EP3381204A1 - Method and device for estimating sound reverberation - Google Patents
Method and device for estimating sound reverberationInfo
- Publication number
- EP3381204A1 EP3381204A1 EP16819332.4A EP16819332A EP3381204A1 EP 3381204 A1 EP3381204 A1 EP 3381204A1 EP 16819332 A EP16819332 A EP 16819332A EP 3381204 A1 EP3381204 A1 EP 3381204A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- characteristic
- reverberation
- acoustic
- medium
- signals
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R29/00—Monitoring arrangements; Testing arrangements
- H04R29/001—Monitoring arrangements; Testing arrangements for loudspeakers
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L25/00—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
- G10L25/03—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters
- G10L25/21—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters the extracted parameters being power information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R29/00—Monitoring arrangements; Testing arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04S—STEREOPHONIC SYSTEMS
- H04S7/00—Indicating arrangements; Control arrangements, e.g. balance control
Definitions
- the present invention relates to methods and devices for estimating acoustic reverberation.
- Estimating the acoustic reverberation of a medium is essential for capturing acoustic signals such as speech in a reverberant medium such as, for example, a room in a building.
- the microphone When a sound is emitted and picked up by a microphone in a reverberant environment, the microphone picks up not only the received signal directly, but also reverberant signals in the medium.
- This reverberation is reflected by the impulse response of the medium, from which various known parameters, including the reverberation time, flow.
- the impulse response can be measured directly by emitting an acoustic pulse in the medium, but this method is cumbersome and difficult to envisage for performing repeated measurements while one or more speakers are speaking in the room.
- the reverberation time can be estimated blindly, for example while one or more speakers are speaking.
- the most common parameter used to represent the reverberation time is the 60 dB RT 60 reverberation time.
- the document US2014169575 describes a method for blind estimation of the reverberation time in a room.
- the reverb time is not representative of the distance between the transmitter and the microphone, which however has a significant impact on the reverb level.
- the aforementioned known methods of the type do not therefore make it possible to process the acoustic signals sensed satisfactorily.
- the present invention therefore aims to provide a method for estimating acoustic reverberation, which avoids this disadvantage.
- the invention proposes a method for estimating acoustic reverberation in a medium, comprising the following steps:
- step (b) an observation step during which an acoustic energy decay rate distribution is determined from the acoustic signal picked up in step (a) and the characteristic function of the decay rate distribution is determined acoustic energy
- step (c) an estimation step in which a characteristic reverberation time and a characteristic reverberation level of the sound in the medium are estimated from data representative of the acoustic energy decay rate distribution determined at step (b), the regression being made with reference to:
- a kernel function estimator is used and the characteristic reverberation time and the characteristic reverberation level are simultaneously determined;
- a Nadaraya-Watson estimator is used during the estimation step (c).
- the reverberation level characteristic of the sound in the medium (7) is chosen from the clarity index C T and the definition index D T ;
- the method further comprises a preliminary calibration phase comprising the following steps: (a ') at least one initial step of determination of reference signals in which one determines a plurality of reference acoustic signals corresponding to said reference characteristic reverberation times and said reference characteristic reverberation levels,
- At least a portion of the reference acoustic signals and the characteristic reverberation times and reference characteristic reverberation levels corresponding to said reference acoustic signals are determined by calculation from a predetermined set of impulse responses;
- At least a portion of the reference acoustic signals, the characteristic reverberation times and the reference characteristic reverberation levels corresponding to said reference acoustic signals are determined by measurement.
- the invention also relates to a device for estimating acoustic reverberation in a medium, comprising:
- (c) means for estimating a reverberation time characteristic and a reverberation level characteristic of sound in the medium from data representative of the acoustic energy decay rate distribution, the regression being made with reference to:
- FIG. 1 is a diagrammatic view illustrating the reverberation of the sound in a room when a subject speaks so that his words are picked up by a device according to one embodiment of the invention
- FIG. 2 is a schematic diagram of the device of Figure 1.
- the aim of the invention is to estimate the acoustic reverberation of a medium 7, for example a room in a building as shown diagrammatically in FIG. 1, so as to process the acoustic signals picked up by a device
- An electronic device 1 may be, for example, a telephone in the example shown, or a computer or the like.
- the electronic device 1 may comprise, for example, an electronic central unit 8 such as a processor or the like, connected to the microphone 2 and to various other elements, including for example a loudspeaker 9, a keyboard 10 , a screen 11.
- the electronic central unit 8 can communicate with an external network 12, for example a telephone network.
- the invention enables the electronic device 1 to measure blindly two characteristic parameters of the reverberation of the medium 7:
- reverberation time characteristic such as reverberation time 60 dB R go?
- a characteristic reverberation level for example clarity or definition index, or direct signal index on reverberated signal.
- These parameters can be used to suppress the echo effects or more generally to optimize the sound signals picked up by the microphone 2.
- the parameters in question are estimated in a repetitive manner, so that the device 1 adapts for example to changes of speakers 3, to displacements of speakers 3, to movements of the device 1 or other objects in the medium 7.
- the reverberation time at 60dB RT 60 can be defined by the inverse integration method of Manfred R. Schroeder (New Method of Measuring Reverberation Time, The Journal of the Acoustical Society of Ameri.ca, 37 (3): 409, 1965) by the EDC Energy Decay Curve:
- n - h is the impulse response of the medium of length N h
- n is a time index, for example a number of samples obtained by a sampling of constant time steps, n being between 1 and N h .
- R 60 is the time at the time index n required for EDC (n) to decrease by 60 dB.
- reverberation time R 6 o is the most commonly used, we could estimate another reverberation time characteristic of the medium 7.
- - ⁇ ⁇ is the number of samples with constant time steps corresponding to the time ⁇ , generally between 0.1 ms and 1 s,
- n is a time index between 1 and ⁇ ⁇ , representative of a number of samples of constant time step
- h (n) is the impulse response of medium 7.
- indices have been described in particular by PA Naylor and ND Gaubitch (Speech Dereverberation, Springer, eds edition, 2010).
- the two most commonly used values of ⁇ are 50 ms and 80 ms, in particular 50 ms (indices C 5 o and D 50 ), but other durations are possible and more generally other indices reflecting the ratio of the direct sound to the its reverberation could be estimated in the method according to the invention, implemented for example by the aforementioned electronic central unit 8.
- This process comprises the following steps:
- step (b) an observation step during which an acoustic energy decay rate distribution is determined from the acoustic signals measured in step (a),
- step (c) an estimation step in which it is estimated, by regression from the sound energy decay rate distribution determined in step (b), a characteristic reverberation time and a characteristic reverberation level sound in the middle 7.
