EP3376040B1 - Pump unit - Google Patents
Pump unit Download PDFInfo
- Publication number
- EP3376040B1 EP3376040B1 EP17160832.6A EP17160832A EP3376040B1 EP 3376040 B1 EP3376040 B1 EP 3376040B1 EP 17160832 A EP17160832 A EP 17160832A EP 3376040 B1 EP3376040 B1 EP 3376040B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- drive motor
- pump assembly
- valve element
- control device
- assembly according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000010168 coupling process Methods 0.000 claims description 38
- 238000005859 coupling reaction Methods 0.000 claims description 38
- 238000010438 heat treatment Methods 0.000 claims description 36
- 230000008878 coupling Effects 0.000 claims description 31
- 230000001419 dependent effect Effects 0.000 claims description 4
- 238000007789 sealing Methods 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 239000007788 liquid Substances 0.000 description 5
- 238000006073 displacement reaction Methods 0.000 description 4
- 230000013011 mating Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000004378 air conditioning Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000005347 demagnetization Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 210000003746 feather Anatomy 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D15/00—Control, e.g. regulation, of pumps, pumping installations or systems
- F04D15/0066—Control, e.g. regulation, of pumps, pumping installations or systems by changing the speed, e.g. of the driving engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D13/00—Pumping installations or systems
- F04D13/02—Units comprising pumps and their driving means
- F04D13/021—Units comprising pumps and their driving means containing a coupling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D13/00—Pumping installations or systems
- F04D13/02—Units comprising pumps and their driving means
- F04D13/06—Units comprising pumps and their driving means the pump being electrically driven
- F04D13/0606—Canned motor pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D15/00—Control, e.g. regulation, of pumps, pumping installations or systems
- F04D15/02—Stopping of pumps, or operating valves, on occurrence of unwanted conditions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D15/00—Control, e.g. regulation, of pumps, pumping installations or systems
- F04D15/02—Stopping of pumps, or operating valves, on occurrence of unwanted conditions
- F04D15/0209—Stopping of pumps, or operating valves, on occurrence of unwanted conditions responsive to a condition of the working fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/42—Casings; Connections of working fluid for radial or helico-centrifugal pumps
- F04D29/426—Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps
- F04D29/4293—Details of fluid inlet or outlet
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D15/00—Control, e.g. regulation, of pumps, pumping installations or systems
- F04D15/0005—Control, e.g. regulation, of pumps, pumping installations or systems by using valves
- F04D15/0016—Control, e.g. regulation, of pumps, pumping installations or systems by using valves mixing-reversing- or deviation valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D2220/00—Components of central heating installations excluding heat sources
- F24D2220/02—Fluid distribution means
- F24D2220/0207—Pumps
Definitions
- the invention relates to a pump unit with an electric drive motor, at least one of the electric drive motor rotatably driven impeller and a control device which drives the drive motor.
- US 2016/0268937 A1 discloses an electrically driven pump assembly in which prior to starting the electric motor determines the rotor position and the rotor is moved in a position that the poles are aligned in a defined manner to the stator.
- DE 1958 277 discloses a pump unit with an integrated valve element in which the valve element can be rotated via a clutch from the motor shaft driving an impeller. This coupling can be brought into and out of engagement via an adjusting element, wherein at the same time a holding element for fixing the valve element in and can be brought out of engagement.
- the pump unit according to the invention has an electric drive motor and at least one of this rotationally driven impeller.
- the impeller may be connected in a known manner with the rotor of the drive motor.
- the rotor is particularly preferably a permanent magnet rotor.
- the drive motor as a wet-running electric drive motor with a split tube or split pot, which separates the rotor space from the stator space formed. That is, the rotor preferably rotates in the fluid to be delivered by the pump unit.
- the pump unit may preferably be designed as a circulating pump unit and more preferably as a heating circulation pump unit.
- the control device of the drive motor which controls the drive motor and in particular controls the energization of stator coils in the stator of the drive motor, is designed such that it selectively drives the drive motor in at least one first or in a second operating mode.
- the first mode is a conventional mode in which the drive motor is controlled by the controller such that the rotor of the drive motor rotates continuously over a plurality of revolutions. In this mode, the impeller is driven to produce the pressure and flow desired to operate the pump set.
- the control device controls the drive motor in such a way that the rotor of the drive motor is advanced only stepwise in at least one selected, in particular adjustable angular step, wherein these angular steps are preferably less than 360 degrees.
- This rotation in at least one selected angular step serves to rotate the rotor to a desired angular position.
- control device is designed so that the drive motor rotates in the first mode at a higher angular velocity than in the second mode. This is advantageous for drive and positioning functions in which smaller movements are to be carried out with greater accuracy.
- the control device is further preferably designed such that in the first operating mode, the drive motor is adjustable in its speed and preferably adjustable.
- the drive motor in its control device preferably have a frequency converter, via which the speed of the drive motor is variable.
- the control device is also preferably designed so that the drive motor is controlled in the second mode by the control device in an open loop, that is in the so-called open-loop operation, in which no position control is performed in the energization of the stator coils.
- the induced reverse voltage (back-EMF) is not used in the control or regulation in open loop operation.
- This control makes it possible to turn the drive motor at specific angles in a targeted manner by energizing the coils in the stator.
- the stator can be provided in a known manner with a plurality of stator poles and associated stator coils, which are designed for example for three-phase operation.
- the control device is designed such that in the second operating mode, the drive motor is controlled by the control device with a frequency ⁇ 10 hertz. That is, the stator coils are supplied with voltage or current with a frequency ⁇ 10 Hertz. Alternatively or additionally, a higher motor current than in the first mode is used. Thus, in the operating mode, a motor current can be used or For example, the stator coils can be supplied with a current which corresponds to two to four times the nominal current for which the drive motor is designed. Optionally, the current may also be higher than four times the nominal current. It is essentially only limited by the fact that no demagnetization of the rotor may occur.
- control device is designed such that the number and / or the size of the individual angular steps in which the rotor is moved in the second operating mode are selectable. So it is possible to rotate the rotor targeted to a desired angular position.
- control device selectively energizes the individual stator coils.
- control device may be configured such that it controls the drive motor so that its direction of rotation in the second mode is opposite to the direction of rotation in the first mode. This makes it easier to use the different operating modes for different applications, because in addition to the impeller, for example, other components could be coupled to the rotor via a direction-dependent coupling, so that in one direction only the rotor is driven, while in the other direction of rotation, which preferably in the second mode is used, even another coupled component could be moved.
- the pump unit has a further movable component, which is coupled in addition to the at least one rotor via a releasable coupling with the rotor of the drive motor.
- the coupling can act directly on the rotor, on a rotor shaft connected to the rotor or on the impeller, which is arranged rotationally fixed on the rotor shaft.
- the at least one further movable component may for example be a valve element, wherein the valve element is preferably part of a mixing and / or switching valve.
- a switching valve may be, for example, a switching valve, which is used in a heating system to switch the flow path between a heating circuit and a hot water heat exchanger.
- a mixing valve may for example be a mixing valve, as used in a heating system for the application to regulate the flow temperature of the heating medium by mixing in cooled heating medium.
- the coupling described for coupling the at least one further movable component is preferably detachable depending on the direction of rotation, so that in one direction of rotation the additional component can be moved in the manner described while in the opposite direction of rotation, which is preferably used in the first mode, the impeller in normal operation can rotate and undisturbed can perform a pumping function.
- the impeller may have blades, which are adapted to these preferred for normal operation direction of rotation.
- Said coupling can be further preferably formed at a front end of the rotor shaft of the rotor.
- the component to be moved then has a corresponding mating coupling, which can engage with this coupling.
- the additional movable component is preferably also rotatable and more preferably rotatable about the same axis as the rotor shaft.
- the coupling at the front end of the rotor shaft may in particular have a sawtooth profile, that is to say have a sawtooth profile in a development in the circumferential direction.
- this profile has two slopes whose axially projecting end edges extend transversely to the axis of rotation of the rotor shaft along a diameter line.
- engagement surfaces are preferably created starting from these end edges, which are in a plane parallel to the axis of rotation and the diameter of the rotor shaft extend. Facing away from these engagement surfaces, starting from the end edges of the profile, the bevels or wedge surfaces may extend, which in the opposite direction of rotation cause the clutch is pressed out of engagement. This disengagement occurs then by an axial displacement of the counter-coupling and / or the coupling to the rotor shaft.
- the additionally rotationally moving component is a valve element, which is designed and arranged such that it can be moved in rotation between at least two switching positions.
- the axis of rotation of the valve element is preferably aligned with the axis of rotation of the drive motor. This allows a simple construction of the coupling described.
- the valve element is preferably additionally axially displaceable along its axis of rotation, wherein the axial displacement of the valve element, for example, a coupling, as described above, can be disengaged.
- the valve element is arranged in the pump unit such that it has a pressure surface on which an output side of the at least one impeller prevails pressure. That is, the pressure surface preferably adjoins the pressure space in which the impeller rotates. Furthermore, the valve element is preferably movably mounted in a direction transverse to the pressure surface between an abutment position in which it bears against at least one abutment surface and a released position in which it is detached or spaced from the abutment surface.
- the movement path, along which the valve element is movable between the adjacent position and the released position preferably differs from the movement path between the at least two switching positions of the valve element.
- the valve element is axially movable along the axis of rotation about which it is movable between the switching positions.
- a restoring or biasing element which generates a restoring force, which is directed opposite to the pressure force generated by the pressure on the pressure surface.
- a return element may for example be a spring.
- the return element is preferably arranged so that the restoring force generated presses the valve element in the released position.
- the valve element In the released position, the valve element is preferably substantially freely movable and in particular rotatable, so that it can be easily moved between its switching positions. In the adjacent position, however, the valve element is preferably held non-positively and / or positively on the contact surface, so that it is fixed in its assumed switching position.
- the at least one contact surface may preferably be a sealing surface at the same time.
- the valve element is simultaneously sealed in the desired switching position, wherein the sealing surface preferably surrounds an input or switching opening and acts as a valve seat.
- the pump unit according to the invention makes it possible to drive the drive motor according to a novel method, which is also the subject of the invention.
