäuse und einen solchen kompressor enthaltendes flugzeugtriebwerk
EP3707297B1 (de) Verfahren zur herstellung einer wärmebarriere an einem teil einer turbomaschine
FR3055820A1 (fr) Procede d'assemblage de coques en metal dont une est realisee par depot laser
EP3466567A1 (de) Herstellungsverfahren eines werkstücks, das zwei verschiedene superlegierungen enthält
FR3127144A1 (fr) Procédé de fabrication d’une pièce aéronautique bi-matériaux
FR3040645A1 (fr) Procede de fabrication d'une piece par fusion selective ou frittage selectif sur lit de poudre
EP4076794A1 (de) Verfahren zum herstellen einer verbundstoff-turbomaschinen-schaufelscheibe (blisk) mit keramikverstärkung
FR2979664A1 (fr) Paroi stator de turbomachine recouverte d'un revetement abradable a faible rugosite aerodynamique
FR3098542A1 (fr) Ensemble de pièces de turbomachine
FR2896176A1 (fr) Procede de fabrication d'un objet par projection laser de poudre metallique, tel qu'une pale de turbomachine
WO2017072431A1 (fr) Procede pour realiser une piece d'etancheite a corps en superalliage contenant du bore et revetu

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180911

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210709

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: B22F 3/24 20060101ALI20240528BHEP

Ipc: F01D 11/12 20060101ALI20240528BHEP

Ipc: F01D 9/04 20060101ALI20240528BHEP

Ipc: B22F 7/08 20060101ALI20240528BHEP

Ipc: B22F 7/06 20060101ALI20240528BHEP

Ipc: B22F 5/00 20060101ALI20240528BHEP

Ipc: B22F 3/105 20060101AFI20240528BHEP

INTG Intention to grant announced

Effective date: 20240611

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ESTOURNES, CLAUDE

Inventor name: EPHERRE, ROMAIN

Inventor name: CHEVALLIER, GEOFFROY

Inventor name: BEYNET, YANNICK MARCEL

Inventor name: MOTTIN, JEAN-BAPTISTE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017085342

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20241009

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1730035

Country of ref document: AT

Kind code of ref document: T

Effective date: 20241009