- the microphone 2 captures "blind" (that is to say, without prior knowledge of the signals transmitted), an acoustic signal broadcast in the medium 7, for example when the speaker 3 speaks. This signal is sampled and stored in processor 8 or an ancillary memory (not shown).
- an acoustic energy decay rate distribution is determined from the acoustic signal measured in step (a).
- a total energy of the frame m can be calculated by the formula:
- a s and ⁇ h are respectively the rate of energy decay of the emitted anechoic signal and medium 7 (the signal picked up is a convolution of the anechoic signal emitted
- n the temporal index defined above
- the calculation of p (m) can typically be done on a number M of frames of at least 2000, corresponding to at least 1 min of signal according to the selected analysis parameters.
- the frames can have an individual duration of 10 to 100 ms, in particular of the order of 32 ms.
- the frames may overlap each other, for example with a recovery rate of the order of 50% between successive frames.
- Different values of the energy decay rate p (m) are thus obtained, which have a certain statistical distribution (number of embodiments or probability of realization as a function of the energy decay rate p (m), as explained, for example, in the article by Wen et al., above).
- X is here the aforementioned energy decay rate p (m) estimated for various values of m (formula (5)), F x the cumulative distribution of X and f is a dimensionless variable generally referred to as angular frequency.
- the characteristic function can be calculated for angular frequencies f ranging, for example, from 0 to 0.4, in increments of 0.001.
- p can be for example between 256 and 2048. Since the characteristic function is a complex number, it can be represented by a vector of X belonging to R p constituting the random input vector x of the estimator used.
- the random output vector y of the estimator, belonging to R 2 has as component the two estimated parameters, for example (RT 60 , C 5 o) or (RT 6 o, D 5 o) ⁇
- the estimator used may advantageously be a kernel function estimator, for example a Nadaraya-Watson estimator.
- a kernel function estimator for example a Nadaraya-Watson estimator.
- Such an estimator has the advantage of simultaneously determining the characteristic reverberation time and the characteristic reverberation level.
- the estimator in question can be determined in advance in an initial calibration phase, where at least one initial step of determination of reference signals (a ') and at least one initial observation step (b') is implemented.
- a plurality of reference acoustic signals and reference characteristic reverberation times and corresponding reference characteristic reverb levels are determined.
- the acoustic energy decay rate distribution and the reference characteristic function for each reference acoustic signal are determined identically or similarly to the observation step ( (b) above.
- the acoustic reference signals are generally vocal signals of the number of N and correspond to N cases of different figures (different speakers, different positions, different media 7). N can be several hundred or even thousands.
- the initial step of determining reference signals can be performed:
- the characteristic reverberation time and the characteristic reverberation level can also be measured
- the aforementioned synthetic acoustic signals can be calculated by convolving pre-recorded impulse responses with pre-recorded speech anechoic signals from different speakers.
- the prerecorded impulse responses may for example come from impulse response databases, for example from open access databases such as Aachen Impulse Response databases.
- Anechoic speech signals may be signals recorded from various speakers, for example example of different ages and sexes, with for example recording times for example of a few minutes, for example of the order of 5 minutes.
- the energy decay rate distributions can for example be calculated over frames of 10 to 100 ms, in particular of the order of 32 ms.
- the frames may overlap each other, for example with a recovery rate of the order of 50% between successive frames.
- the characteristic functions can be calculated for angular frequencies ranging for example from 0 to 0.4, in increments of 0.001.
- the kernel function K ⁇ (x, x ⁇ ) is a function of x and Xi as defined in particular by Scholkopf et al. (B. Scholkpf eand AJ Smola, Learning with Kernels, MIT Press, Cambridge, MA, 2001).
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Health & Medical Sciences (AREA)
- Otolaryngology (AREA)
- General Health & Medical Sciences (AREA)
- Computational Linguistics (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Human Computer Interaction (AREA)
- Multimedia (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
- Reverberation, Karaoke And Other Acoustics (AREA)
Abstract
Description
Procédé et dispositif pour estimer la réverbération Method and apparatus for estimating reverberation
acoustique DOMAINE DE L'INVENTION acoustics DOMAIN OF THE INVENTION
La présente invention est relative aux procédés et dispositifs pour estimer la réverbération acoustique. The present invention relates to methods and devices for estimating acoustic reverberation.
ARRIERE PLAN DE L'INVENTION BACKGROUND OF THE INVENTION
L'estimation de la réverbération acoustique d'un milieu est essentielle pour capter des signaux acoustiques tels que la parole dans un milieu réverbérant tel que par exemple une pièce dans un bâtiment. Estimating the acoustic reverberation of a medium is essential for capturing acoustic signals such as speech in a reverberant medium such as, for example, a room in a building.
Lorsqu'un son est émis puis capté par un microphone dans un milieu réverbérant, le microphone capte non seulement le signal reçu directement, mais également des signaux réverbérés dans le milieu. When a sound is emitted and picked up by a microphone in a reverberant environment, the microphone picks up not only the received signal directly, but also reverberant signals in the medium.
Cette réverbération est reflétée par la réponse impulsionnelle du milieu, dont découlent divers paramètres connus, notamment le temps de réverbération. La réponse impulsionnelle est mesurable directement en émettant une impulsion acoustique dans le milieu, mais cette méthode est lourde et difficilement envisageable pour effectuer des mesures répétées pendant qu'un ou des locuteurs parlent dans la pièce. This reverberation is reflected by the impulse response of the medium, from which various known parameters, including the reverberation time, flow. The impulse response can be measured directly by emitting an acoustic pulse in the medium, but this method is cumbersome and difficult to envisage for performing repeated measurements while one or more speakers are speaking in the room.
Le temps de réverbération peut être estimé à l'aveugle, par exemple pendant qu'un ou des locuteurs parlent. Le paramètre le plus couramment utilisé pour représenter le temps de réverbération est le temps de réverbération à 60 dB RT60. The reverberation time can be estimated blindly, for example while one or more speakers are speaking. The most common parameter used to represent the reverberation time is the 60 dB RT 60 reverberation time.
A titre d'exemple, le document US2014169575 décrit un procédé d'estimation à l'aveugle du temps de réverbération dans une pièce. By way of example, the document US2014169575 describes a method for blind estimation of the reverberation time in a room.