- the second operating mode is preferably used to move an additional component, in particular a valve element in a desired position, in particular a desired angular position with respect to a rotational axis.
- the o-pen-loop operation is used in the control of the drive motor.
- the coupling is designed so that it engages in at least one angular position, in the embodiment described above in two angular positions offset by 180 °. Since in normal operation in the first mode, the clutch in the manner described above by the pressure prevailing in the pressure chamber disengaged, when changing to the second mode is not sure that the valve element has not shifted slightly. In this respect, it is preferred that at the start of the second mode of operation, the drive motor is not rotated exactly in the angular position in which he was at the last time the end of the second mode of operation, but in an angular position moves, which is set back by a certain amount.
- this orientation of the rotor initially takes place in an angular position slightly before the angular position in which the rotor was located during the last decommissioning of the second operating mode. This ensures that in the further rotation, the clutch engages in any case and the valve element is moved in the desired manner.
- the rotor is then rotated by the control device by corresponding energization of the stator coils in the manner described above in exactly the desired new angular position.
- This is preferably time-controlled in that the stator is supplied with a predetermined frequency for a period of time determined by the control device, the frequency preferably being in the very low range mentioned above.
- the valve element in the switching position achieved becomes.
- the valve element can be Position very precisely so that various switching functions, such as switching functions, switching functions of a distributor valve and / or settings of a mixer valve can be made.
- centrifugal pump assembly according to the invention described in the following description relate to applications in heating and / or air conditioning systems, in which of the centrifugal pump unit, a liquid heat carrier, in particular water, is circulated.
- the centrifugal pump assembly has a motor housing 2, in which an electric drive motor is arranged.
- This has in known manner a stator 4 and a rotor 6, which is arranged on a rotor shaft 8.
- the rotor 6 rotates in a rotor space, which is separated from the stator space in which the stator 4 is arranged by a split tube or a split pot 10. That is, it is a wet-running electric drive motor.
- the motor housing 2 is connected to a pump housing 12, in which a rotatably connected to the rotor shaft 8 impeller 14 rotates.
- an electronics housing 16 is arranged, which has an electronic control system 17 for controlling the electric drive motor in the pump housing 2 includes.
- the electronics housing 16 could also be arranged in a corresponding manner on another side of the stator housing 2.
- a movable valve element 18 is arranged in the pump housing 12.
- This valve element 18 is rotatably mounted on an axis 20 in the interior of the pump housing 12, in such a way that the axis of rotation of the valve element 18 is aligned with the axis of rotation X of the impeller 14.
- the axis 20 is rotatably fixed to the bottom of the pump housing 12.
- the valve element 18 is not only rotatable about the axis 20, but by a certain amount in the longitudinal direction X movable. In one direction, this linear mobility is limited by the pump housing 12, against which the valve element 18 abuts with its outer circumference.
- the valve element 18 separates in the pump housing 12 a suction chamber 24 from a pressure chamber 26.
- a suction chamber 24 In the pressure chamber 26 rotates the impeller 14.
- the pressure chamber 26 is connected to the pressure connection or discharge nozzle 27 of the centrifugal pump assembly, which forms the outlet of the centrifugal pump assembly.
- a mechanical coupling between the drive motor and the valve element is provided, wherein in these embodiments, the drive motor can be controlled by the control device 17 in two different operating modes or operating modes.
- a first mode which corresponds to the normal operation of the circulating pump unit
- the drive motor rotates in a conventional manner with a desired, in particular adjustable by the control device 17, speed.
- the second operating mode the drive motor is activated in open-loop mode, so that the rotor can be gradually rotated in individual predetermined by the control device 17 angular steps, which are smaller than 360 °, can be rotated.
- the drive motor in the manner of a stepping motor can be moved in individual steps, which is used in these embodiments, the valve element targeted to move in small angular increments in a defined position, as will be described below.
- a mixing valve as it can be used for example for temperature adjustment for underfloor heating.
- the motor housing 2 with the electronics housing 16 corresponds to the embodiment described above.
- the pump housing 12 has, in addition to the pressure port 27, two suction-side ports 32 and 34 which open at the bottom of the pump housing 12 in inputs 28 and 30, which are located in a plane transverse to the axis of rotation X.
- the valve element 18 is drum-shaped and consists of a cup-shaped lower part 76, which is closed on its side facing the impeller 14 by a cover 78. In the central region of the lid 78, a suction opening 36 is formed. The suction opening 36 is in engagement with the suction mouth 38 of the impeller 14.
- the valve element 18 is rotatably mounted on an axle 20, which is arranged in the bottom of the pump housing 12. The axis of rotation of the valve element 18 corresponds to the axis of rotation X of the rotor shaft 8.
- the valve element 18 is also axially displaceable along the axis X and is by a spring 48 in the in Fig.
- the valve element 18 As an axial stop acting in the released position, the front end of the rotor shaft 8, which is designed as a coupling 108.
- the clutch 108 engages with a counter-coupling 110, which is arranged non-rotatably on the valve element 18 in engagement.
- the coupling 108 has tapered coupling surfaces which essentially describe a sawtooth profile along a circumferential line in such a way that torque transmission from the coupling 108 to the counterpart coupling 110 is possible only in one direction of rotation, namely in the direction of rotation A in FIG Fig.
- the direction of rotation B is the direction of rotation in which the pump unit is driven in normal operation.
- the direction of rotation A is used for targeted adjustment of the valve element 18. That is, here is a direction of rotation dependent coupling is formed.
- the mating coupling 110 disengages from the coupling 108 by the pressure in the pressure chamber 26. If the pressure in the pressure chamber 26 increases, a pressure force acting on the cover 78, which is opposite to the spring force of the spring 48 and exceeds this, so that the valve element 18 is pressed into the applied position, which in Fig. 4 is shown.
- the lower part 76 is located on the bottom side of the pump housing 12, so that on the one hand the valve element 18 is frictionally held and on the other hand, a tight system is achieved, which seals the pressure and the suction side in the manner described below against each other.
- the suction port 32 opens at the inlet 28 and the suction port 34 opens at the inlet 30 in the bottom of the pump housing 12 in the interior, that is, the suction chamber 24 into it.
- the lower part 76 of the valve element 18 has in its bottom an arcuate opening 112, which extends substantially over 90 °.
- Fig. 6 shows a first switching position in which the opening 112 only the input 30 is covered, so that a flow path is given only from the suction port 34 to the suction port 36 and thus to the suction port 38 of the impeller 14.
- the second input 28 is sealed by the voltage applied in its peripheral region bottom of the valve element 18.
- Fig. 8 shows the second switching position in which the opening 112 covers only the input 28 while the input 30 is closed.
- FIG. 7 now shows an intermediate position in which the opening 112 covers both inputs 28 and 30, the input 30 is only partially released.
- a mixing ratio between the flows from the inputs 28 and 30 can be changed.
- about the stepwise adjustment of the rotor shaft 8 and the valve element 18 can be adjusted in small steps to change the mixing ratio.
- the centrifugal pump assembly with the integrated valve, as described above, characterized by the dashed line 1.
- the hydraulic circuit has a heat source 114 in the form of, for example, a gas boiler, whose outlet opens into, for example, the suction port 34 of the pump housing 12.
- a floor heating circuit 116 connects to the pressure connection 27 of the centrifugal pump assembly 1, the return of which is connected both to the inlet of the heat source 114 and to the suction connection 32 of the centrifugal pump unit.
- a further heating circuit 120 can be supplied with a heat carrier, which has the output-side temperature of the heat source 114.
- the floor heating circuit 116 can be regulated in its flow temperature in such a way that cold water from the return to the hot water output side the heat source 114 is mixed, and by changing the opening ratios of the inputs 28 and 30 in the manner described above, the mixing ratio by rotation of the valve element 18h can be changed.
- the second embodiment according to Fig. 10 to 19 shows a centrifugal pump unit, which in addition to the above-described mixer functionality still has a switching functionality for additional supply of a secondary heat exchanger for domestic water heating.
- valve element 18i in this embodiment, is the same as in the ninth embodiment.
- valve element 18i in addition to the opening 112 on a passage 122 which extends from an opening 124 in the lid 78i to an opening in the bottom of the lower part 76i and thus connects the two axial ends of the valve element 18i together.
- the valve element 18i is still an only to the bottom, that is, to the bottom of the lower part 76i and thus open to the suction chamber 24 toward arcuate bridging opening 126 is formed, which is closed to the pressure chamber 26 through the lid 78i.
- the pump housing 12 has, in addition to the pressure port 27 and the two previously described suction ports 34 and 32, a further port 128.
- the port 128 opens into an inlet 130 in the bottom of Umisselzpumpenaggregates 12 in addition to the inputs 28 and 30 in the suction chamber 24 into it.
- the lid 78i of the valve element 18i is shown partially opened to illustrate the position of the underlying openings.
- Fig. 15 shows a first switching position in which the opening 112 facing the input 30, so that a flow connection from the suction port 34 to the suction port 38 of the impeller 14 is made. In the switching position according to Fig.
- the opening 112 is located above the inlet 130 so that a flow connection is created from the connection 128 to the suction opening 36 and via this into the suction mouth 38 of the impeller 14.
- Fig. 17 shows, the opening 112 is located above the input 30, so that in turn a flow connection from the suction port 34 to the suction port 38 of the impeller 14 is given.
- a partial overlap of the opening 124 and the through hole 122 with the input 28 takes place, so that a connection between the pressure chamber 26 and the suction port 32 is made, which acts as a pressure port.
- the bypass opening 126 concurrently covers the input 130 and a portion of the input 28, so that also a connection from the terminal 128 via the input 130, the bypass opening 126 and the input 28 to the terminal 32 is provided.
- Fig. 18 shows a fourth switching position in which the passageway 122 completely covers the input 28, so that the terminal 32 is connected via the passage 122 and the opening 124 with the pressure chamber 26. At the same time, the bridging opening 126 only covers the entrance 130. The opening 112 also covers the entrance 30.
- the heating system in turn has a primary heat exchanger or a heat source 114, which may be, for example, a gas boiler.
