[go: up one dir, main page]

EP3361196A1 - Method for the liquefaction of a fraction rich in hydrocarbon - Google Patents

Method for the liquefaction of a fraction rich in hydrocarbon Download PDF

Info

Publication number
EP3361196A1
EP3361196A1 EP17155991.7A EP17155991A EP3361196A1 EP 3361196 A1 EP3361196 A1 EP 3361196A1 EP 17155991 A EP17155991 A EP 17155991A EP 3361196 A1 EP3361196 A1 EP 3361196A1
Authority
EP
European Patent Office
Prior art keywords
refrigerant mixture
cycle
refrigerant
container
compressed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP17155991.7A
Other languages
German (de)
French (fr)
Inventor
Heinz Bauer
Rudolf Stockmann
Christian Vaupel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to EP17155991.7A priority Critical patent/EP3361196A1/en
Priority to RU2018105362A priority patent/RU2748406C2/en
Publication of EP3361196A1 publication Critical patent/EP3361196A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0217Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as at least a three level refrigeration cascade with at least one MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0245Different modes, i.e. 'runs', of operation; Process control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0292Refrigerant compression by cold or cryogenic suction of the refrigerant gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0295Shifting of the compression load between different cooling stages within a refrigerant cycle or within a cascade refrigeration system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0296Removal of the heat of compression, e.g. within an inter- or afterstage-cooler against an ambient heat sink
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/072Intercoolers therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/32Details on header or distribution passages of heat exchangers, e.g. of reboiler-condenser or plate heat exchangers