Toutefois, le temps de réverbération n'est pas représentatif de la distance entre l'émetteur et le microphone, qui pourtant a un impact important sur le niveau de réverbération. Les procédés connus du type susmentionnés ne permettent donc pas de traiter les signaux acoustiques captés de façon satisfaisante. However, the reverb time is not representative of the distance between the transmitter and the microphone, which however has a significant impact on the reverb level. The aforementioned known methods of the type do not therefore make it possible to process the acoustic signals sensed satisfactorily.
OBJETS ET RESUME DE L'INVENTION OBJECTS AND SUMMARY OF THE INVENTION
La présente invention a donc pour objet de proposer un procédé pour estimer la réverbération acoustique, qui permette d'éviter cet inconvénient. The present invention therefore aims to provide a method for estimating acoustic reverberation, which avoids this disadvantage.
A cet effet, l'invention propose un procédé pour estimer la réverbération acoustique dans un milieu, comprenant les étapes suivantes : For this purpose, the invention proposes a method for estimating acoustic reverberation in a medium, comprising the following steps:
(a) une étape de mesure dans laquelle on capte au moins un signal acoustique dans le milieu, (a) a measurement step in which at least one acoustic signal is sensed in the medium,
(b) une étape d'observation au cours de laquelle on détermine une distribution de taux de décroissance d'énergie acoustique à partir du signal acoustique capté à l'étape (a) et on détermine la fonction caractéristique de la distribution de taux de décroissance d'énergie acoustique, (b) an observation step during which an acoustic energy decay rate distribution is determined from the acoustic signal picked up in step (a) and the characteristic function of the decay rate distribution is determined acoustic energy,
(c) une étape d'estimation au cours de laquelle on estime un temps de réverbération caractéristique et un niveau de réverbération caractéristique du son dans le milieu à partir de données représentatives de la distribution de taux de décroissance d'énergie acoustique déterminée à l'étape (b) , la régression étant faite en référence à : (c) an estimation step in which a characteristic reverberation time and a characteristic reverberation level of the sound in the medium are estimated from data representative of the acoustic energy decay rate distribution determined at step (b), the regression being made with reference to:
des fonctions caractéristiques de référence représentatives respectivement de plusieurs distributions de taux de décroissance d'énergie acoustique, reference characteristic functions representative respectively of several distributions of decay rates of acoustic energy,
des temps de réverbération caractéristiques de référence correspondant auxdites fonctions caractéristiques de référence, reference characteristic reverberation times corresponding to said reference characteristic functions,
- et des niveaux de réverbération caractéristiques de référence correspondant auxdites fonctions caractéristiques de référence. - and reverb levels characteristic of reference corresponding to said reference characteristic functions.
Grâce à ces dispositions, et notamment grâce au fait que l'on applique la méthode d'estimation à la distribution de taux de décroissance d'énergie acoustique, on peut déterminer à la fois un temps de réverbération caractéristique et un niveau de réverbération caractéristique du son dans le milieu, de façon fiable. Ces deux paramètres permettent de traiter de façon satisfaisante les signaux sonores captés. Thanks to these provisions, and notably because the method of estimation is applied to the distribution of decay rates of acoustic energy, it is possible to determine both a characteristic reverberation time and a reverberation level characteristic of the sound in the middle, reliably. These two parameters make it possible to satisfactorily process the sound signals picked up.
Dans divers modes de réalisation du procédé selon l'invention, on peut éventuellement avoir recours en outre à l'une et/ou à l'autre des dispositions suivantes : In various embodiments of the method according to the invention, one or more of the following provisions may also be used:
au cours de l'étape d'estimation (c), on utilise un estimateur à fonction noyau et on détermine simultanément le temps de réverbération caractéristique et le niveau de réverbération caractéristique ; during the estimation step (c), a kernel function estimator is used and the characteristic reverberation time and the characteristic reverberation level are simultaneously determined;
au cours de l'étape d'estimation (c), on utilise un estimateur de Nadaraya-Watson ; during the estimation step (c), a Nadaraya-Watson estimator is used;
au cours de l'étape d'estimation (c) , le niveau de réverbération caractéristique du son dans le milieu (7) est choisi parmi l'indice de clarté CT et l'indice de définition DT ; during the estimation step (c), the reverberation level characteristic of the sound in the medium (7) is chosen from the clarity index C T and the definition index D T ;
au cours de l'étape d'observation (b) , on détermine les taux de décroissance d'énergie en calculant l'énergie Em du signal acoustique sur des trames successives m de signal, puis en calculant un rapport logarithmique entre l'énergie de deux trames successives : p(m) = log(-^-) (5) ; during the observation step (b), the energy decay rates are determined by calculating the energy Em of the acoustic signal on successive signal frames m, and then calculating a logarithmic ratio between the energy of the signal two successive frames: p (m) = log (- ^ -) (5);
m-l m-l
le procédé comporte en outre une phase préliminaire de calibrage comprenant les étapes suivantes : (a') au moins une étape initiale de détermination de signaux de référence dans laquelle on détermine une pluralité de signaux acoustiques de référence correspondant auxdits temps de réverbération caractéristiques de référence et auxdits niveaux de réverbération caractéristiques de référence, the method further comprises a preliminary calibration phase comprising the following steps: (a ') at least one initial step of determination of reference signals in which one determines a plurality of reference acoustic signals corresponding to said reference characteristic reverberation times and said reference characteristic reverberation levels,
(b') au moins une étape initiale d'observation au cours de laquelle, pour chaque signal acoustique de référence, on détermine une distribution de taux de décroissance d'énergie acoustique et la fonction caractéristique de référence ; (b ') at least one initial observation step during which, for each reference acoustic signal, an acoustic energy decay rate distribution and the reference characteristic function are determined;
au cours de ladite étape de détermination de signaux de référence, on détermine par calcul au moins une partie des signaux acoustiques de référence et les temps de réverbération caractéristiques et niveaux de réverbération caractéristiques de référence correspondant auxdits signaux acoustiques de référence, à partir d'un ensemble prédéterminé de réponses impulsionnelles ; during said step of determining reference signals, at least a portion of the reference acoustic signals and the characteristic reverberation times and reference characteristic reverberation levels corresponding to said reference acoustic signals are determined by calculation from a predetermined set of impulse responses;
au cours de ladite étape de détermination de signaux de référence, on détermine par mesure au moins une partie des signaux acoustiques de référence, les temps de réverbération caractéristiques et les niveaux de réverbération caractéristiques de référence correspondant auxdits signaux acoustiques de référence. during said step of determining reference signals, at least a portion of the reference acoustic signals, the characteristic reverberation times and the reference characteristic reverberation levels corresponding to said reference acoustic signals are determined by measurement.