- a first heating circuit 120 which may be formed for example by conventional radiators or radiators.
- a flow path branches off to a secondary heat exchanger 56 for heating service water.
- the heating system further includes a floor heating circuit 116. The returns of the heating circuit 120 and the floor heating circuit 116 open into the suction port 34 on the pump housing 12. The return from the secondary heat exchanger 56 opens into the port 128, which, as will be described below, offers two functionalities.
- the connection 32 of the pump housing 12 is connected to the flow of the underfloor heating circuit 116.
- the impeller 14 promotes liquid from the suction port 34 via the pressure port 27 through the heat source 140 and the heating circuit 120 and back to the suction port 34.
- the valve element 18i in the second switching position which in Fig. 16 is shown, the plant is switched to domestic water operation, in this state, the pump assembly or the impeller 14 promotes liquid from the port 128, which serves as a suction port, through the pressure port 27, via the heat source 114 through the secondary heat exchanger 56 and back to the terminal 128.
- the valve element 18i in the third switching position which in Fig. 17 is shown, the underfloor heating circuit 116 is additionally supplied.
- the water flows into the suction mouth 38 of the impeller 14 and is conveyed via the pressure connection 27 via the heat source 114 in the manner described by the first heating circuit 120.
- the liquid emerges on the output side of the impeller 14 from the pressure chamber 26 into the opening 124 and through the through-passage 122 and thus flows to the connection 32 and via this into the underfloor heating circuit 116.
- FIG. 17 The switch position shown flows simultaneously via the bridging opening 126 liquid via the terminal 128 and the input 130 into the terminal 32. That is, here water flows through the heat source 114 through the secondary heat exchanger 26 and the terminal 128 to the terminal 32. Since in this heating operation on Secondary heat exchanger 56 is removed substantially no heat, so the port 32 hot water in addition to the cold water, which flows from the pressure chamber 26 via the passage 122 to the port 32, admixed. By varying the degree of opening via the valve position 18i, the amount of hot water mixed in at port 32 can be varied.
- Fig. 18 shows a switching position in which the admixture is turned off and the terminal 32 is exclusively in communication with the pressure chamber 26 directly.
- the rotor 6 is preferably initially positioned when the second change of mode is performed again in such a way that the control device 17 rotates the rotor 6 by appropriate control of the stator 4 is not quite up to the stored angular position rotates, but preferably shortly before stops. Ie.
- the rotor 6 is rotated into a previously stored angular position or into an angular position which is slightly ahead of the last stored angular position in the direction of rotation.
- the rotor can be rotated together with the valve element 18, 18i in a desired second angular position, wherein the control device 17 controls the stator 6 so that the rotor 6 rotates in this second mode exactly to the desired angle.
- the counter-coupling 110 is taken over the clutch 108, so that the valve element 18, 18i is then rotated to the desired angular position.
- the rotor 6 is stopped and the control device 17 switches back to the first mode or the first operating mode and starts the rotor 6 in the opposite direction of rotation, so that the clutch 108 can disengage from the mating coupling 110 and the rest by the axial Displacement of the valve element 18, 18i by the pressure generated in the pressure chamber 26, the clutch 108 and the counter-coupling 110 completely disengage and the valve element 18, 18i is held by engagement with the bottom of the pump housing 12 in the achieved switching position.
- the coupling 108 has two slopes or wedge surfaces 132, which extend from two end edges 134, which in Substantially in the diametrical direction with respect to the axis of rotation X run.
- engagement surfaces 136 which essentially run in a plane which is spanned by the rotation axis X and a diameter line to this rotation axis X extend.
- the counter-coupling 110 has a web-shaped projection 138 extending in the diameter direction with respect to the axis of rotation X, which protrudes in the axial direction and has two substantially mutually parallel side surfaces, which in turn extend in planes which are substantially of the diameter line and the rotation axis X or be clamped to these parallel axes.
- the side surfaces of the projection 138 engage the engagement surfaces 136 when the clutch is engaged.
- the projection 138 slides on the wedge surfaces 137 under axial displacement.
- the pump housing 12 is integrally formed.
- the pump housing can also be designed in several parts.
- a separate from the pump housing valve housing may be provided, in which the valve element described is arranged, while in the pump housing, only the impeller is arranged.
- Such a valve and pump housing can be connected to each other in a suitable manner.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Description
Die Erfindung betrifft ein Pumpenaggregat mit einem elektrischen Antriebsmotor, zumindest einem von dem elektrischen Antriebsmotor drehend angetriebenen Laufrad sowie einer Steuereinrichtung, welche den Antriebsmotor ansteuert.The invention relates to a pump unit with an electric drive motor, at least one of the electric drive motor rotatably driven impeller and a control device which drives the drive motor.
In modernen Pumpenaggregaten ist es bekannt, den Antriebsmotor über eine Steuereinrichtung mit einem Frequenzumrichter anzusteuern, sodass der Antriebsmotor in seiner Drehzahl einstell- und regelbar ist. Allerdings ist der Geschwindigkeitsbereich, über den die Drehzahl veränderbar ist, begrenzt.In modern pump units, it is known to drive the drive motor via a control device with a frequency converter, so that the drive motor can be adjusted in its speed and regulated. However, the speed range over which the speed is variable is limited.
Es ist Aufgabe der Erfindung, ein Pumpenaggregat mit einem elektrischen Antriebsmotor dahingehend zu verbessern, dass der Antriebsmotor auf verbesserte Weise zum Antrieb weiterer Bauteile genutzt werden kann.It is an object of the invention to improve a pump unit with an electric drive motor to the effect that the drive motor can be used in an improved way to drive other components.
Diese Aufgabe wird durch ein Pumpenaggregat mit den in Anspruch 1 angegebenen Merkmalen gelöst. Bevorzugte Ausführungsformen ergeben sich aus den Unteransprüchen, der nachfolgenden Beschreibung sowie den beigefügten Figuren.This object is achieved by a pump unit having the features specified in claim 1. Preferred embodiments will become apparent from the subclaims, the following description and the accompanying figures.
Das erfindungsgemäße Pumpenaggregat weist einen elektrischen Antriebsmotor auf sowie zumindest ein von diesem drehend angetriebenes Laufrad. Dazu kann das Laufrad in bekannter Weise mit dem Rotor des Antriebsmotors verbunden sein. Der Rotor ist besonders bevorzugt ein Permanentmagnetrotor. Weiter bevorzugt ist der Antriebsmotor als nasslaufender elektrischer Antriebsmotor mit einem Spaltrohr bzw. Spalttopf, welcher den Rotorraum vom Statorraum trennt, ausgebildet. Das heißt, der Rotor rotiert vorzugsweise in der von dem Pumpenaggregat zu fördernden Flüssigkeit. Das Pumpenaggregat kann vorzugsweise als Umwälzpumpenaggregat und weiter bevorzugt als ein Heizungsumwälzpumpenaggregat ausgebildet sein.The pump unit according to the invention has an electric drive motor and at least one of this rotationally driven impeller. For this purpose, the impeller may be connected in a known manner with the rotor of the drive motor. The rotor is particularly preferably a permanent magnet rotor. Further preferred is the drive motor as a wet-running electric drive motor with a split tube or split pot, which separates the rotor space from the stator space formed. That is, the rotor preferably rotates in the fluid to be delivered by the pump unit. The pump unit may preferably be designed as a circulating pump unit and more preferably as a heating circulation pump unit.
Erfindungsgemäß ist die Steuereinrichtung des Antriebsmotors, welche den Antriebsmotor ansteuert und insbesondere die Bestromung von Statorspulen im Stator des Antriebsmotors steuert, derart ausgebildet, dass sie den Antriebsmotor wahlweise in zumindest einer ersten oder in einer zweiten Betriebsart ansteuert. Dabei ist die erste Betriebsart eine herkömmliche Betriebsart, bei welcher der Antriebsmotor von der Steuereinrichtung derart gesteuert wird, dass der Rotor des Antriebsmotors kontinuierlich über eine Vielzahl von Umdrehungen rotiert. In dieser Betriebsart wird das Laufrad so angetrieben, dass es den für den Betrieb des Pumpenaggregates gewünschten Druck und Durchfluss erzeugt. In der zweiten Betriebsart hingegen steuert die Steuereinrichtung den Antriebsmotor derart an, dass der Rotor des Antriebsmotors nur schrittweise in zumindest einem gewählten, insbesondere einstellbaren Winkelschritt weiterbewegt wird, wobei diese Winkelschritte vorzugsweise kleiner als 360 Grad ist. Diese Drehung in zumindest einem gewählten Winkelschritt dient dazu, den Rotor in eine gewünschte Winkelstellung zu drehen. Dies ermöglicht es, dass der Antriebsmotor in der zweiten Betriebsart weitere Antriebs- und insbesondere Stellfunktionen übernehmen kann, wie sie sonst beispielsweise von Schrittmotoren übernommen werden könnten. Dies ermöglicht weitere Anwendungsfelder. So kann der Antriebsmotor in dem Pumpenaggregat neben dem Antrieb des Laufrades weitere Funktionen, insbesondere Stellfunktionen zum Bewegen weiterer Bauteile übernehmen, welche lediglich über kleinere Wege bewegt werden müssen.According to the invention, the control device of the drive motor, which controls the drive motor and in particular controls the energization of stator coils in the stator of the drive motor, is designed such that it selectively drives the drive motor in at least one first or in a second operating mode. Here, the first mode is a conventional mode in which the drive motor is controlled by the controller such that the rotor of the drive motor rotates continuously over a plurality of revolutions. In this mode, the impeller is driven to produce the pressure and flow desired to operate the pump set. In the second operating mode, however, the control device controls the drive motor in such a way that the rotor of the drive motor is advanced only stepwise in at least one selected, in particular adjustable angular step, wherein these angular steps are preferably less than 360 degrees. This rotation in at least one selected angular step serves to rotate the rotor to a desired angular position. This makes it possible for the drive motor in the second operating mode to take on additional drive functions and, in particular, actuating functions, as might otherwise be assumed, for example, by stepper motors. This allows further fields of application. Thus, the drive motor in the pump unit in addition to the drive of the impeller other functions, in particular control functions for moving other components take over, which only need to be moved over smaller ways.