Definitions

  • Natural gas liquefaction often uses a combination of two or three refrigeration cycles in the capacity range between two and ten million tonnes per year LNG.
  • different working principles phase change or work-performing relaxation
  • different refrigerants pure substance or mixture
  • the optimum mixture composition of the pre-cooling circuit differs depending on the condensation temperature, which is achievable with air cooling. While a mixture adjustment depending on the season is technically feasible and economically justifiable, a daily mixture optimization in practice is not feasible. Therefore, a non-optimal refrigerant mixture must be selected, which can be safely condensed at any time of day to prevent failure of the liquefaction plant. This leads to increased production costs or, given the drive power of the refrigeration cycle compressors, to significant LNG production losses. During the "summer period" only a reduced LNG production is possible with a given drive power, since the specific power requirement increases with increasing air temperature (and thus increasing condensation temperature of the precooling circuit).
  • the object of the present invention is to specify a generic method for liquefying a hydrocarbon-rich stream, in particular a natural gas stream, which enables energetically optimal plant operation based on air cooling throughout the year. Furthermore, the expected LNG production loss during the "summer period" should be minimized.
  • the compressor of the precooling circuit can now be operated independently of the air temperature with a constant discharge pressure.
  • a gas phase which is enriched with highly volatile components of the refrigerant mixture.
  • the withdrawn from the container gas phase of the refrigerant mixture is subjected according to the invention an additional compression and compressed to a pressure corresponding to at least 1.5 times, preferably from 2 to 2.5 times the pressure in the container.
  • the compressed refrigerant is then cooled against ambient air and thereby preferably at least partially condensed.
  • a second liquid refrigerant fraction As long as the dissipated in the condensation heat output is greater than the mechanical power supplied by the compression, falls in the subsequent expansion of the compressed gas phase in addition to a remaining gas phase, a second liquid refrigerant fraction.
  • a cooling of the refrigerant in the container below the outlet temperature of the heat exchanger used for the partial condensation of the compressed refrigerant mixture, which eventually leads to the total condensation of Vorkühlhimlteffens. Together with the first liquid refrigerant phase, the fully liquefied refrigerant can now be removed from the sump of the container.
  • the inventive method requires that in addition to the usual Kältemittekomponenten C 2 H 4 , C 2 H 6 , C 3 H 6 , C 3 H 8 , iC 4 H 10 and nC 4 H 10 in the refrigerant mixture of the precooling refrigeration cycle, the proportion of components CH 4 and N 2 is at most 1 mol%.
  • All compressor trains can be powered by any combination of electric motor, gas turbine and steam turbine.
  • the power equality of the drives for the compressors of the refrigerant mixtures of the three refrigerant mixture cycles is preferably maintained.
  • the power requirement of the additional compressor required for the compression of the gas phase in the tank depends on the location and the mode of operation. In general, the power of this additional compressor is less than the individual power of each of the four other machine trains.
  • power equality is compressors or Drives whose performances do not differ by more than +/- 2%.
  • the power reduction of the gas turbines caused by the higher air temperature can be at least partially compensated and the annual system capacity increased.
  • the inventive method for liquefying a hydrocarbon-rich stream makes it possible to optimize the mixture composition and final pressure of the cycle compressor of the pre-cooling refrigeration cycle for operation at low air temperature.
  • the additional compressor to be provided according to the invention can be taken out of operation.
  • the pressure in the tank rises until the power limit of the precooled refrigeration cycle compressor has been reached and the additional compressor has to be started.
  • the procedure according to the invention requires no mixture adaptation and can therefore be completely automated in a simple manner. Thus, day / night fluctuations of the air temperature can be optimally considered energetically.
  • the limit value of the air temperature, from which the additional compressor must be operated, is selected so that the cycle compressor of the pre-cooling refrigeration cycle - and the compressors of the liquefaction and the subcooling refrigeration cycle - are always in the energetically favorable characteristic range.
  • the annual liquefaction power can be maximized, since it is always driven in the optimum efficiency range.
  • the hydrocarbon-rich stream A to be liquefied is cooled in the heat exchanger E1, which is preferably a so-called wound heat exchanger, against the evaporating refrigerant mixture stream 5 of the first mixture cycle, and then fed via line B to the heat exchanger E2.
  • the hydrocarbon-rich stream is liquefied against the evaporating refrigerant mixture stream 15 of the second refrigeration cycle.
  • the hydrocarbon-rich stream C is supplied to a third heat exchanger E3 and subcooled therein against the evaporating refrigerant mixture stream 28 of the third refrigeration cycle.
  • the supercooled liquid product D is then fed to its further use and / or (intermediate) storage.
  • the heat exchangers E2 and E3 are preferably formed as a wound heat exchanger.
  • the precooling and liquefaction refrigerating circuits each have a compressor C1 and C2, respectively.
  • the power requirement of each compressor can be provided by an identical or substantially identical drive.
  • drives for the compressors preferably gas turbines, steam turbines and / or electric motors are used.
  • the compressed in the compressor C1 refrigerant mixture of the first mixture cycle is cooled in the heat exchanger E4 against ambient air and at least partially condensed. It is then fed to the container D1, from whose sump the liquid refrigerant mixture 4 is withdrawn and fed to the heat exchanger E1. In this, the refrigerant mixture is cooled and expanded after deduction at the cold end of the heat exchanger E1 in the valve V1.
  • the expanded refrigerant mixture 5 is supplied to the jacket space of the heat exchanger E1, vaporized in this against the hydrocarbon-rich stream A and the still to be described, cooling high-pressure streams of the mixture cycles and then fed via line 1 again to the cycle compressor C1.
  • the compressed in the compressor C2 refrigerant mixture 11 of the second refrigeration cycle is preferably completely liquefied in the heat exchanger E5; If only a partial condensation in the heat exchanger E5 can be realized, the total condensation takes place in the downstream heat exchanger E1, to which the at least partially condensed refrigerant mixture 12 is supplied.
  • the refrigerant mixture is cooled 12/13 and relaxed after deduction at the cold end of the heat exchanger E2 in the valve V2, so that a gas phase and a liquid phase formed.
  • the expanded refrigerant mixture 14 is fed to a refrigerant collector D2.
  • the liquid phase 15 and the gas phase 15 'via the control valves a and b are supplied to the jacket space of the heat exchanger E2.
  • the two-phase mixture is evaporated in the jacket space against the hydrocarbon-rich stream B to be liquefied and the high-pressure streams of the second and third mixture circuits 13/25 to be cooled, and then fed again via line 10 to the cycle compressor C2.
  • the compressed in the low-pressure compressor C3 refrigerant mixture 21 of the third refrigeration cycle is cooled in the heat exchanger E6 and then compressed in the high-pressure compressor C3 'to the circuit pressure.
  • the compressed refrigerant mixture 23 is cooled to ambient air and in the downstream heat exchangers E1, E2 and E3, the refrigerant mixture 24/25/26 is condensed and supercooled.
  • the refrigerant mixture is expanded in the valve V3, so that a gas phase and a liquid phase formed.
  • the expanded refrigerant mixture 27 is supplied to a refrigerant collector D3.
  • liquid phase 28 and the gas phase 28 'via the control valves c and d are supplied to the jacket space of the heat exchanger E3.
  • the two-phase mixture is evaporated in the jacket space against the hydrocarbon-rich stream C to be subcooled and the high-pressure stream of the third mixture circuit 26 to be cooled, and then fed again via line 20 to the low-pressure compressor C3.
  • an additional high-pressure compressor C1 ' is provided, to which the gas phase 6 arising in the container D1 is supplied.
  • a total condensation of the compressed refrigerant 2 in the heat exchanger E4 is no longer possible for a given refrigerant mixture composition above a certain air temperature. Consequently, in the container D1 in addition to a first liquid refrigerant phase, a gas phase, which is enriched with volatile components of the refrigerant mixture.
  • the withdrawn from the container D1 gas phase 6 is compressed by the compressor C1 'to a pressure which corresponds to at least 1.5 times, preferably from 2 to 2.5 times the pressure in the container D1.
  • the compressed refrigerant 7 is cooled in the heat exchanger E8 against ambient air and thereby preferably at least partially condensed. As long as the dissipated in the condensation heat output is greater than the mechanical power supplied by the compression, falls in the subsequent expansion in the valve V5 in addition to a remaining gas phase, a second liquid refrigerant fraction. Overall, a cooling of the refrigerant in the container D1 below the outlet temperature of the heat exchanger used for the partial condensation of the compressed refrigerant mixture E4, which eventually leads to the total condensation of Vorkühlhimlteschs. Together with the first liquid refrigerant phase, the completely liquefied refrigerant 4 can now be taken from the sump of the container D1.
  • the inventive method requires that the refrigerant mixture of the first refrigerant mixture cycle of at least two of the components N 2 , CH 4 , C 2 H 4 , C 2 H 6 , C 3 H 6 , C 3 H 8 , iC 4 H 10 and nC 4 H 10 , wherein the proportion of the components N 2 and CH 4 is at most 1 mol%.
  • compressor C1 ' is preferably carried out only single-stranded and with electric motor drive.
  • Zweistrlindmaschine and other drives such as gas turbine or steam turbine are in principle also possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Es wird ein Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes, insbesondere eines Erdgasstromes, wobei
- die Verflüssigung des Kohlenwasserstoff-reichen Stromes gegen eine aus drei Kältemittelgemischkreisläufen bestehende Kältemittelgemischkreislaufkaskade erfolgt,
- wobei der erste der drei Kältemittelgemischkreisläufe der Vorkühlung, der zweite Kältemittelgemischkreislauf der Verflüssigung und der dritte Kältemittelgemischkreislauf der Unterkühlung des verflüssigten Kohlenwasserstoff-reichen Stromes dient, und
- das verdichtete Kältemittelgemisch des ersten Kältemittelgemischkreislaufes gegen Umgebungsluft kondensiert und einem Behälter zugeführt wird.
It is a method for liquefying a hydrocarbon-rich stream, in particular a natural gas stream, wherein
the liquefaction of the hydrocarbon-rich stream takes place against a mixed refrigerant cycle cascade consisting of three refrigerant mixture cycles,
wherein the first of the three refrigerant mixture cycles of the pre-cooling, the second refrigerant mixture cycle of the liquefaction and the third refrigerant mixture cycle of the supercooling of the liquefied hydrocarbon-rich stream is used, and
- The compressed refrigerant mixture of the first refrigerant mixture cycle is condensed against ambient air and fed to a container.

Erfindungsgemäß wird
- zumindest dann, wenn eine vollständige Kondensation (E4) des verdichteten Kältemittelgemisches (2) des ersten Kältemittelgemischkreislaufes nicht realisiert werden kann, die in dem Behälter (D1) anfallende Gasphase (6) des teilkondensierten Kältemittelgemisches verdichtet (C1'), gegen Umgebungsluft zumindest teilkondensiert (E8), entspannt (V5) und in den Behälter (D1) zurückgeführt (7),
- wobei die Gasphase (6) auf einen Druck, der wenigstens dem 1,5-fachen, vorzugsweise dem 2- bis 2,5-fachen des Drucks in dem Behälter (D1) entspricht, verdichtet wird (C1'), und
- das Kältemittelgemisch des ersten Kältemittelgemischkreislaufes aus wenigstens zwei der Komponenten N2, CH4, C2H4, C2H6, C3H6, C3H8, iC4H10 und nC4H10 besteht, wobei der Anteil der Komponenten N2 und CH4 maximal 1 mol-% beträgt.