Par ailleurs, l'invention a également pour objet un dispositif pour estimer la réverbération acoustique dans un milieu, comprenant : Moreover, the invention also relates to a device for estimating acoustic reverberation in a medium, comprising:
(a) des moyens de mesure pour capter au moins un signal acoustique émis dans le milieu, (a) measuring means for sensing at least one acoustic signal emitted in the medium,
(b) des moyens pour déterminer une distribution de taux de décroissance d'énergie acoustique à partir du signal acoustique capté par les moyens de mesure, et pour déterminer la fonction caractéristique de la distribution de taux de décroissance d'énergie acoustique, (b) means for determining an acoustic energy decay rate distribution from the acoustic signal picked up by the measuring means, and for determining the characteristic function of the acoustic energy decay rate distribution,
(c) des moyens pour estimer un temps de réverbération caractéristique et un niveau de réverbération caractéristique du son dans le milieu à partir de données représentatives de la distribution de taux de décroissance d'énergie acoustique, la régression étant faite en référence à : (c) means for estimating a reverberation time characteristic and a reverberation level characteristic of sound in the medium from data representative of the acoustic energy decay rate distribution, the regression being made with reference to:
des fonctions caractéristiques de référence représentatives respectivement de plusieurs distributions de taux de décroissance d'énergie acoustique, reference characteristic functions representative respectively of several distributions of decay rates of acoustic energy,
des temps de réverbération caractéristiques de référence correspondant auxdites fonctions caractéristiques de référence, reference characteristic reverberation times corresponding to said reference characteristic functions,
- et des niveaux de réverbération caractéristiques de référence correspondant auxdites fonctions caractéristiques de référence. and reference characteristic reverberation levels corresponding to said reference characteristic functions.
BREVE DESCRIPTION DES DESSINS BRIEF DESCRIPTION OF THE DRAWINGS
D'autres caractéristiques et avantages de l'invention apparaîtront au cours de la description suivante d'un de ses modes de réalisation, donné à titre d'exemple non limitatif, en regard des dessins joints. Other features and advantages of the invention will become apparent from the following description of one of its embodiments, given by way of non-limiting example, with reference to the accompanying drawings.
Sur les dessins : On the drawings:
- la figure 1 est une vue schématique illustrant la réverbération du son dans une pièce lorsqu'un sujet parle de façon que ses paroles soient captées par un dispositif selon une forme de réalisation de l'invention, la figure 2 est un schéma de principe du dispositif de la figure 1. FIG. 1 is a diagrammatic view illustrating the reverberation of the sound in a room when a subject speaks so that his words are picked up by a device according to one embodiment of the invention, FIG. 2 is a schematic diagram of the device of Figure 1.
DESCRIPTION PLUS DETAILLEE DESCRIPTION DETAILED
Sur les différentes figures, les mêmes références désignent des éléments identiques ou similaires. In the different figures, the same references designate identical or similar elements.
L'invention a pour but d'estimer la réverbération acoustique d'un milieu 7, par exemple une pièce dans un bâtiment telle que schématisée sur la figure 1, de façon à traiter les signaux acoustiques captés par un dispositif électronique 1 pourvu d'un microphone 2. Le dispositif électronique 1 peut être par exemple un téléphone dans l'exemple représenté, ou un ordinateur ou autre. The aim of the invention is to estimate the acoustic reverberation of a medium 7, for example a room in a building as shown diagrammatically in FIG. 1, so as to process the acoustic signals picked up by a device An electronic device 1 may be, for example, a telephone in the example shown, or a computer or the like.
Lorsqu'un son est émis dans le milieu 7, par exemple par une personne 3, ce son se propage jusqu'au microphone 2 selon divers trajets 4, soit directs, soit après réflexion sur une ou plusieurs parois 5, 6 du milieu 7. When a sound is emitted in the medium 7, for example by a person 3, this sound propagates to the microphone 2 along various paths 4, either direct or after reflection on one or more walls 5, 6 of the medium 7.
Comme représenté sur la figure 2, le dispositif électronique 1 peut comporter par exemple une unité centrale électronique 8 telle qu'un processeur ou autre, reliée au microphone 2 et à divers autre éléments, incluant par exemple un haut-parleur 9, un clavier 10, un écran 11. L'unité centrale électronique 8 peut communiquer avec un réseau externe 12, par exemple un réseau téléphonique. As represented in FIG. 2, the electronic device 1 may comprise, for example, an electronic central unit 8 such as a processor or the like, connected to the microphone 2 and to various other elements, including for example a loudspeaker 9, a keyboard 10 , a screen 11. The electronic central unit 8 can communicate with an external network 12, for example a telephone network.
L'invention permet au dispositif électronique 1 de mesurer à l'aveugle, deux paramètres caractéristiques de la réverbération du milieu 7 : The invention enables the electronic device 1 to measure blindly two characteristic parameters of the reverberation of the medium 7:
- un temps de réverbération caractéristique, par exemple le temps de réverbération à 60 dB R go? - a reverberation time characteristic, such as reverberation time 60 dB R go?
- et un niveau de réverbération caractéristique (par exemple indice de clarté ou de définition, ou indice de signal direct sur signal réverbéré) . and a characteristic reverberation level (for example clarity or definition index, or direct signal index on reverberated signal).
Ces paramètres peuvent être utilisés pour supprimer les effets d'échos ou plus généralement pour optimiser les signaux sonores captés par le microphone 2. Les paramètres en question sont estimés de façon répétitive, de façon que le dispositif 1 s'adapte par exemple à des changements de locuteurs 3, à des déplacements de locuteurs 3, à des déplacements du dispositif 1 ou d'autres objets dans le milieu 7. These parameters can be used to suppress the echo effects or more generally to optimize the sound signals picked up by the microphone 2. The parameters in question are estimated in a repetitive manner, so that the device 1 adapts for example to changes of speakers 3, to displacements of speakers 3, to movements of the device 1 or other objects in the medium 7.