Bevorzugt ist die Steuereinrichtung so ausgebildet, dass der Antriebsmotor in der ersten Betriebsart mit einer höheren Winkelgeschwindigkeit als in der zweiten Betriebsart dreht. Dies ist für Antriebs- und Stellfunktionen von Vorteil, in denen kleinere Bewegungen mit größerer Genauigkeit ausgeführt werden sollen.Preferably, the control device is designed so that the drive motor rotates in the first mode at a higher angular velocity than in the second mode. This is advantageous for drive and positioning functions in which smaller movements are to be carried out with greater accuracy.
Die Steuereinrichtung ist weiter bevorzugt derart ausgestaltet, dass in der ersten Betriebsart der Antriebsmotor in seiner Drehzahl einstellbar und vorzugsweise regelbar ist. Dazu kann der Antriebsmotor in seiner Steuereinrichtung bevorzugt einen Frequenzumrichter aufweisen, über welchen die Drehzahl des Antriebsmotors veränderbar ist.The control device is further preferably designed such that in the first operating mode, the drive motor is adjustable in its speed and preferably adjustable. For this purpose, the drive motor in its control device preferably have a frequency converter, via which the speed of the drive motor is variable.
Die Steuereinrichtung ist ferner vorzugsweise so ausgebildet, dass der Antriebsmotor in der zweiten Betriebsart von der Steuereinrichtung in offener Schleife, das heißt im so genannten open-loop-Betrieb gesteuert wird, in welchem keine Lageregelung bei der Bestromung der Statorspulen durchgeführt wird. Insbesondere wird in der Steuerung bzw. Regelung beim Betrieb in offener Schleife die induzierte Gegenspannung (Back-EMF) nicht genutzt. Diese Steuerung ermöglicht es, den Antriebsmotor gezielt in bestimmten Winkeln durch entsprechende Bestromung der Spulen im Stator zu verdrehen. Der Stator kann in bekannter Weise mit einer Mehrzahl von Statorpolen und zugehörigen Statorspulen versehen sein, welche beispielsweise zum Dreiphasenbetrieb ausgelegt sind.The control device is also preferably designed so that the drive motor is controlled in the second mode by the control device in an open loop, that is in the so-called open-loop operation, in which no position control is performed in the energization of the stator coils. In particular, the induced reverse voltage (back-EMF) is not used in the control or regulation in open loop operation. This control makes it possible to turn the drive motor at specific angles in a targeted manner by energizing the coils in the stator. The stator can be provided in a known manner with a plurality of stator poles and associated stator coils, which are designed for example for three-phase operation.
Gemäß einer weiteren bevorzugten Ausführungsform ist die Steuereinrichtung derart ausgebildet, dass in der zweiten Betriebsart der Antriebsmotor von der Steuereinrichtung mit einer Frequenz < 10 Hertz angesteuert wird. Das heißt, die Statorspulen werden mit Spannung bzw. Strom mit einer Frequenz < 10 Hertz beaufschlagt. Alternativ oder zusätzlich wird ein höherer Motorstrom als in der ersten Betriebsart verwendet. So kann in der Betriebsart ein Motorstrom genutzt werden bzw. können die Statorspulen mit einem Strom bestromt werden, welcher der zwei- bis vierfachen nominellen Stromstärke entspricht, für welche der Antriebsmotor ausgelegt ist. Gegebenenfalls kann die Stromstärke auch höher als vierfach der nominellen Stromstärke sein. Sie wird im Wesentlichen nur dadurch begrenzt, dass keine Entmagnetisierung des Rotors auftreten darf.According to a further preferred embodiment, the control device is designed such that in the second operating mode, the drive motor is controlled by the control device with a frequency <10 hertz. That is, the stator coils are supplied with voltage or current with a frequency <10 Hertz. Alternatively or additionally, a higher motor current than in the first mode is used. Thus, in the operating mode, a motor current can be used or For example, the stator coils can be supplied with a current which corresponds to two to four times the nominal current for which the drive motor is designed. Optionally, the current may also be higher than four times the nominal current. It is essentially only limited by the fact that no demagnetization of the rotor may occur.
Gemäß einer weiteren bevorzugten Ausführungsform ist die Steuereinrichtung derart ausgebildet, dass die Anzahl und/oder die Größe der einzelnen Winkelschritte, in welche der Rotor in der zweiten Betriebsart bewegt wird, auswählbar sind. So ist es möglich, den Rotor gezielt in eine gewünschte Winkelposition zu drehen. Dazu bestromt die Steuereinrichtung gezielt die einzelnen Statorspulen.According to a further preferred embodiment, the control device is designed such that the number and / or the size of the individual angular steps in which the rotor is moved in the second operating mode are selectable. So it is possible to rotate the rotor targeted to a desired angular position. For this purpose, the control device selectively energizes the individual stator coils.
Weiter bevorzugt kann die Steuereinrichtung so ausgestaltet sein, dass sie den Antriebsmotor so ansteuert, dass dessen Drehrichtung in der zweiten Betriebsart entgegengesetzt zu der Drehrichtung in der ersten Betriebsart ist. Dies erleichtert es, die verschiedenen Betriebsarten für verschiedene Anwendungen zu nutzen, da neben dem Laufrad beispielsweise weitere Bauteile mit dem Rotor über eine drehrichtungsabhängige Kupplung gekoppelt werden könnten, sodass in einer Drehrichtung nur der Rotor angetrieben wird, während in der anderen Drehrichtung, welche vorzugsweise in der zweiten Betriebsart genutzt wird, auch noch ein weiteres gekoppeltes Bauteil bewegt werden könnte.More preferably, the control device may be configured such that it controls the drive motor so that its direction of rotation in the second mode is opposite to the direction of rotation in the first mode. This makes it easier to use the different operating modes for different applications, because in addition to the impeller, for example, other components could be coupled to the rotor via a direction-dependent coupling, so that in one direction only the rotor is driven, while in the other direction of rotation, which preferably in the second mode is used, even another coupled component could be moved.
So weist das Pumpenaggregat ein weiteres bewegbares Bauteil auf, welches zusätzlich zu dem zumindest einen Rotor über eine lösbare Kupplung mit dem Rotor des Antriebsmotors gekoppelt ist. Dabei kann die Kupplung direkt am Rotor, an einer mit dem Rotor verbundenen Rotorwelle oder auch am Laufrad, welches drehfest auf der Rotorwelle angeordnet ist, angreifen. Das zumindest eine weitere bewegbare Bauteil kann beispielsweise ein Ventilelement sein, wobei das Ventilelement vorzugsweise Teil eines Misch- und/oder Umschaltventils ist. Ein solches Umschaltventil kann beispielsweise ein Umschaltventil sein, welches in einer Heizungsanlage genutzt wird, um den Strömungsweg zwischen einem Heizkreis und einem Brauchwasser-Wärmetauscher umzuschalten. Ein Mischventil kann beispielsweise ein Mischventil sein, wie es in einer Heizungsanlage zur Anwendung kommt, um die Vorlauftemperatur des Heizmediums durch Zumischen von abgekühltem Heizmedium zu regulieren.Thus, the pump unit has a further movable component, which is coupled in addition to the at least one rotor via a releasable coupling with the rotor of the drive motor. In this case, the coupling can act directly on the rotor, on a rotor shaft connected to the rotor or on the impeller, which is arranged rotationally fixed on the rotor shaft. The at least one further movable component may for example be a valve element, wherein the valve element is preferably part of a mixing and / or switching valve. Such a switching valve may be, for example, a switching valve, which is used in a heating system to switch the flow path between a heating circuit and a hot water heat exchanger. A mixing valve may for example be a mixing valve, as used in a heating system for the application to regulate the flow temperature of the heating medium by mixing in cooled heating medium.
Die beschriebene Kupplung zur Ankopplung des zumindest einen weiteren bewegbaren Bauteils ist vorzugsweise drehrichtungsabhängig lösbar, sodass in einer Drehrichtung das zusätzliche Bauteil in der beschriebenen Weise bewegt werden kann, während in der entgegengesetzten Drehrichtung, welche vorzugsweise in der ersten Betriebsart genutzt wird, das Laufrad im Normalbetrieb rotieren kann und unbeeinträchtigt eine Pumpfunktion leisten kann. Das Laufrad kann Schaufeln aufweisen, welche an diese für den Normalbetrieb bevorzugte Drehrichtung angepasst sind.The coupling described for coupling the at least one further movable component is preferably detachable depending on the direction of rotation, so that in one direction of rotation the additional component can be moved in the manner described while in the opposite direction of rotation, which is preferably used in the first mode, the impeller in normal operation can rotate and undisturbed can perform a pumping function. The impeller may have blades, which are adapted to these preferred for normal operation direction of rotation.
Die genannte Kupplung kann weiter bevorzugt an einem Stirnende der Rotorwelle des Rotors ausgebildet sein. Das zu bewegende Bauteil weist dann eine korrespondierende Gegenkupplung auf, welche mit dieser Kupplung in Eingriff treten kann. Dabei ist das zusätzliche bewegbare Bauteil vorzugsweise ebenfalls drehbar und weiter bevorzugt um dieselbe Achse wie die Rotorwelle drehbar. Die Kupplung am Stirnende der Rotorwelle kann insbesondere ein Sägezahnprofil aufweisen, das heißt in einer Abwicklung in Umfangsrichtung ein Sägezahnprofil aufweisen. Bevorzugt weist dieses Profil zwei Schrägen auf, deren axial vorstehende Stirnkanten sich entlang einer Durchmesserlinie quer zur Drehachse der Rotorwelle erstrecken. So werden vorzugsweise ausgehend von diesen Stirnkanten Eingriffsflächen geschaffen, welche sich in einer Ebene parallel zur Drehachse und zum Durchmesser der Rotorwelle erstrecken. Diesen Eingriffsflächen abgewandt, können sich ausgehend von den Stirnkanten des Profils die Schrägen bzw. Keilflächen erstrecken, welche in der entgegengesetzten Drehrichtung bewirken, dass die Kupplung außer Eingriff gedrückt wird. Dieses Außereingrifftreten erfolgt dann durch eine axiale Verlagerung der Gegenkupplung und/oder der Kupplung an der Rotorwelle.Said coupling can be further preferably formed at a front end of the rotor shaft of the rotor. The component to be moved then has a corresponding mating coupling, which can engage with this coupling. In this case, the additional movable component is preferably also rotatable and more preferably rotatable about the same axis as the rotor shaft. The coupling at the front end of the rotor shaft may in particular have a sawtooth profile, that is to say have a sawtooth profile in a development in the circumferential direction. Preferably, this profile has two slopes whose axially projecting end edges extend transversely to the axis of rotation of the rotor shaft along a diameter line. Thus, engagement surfaces are preferably created starting from these end edges, which are in a plane parallel to the axis of rotation and the diameter of the rotor shaft extend. Facing away from these engagement surfaces, starting from the end edges of the profile, the bevels or wedge surfaces may extend, which in the opposite direction of rotation cause the clutch is pressed out of engagement. This disengagement occurs then by an axial displacement of the counter-coupling and / or the coupling to the rotor shaft.