Figure imgaf001
According to the invention
- At least when a complete condensation (E4) of the compressed refrigerant mixture (2) of the first refrigerant mixture cycle can not be realized, in the container (D1) resulting gas phase (6) of the partially condensed refrigerant mixture compressed (C1 '), at least partially condensed against ambient air (E8), relaxed (V5) and returned to the container (D1) (7),
- wherein the gas phase (6) to a pressure which is at least 1.5 times, preferably 2 to 2.5 times the pressure in the container (D1) corresponds, is compressed (C1 '), and
- The refrigerant mixture of the first refrigerant mixture cycle of at least two of the components N 2 , CH 4 , C 2 H 4 , C 2 H 6 , C 3 H 6 , C 3 H 8 , iC 4 H 10 and nC 4 H 10 , wherein the Proportion of components N 2 and CH 4 is at most 1 mol%.
Figure imgaf001

Description

Die Erfindung betrifft ein Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes, insbesondere eines Erdgasstromes, wobei

  • die Verflüssigung des Kohlenwasserstoff-reichen Stromes gegen eine aus drei Kältemittelgemischkreisläufen bestehende Kältemittelgemischkreislaufkaskade erfolgt,
  • wobei der erste der drei Kältemittelgemischkreisläufe der Vorkühlung, der zweite Kältemittelgemischkreislauf der Verflüssigung und der dritte Kältemittelgemischkreislauf der Unterkühlung des verflüssigten Kohlenwasserstoff-reichen Stromes dient, und
  • das verdichtete Kältemittelgemisch des ersten Kältemittelgemischkreislaufes gegen Umgebungsluft kondensiert und einem Behälter zugeführt wird.
The invention relates to a method for liquefying a hydrocarbon-rich stream, in particular a natural gas stream, wherein
  • the liquefaction of the hydrocarbon-rich stream takes place against a mixed refrigerant cycle cascade consisting of three refrigerant mixture cycles,
  • wherein the first of the three refrigerant mixture precooling cycles, the second mixed refrigerant cycle of the liquefaction, and the third mixed refrigerant cycle is for undercooling the liquefied hydrocarbon-rich stream, and
  • the compressed refrigerant mixture of the first refrigerant mixture cycle is condensed against ambient air and fed to a container.

Bei der Erdgasverflüssigung wird im Kapazitätsbereich zwischen zwei und zehn Millionen Jahrestonnen LNG oft eine Kombination von zwei oder drei Kältekreisläufen eingesetzt. Hierbei kommen verschiedene Arbeitsprinzipien (Phasenwechsel oder arbeitsleistende Entspannung) und unterschiedliche Kältemittel (Reinstoff oder Gemisch) zur Anwendung.Natural gas liquefaction often uses a combination of two or three refrigeration cycles in the capacity range between two and ten million tonnes per year LNG. Here are different working principles (phase change or work-performing relaxation) and different refrigerants (pure substance or mixture) are used.

In der DE-A 102004054674 wird ein gattungsgemäßes Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes, insbesondere eines Erdgasstromes, beschrieben, das drei in Kaskade angeordnete Gemischkreisläufe mit vier leistungsgleichen Verdichtersträngen aufweist. Hierbei wird das Kältemittel des der Vorkühlung dienenden Kreislaufs gegen Umgebung mittels Luft oder Wasser vollständig kondensiert.In the DE-A 102004054674 a generic method for liquefying a hydrocarbon-rich stream, in particular a natural gas stream is described, which has three arranged in cascade mixture cycles with four equal power compressor strands. Here, the refrigerant of the precooling circuit is completely condensed against the environment by means of air or water.

An kalten Standorten mit großen tages- und jahreszeitlichen Temperaturunterschieden (z.B. Russland, Kanada, Alaska, usw.) herrschen die meiste Zeit (> 70 % der Jahresstunden) Umgebungsbedingungen, die eine effiziente Verflüssigung des Vorkühlkältemittels gegen Luft bei moderatem Druck (< 30 bar, vorzugsweise < 25 bar) ermöglichen.In cold locations with large day and season temperature differences (eg Russia, Canada, Alaska, etc.) most of the time (> 70% of annual hours) are ambient conditions that allow efficient liquefaction of the precooling refrigerant against air at moderate pressure (<30 bar). preferably <25 bar).

Darüber hinaus unterscheidet sich die optimale Gemischzusammensetzung des Vorkühlkreislaufs je nach Kondensationstemperatur, die mit Luftkühlung erreichbar ist. Während eine Gemischanpassung je nach Jahreszeit technisch machbar und wirtschaftlich vertretbar ist, ist eine tageszeitliche Gemischoptimierung in der Praxis nicht realisierbar. Deshalb muss ein nicht optimales Kältemittelgemisch gewählt werden, das zu jeder Tageszeit sicher kondensiert werden kann, um einen Ausfall der Verflüssigungsanlage zu verhindern. Dies führt zu erhöhten Produktionskosten, oderbei gegebener Antriebsleistung der Kältekreislaufverdichter - zu signifikanten LNG-Produktionsverlusten. Während der "Sommerperiode" ist bei gegebener Antriebsleistung nur eine reduzierte LNG-Produktion möglich, da der spezifische Leistungsbedarf bei steigender Lufttemperatur (und somit steigender Kondensationstemperatur des Vorkühlkreislaufes) zunimmt.In addition, the optimum mixture composition of the pre-cooling circuit differs depending on the condensation temperature, which is achievable with air cooling. While a mixture adjustment depending on the season is technically feasible and economically justifiable, a daily mixture optimization in practice is not feasible. Therefore, a non-optimal refrigerant mixture must be selected, which can be safely condensed at any time of day to prevent failure of the liquefaction plant. This leads to increased production costs or, given the drive power of the refrigeration cycle compressors, to significant LNG production losses. During the "summer period" only a reduced LNG production is possible with a given drive power, since the specific power requirement increases with increasing air temperature (and thus increasing condensation temperature of the precooling circuit).

Aufgabe der vorliegenden Erfindung ist es, ein gattungsgemäßes Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes, insbesondere eines Erdgasstromes, anzugeben, das einen energetisch optimalen Anlagenbetrieb basierend auf Luftkühlung das ganze Jahr über ermöglicht. Des Weiteren soll die zu erwartende LNG-Produktionseinbuße während der "Sommerperiode" minimiert werden.The object of the present invention is to specify a generic method for liquefying a hydrocarbon-rich stream, in particular a natural gas stream, which enables energetically optimal plant operation based on air cooling throughout the year. Furthermore, the expected LNG production loss during the "summer period" should be minimized.