Le temps de réverbération à 60dB RT60 peut être défini par la méthode d'intégration inverse de Manfred R. Schroeder (New Method of Measuring Réverbération Time, The Journal of the Acoustical Society of Ameri.ca, 37(3) :409, 1965) par la courbe de décroissance d'énergie (Energy Decay Curve) EDC : The reverberation time at 60dB RT 60 can be defined by the inverse integration method of Manfred R. Schroeder (New Method of Measuring Reverberation Time, The Journal of the Acoustical Society of Ameri.ca, 37 (3): 409, 1965) by the EDC Energy Decay Curve:
Où : Or :
- h est la réponse impulsionnelle du milieu de longueur Nh, n est un indice temporel, par exemple un nombre d'échantillons obtenus par un échantillonnage de pas temporel constant, n étant compris entre 1 et Nh. - h is the impulse response of the medium of length N h , n is a time index, for example a number of samples obtained by a sampling of constant time steps, n being between 1 and N h .
RÎ60 est le temps à l'indice temporel n requis pour que EDC(n) diminue de 60 dB . R 60 is the time at the time index n required for EDC (n) to decrease by 60 dB.
Bien que le temps de réverbération RÎ6o soit le plus couramment utilisé, on pourrait estimer un autre temps de réverbération caractéristique du milieu 7. Although the reverberation time R 6 o is the most commonly used, we could estimate another reverberation time characteristic of the medium 7.
Le niveau de réverbération est le plus couramment représenté par l'indice de clarté : c' = 1G1*(¾ )dB- <2 > The reverberation level is most commonly represented by the clarity index: c ' = 1G1 * (¾) dB - <2>
ou par l'indice de définition : Dt = 10log10(|| f)dB, (3) or by the definition index: D t = 10log 10 (|| f) dB, (3)
où : or :
- Ντ est le nombre d'échantillons à pas temporels constant correspondant au temps τ, généralement compris entre 0.1 ms et 1 s , - Ν τ is the number of samples with constant time steps corresponding to the time τ, generally between 0.1 ms and 1 s,
- n est un indice temporel compris entre 1 et et Ντ, représentatif d'un nombre d'échantillons de pas temporel constant , n is a time index between 1 and Ν τ , representative of a number of samples of constant time step,
- h(n) est la réponse impulsionnelle du milieu 7. h (n) is the impulse response of medium 7.
Ces indices ont été décrits notamment par P. A. Naylor et N. D. Gaubitch (Speech Dereverberation, Springer, eds édition, 2010) . Les deux valeurs les plus couramment utilisées de τ sont 50 ms et 80 ms, notamment 50 ms (indices C5o et D50), mais d'autres durées sont possibles et plus généralement d'autres indices reflétant le rapport du son direct au son réverbéré pourraient être estimés dans le procédé selon l'invention, mis en œuvre par exemple par l'unité centrale électronique 8 susmentionnée. These indices have been described in particular by PA Naylor and ND Gaubitch (Speech Dereverberation, Springer, eds edition, 2010). The two most commonly used values of τ are 50 ms and 80 ms, in particular 50 ms (indices C 5 o and D 50 ), but other durations are possible and more generally other indices reflecting the ratio of the direct sound to the its reverberation could be estimated in the method according to the invention, implemented for example by the aforementioned electronic central unit 8.
Ce procédé comporte les étapes suivantes : This process comprises the following steps:
(a) une étape de mesure de signal acoustique, (a) an acoustic signal measurement step,
(b) une étape d'observation au cours de laquelle on détermine une distribution de taux de décroissance d'énergie acoustique à partir des signaux acoustiques mesurés à l'étape (a), (b) an observation step during which an acoustic energy decay rate distribution is determined from the acoustic signals measured in step (a),
(c) une étape d'estimation au cours de laquelle on estime, par régression à partir de la distribution de taux de décroissance d'énergie acoustique déterminée à l'étape (b) , un temps de réverbération caractéristique et un niveau de réverbération caractéristique du son dans le milieu 7. (c) an estimation step in which it is estimated, by regression from the sound energy decay rate distribution determined in step (b), a characteristic reverberation time and a characteristic reverberation level sound in the middle 7.
(a) Etape de mesure : (a) Measurement step:
Au cours de cette étape, le microphone 2 capte « à l'aveugle » (c'est-à-dire sans connaissance préalable des signaux émis), un signal acoustique diffusé dans le milieu 7, par exemple lorsque le locuteur 3 parle. Ce signal est échantillonné et stocké dans le processeur 8 ou une mémoire annexe (non représentée) . During this step, the microphone 2 captures "blind" (that is to say, without prior knowledge of the signals transmitted), an acoustic signal broadcast in the medium 7, for example when the speaker 3 speaks. This signal is sampled and stored in processor 8 or an ancillary memory (not shown).
(b) Etape d' observation : (b) Observation stage:
Au cours de cette étape, on détermine une distribution de taux de décroissance d'énergie acoustique à partir du signal acoustique mesuré à l'étape (a) . During this step, an acoustic energy decay rate distribution is determined from the acoustic signal measured in step (a).
Pour cela, on détermine d'abord l'enveloppe d'énergie du signal réverbéré dx(n) telle que décrit notamment par Wen et al. (J.Y.C. Wen, E.A.P. Habets, and P. A. Naylor, Blind estimation of réverbération time based on the distribution of signal decay rates, Acoustics, Speech. and Signal Processing, 2008, ICASSP 2008, IEEE International Conférence pages 329-332, Mars 2008). For this purpose, the energy envelope of the reverberated signal d x (n) as first described by Wen et al. (JYC Wen, EAP Habits, and PA Naylor, Blind estimation of time-based reverb on the distribution of signal decay rates, Acoustics, Speech. and Signal Processing, 2008, ICASSP 2008, IEEE International Conference pages 329-332, March 2008).
En faisant un calcul sur des trames de Νω échantillons de signal séparées par des sauts de R échantillons de signal, on peut calculer une énergie totale de la trame m par la formule : By performing a calculation on de ω signal samples frames separated by jumps of R signal samples, a total energy of the frame m can be calculated by the formula:
et ensuite estimer le taux de décroissance d'énergie en calculant le rapport logarithmique entre deux trames successives : and then estimate the rate of energy decay by calculating the logarithmic ratio between two successive frames:
λχ « p(m) = log(^-). (5) λ χ "p (m) = log (^ -). (5)
En effet, l'enveloppe d'énergie dx(n) peut être exprimée par la formule : dx(n) ={y 2 ί (6) Indeed, the envelope power of x (n) can be expressed by the formula: d x (n) = {y 2 ί (6)
ne hns si Àh = Às do hn s if A h = A s
où Às and Àh sont respectivement le taux de décroissance d'énergie du signal anéchoïque émis et du milieu 7 (le signal capté est une convolution du signal anéchoïque émiswhere A s and À h are respectively the rate of energy decay of the emitted anechoic signal and medium 7 (the signal picked up is a convolution of the anechoic signal emitted
(parole) avec la réponse impulsionnelle du milieu entre le locuteur 3 et le microphone 2, n étant l'indice temporel défini précédemment) . (speech) with the impulse response of the medium between the speaker 3 and the microphone 2, n being the temporal index defined above).