Gemäß einer besonders bevorzugten Ausführungsform ist das zusätzlich drehend zu bewegende Bauteil ein Ventilelement, welches derart ausgebildet und angeordnet ist, dass es drehend zwischen zumindest zwei Schaltstellungen bewegbar ist. Dabei fluchtet die Drehachse des Ventilelementes vorzugsweise mit der Drehachse des Antriebsmotors. Dies ermöglicht einen einfachen Aufbau der beschriebenen Kupplung. Das Ventilelement ist vorzugsweise zusätzlich entlang seiner Drehachse axial verschiebbar, wobei durch die axiale Verlagerung des Ventilelementes beispielsweise eine Kupplung, wie sie vorangehend beschrieben wurde, außer Eingriff gebracht werden kann.According to a particularly preferred embodiment, the additionally rotationally moving component is a valve element, which is designed and arranged such that it can be moved in rotation between at least two switching positions. In this case, the axis of rotation of the valve element is preferably aligned with the axis of rotation of the drive motor. This allows a simple construction of the coupling described. The valve element is preferably additionally axially displaceable along its axis of rotation, wherein the axial displacement of the valve element, for example, a coupling, as described above, can be disengaged.
Gemäß einer weiteren bevorzugten Ausführungsform ist das Ventilelement in dem Pumpenaggregat derart angeordnet, dass es eine Druckfläche aufweist, auf welche ein ausgangsseitig des zumindest einen Laufrades herrschender Druck wirkt. Das heißt, die Druckfläche grenzt vorzugsweise an den Druckraum, in welchen das Laufrad rotiert, an. Ferner ist das Ventilelement vorzugsweise in einer Richtung quer zu der Druckfläche zwischen einer Anlageposition, in welcher es an zumindest einer Anlagefläche anliegt, und einer gelösten Position, in welcher es von der Anlagefläche gelöst oder beabstandet ist, bewegbar gelagert. Der Bewegungspfad, entlang dem das Ventilelement so zwischen der anliegenden Position und der gelösten Position bewegbar ist, unterscheidet sich dabei bevorzugt von dem Bewegungspfad zwischen den zumindest zwei Schaltstellungen des Ventilelementes. Besonders bevorzugt ist das Ventilelement entlang der Drehachse, um welche es zwischen den Schaltstellungen bewegbar ist, axial bewegbar.According to a further preferred embodiment, the valve element is arranged in the pump unit such that it has a pressure surface on which an output side of the at least one impeller prevails pressure. That is, the pressure surface preferably adjoins the pressure space in which the impeller rotates. Furthermore, the valve element is preferably movably mounted in a direction transverse to the pressure surface between an abutment position in which it bears against at least one abutment surface and a released position in which it is detached or spaced from the abutment surface. The movement path, along which the valve element is movable between the adjacent position and the released position, preferably differs from the movement path between the at least two switching positions of the valve element. Especially Preferably, the valve element is axially movable along the axis of rotation about which it is movable between the switching positions.
Weiter bevorzugt ist ein Rückstell- bzw. Vorspannelement vorhanden, welches eine Rückstellkraft erzeugt, die der von dem Druck an der Druckfläche erzeugten Druckkraft entgegengesetzt gerichtet ist. Ein solches Rückstellelement kann beispielsweise eine Feder sein. Das Rückstellelement ist vorzugsweise so angeordnet, dass die erzeugte Rückstellkraft das Ventilelement in die gelöste Position drückt. In der gelösten Position ist das Ventilelement vorzugsweise im Wesentlichen frei bewegbar und insbesondere drehbar, sodass es leicht zwischen seinen Schaltstellungen bewegt werden kann. In der anliegenden Position hingegen wird das Ventilelement vorzugsweise kraft- und/oder formschlüssig an der Anlagefläche gehalten, sodass es in seiner eingenommenen Schaltstellung fixiert wird.More preferably, a restoring or biasing element is provided, which generates a restoring force, which is directed opposite to the pressure force generated by the pressure on the pressure surface. Such a return element may for example be a spring. The return element is preferably arranged so that the restoring force generated presses the valve element in the released position. In the released position, the valve element is preferably substantially freely movable and in particular rotatable, so that it can be easily moved between its switching positions. In the adjacent position, however, the valve element is preferably held non-positively and / or positively on the contact surface, so that it is fixed in its assumed switching position.
Die zumindest eine Anlagefläche kann bevorzugt gleichzeitig eine Dichtfläche sein. Auf diese Weise wird das Ventilelement in der gewünschten Schaltstellung gleichzeitig abgedichtet, wobei die Dichtfläche vorzugsweise eine Eingangs- oder Schaltöffnung umgibt und als Ventilsitz fungiert.The at least one contact surface may preferably be a sealing surface at the same time. In this way, the valve element is simultaneously sealed in the desired switching position, wherein the sealing surface preferably surrounds an input or switching opening and acts as a valve seat.
Das erfindungsgemäße Pumpenaggregat ermöglicht den Antriebsmotor nach einem neuartigen Verfahren anzusteuern, welches ebenfalls Gegenstand der Erfindung ist. Dabei ergeben sich die wesentlichen Verfahrensmerkmale aus der vorangehenden Beschreibung der Funktion des Pumpenaggregates. Die zweite Betriebsart wird vorzugsweise dazu genutzt, ein zusätzliches Bauteil, insbesondere ein Ventilelement in eine gewünschte Position, insbesondere eine gewünschte Winkellage bezüglich einer Drehachse zu bewegen. Hierzu wird der o-pen-loop-Betrieb bei der Ansteuerung des Antriebsmotors genutzt. Gleichzeitig ist vorzugsweise zwischen dem Rotor und dem drehbaren Ventilelement eine drehrichtungsabhängige Kupplung vorgesehen, wie sie vorangehend beschrieben wurde. Die Kupplung ist so ausgebildet, dass sie in zumindest einer Winkellage, bei der oben beschriebenen Ausgestaltung in zwei in 180° versetzten Winkellagen, in Eingriff tritt. Da im Normalbetrieb in der ersten Betriebsart die Kupplung in der oben beschriebenen Weise durch den im Druckraum herrschenden Druck außer Eingriff tritt, ist beim Wechsel in die zweite Betriebsart nicht sicher, dass das Ventilelement sich nicht geringfügig verlagert hat. Insofern ist es bevorzugt, dass beim Start der zweiten Betriebsart der Antriebsmotor nicht genau in die Winkellage gedreht wird, in welcher er sich beim letztmaligen Beenden des zweiten Betriebsmodus befunden hat, sondern in eine Winkelposition fährt, welche um ein bestimmtes Maß zurückversetzt ist. Zu Beginn der zweiten Betriebsart erfolgt somit zunächst diese Ausrichtung des Rotors in einer Winkelposition geringfügig vor der Winkelposition, in welcher sich der Rotor bei der letzten Außerbetriebnahme der zweiten Betriebsart befunden hat. Dadurch wird sichergestellt, dass bei der weiteren Drehung die Kupplung auf jeden Fall in Eingriff tritt und das Ventilelement in gewünschter Weise mitbewegt wird.The pump unit according to the invention makes it possible to drive the drive motor according to a novel method, which is also the subject of the invention. In this case, the essential process features from the foregoing description of the function of the pump unit. The second operating mode is preferably used to move an additional component, in particular a valve element in a desired position, in particular a desired angular position with respect to a rotational axis. For this purpose, the o-pen-loop operation is used in the control of the drive motor. At the same time is preferably between the rotor and the rotatable Valve element provided a direction of rotation dependent coupling, as described above. The coupling is designed so that it engages in at least one angular position, in the embodiment described above in two angular positions offset by 180 °. Since in normal operation in the first mode, the clutch in the manner described above by the pressure prevailing in the pressure chamber disengaged, when changing to the second mode is not sure that the valve element has not shifted slightly. In this respect, it is preferred that at the start of the second mode of operation, the drive motor is not rotated exactly in the angular position in which he was at the last time the end of the second mode of operation, but in an angular position moves, which is set back by a certain amount. At the beginning of the second mode of operation, therefore, this orientation of the rotor initially takes place in an angular position slightly before the angular position in which the rotor was located during the last decommissioning of the second operating mode. This ensures that in the further rotation, the clutch engages in any case and the valve element is moved in the desired manner.