Zur Lösung dieser Aufgabe wird vorgeschlagen, dass

  • zumindest dann, wenn eine vollständige Kondensation des verdichteten Kältemittelgemisches des ersten Kältemittelgemischkreislaufes nicht realisiert werden kann, die in dem Behälter anfallende Gasphase des teilkondensierten Kältemittelgemisches verdichtet, gegen Umgebungsluft zumindest teilkondensiert, entspannt und in den Behälter zurückgeführt wird,
  • wobei die Gasphase auf einen Druck, der wenigstens dem 1,5-fachen, vorzugsweise dem 2- bis 2,5-fachen des Drucks in dem Behälter entspricht, verdichtet wird, und
  • das Kältemittelgemisch des ersten Kältemittelgemischkreislaufes aus wenigstens zwei der Komponenten CH4, N2, C2H4, C2H6, C3H6, C3H8, iC4H10 und nC4H10 besteht, wobei der Anteil der Komponenten CH4 und N2 maximal 1 mol-% beträgt.
To solve this problem, it is proposed that
  • at least when a complete condensation of the compressed refrigerant mixture of the first mixed refrigerant cycle can not be realized, the resulting in the container gas phase of the partially condensed refrigerant mixture, at least partially condensed against ambient air, relaxed and returned to the container,
  • wherein the gas phase is compressed to a pressure which is at least 1.5 times, preferably 2 to 2.5 times the pressure in the container, and
  • the refrigerant mixture of the first refrigerant mixture cycle of at least two of the components CH 4 , N 2 , C 2 H 4 , C 2 H 6 , C 3 H 6 , C 3 H 8 , iC 4 H 10 and nC 4 H 10 , wherein the proportion the components CH 4 and N 2 is at most 1 mol%.

Erfindungsgemäß kann der Verdichter des Vorkühlkreislaufs nunmehr unabhängig von der Lufttemperatur mit konstantem Enddruck betrieben werden. Für eine gegebene Kältemittelgemischzusammensetzung ist ab einer bestimmten Lufttemperatur eine Totalkondensation des verdichteten Kältemittels nicht mehr möglich. Folglich stellt sich in dem Behälter zusätzlich zu einer ersten flüssigen Kältemittelphase eine Gasphase ein, die mit leichtflüchtigen Komponenten des Kältemittelgemisches angereichert ist.According to the invention, the compressor of the precooling circuit can now be operated independently of the air temperature with a constant discharge pressure. For a given Refrigerant mixture composition is no longer possible from a certain air temperature, a total condensation of the compressed refrigerant. Consequently, in the container, in addition to a first liquid refrigerant phase, a gas phase, which is enriched with highly volatile components of the refrigerant mixture.

Die aus dem Behälter abgezogene Gasphase des Kältemittelgemisches wird erfindungsgemäß einer zusätzlichen Verdichtung unterworfen und auf einen Druck verdichtet, der wenigstens dem 1,5-fachen, vorzugsweise dem 2- bis 2,5-fachen des Drucks in dem Behälter entspricht. Das verdichtete Kältemittel wird anschließend gegen Umgebungsluft gekühlt und dabei vorzugsweise mindestens partiell kondensiert. Solange die bei der Kondensation abgeführte Wärmeleistung größer ist als die durch die Verdichtung zugeführte mechanische Leistung, fällt bei der nachfolgenden Entspannung der verdichteten Gasphase neben einer verbleibenden Gasphase eine zweite flüssige Kältemittelfraktion an. Insgesamt stellt sich eine Abkühlung des Kältemittels in dem Behälter unter die Austrittstemperatur des für die Teilkondensation des verdichteten Kältemittelgemisches verwendeten Wärmetauschers ein, die schließlich zur Totalkondensation des Vorkühlkältemittels führt. Zusammen mit der ersten flüssigen Kältemittelphase kann nun dem Sumpf des Behälters das vollständig verflüssigte Kältemittel entnommen werden.The withdrawn from the container gas phase of the refrigerant mixture is subjected according to the invention an additional compression and compressed to a pressure corresponding to at least 1.5 times, preferably from 2 to 2.5 times the pressure in the container. The compressed refrigerant is then cooled against ambient air and thereby preferably at least partially condensed. As long as the dissipated in the condensation heat output is greater than the mechanical power supplied by the compression, falls in the subsequent expansion of the compressed gas phase in addition to a remaining gas phase, a second liquid refrigerant fraction. Overall, a cooling of the refrigerant in the container below the outlet temperature of the heat exchanger used for the partial condensation of the compressed refrigerant mixture, which eventually leads to the total condensation of Vorkühlkältemittels. Together with the first liquid refrigerant phase, the fully liquefied refrigerant can now be removed from the sump of the container.

Das erfindungsgemäße Verfahren erfordert, dass neben den üblichen Kältemittekomponenten C2H4, C2H6, C3H6, C3H8, iC4H10 und nC4H10 im Kältemittelgemisch des Vorkühlkältekreislaufes der Anteil der Komponenten CH4 und N2 maximal 1 mol-% beträgt.The inventive method requires that in addition to the usual Kältemittekomponenten C 2 H 4 , C 2 H 6 , C 3 H 6 , C 3 H 8 , iC 4 H 10 and nC 4 H 10 in the refrigerant mixture of the precooling refrigeration cycle, the proportion of components CH 4 and N 2 is at most 1 mol%.

Alle Verdichterstränge können mit einer beliebigen Kombination aus E-Motor, Gasturbinen und Dampfturbinen angetrieben werden. Hierbei wird vorzugsweise die Leistungsgleichheit der Antriebe für die Verdichter der Kältemittelgemische der drei Kältemittelgemischkreisläufe beibehalten. Der Leistungsbedarf des für die Verdichtung der im Behälter anfallenden Gasphase erforderlichen zusätzlichen Verdichters hängt vom Standort und der Betriebsweise ab. In der Regel ist die Leistung dieses zusätzlichen Verdichters kleiner als die Einzelleistung jedes der vier anderen Maschinenstränge. Unter den verwendeten Begriffen und Begriffsfolgen "Leistungsgleichheit", "im Wesentlichen leistungsgleiche Verdichter" bzw. "im Wesentlichen identische und/oder leistungsgleiche Antriebe" seien Verdichter bzw. Antriebe zu verstehen, deren Leistungen sich um nicht mehr als +/- 2 % voneinander unterscheiden.All compressor trains can be powered by any combination of electric motor, gas turbine and steam turbine. In this case, the power equality of the drives for the compressors of the refrigerant mixtures of the three refrigerant mixture cycles is preferably maintained. The power requirement of the additional compressor required for the compression of the gas phase in the tank depends on the location and the mode of operation. In general, the power of this additional compressor is less than the individual power of each of the four other machine trains. Among the terms and terminology used "power equality", "substantially equal performance compressor" or "substantially identical and / or equal power drives" are compressors or Drives whose performances do not differ by more than +/- 2%.