Comme la somme est dominée par le terme exponentiel correspondant à la plus grande valeur de λ, le taux de décroissance d'énergie du signal réverbéré λχ peut être approximé par : Since the sum is dominated by the exponential term corresponding to the largest value of λ, the energy decay rate of the reverberated signal λ χ can be approximated by:
λχ ~ max[Ah,As] (7), λ χ ~ max [A h , A s ] (7),
ce qui justifie la formule (5) ci-dessus. which justifies formula (5) above.
Le calcul de p(m) peut typiquement être fait sur un nombre M de trames d'au moins 2000, correspondant à au moins 1 mn de signal selon les paramètres d'analyse choisis. Les trames peuvent avoir une durée individuelle de 10 à 100 ms, notamment de l'ordre de 32 ms . Les trames peuvent se recouvrir mutuellement, par exemple avec un taux de recouvrement de l'ordre de 50 % entre trames successives . On obtient ainsi différentes valeurs du taux de décroissance d'énergie p(m), qui présentent une certaine distribution statistique (nombre de réalisations ou probabilité de réalisation en fonction du taux de décroissance d'énergie p(m), comme explicité par exemple dans l'article de Wen et al. ci-dessus) . The calculation of p (m) can typically be done on a number M of frames of at least 2000, corresponding to at least 1 min of signal according to the selected analysis parameters. The frames can have an individual duration of 10 to 100 ms, in particular of the order of 32 ms. The frames may overlap each other, for example with a recovery rate of the order of 50% between successive frames. Different values of the energy decay rate p (m) are thus obtained, which have a certain statistical distribution (number of embodiments or probability of realization as a function of the energy decay rate p (m), as explained, for example, in the article by Wen et al., above).
On détermine ensuite la fonction caractéristique de la distribution de taux de décroissance d'énergie, par la formule suivante (voir Audrey Feuerverger et Roman A. Mureika [The empirical characterist ic fonction and its applications, Ann . Statist., 5(l) :88-97, 01 1977]) : The characteristic function of the energy decay rate distribution is then determined by the following formula (see Audrey Feuerverger and Roman A. Mureika [The empirical characterist ic function and its applications, Ann Statist., 5 (1)): 88-97, 01 1977]):
Φχ(Π = / elfxdFx{x = E[e^] (8) Φχ (Π = / e lfx dF x {x = E [e ^] (8)
où X représente ici le taux de décroissance d'énergie p(m) susmentionné estimé pour diverses valeurs de m (formule (5)), Fx la distribution cumulée de X et f est une variable sans dimension généralement appelée fréquence angulaire. where X is here the aforementioned energy decay rate p (m) estimated for various values of m (formula (5)), F x the cumulative distribution of X and f is a dimensionless variable generally referred to as angular frequency.
La fonction caractéristique peut être calculée pour des fréquences angulaires f allant par exemple de 0 à 0,4, par incrément de 0,001. The characteristic function can be calculated for angular frequencies f ranging, for example, from 0 to 0.4, in increments of 0.001.
(c) Etape d'estimation : (c) Estimation step:
On part de la fonction caractéristique Φρ (f ) , calculée pour p/2 fréquences f (p étant un entier naturel pair) , la gamme de fréquences f et leur échantillonnage étant prévus pour que I Φρ (m) ( f ) I soit compris préfèrent iellement entre 0.1 et 1. We start from the characteristic function Φρ (f), computed for p / 2 frequencies f (p being an even natural integer), the frequency range f and their sampling being provided so that I Φ ρ (m) (f) I is preferably between 0.1 and 1.
Typiquement, p peut être compris par exemple entre 256 et 2048. La fonction caractéristique étant un nombre complexe, elle peut être représentée par un vecteur de X appartenant à Rp, constituant le vecteur d'entrée aléatoire x de l'estimateur utilisé. Le vecteur de sortie aléatoire y de l'estimateur, appartenant à R2 , a pour composante les deux paramètres estimés, par exemple (RT60,C5o) ou (RT6o,D5o) · Typically, p can be for example between 256 and 2048. Since the characteristic function is a complex number, it can be represented by a vector of X belonging to R p constituting the random input vector x of the estimator used. The random output vector y of the estimator, belonging to R 2 , has as component the two estimated parameters, for example (RT 60 , C 5 o) or (RT 6 o, D 5 o) ·
L'estimateur utilisé peut être avantageusement un estimateur à fonction noyau, par exemple un estimateur de Nadaraya-Watson . Un tel estimateur présente l'avantage de déterminer simultanément le temps de réverbération caractéristique et le niveau de réverbération caractéristique . The estimator used may advantageously be a kernel function estimator, for example a Nadaraya-Watson estimator. Such an estimator has the advantage of simultaneously determining the characteristic reverberation time and the characteristic reverberation level.
L'estimateur en question peut être déterminé préalablement dans une phase initiale de calibrage, où on met en œuvre au moins une étape initiale de détermination de signaux de référence (a') et au moins une étape initiale d'observation (b'). The estimator in question can be determined in advance in an initial calibration phase, where at least one initial step of determination of reference signals (a ') and at least one initial observation step (b') is implemented.
Au cours de l'étape initiale de détermination de signaux de référence, on détermine une pluralité de signaux acoustiques de référence et des temps de réverbération caractéristiques de référence et niveaux de réverbération caractéristiques de référence correspondants. During the initial step of determining reference signals, a plurality of reference acoustic signals and reference characteristic reverberation times and corresponding reference characteristic reverb levels are determined.
Au cours de l'étape initiale d'observation, on détermine la distribution de taux de décroissance d'énergie acoustique et la fonction caractéristique de référence pour chaque signal acoustique de référence, de façon identique ou similaire à l'étape de d'observation (b) susmentionnée. During the initial observation step, the acoustic energy decay rate distribution and the reference characteristic function for each reference acoustic signal are determined identically or similarly to the observation step ( (b) above.