Ausgehend von der beschriebenen Ausgangslage wird der Rotor dann von der Steuereinrichtung durch entsprechende Bestromung der Statorspulen in der oben beschriebenen Weise in genau die gewünschte neue Winkelposition gedreht. Dies erfolgt vorzugsweise zeitgesteuert, indem für eine von der Steuereinrichtung festgesetzte Zeitspanne der Stator mit vorgegebener Frequenz bestromt wird, wobei die Frequenz sich vorzugsweise in dem oben genannten sehr niedrigen Bereich bewegt. Nach Erreichen der gewünschten Winkellage wird der Rotor angehalten und in die erste Betriebsart zurück gewechselt, in welcher der Rotor vorzugsweise in umgekehrter Drehrichtung gedreht wird, sodass die Kupplung außer Eingriff tritt und durch den Druckaufbau im Druckraum in beschriebener Weise das Ventilelement in der erreichten Schaltstellung gehalten wird. Durch dieses Verfahren lässt sich das Ventilelement sehr präzise positionieren, sodass verschiedenste Schaltfunktionen, wie Umschaltfunktionen, Schaltfunktionen eines Verteilerventiles und/oder Einstellungen eines Mischerventils vorgenommen werden können.Starting from the described starting position, the rotor is then rotated by the control device by corresponding energization of the stator coils in the manner described above in exactly the desired new angular position. This is preferably time-controlled in that the stator is supplied with a predetermined frequency for a period of time determined by the control device, the frequency preferably being in the very low range mentioned above. After reaching the desired angular position of the rotor is stopped and changed back to the first mode, in which the rotor is preferably rotated in the reverse direction, so that the clutch is disengaged and held by the pressure build-up in the pressure chamber in the manner described, the valve element in the switching position achieved becomes. By this method, the valve element can be Position very precisely so that various switching functions, such as switching functions, switching functions of a distributor valve and / or settings of a mixer valve can be made.
Nachfolgend wird die Erfindung beispielhaft anhand der beigefügten Figuren beschrieben. In diesen zeigt:
- Fig. 1
- eine Explosionsansicht des Kreiselpumpenaggregates gemäß einer ersten Ausführungsform der Erfindung,
- Fig. 2
- eine perspektivische Ansicht des Kreiselpumpenaggregates gemäß
Fig. 1 mit abgenommenem Pumpengehäuse und Ventilelement, - Fig. 3
- eine perspektivische Ansicht der Motorwelle des Kreiselpumpenaggregates gemäß
Fig. 1 und2 sowie des Kupplungsteils des Ventilelementes, - Fig. 4
- eine Schnittansicht des Kreiselpumpenaggregates gemäß
Fig. 1 mit dem Ventilelement in einer ersten Position, - Fig. 5
- eine Schnittansicht gemäß
Fig. 4 mit dem Ventilelement in einer zweiten Position, - Fig. 6
- eine Draufsicht auf das geöffnete Pumpengehäuse des Kreiselpumpenaggregates gemäß
Fig. 1 mit dem Ventilelement in einer ersten Schaltstellung,bis 3 - Fig. 7
- eine Ansicht gemäß
Fig. 6 mit dem Ventilelement in einer zweiten Schaltstellung, - Fig. 8
- eine Ansicht gemäß
Fig. 6 und 7 mit dem Ventilelement in einer dritten Schaltstellung, - Fig. 9
- schematisch den hydraulischen Aufbau einer Heizungsanlage mit einem Kreiselpumpenaggregat gemäß
Fig. 1 ,bis 8 - Fig. 10
- eine Explosionsansicht eines Kreiselpumpenaggregates gemäß einer zweiten Ausführungsform der Erfindung,
- Fig. 11
- eine perspektivische Ansicht des geöffneten Ventilelementes des Kreiselpumpenaggregates gemäß
Fig. 10 , - Fig. 12
- eine perspektivische Ansicht des geschlossenen Ventilelementes gemäß
Fig. 11 , - Fig. 13
- eine Schnittansicht des Kreiselpumpenaggregates gemäß
Fig. 10 mit dem Ventilelement in einer ersten Position, - Fig. 14
- eine Schnittansicht gemäß
Fig. 13 mit dem Ventilelement in einer zweiten Position, - Fig. 15
- eine Draufsicht auf das geöffnete Pumpengehäuse des Kreiselpumpenaggregates gemäß
Fig. 10 mit dem Ventilelement in einer ersten Schaltstellung,bis 14 - Fig. 16
- eine Ansicht gemäß
Fig. 15 mit dem Ventilelement in einer zweiten Schaltstellung, - Fig. 17
- eine Ansicht gemäß
Fig. 15 mit dem Ventilelement in einer dritten Schaltstellung,und 16 - Fig. 18
- eine Ansicht gemäß
Fig. 15 mit dem Ventilelement in einer vierten Schaltstellung undbis 17 - Fig. 19
- schematisch den hydraulischen Aufbau einer Heizungsanlage mit einem Kreiselpumpenaggregat gemäß
Fig. 10 .bis 18
- Fig. 1
- an exploded view of the centrifugal pump assembly according to a first embodiment of the invention,
- Fig. 2
- a perspective view of the centrifugal pump assembly according to
Fig. 1 with removed pump housing and valve element, - Fig. 3
- a perspective view of the motor shaft of the centrifugal pump assembly according to
Fig. 1 and2 and the coupling part of the valve element, - Fig. 4
- a sectional view of the centrifugal pump assembly according to
Fig. 1 with the valve element in a first position, - Fig. 5
- a sectional view according to
Fig. 4 with the valve element in a second position, - Fig. 6
- a plan view of the open pump housing of the centrifugal pump assembly according to
Fig. 1 to 3 with the valve element in a first switching position, - Fig. 7
- a view according to
Fig. 6 with the valve element in a second switching position, - Fig. 8
- a view according to
6 and 7 with the valve element in a third switching position, - Fig. 9
- schematically the hydraulic structure of a heating system with a centrifugal pump assembly according to
Fig. 1 to 8 . - Fig. 10
- an exploded view of a centrifugal pump assembly according to a second embodiment of the invention,
- Fig. 11
- a perspective view of the open valve element of the centrifugal pump assembly according to
Fig. 10 . - Fig. 12
- a perspective view of the closed valve element according to
Fig. 11 . - Fig. 13
- a sectional view of the centrifugal pump assembly according to
Fig. 10 with the valve element in a first position, - Fig. 14
- a sectional view according to
Fig. 13 with the valve element in a second position, - Fig. 15
- a plan view of the open pump housing of the centrifugal pump assembly according to
10 to 14 with the valve element in a first switching position, - Fig. 16
- a view according to
Fig. 15 with the valve element in a second switching position, - Fig. 17
- a view according to
FIGS. 15 and 16 with the valve element in a third switching position, - Fig. 18
- a view according to
15 to 17 with the valve element in a fourth switching position and - Fig. 19
- schematically the hydraulic structure of a heating system with a centrifugal pump assembly according to
10 to 18 ,
Die in der nachfolgenden Beschreibung beschriebenen Ausführungsbeispiele des erfindungsgemäßen Kreiselpumpenaggregates betreffen Anwendungen in Heizungs- und/oder Klimasystemen, in welchen von dem Kreiselpumpenaggregat ein flüssiger Wärmeträger, insbesondere Wasser, umgewälzt wird.The embodiments of the centrifugal pump assembly according to the invention described in the following description relate to applications in heating and / or air conditioning systems, in which of the centrifugal pump unit, a liquid heat carrier, in particular water, is circulated.
Das Kreiselpumpenaggregat gemäß beider Ausführungsformen der Erfindung weist ein Motorgehäuse 2 auf, in welchem ein elektrischer Antriebsmotor angeordnet ist. Dieser weist in bekannter Weise einen Stator 4 sowie einen Rotor 6 auf, welcher auf einer Rotorwelle 8 angeordnet ist. Der Rotor 6 dreht in einem Rotorraum, welcher von dem Statorraum, in welchem der Stator 4 angeordnet ist, durch ein Spaltrohr bzw. einen Spalttopf 10 getrennt ist. Das heißt, es handelt sich hierbei um einen nasslaufenden elektrischen Antriebsmotor. An einem Axialende ist das Motorgehäuse 2 mit einem Pumpengehäuse 12 verbunden, in welchem ein mit der Rotorwelle 8 drehfest verbundenes Laufrad 14 rotiert.The centrifugal pump assembly according to both embodiments of the invention has a
An dem dem Pumpengehäuse 12 entgegengesetzten Axialende des Motorgehäuses 2 ist ein Elektronikgehäuse 16 angeordnet, welches eine Steuerelektronik bzw. Steuereinrichtung 17 zur Ansteuerung des elektrischen Antriebsmotors in dem Pumpengehäuse 2 beinhaltet. Das Elektronikgehäuse 16 könnte in entsprechender Weise auch an einer anderen Seite des Statorgehäuses 2 angeordnet sein.At the
In dem Pumpengehäuse 12 ist darüber hinaus ein bewegliches Ventilelement 18 angeordnet. Dieses Ventilelement 18 ist auf einer Achse 20 im Inneren des Pumpengehäuses 12 drehbar gelagert, und zwar so, dass die Drehachse des Ventilelementes 18 mit der Drehachse X des Laufrades 14 fluchtet. Die Achse 20 ist am Boden des Pumpengehäuses 12 drehfest fixiert. Das Ventilelement 18 ist nicht nur um die Achse 20 drehbar, sondern um ein gewisses Maß in Längsrichtung X bewegbar. In einer Richtung wird diese lineare Bewegbarkeit durch das Pumpengehäuse 12, an welches das Ventilelement 18 mit seinem Außenumfang anschlägt, begrenzt.In addition, a
Das Ventilelement 18 trennt in dem Pumpengehäuse 12 einen Saugraum 24 von einem Druckraum 26. In dem Druckraum 26 rotiert das Laufrad 14. Der Druckraum 26 ist mit dem Druckanschluss bzw. Druckstutzen 27 des Kreiselpumpenaggregates verbunden, welcher den Auslass des Kreiselpumpenaggregates bildet.The
Bei beiden gezeigten Ausführungsformen ist eine mechanische Kupplung zwischen dem Antriebsmotor und dem Ventilelement vorgesehen, wobei bei diesen Ausführungsformen der Antriebsmotor von der Steuereinrichtung 17 in zwei verschiedenen Betriebsarten bzw. Betriebsmodi ansteuerbar ist. In einer ersten Betriebsart, welche dem Normalbetrieb des Umwälzpumpenaggregates entspricht, rotiert der Antriebsmotor in herkömmlicher Weise mit einer gewünschten, insbesondere von der Steuereinrichtung 17 einstellbaren, Drehzahl. In der zweiten Betriebsart wird der Antriebsmotor im Open-Loop-Betrieb angesteuert, sodass der Rotor schrittweise in einzelnen von der Steuereinrichtung 17 vorgegebenen Winkelschritten, welche kleiner als 360° sind, gedreht werden kann. So kann der Antriebsmotor nach Art eines Schrittmotors in einzelnen Schritten bewegt werden, was bei diesen Ausführungsbeispielen dazu genutzt wird, das Ventilelement gezielt in kleinen Winkelschritten in eine definierte Position zu bewegen, wie es nachfolgend beschrieben wird.In both embodiments shown, a mechanical coupling between the drive motor and the valve element is provided, wherein in these embodiments, the drive motor can be controlled by the
Bei der ersten Ausführungsform gemäß
Das Motorgehäuse 2 mit dem Elektronikgehäuse 16 entspricht der vorangehend beschriebenen Ausgestaltung. Das Pumpengehäuse 12 weist neben dem Druckanschluss 27 zwei saugseitige Anschlüsse 32 und 34 auf, welche am Boden des Pumpengehäuses 12 in Eingängen 28 und 30 münden, welche in einer Ebene quer zu der Drehachse X gelegen sind.The
Das Ventilelement 18 ist trommelförmig ausgebildet und besteht aus einem topfförmigen Unterteil 76, welches an seiner dem Laufrad 14 zugewandten Seite durch einen Deckel 78 verschlossen ist. Im Zentralbereich des Deckels 78 ist eine Saugöffnung 36 ausgebildet. Die Saugöffnung 36 ist mit dem Saugmund 38 des Laufrades 14 in Eingriff. Das Ventilelement 18 ist auf einer Achse 20, welche im Boden des Pumpengehäuses 12 angeordnet ist, drehbar gelagert. Dabei entspricht die Drehachse des Ventilelementes 18 der Drehachse X der Rotorwelle 8. Das Ventilelement 18 ist ebenfalls entlang der Achse X axial verschiebbar und wird durch eine Feder 48 in die in
Der Sauganschluss 32 mündet an dem Eingang 28 und der Sauganschluss 34 mündet an dem Eingang 30 im Boden des Pumpengehäuses 12 in dessen Innenraum, das heißt, den Saugraum 24 hinein. Das Unterteil 76 des Ventilelementes 18 weist in seinem Boden eine bogenförmige Öffnung 112 auf, welche sich im Wesentlichen über 90° erstreckt.