Durch die zusätzlich installierte Verdichter- bzw. Antriebsleistung für den Vorkühlkreislauf können der durch die höhere Lufttemperatur verursachte Leistungseinbruch der Gasturbinen zumindest teilweise kompensiert und die jährliche Anlagenkapazität gesteigert werden.Due to the additionally installed compressor or drive power for the precooling circuit, the power reduction of the gas turbines caused by the higher air temperature can be at least partially compensated and the annual system capacity increased.

Das erfindungsgemäße Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes ermöglicht es, Gemischzusammensetzung und Enddruck des Kreislaufverdichters des Vorkühlkältekreislaufes für den Betrieb bei niedriger Lufttemperatur zu optimieren. Bei niedriger Lufttemperatur kann der erfindungsgemäß vorzusehende, zusätzliche Verdichter außer Betrieb genommen werden. Bei steigender Lufttemperatur steigt der Druck im Behälter bis die Leistungsgrenze des Kreislaufverdichters des Vorkühlkältekreislaufes erreicht ist und der zusätzliche Verdichter gestartet werden muss. Die erfindungsgemäße Verfahrensweise erfordert keine Gemischanpassung und ist daher auf einfache Weise vollständig automatisierbar. Somit können Tag/Nachtschwankungen der Lufttemperatur energetisch optimal berücksichtigt werden. Der Grenzwert der Lufttemperatur, ab dem der zusätzliche Verdichter betrieben werden muss, wird so gewählt, dass der Kreislaufverdichter des Vorkühlkältekreislaufes - sowie die Verdichter des Verflüssigungs- und des Unterkühlungskältekreislaufes - immer im energetisch günstigen Kennlinienbereich liegen. Somit kann die jährliche Verflüssigungsleistung maximiert werden, da immer im optimalen Wirkungsgradbereich gefahren wird.The inventive method for liquefying a hydrocarbon-rich stream makes it possible to optimize the mixture composition and final pressure of the cycle compressor of the pre-cooling refrigeration cycle for operation at low air temperature. At a low air temperature, the additional compressor to be provided according to the invention can be taken out of operation. As the air temperature rises, the pressure in the tank rises until the power limit of the precooled refrigeration cycle compressor has been reached and the additional compressor has to be started. The procedure according to the invention requires no mixture adaptation and can therefore be completely automated in a simple manner. Thus, day / night fluctuations of the air temperature can be optimally considered energetically. The limit value of the air temperature, from which the additional compressor must be operated, is selected so that the cycle compressor of the pre-cooling refrigeration cycle - and the compressors of the liquefaction and the subcooling refrigeration cycle - are always in the energetically favorable characteristic range. Thus, the annual liquefaction power can be maximized, since it is always driven in the optimum efficiency range.

Das erfindungsgemäße Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes sowie weitere Ausgestaltungen desselben, die Gegenstände der abhängigen Patentansprüche darstellen, seien im Folgenden anhand des in der Figur 1 dargestellten Ausführungsbeispieles näher erläutert.The inventive method for liquefying a hydrocarbon-rich stream and other embodiments thereof, which form the subject of the dependent claims, are described below with reference to in the FIG. 1 illustrated embodiment explained in more detail.

Bei der anhand der Figur 1 beschriebenen Verfahrensweise erfolgen Abkühlung, Verflüssigung und Unterkühlung des Kohlenwasserstoff-reichen Stromes, der über Leitung A dem Wärmetauscher E1 zugeführt wird, gegen eine Kältemittelgemischkreislaufkaskade, bestehend aus drei Kältemittelgemischkreisläufen.When using the FIG. 1 cooling, liquefaction and supercooling of the hydrocarbon-rich stream, which is supplied via line A to the heat exchanger E1, against a refrigerant mixed cycle cascade, consisting of three mixed refrigerant circuits.

Der zu verflüssigende Kohlenwasserstoff-reiche Strom A wird im Wärmetauscher E1, bei dem es sich vorzugsweise um einen sog. gewickelten Wärmetauscher handelt, gegen den verdampfenden Kältemittelgemischstrom 5 des ersten Gemischkreislaufes abgekühlt und anschließend über Leitung B Wärmetauscher E2 zugeführt. In diesem wird der Kohlenwasserstoff-reiche Strom gegen den verdampfenden Kältemittelgemischstrom 15 des zweiten Kältekreislaufes verflüssigt. Nach erfolgter Verflüssigung wird der Kohlenwasserstoff-reiche Strom C einem dritten Wärmetauscher E3 zugeführt und in diesem gegen den verdampfenden Kältemittelgemischstrom 28 des dritten Kältekreislaufes unterkühlt. Das unterkühlte Flüssigprodukt D wird anschließend seiner weiteren Verwendung und/oder (Zwischen)Speicherung zugeführt. Auch die Wärmetauscher E2 und E3 sind vorzugsweise als gewickelte Wärmetauscher ausgebildet.The hydrocarbon-rich stream A to be liquefied is cooled in the heat exchanger E1, which is preferably a so-called wound heat exchanger, against the evaporating refrigerant mixture stream 5 of the first mixture cycle, and then fed via line B to the heat exchanger E2. In this, the hydrocarbon-rich stream is liquefied against the evaporating refrigerant mixture stream 15 of the second refrigeration cycle. After liquefaction, the hydrocarbon-rich stream C is supplied to a third heat exchanger E3 and subcooled therein against the evaporating refrigerant mixture stream 28 of the third refrigeration cycle. The supercooled liquid product D is then fed to its further use and / or (intermediate) storage. Also, the heat exchangers E2 and E3 are preferably formed as a wound heat exchanger.

Während der Unterkühlungskältekreislauf zwei hintereinander geschaltete Verdichter C3 und C3' aufweist, weisen der Vorkühlungs- und der Verflüssigungskältekreislauf jeweils einen Verdichter C1 bzw. C2 auf. Die Verdichter C1, C2, C3 und C3' sind bezüglich ihrer Leistung identisch bzw. im Wesentlichen identisch ausgebildet. Dies hat zur Folge, dass der Leistungsbedarf jedes Verdichters durch einen identischen bzw. im Wesentlichen identischen Antrieb bereitgestellt werden kann. Als Antriebe für die Verdichter kommen vorzugsweise Gasturbinen, Dampfturbinen und/oder Elektromotoren zur Anwendung.While the subcooling refrigeration cycle comprises two compressors C3 and C3 'connected in series, the precooling and liquefaction refrigerating circuits each have a compressor C1 and C2, respectively. The compressors C1, C2, C3 and C3 'are identical or substantially identical in their performance. As a result, the power requirement of each compressor can be provided by an identical or substantially identical drive. As drives for the compressors preferably gas turbines, steam turbines and / or electric motors are used.