Les signaux acoustiques de référence sont des signaux généralement vocaux au nombre de N et correspondent à N cas de figures différents (locuteurs différents, positions différentes, milieux 7 différents) . N peut être de plusieurs centaines, voire plusieurs milliers. L'étape initiale de détermination de signaux de référence peut être effectuée : The acoustic reference signals are generally vocal signals of the number of N and correspond to N cases of different figures (different speakers, different positions, different media 7). N can be several hundred or even thousands. The initial step of determining reference signals can be performed:
avec des mesures réelles nouvelles effectuées par exemple avec un dispositif électronique 1 d'un modèle déterminé (dans ce cas, le temps de réverbération caractéristique et le niveau de réverbération caractéristique peuvent être également mesurés) ; with real new measurements made for example with an electronic device 1 of a given model (in this case, the characteristic reverberation time and the characteristic reverberation level can also be measured);
et / ou avec des signaux acoustiques synthétiques . and / or with synthetic acoustic signals.
Dans le cas des mesures réelles, celles-ci-ne seront généralement pas faites dans le milieu 7 particulier ou le dispositif électronique 1 sera utilisé, bien que ce cas de figure puisse être envisagé. In the case of real measurements, these will generally not be done in the particular medium where the electronic device 1 will be used, although this case may be considered.
Les signaux acoustiques synthétiques susmentionnés peuvent être calculés en convoluant des réponses impulsionnelles préenregistrées avec des signaux anéchoïques de parole également préenregistrés provenant de locuteurs différents. Les réponses impulsionnelles préenregistrées peuvent par exemple provenir de bases de données de réponses impulsionnelles, par exemple provenant de bases de données en accès libre telles que les bases de données Aachen Impulse Response The aforementioned synthetic acoustic signals can be calculated by convolving pre-recorded impulse responses with pre-recorded speech anechoic signals from different speakers. The prerecorded impulse responses may for example come from impulse response databases, for example from open access databases such as Aachen Impulse Response databases.
(http://www.openairlib.net/auralization .db), MARDY (Wen et al., Evaluation of speech dereverberation algorithms using the Mardy database, Sept. IWAENC 2006, Paris), QueenMary (R. Stewart and M. Sandler, Database of omnidirectional and b-format room impulse responses, In Acoustics Speech and Signal Processing (ICASSP) . 2010 IEEE International Conférence on., pages 165-168, March 2010), par exemple avec des temps de réverbération RT60 allant de 0.3 s à 8 s and des indices de clarté C5o from -10 dB à 25 dB . Les signaux anéchoïques de parole peuvent être des signaux enregistrés à partir de locuteurs divers, par exemple d'âges et sexes différents, avec par exemple des durées d'enregistrement par exemple de quelques minutes, par exemple de l'ordre de 5 minutes. (http://www.openairlib.net/auralization .db), MARDY (Wen et al., Evaluation of speech dereverberation algorithms using the Mardy database, Sept. IWAENC 2006, Paris), QueenMary (R. Stewart and M. Sandler In this paper, I would describe the results of the IEEE International Conference on, pages 165-168, March 2010), for example with RT 60 reverberation times ranging from 0.3. s to 8 s and clarity indices C 5 o from -10 dB to 25 dB. Anechoic speech signals may be signals recorded from various speakers, for example example of different ages and sexes, with for example recording times for example of a few minutes, for example of the order of 5 minutes.
Les distributions de taux de décroissance d'énergie peuvent par exemple être calculées sur des trames de 10 à 100 ms, notamment de l'ordre de 32 ms . Les trames peuvent se recouvrir mutuellement, par exemple avec un taux de recouvrement de l'ordre de 50 % entre trames successives. Les fonctions caractéristiques peuvent être calculées pour des fréquences angulaires allant par exemple de 0 à 0,4, par incrément de 0,001. The energy decay rate distributions can for example be calculated over frames of 10 to 100 ms, in particular of the order of 32 ms. The frames may overlap each other, for example with a recovery rate of the order of 50% between successive frames. The characteristic functions can be calculated for angular frequencies ranging for example from 0 to 0.4, in increments of 0.001.
On obtient ainsi N réalisations des vecteurs x et y susmentionnés, et l'estimateur de Nadaraya-Watson peut alors rminé par la formule : N yields of the aforementioned x and y vectors are thus obtained, and the Nadaraya-Watson estimator can then be terminated by the formula:
où : or :
- xi, yi, i = 1 à N, sont les N réalisations des vecteurs x, y utilisées pour l'étape de calibration, - xi, yi, i = 1 to N, are the N realizations of the x, y vectors used for the calibration step,
- Κλ(χ, Xi) est une fonction noyau (kernel) de fenêtre λ (λ est une constante également appelée paramètre de lissage) ,- Κ λ (χ, Xi) is a kernel function of window λ (λ is a constant also called smoothing parameter),
- x est le vecteur d'entrée inconnu (mesure effectuée à l'étape de mesure (a) en vue d'estimer le vecteur y par la formule = /(*)). - x is the unknown input vector (measurement made in the measurement step (a) in order to estimate the vector y by the formula = / (*)).
La fonction noyau K\(x, x±) est une fonction de x et Xi telle que définie notamment par Scholkopf et al. (B. Scholkpf eand A. J. Smola, Learning with Kernels, MIT Press, Cambridge, MA, 2001) . The kernel function K \ (x, x ±) is a function of x and Xi as defined in particular by Scholkopf et al. (B. Scholkpf eand AJ Smola, Learning with Kernels, MIT Press, Cambridge, MA, 2001).
On peut notamment utiliser un noyau gaussien, par exemple avec une fenêtre de λ = 5.10-4 (exemple non limitatif) : In particular, it is possible to use a Gaussian kernel, for example with a window of λ = 5.10 -4 (non-limiting example):
Les tests effectués montrent que le procédé de l'invention est plus précis que les procédés de l'art antérieur pour la détermination du temps de réverbération, et il permet en outre de déterminer le niveau de réverbération en même temps que le temps de réverbération, ce qui est un gain important. The tests carried out show that the process of the invention is more accurate than the methods of the prior art for determining the reverberation time, and it also allows to determine the reverberation level at the same time as the reverberation time, which is a significant gain.