Eine solche Funktionalität kann beispielsweise in einem hydraulischen System, wie es in
Das zweite Ausführungsbeispiel gemäß
Die Lagerung und der Antrieb des Ventilelementes 18i erfolgt bei dieser Ausführungsform genauso wie bei der neunten Ausführungsform. Im Unterschied zu dem Ventilelement 18 weist das Ventilelement 18i zusätzlich zu der Öffnung 112 einen Durchgangskanal 122 auf, welcher sich von einer Öffnung 124 in den Deckel 78i zu einer Öffnung im Boden des Unterteils 76i erstreckt und somit die beiden Axialenden des Ventilelementes 18i miteinander verbindet. Ferner ist in dem Ventilelement 18i noch eine lediglich zur Unterseite, das heißt, zum Boden des Unterteils 76i und damit zum Saugraum 24 hin geöffnete bogenförmige Überbrückungsöffnung 126 ausgebildet, welche zum Druckraum 26 hin durch den Deckel 78i verschlossen ist.The storage and the drive of the
Das Pumpengehäuse 12 weist neben dem Druckanschluss 27 und den beiden zuvor beschriebenen Sauganschlüssen 34 und 32 einen weiteren Anschluss 128 auf. Der Anschluss 128 mündet in einem Eingang 130 im Boden des Umwälzpumpenaggregates 12 zusätzlich zu den Eingängen 28 und 30 in den Saugraum 24 hinein. Anhand der
Ein solches Kreiselpumpenaggregat kann beispielsweise in einem Heizungssystem, wie es in
Wenn sich das Ventilelement 18i in der ersten in
In der in
Aufgrund der Tatsache, dass die Kupplung 108 und die Gegenkupplung 110 in der ersten Betriebsart im Normalbetrieb des Umwälzpumpenaggregates, wenn das Laufrad 14 Flüssigkeit fördert, außer Eingriff treten, stellt sich das Problem, beim Wechsel in die zweite Betriebsart, was eine Drehrichtungsumkehr erfordert, den Rotor 6 und das Ventilelement 18, 18i wieder in definierte Ausrichtung bezüglich ihrer Winkellagen zu bringen. Das Ventilelement 18, 18i sollte im Wesentlichen in der Position gehalten sein, in welcher es war, als das Pumpenaggregat durch die Steuereinrichtung 17 zum letzten Mal von der zweiten Betriebsart in die erste Betriebsart gewechselt ist. Gleichzeitig ist der Steuereinrichtung 17 die Position des Rotors 6 bekannt und die Steuereinrichtung 17 ist so ausgebildet, dass sie die Rotorposition speichert. Da jedoch nicht ganz ausgeschlossen werden kann, dass sich das Ventilelement 18, 18i möglicherweise um ein geringes Maß verlagert hat, wird beim erneuten Wechsel in die zweite Betriebsart bevorzugt zunächst eine Positionierung des Rotors 6 in der Weise vorgenommen, dass die Steuereinrichtung 17 den Rotor 6 durch entsprechende Ansteuerung des Stators 4 nicht ganz bis in die gespeicherte Winkellage dreht, sondern vorzugsweise kurz vorher anhält. D. h. in einem ersten Schritt wird bei der Inbetriebnahme des zweiten Betriebsmodus der Rotor 6 in eine zuvor gespeicherte Winkellage gedreht oder in eine Winkellage, welche in Drehrichtung geringfügig vor der zuletzt gespeicherten Winkellage liegt. Anschließend kann der Rotor gemeinsam mit dem Ventilelement 18, 18i in eine gewünschte zweite Winkelposition gedreht werden, wobei die Steuereinrichtung 17 den Stator 6 so ansteuert, dass der Rotor 6 in dieser zweiten Betriebsart sich genau um den gewünschten Winkel dreht. Bei dieser Drehung wird über die Kupplung 108 die Gegenkupplung 110 mitgenommen, sodass das Ventilelement 18, 18i dann in die gewünschte Winkelstellung gedreht wird. In dieser wird der Rotor 6 angehalten und die Steuereinrichtung 17 schaltet wieder in die erste Betriebsart bzw. den ersten Betriebsmodus um und startet den Rotor 6 in entgegengesetzter Drehrichtung, sodass die Kupplung 108 von der Gegenkupplung 110 außer Eingriff treten kann und im Übrigen durch die axiale Verlagerung des Ventilelementes 18, 18i durch den im Druckraum 26 erzeugten Druck die Kupplung 108 und die Gegenkupplung 110 vollständig außer Eingriff treten und das Ventilelement 18, 18i durch Anlage am Boden des Pumpengehäuses 12 in der erreichten Schaltstellung gehalten wird.Due to the fact that the clutch 108 and the counter-clutch 110 in the first mode during normal operation of the circulating pump unit, when the
Die Kupplung 108 weist zwei Schrägen bzw. Keilflächen 132 auf, welche sich ausgehend von zwei Stirnkanten 134 erstrecken, welche im Wesentlichen in diametraler Richtung bezüglich der Drehachse X verlaufen. An der den Keilflächen 132 abgewandten Seite der Stirnkanten 134 erstrecken sich Eingriffsflächen 136, welche im Wesentlichen in einer Ebene verlaufen, welche von der Drehachse X und einer Durchmesserlinie zu dieser Drehachse X aufgespannt wird. Die Gegenkupplung 110 weist einen sich in Durchmesserrichtung bezüglich der Drehachse X erstreckenden stegförmigen Vorsprung 138 auf, welcher in axialer Richtung vorsteht und zwei im Wesentlichen zueinander parallele Seitenflächen aufweist, welche sich wiederum in Ebenen erstrecken, welche im Wesentlichen von der Durchmesserlinie und der Drehachse X oder zu diesen parallele Achsen aufgespannt werden. Die Seitenflächen des Vorsprungs 138 kommen an den Eingriffsflächen 136 zur Anlage, wenn die Kupplung in Eingriff ist. In der umgekehrten Drehrichtung D gleitet der Vorsprung 138 auf den Keilflächen 137 unter axialer Verlagerung ab. Bei dieser Ausgestaltung der Kupplung 108 und der Gegenkupplung 110 gibt es genau zwei um 180° zueinander versetzte Positionen, in welchen der Rotor 6 und das Ventilelement 18, 18i miteinander gekoppelt werden können.The
In dem vorangehend beschriebenen Ausführungsbeispielen ist das Pumpengehäuse 12 einteilig ausgebildet. Es ist jedoch zu verstehen, dass das Pumpengehäuse auch mehrteilig ausgebildet sein kann. Insbesondere kann ein von dem Pumpengehäuse getrenntes Ventilgehäuse vorgesehen sein, in welchem das beschriebene Ventilelement angeordnet ist, während in dem Pumpengehäuse lediglich das Laufrad angeordnet ist. Ein solches Ventil- und Pumpengehäuse können in geeigneter Weise miteinander verbunden sein.In the embodiments described above, the
- 11
- KreiselpumpenaggregatA centrifugal pump unit
- 22
- Motorgehäusemotor housing
- 44
- Statorstator
- 66
- Rotorrotor
- 88th
- Rotorwellerotor shaft
- 1010
- Spaltrohrcanned
- 1212
- Pumpengehäusepump housing
- 1414
- LaufradWheel
- 1616
- Elektronikgehäuseelectronics housing
- 1717
- Steuereinrichtungcontrol device
- 18 18i18 18i
- Ventilelementvalve element
- 2020
- Achseaxis
- 2424
- Saugraumsuction
- 2626
- Druckraumpressure chamber
- 2727
- Druckanschlusspressure connection
- 28, 3028, 30
- Eingängeinputs
- 32,3432.34
- Sauganschlüssesuction ports
- 3838
- Saugmundsaugmund
- 4848
- Federfeather
- 76 76i76 76i
- Unterteillower part
- 78, 78i78, 78i
- Deckelcover
- 108108
- Kupplungclutch
- 110110
- Gegenkupplungcounter-coupling
- 112112
- Öffnungopening
- 114114
- Wärmequelleheat source
- 116116
- Fußboden-HeizkreisFloor heating
- 118118
- Umwälzpumpenaggregatcirculation pump assembly
- 120120
- Heizkreisheating circuit
- 122122
- DurchgangskanalThrough channel
- 124124
- Öffnungopening
- 126126
- Überbrückungsöffnungbridge opening
- 128128
- Anschlussconnection
- 130130
- Eingangentrance
- 132132
- Keilflächenwedge surfaces
- 134134
- Stirnkantenfront edges
- 136136
- Eingriffsflächenengaging surfaces
- 138138
- Vorsprunghead Start
- XX
- Drehachseaxis of rotation
- A, BA, B
- Drehrichtungendirections
Claims (16)
- A pump assembly with an electrical drive motor, with at least one impeller (14) which is rotatingly driven by the electrical drive motor as well as with a control device (17) which activates the drive motor,
wherein,
the control device (17) is designed in a manner such that it selectively activates the drive motor in at least one first or a second operating mode, wherein in the first operating mode, the drive motor is activated by the control device (17) in a manner such that a rotor (6) of the drive motor continuously rotates for producing a flow and a pressure at the impeller, and in the second operating mode, the drive motor is controlled by the control device (17) in a manner such that the rotor (6) of the drive motor is moved further in a stepwise manner in at least one selected angular step of preferably smaller than 360° for reaching a certain angular position, characterised in that the rotor (6) of the drive motor, additionally to the at least one impeller (14), is coupled to at least one further movable component (18, 18i) via a releasable coupling (108, 110). - A pump assembly according to claim 1, characterised in that the control device (17) is designed in a manner such that the drive motor rotates at higher angular speed in the first operating mode than in the second operating mode.