Das im Verdichter C1 verdichtete Kältemittelgemisch des ersten Gemischkreislaufes wird im Wärmetauscher E4 gegen Umgebungsluft abgekühlt und zumindest teilkondensiert. Anschließend wird es dem Behälter D1 zugeführt, aus dessen Sumpf das flüssige Kältemittelgemisch 4 abgezogen und dem Wärmetauscher E1 zugeführt wird. In diesem wird das Kältemittelgemisch abgekühlt und nach Abzug am kalten Ende des Wärmetauschers E1 im Ventil V1 entspannt. Das entspannte Kältemittelgemisch 5 wird dem Mantelraum des Wärmetauschers E1 zugeführt, in diesem gegen den abzukühlenden Kohlenwasserstoff-reichen Strom A und den noch zu beschreibenden, abzukühlenden Hochdruckströmen der Gemischkreisläufe verdampft und anschließend über Leitung 1 erneut dem Kreislaufverdichter C1 zugeführt.The compressed in the compressor C1 refrigerant mixture of the first mixture cycle is cooled in the heat exchanger E4 against ambient air and at least partially condensed. It is then fed to the container D1, from whose sump the liquid refrigerant mixture 4 is withdrawn and fed to the heat exchanger E1. In this, the refrigerant mixture is cooled and expanded after deduction at the cold end of the heat exchanger E1 in the valve V1. The expanded refrigerant mixture 5 is supplied to the jacket space of the heat exchanger E1, vaporized in this against the hydrocarbon-rich stream A and the still to be described, cooling high-pressure streams of the mixture cycles and then fed via line 1 again to the cycle compressor C1.

Das im Verdichter C2 verdichtete Kältemittelgemisch 11 des zweiten Kältekreislaufes wird im Wärmetauscher E5 vorzugsweise vollständig verflüssigt; sofern nur eine Teilkondensation im Wärmetauscher E5 realisiert werden kann, erfolgt die Totalkondensation im nachgeschalteten Wärmetauscher E1, dem das zumindest teilkondensierte Kältemittelgemisch 12 zugeführt wird. In den Wärmetauschern E1 und E2 wird das Kältemittelgemisch 12/13 abgekühlt und nach Abzug am kalten Ende des Wärmetauschers E2 im Ventil V2 entspannt, so dass eine Gasphase und eine Flüssigphase entstehen. Das entspannte Kältemittelgemisch 14 wird einem Kältemittelsammler D2 zugeführt. Aus diesem werden die Flüssigphase 15 und die Gasphase 15' über die Regelventile a und b dem Mantelraum des Wärmetauschers E2 zugeführt. Das Zweiphasengemisch wird im Mantelraum gegen den zu verflüssigenden Kohlenwasserstoff-reichen Strom B und die abzukühlenden Hochdruckströme des zweiten und des dritten Gemischkreislaufs 13/25 verdampft und anschließend über Leitung 10 erneut dem Kreislaufverdichter C2 zugeführt.The compressed in the compressor C2 refrigerant mixture 11 of the second refrigeration cycle is preferably completely liquefied in the heat exchanger E5; If only a partial condensation in the heat exchanger E5 can be realized, the total condensation takes place in the downstream heat exchanger E1, to which the at least partially condensed refrigerant mixture 12 is supplied. In the heat exchangers E1 and E2, the refrigerant mixture is cooled 12/13 and relaxed after deduction at the cold end of the heat exchanger E2 in the valve V2, so that a gas phase and a liquid phase formed. The expanded refrigerant mixture 14 is fed to a refrigerant collector D2. For this, the liquid phase 15 and the gas phase 15 'via the control valves a and b are supplied to the jacket space of the heat exchanger E2. The two-phase mixture is evaporated in the jacket space against the hydrocarbon-rich stream B to be liquefied and the high-pressure streams of the second and third mixture circuits 13/25 to be cooled, and then fed again via line 10 to the cycle compressor C2.

Das im Niederdruck-Verdichter C3 verdichtete Kältemittelgemisch 21 des dritten Kältekreislaufes wird im Wärmetauscher E6 abgekühlt und anschließend im Hochdruck-Verdichter C3' auf den Kreislaufdruck verdichtet. Im Wärmetauscher E7 wird das verdichtete Kältemittelgemisch 23 gegen Umgebungsluft abgekühlt und in den nachgeschalteten Wärmetauschern E1, E2 und E3 wird das Kältemittelgemisch 24/25/26 kondensiert und unterkühlt. Nach Abzug am kalten Ende des Wärmetauschers E3 wird das Kältemittelgemisch im Ventil V3 entspannt, so dass eine Gasphase und eine Flüssigphase entstehen. Das entspannte Kältemittelgemisch 27 wird einem Kältemittelsammler D3 zugeführt. Aus diesem werden die Flüssigphase 28 und die Gasphase 28' über die Regelventile c und d dem Mantelraum des Wärmetauschers E3 zugeführt. Das Zweiphasengemisch wird im Mantelraum gegen den zu unterkühlenden Kohlenwasserstoff-reichen Strom C und den zu kühlenden Hochdruckstrom des dritten Gemischkreislaufs 26 verdampft und anschließend über Leitung 20 erneut dem Niederdruck-Verdichter C3 zugeführt.The compressed in the low-pressure compressor C3 refrigerant mixture 21 of the third refrigeration cycle is cooled in the heat exchanger E6 and then compressed in the high-pressure compressor C3 'to the circuit pressure. In the heat exchanger E7, the compressed refrigerant mixture 23 is cooled to ambient air and in the downstream heat exchangers E1, E2 and E3, the refrigerant mixture 24/25/26 is condensed and supercooled. After deduction at the cold end of the heat exchanger E3, the refrigerant mixture is expanded in the valve V3, so that a gas phase and a liquid phase formed. The expanded refrigerant mixture 27 is supplied to a refrigerant collector D3. For this, the liquid phase 28 and the gas phase 28 'via the control valves c and d are supplied to the jacket space of the heat exchanger E3. The two-phase mixture is evaporated in the jacket space against the hydrocarbon-rich stream C to be subcooled and the high-pressure stream of the third mixture circuit 26 to be cooled, and then fed again via line 20 to the low-pressure compressor C3.