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1561404A FR3044509B1 (en) | 2015-11-26 | 2015-11-26 | METHOD AND DEVICE FOR ESTIMATING ACOUSTIC REVERBERATION |
PCT/FR2016/053034 WO2017089688A1 (en) | 2015-11-26 | 2016-11-21 | Method and device for estimating sound reverberation |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3381204A1 true EP3381204A1 (en) | 2018-10-03 |
EP3381204B1 EP3381204B1 (en) | 2019-11-13 |
Family
ID=55236682
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16819332.4A Active EP3381204B1 (en) | 2015-11-26 | 2016-11-21 | Method and device for estimating sound reverberation |
Country Status (4)
Country | Link |
---|---|
US (1) | US10313809B2 (en) |
EP (1) | EP3381204B1 (en) |
FR (1) | FR3044509B1 (en) |
WO (1) | WO2017089688A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2018353008B2 (en) | 2017-10-17 | 2023-04-20 | Magic Leap, Inc. | Mixed reality spatial audio |
CN109754821B (en) * | 2017-11-07 | 2023-05-02 | 北京京东尚科信息技术有限公司 | Information processing method and system, computer system and computer readable medium |
EP3753238A4 (en) | 2018-02-15 | 2021-04-07 | Magic Leap, Inc. | Mixed reality virtual reverberation |
CN114586382A (en) | 2019-10-25 | 2022-06-03 | 奇跃公司 | Reverberation fingerprint estimation |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040213415A1 (en) * | 2003-04-28 | 2004-10-28 | Ratnam Rama | Determining reverberation time |
US7813499B2 (en) | 2005-03-31 | 2010-10-12 | Microsoft Corporation | System and process for regression-based residual acoustic echo suppression |
EP1885154B1 (en) | 2006-08-01 | 2013-07-03 | Nuance Communications, Inc. | Dereverberation of microphone signals |
DE102007031677B4 (en) * | 2007-07-06 | 2010-05-20 | Sda Software Design Ahnert Gmbh | Method and apparatus for determining a room acoustic impulse response in the time domain |
EP2058804B1 (en) | 2007-10-31 | 2016-12-14 | Nuance Communications, Inc. | Method for dereverberation of an acoustic signal and system thereof |
US9407992B2 (en) | 2012-12-14 | 2016-08-02 | Conexant Systems, Inc. | Estimation of reverberation decay related applications |
CN112188375B (en) * | 2014-09-26 | 2022-04-26 | Med-El电气医疗器械有限公司 | Auditory prosthesis device and audio signal processing method in the same |
US9607627B2 (en) * | 2015-02-05 | 2017-03-28 | Adobe Systems Incorporated | Sound enhancement through deverberation |
-
2015
- 2015-11-26 FR FR1561404A patent/FR3044509B1/en not_active Expired - Fee Related
-
2016
- 2016-11-21 EP EP16819332.4A patent/EP3381204B1/en active Active
- 2016-11-21 US US15/778,146 patent/US10313809B2/en active Active
- 2016-11-21 WO PCT/FR2016/053034 patent/WO2017089688A1/en unknown
Also Published As
Publication number | Publication date |
---|---|
US20180359582A1 (en) | 2018-12-13 |
FR3044509B1 (en) | 2017-12-15 |
EP3381204B1 (en) | 2019-11-13 |
US10313809B2 (en) | 2019-06-04 |
WO2017089688A1 (en) | 2017-06-01 |
FR3044509A1 (en) | 2017-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3807669B1 (en) | Location of sound sources in a given acoustic environment | |
EP3381204B1 (en) | Method and device for estimating sound reverberation | |
EP2122607B1 (en) | Method for the active reduction of sound disturbance | |
EP3111667B1 (en) | Method and system for automatic acoustic equalisation | |
EP1707970A1 (en) | Method for detecting the position of a wave front in a signal received by a detector | |
EP4046390B1 (en) | Improved location of an acoustic source | |
EP0762145B1 (en) | Gamma particle pulse processing system for CdTe radiation detector | |
Foy et al. | Mean absorption estimation from room impulse responses using virtually supervised learning | |
Vieira | Automatic estimation of reverberation time | |
EP1258168B1 (en) | Method and device for comparing signals to control transducers and transducer control system | |
FR2828327A1 (en) | METHOD AND DEVICE FOR REDUCING ECHO | |
CN109862503B (en) | Method and device for automatic adjustment of speaker delay | |
EP3044580B1 (en) | Method for the non-destructive ultrasonic testing of a part by echo analysis | |
EP4386338A1 (en) | Real-time optimized audio rendering | |
Gemba et al. | Source characterization using recordings made in a reverberant underwater channel | |
Raikar et al. | Effect of Microphone Position Measurement Error on RIR and its Impact on Speech Intelligibility and Quality. | |
FR3051959A1 (en) | METHOD AND DEVICE FOR ESTIMATING A DEREVERBERE SIGNAL | |
FR3065079A1 (en) | ULTRASONIC SURVEY METHOD AND DEVICE FOR OBTAINING DISPERSION CURVES FROM A PROBE ENVIRONMENT | |
Bilbao et al. | Directional reverberation time and the image source method for rectangular parallelepipedal rooms | |
EP0741471A1 (en) | Non-intrusive measurement of telephone transmission line quality | |
WO2020074522A1 (en) | Method and device for controlling the distortion of a loudspeaker system on board a vehicle | |
Li et al. | Robust unsupervised Tursiops aduncus whistle-event detection using gammatone multi-channel Savitzky–Golay based whistle enhancement | |
EP2452293A1 (en) | Source location | |
WO2024218269A1 (en) | Improved estimation of source-microphone distance and room geometry | |
FR2875633A1 (en) | METHOD AND APPARATUS FOR EVALUATING THE EFFICIENCY OF A NOISE REDUCTION FUNCTION TO BE APPLIED TO AUDIO SIGNALS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180515 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602016024438 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: H04R0029000000 Ipc: G10L0025210000 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H04R 29/00 20060101ALI20190514BHEP Ipc: G10L 25/21 20130101AFI20190514BHEP Ipc: H04S 7/00 20060101ALI20190514BHEP |
|
INTG | Intention to grant announced |
Effective date: 20190618 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1202500 Country of ref document: AT Kind code of ref document: T Effective date: 20191115 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: VALIPAT S.A. C/O BOVARD SA NEUCHATEL, CH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602016024438 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20191113 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200213 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200213 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200214 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200313 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200313 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602016024438 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1202500 Country of ref document: AT Kind code of ref document: T Effective date: 20191113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20200814 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20161121 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: MC Payment date: 20221020 Year of fee payment: 7 Ref country code: LU Payment date: 20221021 Year of fee payment: 7 Ref country code: IE Payment date: 20221014 Year of fee payment: 7 Ref country code: GB Payment date: 20221121 Year of fee payment: 7 Ref country code: DE Payment date: 20221114 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20221129 Year of fee payment: 7 Ref country code: BE Payment date: 20221125 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602016024438 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231121 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231130 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20231121 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231130 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231121 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231130 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240603 Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20231130 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240601 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231121 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231121 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231121 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231121 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240601 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231130 |