- A pump assembly according to claim 1 or 2, characterised in that the control device (17) is designed in a manner such that in the first operating mode, the drive motor in its speed is adjustable and in particular is closed-loop controllable.
- A pump assembly according to one of the preceding claims, characterised in that the control device (17) is designed in a manner such that in the second operating mode, the drive motor is controlled by the control device (17) with an open-loop.
- A pump assembly according to one of the preceding claims, characterised in that the control device (17) is designed in a manner such that in the second operating mode, the drive motor is activated by the control device (17) at a frequency < 10 Hertz and/or the motor current corresponds to twice to fourfold the rated amperage, for which the drive motor is designed.
- A pump assembly according to one of the preceding claims, characterised in that the control device (17) comprises a frequency converter.
- A pump assembly according to one of the preceding claims, characterised in that the control device (17) is designed in a manner such that the number and/or the size of the individual angular steps, in which the rotor (6) is moved in the second operating mode, is selectable.
- A pump assembly according to one of the preceding claims, characterised in that the control device (17) is designed in a manner such that it activates the drive motor in a manner such that its rotation direction (A) in the second operating mode is opposite to the rotation direction (B) in the first operating mode.
- A pump assembly according to one of the preceding claims, characterised in that the coupling (108, 110) is releasable in a rotation-direction-dependent manner such that in a first rotation direction (A) it is engaged and in the opposite second rotation direction (B) it is released.
- A pump assembly according to one of the preceding claims, characterised in that the coupling (108) is formed at a face end of a rotor shaft (8) of the rotor and in particular has a saw-tooth profile.
- A pump assembly according to one of the preceding claims 9, characterised in that the at least one further movable component is a valve element (18; 18i), wherein the valve element (18; 18i) is preferably part of a mixing valve and/or switch-over valve.
- A pump assembly according to claim 11, characterised in that the valve element (18; 18i) is designed and arranged such that it is rotatingly movable between at least two switching positions, wherein a rotation axis (X) of the valve element (18; 18i) is preferably arranged in a manner aligned to the rotation axis (X) of the drive motor.
- A pump assembly according to claim 11 or 12, characterised in that the valve element (18; 18i) is arranged in the pump assembly in a manner such that it comprises a pressure surface (78; 78i), upon which a pressure prevailing at the outlet side of the at least one impeller (14) acts, and the valve element (18; 18i) is movably mounted in a direction transverse to the pressure surface (78; 78i) between a bearing position, in which it bears on at least one contact surface, and a released position, in which it is released or distanced to the contact surface, wherein a restoring element (48) is preferably provided, said restoring element producing a restoring force which is directed oppositely to the pressing force which is produced by the pressure on the pressure surface (78; 78i).
- A pump assembly according to claim 13, characterised in that the contact surface is a sealing surface.
- A pump assembly according to claim 13, or 14, characterised in that a movement path (X) between the bearing position and a released position is different to the movement path between the at least two switching positions of the valve element (18; 18i).
- A pump assembly according to one of the preceding claims, characterised in that it is designed as a circulation pump assembly and in particular as a heating circulation pump assembly.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17160832.6A EP3376040B1 (en) | 2017-03-14 | 2017-03-14 | Pump unit |
CN201880018500.4A CN110418895B (en) | 2017-03-14 | 2018-03-12 | Pump assembly |
PCT/EP2018/056080 WO2018166969A1 (en) | 2017-03-14 | 2018-03-12 | Pump assembly |
US16/493,211 US20200072227A1 (en) | 2017-03-14 | 2018-03-12 | Pump assembly |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17160832.6A EP3376040B1 (en) | 2017-03-14 | 2017-03-14 | Pump unit |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3376040A1 EP3376040A1 (en) | 2018-09-19 |
EP3376040B1 true EP3376040B1 (en) | 2019-10-30 |
Family
ID=58347143
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17160832.6A Active EP3376040B1 (en) | 2017-03-14 | 2017-03-14 | Pump unit |
Country Status (4)
Country | Link |
---|---|
US (1) | US20200072227A1 (en) |
EP (1) | EP3376040B1 (en) |
CN (1) | CN110418895B (en) |
WO (1) | WO2018166969A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11060441B2 (en) | 2019-04-05 | 2021-07-13 | Perkins Engines Company Limited | Water pump with twin return ports |
WO2023161017A1 (en) * | 2022-02-25 | 2023-08-31 | Grundfos Holding A/S | Pump device with a centrifugal pump and a mixing unit |
US20230400037A1 (en) * | 2022-06-08 | 2023-12-14 | Cooper-Standard Automotive Inc | Multiport fluid pump with integrated valve |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1958277C2 (en) * | 1969-11-20 | 1971-10-07 | Schichl, Karl, 8000 München | CIRCULATION PUMP FOR HOT WATER HEATING SYSTEMS WITH A FOUR-WAY MIXING VALVE IN THE PUMP HOUSING |
JP5920438B2 (en) * | 2013-11-12 | 2016-05-18 | 株式会社デンソー | Drive control device and fuel pump drive system |
CN103953542B (en) * | 2014-05-17 | 2017-08-08 | 王洪继 | A kind of vane pump |
EP3067564B1 (en) * | 2015-03-09 | 2019-02-06 | Grundfos Holding A/S | Circulation pump |
CN105464919B (en) * | 2016-01-20 | 2017-12-26 | 江苏雷利电机股份有限公司 | The automatic jettison system of pump and the application pump |
-
2017
- 2017-03-14 EP EP17160832.6A patent/EP3376040B1/en active Active
-
2018
- 2018-03-12 US US16/493,211 patent/US20200072227A1/en not_active Abandoned
- 2018-03-12 CN CN201880018500.4A patent/CN110418895B/en not_active Expired - Fee Related
- 2018-03-12 WO PCT/EP2018/056080 patent/WO2018166969A1/en active Application Filing
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
WO2018166969A1 (en) | 2018-09-20 |
EP3376040A1 (en) | 2018-09-19 |
CN110418895B (en) | 2020-11-20 |
US20200072227A1 (en) | 2020-03-05 |
CN110418895A (en) | 2019-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3376038B1 (en) | Pump unit | |
DE102010050605B4 (en) | Device for controlling a coolant flow and cooling system | |
EP3376040B1 (en) | Pump unit | |
WO2018167043A1 (en) | Pump assembly | |
EP3662205A1 (en) | Mixing device and method for controlling the temperature of a fluid flow | |
EP3376036A1 (en) | Pump unit | |
EP3325859B1 (en) | Coolant distribution module for a coolant circuit | |
WO2018166975A1 (en) | Pump assembly | |
WO2018166967A1 (en) | Centrifugal pump aggregate | |
DE102020207028A1 (en) | Pump unit | |
DE102012224369A1 (en) | Valve for controlling flow rate of coolant in heating- or cooling system of motor vehicle, has valve disk formed as rotor of adjusting drive formed as electric motor, where valve also has stator of electric motor for direct driving of rotor | |
EP3401545B1 (en) | Side-channel blower and centrifugal pump driven by a common motor, wherein the pump is driven via a magnetic transmission | |
EP3438555A1 (en) | Circulation pump generator | |
EP3376039B1 (en) | Centrifugal pump assembly | |
EP2659169B1 (en) | Valve for controlling volume flows | |
EP3376082B1 (en) | Valve device | |
EP3376052B1 (en) | Centrifugal pump assembly | |
EP1359296A2 (en) | Duo-proportional valve | |
EP1585213A1 (en) | Adjusting device with driving means | |
EP3438558A1 (en) | Method for operating a mixing device and mixing device | |
EP2959126A1 (en) | Thermostat valve |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190319 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190507 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1196441 Country of ref document: AT Kind code of ref document: T Effective date: 20191115 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502017002689 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200302 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191030 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200130 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200131 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191030 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191030 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200130 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191030 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191030 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191030 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20191030 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200229 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191030 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191030 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191030 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191030 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191030 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191030 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191030 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191030 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502017002689 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191030 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191030 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20200731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191030 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191030 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200314 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200314 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20220324 Year of fee payment: 6 Ref country code: DE Payment date: 20220323 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191030 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191030 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191030 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20220322 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191030 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20220331 Year of fee payment: 6 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1196441 Country of ref document: AT Kind code of ref document: T Effective date: 20220314 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220314 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502017002689 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20230314 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230314 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230314 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230331 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231003 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230314 |