Erfindungsgemäß ist ein zusätzlicher Hochdruck-Verdichter C1' vorgesehen, dem die in dem Behälter D1 anfallende Gasphase 6 zugeführt wird. Wie beschrieben, ist für eine gegebene Kältemittelgemischzusammensetzung ab einer bestimmten Lufttemperatur eine Totalkondensation des verdichteten Kältemittels 2 im Wärmetauscher E4 nicht mehr möglich. Folglich stellt sich im Behälter D1 zusätzlich zu einer ersten flüssigen Kältemittelphase eine Gasphase ein, die mit leichtflüchtigen Komponenten des Kältemittelgemisches angereichert ist. Die aus dem Behälter D1 abgezogene Gasphase 6 wird mittels des Verdichter C1' auf einen Druck verdichtet, der wenigstens dem 1,5-fachen, vorzugsweise dem 2- bis 2,5-fachen des Drucks im Behälter D1 entspricht. Das verdichtete Kältemittel 7 wird im Wärmetauscher E8 gegen Umgebungsluft gekühlt und dabei vorzugsweise mindestens partiell kondensiert. Solange die bei der Kondensation abgeführte Wärmeleistung größer ist als die durch die Verdichtung zugeführte mechanische Leistung, fällt bei der nachfolgenden Entspannung im Ventil V5 neben einer verbleibenden Gasphase eine zweite flüssige Kältemittelfraktion an. Insgesamt stellt sich eine Abkühlung des Kältemittels im Behälter D1 unter die Austrittstemperatur des für die Teilkondensation des verdichteten Kältemittelgemisches verwendeten Wärmetauschers E4 ein, die schließlich zur Totalkondensation des Vorkühlkältemittels führt. Zusammen mit der ersten flüssigen Kältemittelphase kann nun dem Sumpf des Behälters D1 das vollständig verflüssigte Kältemittel 4 entnommen werden.According to the invention, an additional high-pressure compressor C1 'is provided, to which the gas phase 6 arising in the container D1 is supplied. As described, a total condensation of the compressed refrigerant 2 in the heat exchanger E4 is no longer possible for a given refrigerant mixture composition above a certain air temperature. Consequently, in the container D1 in addition to a first liquid refrigerant phase, a gas phase, which is enriched with volatile components of the refrigerant mixture. The withdrawn from the container D1 gas phase 6 is compressed by the compressor C1 'to a pressure which corresponds to at least 1.5 times, preferably from 2 to 2.5 times the pressure in the container D1. The compressed refrigerant 7 is cooled in the heat exchanger E8 against ambient air and thereby preferably at least partially condensed. As long as the dissipated in the condensation heat output is greater than the mechanical power supplied by the compression, falls in the subsequent expansion in the valve V5 in addition to a remaining gas phase, a second liquid refrigerant fraction. Overall, a cooling of the refrigerant in the container D1 below the outlet temperature of the heat exchanger used for the partial condensation of the compressed refrigerant mixture E4, which eventually leads to the total condensation of Vorkühlkältemittels. Together with the first liquid refrigerant phase, the completely liquefied refrigerant 4 can now be taken from the sump of the container D1.

Das erfindungsgemäße Verfahren erfordert es jedoch, dass das Kältemittelgemisch des ersten Kältemittelgemischkreislaufes aus wenigstens zwei der Komponenten N2, CH4, C2H4, C2H6, C3H6, C3H8, iC4H10 und nC4H10 besteht, wobei der Anteil der Komponenten N2 und CH4 maximal 1 mol-% beträgt.The inventive method, however, requires that the refrigerant mixture of the first refrigerant mixture cycle of at least two of the components N 2 , CH 4 , C 2 H 4 , C 2 H 6 , C 3 H 6 , C 3 H 8 , iC 4 H 10 and nC 4 H 10 , wherein the proportion of the components N 2 and CH 4 is at most 1 mol%.

Der zusätzlich vorzusehende Verdichter C1' wird vorzugsweise nur einsträngig und mit E-Motorantrieb ausgeführt. Zweisträngigkeit und andere Antriebe wie Gasturbine oder Dampfturbine sind prinzipiell auch möglich.The additionally to be provided compressor C1 'is preferably carried out only single-stranded and with electric motor drive. Zweisträngigkeit and other drives such as gas turbine or steam turbine are in principle also possible.

Claims (3)

Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes, insbesondere eines Erdgasstromes, wobei - die Verflüssigung des Kohlenwasserstoff-reichen Stromes gegen eine aus drei Kältemittelgemischkreisläufen bestehende Kältemittelgemischkreislaufkaskade erfolgt, - wobei der erste der drei Kältemittelgemischkreisläufe der Vorkühlung, der zweite Kältemittelgemischkreislauf der Verflüssigung und der dritte Kältemittelgemischkreislauf der Unterkühlung des verflüssigten Kohlenwasserstoff-reichen Stromes dient, und - das verdichtete Kältemittelgemisch des ersten Kältemittelgemischkreislaufes gegen Umgebungsluft kondensiert und einem Behälter zugeführt wird, dadurch gekennzeichnet, dass - zumindest dann, wenn eine vollständige Kondensation (E4) des verdichteten Kältemittelgemisches (2) des ersten Kältemittelgemischkreislaufes nicht realisiert werden kann, die in dem Behälter (D1) anfallende Gasphase (6) des teilkondensierten Kältemittelgemisches verdichtet (C1'), gegen Umgebungsluft zumindest teilkondensiert (E8), entspannt (V5) und in den Behälter (D1) zurückgeführt wird (7), - wobei die Gasphase (6) auf einen Druck, der wenigstens dem 1,5-fachen, vorzugsweise dem 2- bis 2,5-fachen des Drucks in dem Behälter (D1) entspricht, verdichtet wird (C1'), und - das Kältemittelgemisch des ersten Kältemittelgemischkreislaufes aus wenigstens zwei der Komponenten N2, CH4, C2H4, C2H6, C3H6, C3H8, iC4H10 und nC4H10 besteht, wobei der Anteil der Komponenten N2 und CH4 maximal 1 mol-% beträgt. A process for liquefying a hydrocarbon-rich stream, in particular a natural gas stream, wherein the liquefaction of the hydrocarbon-rich stream takes place against a mixed refrigerant cycle cascade consisting of three refrigerant mixture cycles, wherein the first of the three refrigerant mixture cycles of the pre-cooling, the second refrigerant mixture cycle of the liquefaction and the third refrigerant mixture cycle of the supercooling of the liquefied hydrocarbon-rich stream is used, and the condensed refrigerant mixture of the first mixed refrigerant cycle is condensed against ambient air and fed to a container, characterized in that - At least when a complete condensation (E4) of the compressed refrigerant mixture (2) of the first refrigerant mixture cycle can not be realized, in the container (D1) resulting gas phase (6) of the partially condensed refrigerant mixture compressed (C1 '), at least partially condensed against ambient air (E8), relaxed (V5) and returned to the container (D1) (7), - wherein the gas phase (6) to a pressure which is at least 1.5 times, preferably 2 to 2.5 times the pressure in the container (D1) corresponds, is compressed (C1 '), and - The refrigerant mixture of the first refrigerant mixture cycle of at least two of the components N 2 , CH 4 , C 2 H 4 , C 2 H 6 , C 3 H 6 , C 3 H 8 , iC 4 H 10 and nC 4 H 10 , wherein the Proportion of components N 2 and CH 4 is at most 1 mol%. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Verdichter (C1, C2) des ersten und zweiten Kältemittelgemischkreislaufes und die Verdichter (C3, C3') des dritten Kältemittelgemischkreislaufes mittels zweier im Wesentlichen identischer und/oder leistungsgleicher Antriebe angetrieben werden, wobei als Antriebe für die Verdichter vorzugsweise Gas-, Dampfturbinen und/oder Elektromotoren zur Anwendung kommen.A method according to claim 1, characterized in that the compressors (C1, C2) of the first and second mixed refrigerant cycle and the compressors (C3, C3 ') of the third mixed refrigerant cycle are driven by two substantially identical and / or equal power drives, being used as drives for the compressors preferably gas, steam turbines and / or electric motors are used. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die in dem Behälter (D1) anfallende Gasphase (6) des teilkondensierten Kältemittelgemisches in einem zusätzlichen Verdichter (C1'), der vorzugsweise von einem Elektromotor angetrieben wird, verdichtet wird.A method according to claim 1 or 2, characterized in that in the container (D1) resulting gas phase (6) of the partially condensed refrigerant mixture in an additional compressor (C1 '), which is preferably driven by an electric motor, is compressed.
EP17155991.7A 2017-02-14 2017-02-14 Method for the liquefaction of a fraction rich in hydrocarbon Withdrawn EP3361196A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17155991.7A EP3361196A1 (en) 2017-02-14 2017-02-14 Method for the liquefaction of a fraction rich in hydrocarbon
RU2018105362A RU2748406C2 (en) 2017-02-14 2018-02-13 Method for liquefying a hydrocarbon-rich fraction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP17155991.7A EP3361196A1 (en) 2017-02-14 2017-02-14 Method for the liquefaction of a fraction rich in hydrocarbon

Publications (1)

Publication Number Publication Date
EP3361196A1 true EP3361196A1 (en) 2018-08-15

Family

ID=58043949

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17155991.7A Withdrawn EP3361196A1 (en) 2017-02-14 2017-02-14 Method for the liquefaction of a fraction rich in hydrocarbon

Country Status (2)

Country Link
EP (1) EP3361196A1 (en)
RU (1) RU2748406C2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5115644A (en) * 1979-07-31 1992-05-26 Alsenz Richard H Method and apparatus for condensing and subcooling refrigerant
US6449984B1 (en) * 2001-07-04 2002-09-17 Technip Process for liquefaction of and nitrogen extraction from natural gas, apparatus for implementation of the process, and gases obtained by the process
DE102004054674A1 (en) 2004-11-12 2006-05-24 Linde Ag Process for liquefying a hydrocarbon-rich stream
DE102015002164A1 (en) * 2015-02-19 2016-08-25 Linde Aktiengesellschaft Process for liquefying natural gas

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6631626B1 (en) * 2002-08-12 2003-10-14 Conocophillips Company Natural gas liquefaction with improved nitrogen removal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5115644A (en) * 1979-07-31 1992-05-26 Alsenz Richard H Method and apparatus for condensing and subcooling refrigerant
US6449984B1 (en) * 2001-07-04 2002-09-17 Technip Process for liquefaction of and nitrogen extraction from natural gas, apparatus for implementation of the process, and gases obtained by the process
DE102004054674A1 (en) 2004-11-12 2006-05-24 Linde Ag Process for liquefying a hydrocarbon-rich stream
DE102015002164A1 (en) * 2015-02-19 2016-08-25 Linde Aktiengesellschaft Process for liquefying natural gas

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BAUER ET AL: "PRECOOLING CONCEPTS OF LARGE BASE LOAD LNG PLANTS", AICHE SPRING MEETING. NATURAL GAS UTILIZATION CONFER, X, US, vol. 6TH, 23 April 2006 (2006-04-23), pages 102 - 109, XP009076945 *

Also Published As

Publication number Publication date
RU2018105362A3 (en) 2021-04-16
RU2018105362A (en) 2019-08-13
RU2748406C2 (en) 2021-05-25

Similar Documents

Publication Publication Date Title
EP0975923B1 (en) Method for liquefying a stream rich in hydrocarbons
DE69527351T2 (en) LIQUEFACTION PROCESS
DE19722490C1 (en) Single flow liquefaction of hydrocarbon-rich stream especially natural gas with reduced energy consumption
DE102010044869A1 (en) Liquefied Natural gas
DE19937623B4 (en) Process for liquefying a hydrocarbon-rich stream
WO2008022689A2 (en) Method for the liquefaction of a hydrocarbon-rich flow
DE10226596A1 (en) Process for liquefying a hydrocarbon-rich stream with simultaneous recovery of a C3 + -rich fraction with high yield
WO2017054929A1 (en) Method for liquefying a hydrocarbon-rich fraction
WO2006136269A1 (en) Method for liquefying a hydrocarbon-rich flow
WO2010121752A2 (en) Method for liquefying a hydrocarbon-rich fraction
WO2010091804A2 (en) Method for liquefying a hydrocarbon-rich stream
DE19612173C1 (en) Procedure for liquefaction of hydrocarbon rich process flow, especially natural gas
EP1892457B1 (en) Method and device for storing fuel gas, in particular natural gas
DE102012020469A1 (en) Method for separating methane from methane-containing synthesis gas in separation unit, involves feeding capacitor with secondary portion of refrigerant of outlet temperature to intermediate temperature and cooling to lower temperature
DE102007006370A1 (en) Process for liquefying a hydrocarbon-rich stream
DE102015002164A1 (en) Process for liquefying natural gas
EP3361196A1 (en) Method for the liquefaction of a fraction rich in hydrocarbon
EP2369279A1 (en) Method for cooling or liquefying a hydrocarbon-rich flow and assembly for carrying out the method
DE102004032710A1 (en) Method for liquefying a hydrocarbon-rich stream, especially a natural gas stream, comprises separating a first coolant mixture cycle into a low boiling fraction and a higher boiling fraction
DE102004054674A1 (en) Process for liquefying a hydrocarbon-rich stream
DE102016000394A1 (en) Method for cooling a medium
EP3361197A1 (en) Method for the liquefaction of a fraction rich in hydrocarbon
DE102016003305A1 (en) Process for separating an ethane-rich fraction from natural gas
DE102004011483A1 (en) Process for liquefying a hydrocarbon-rich stream
DE102015004125A1 (en) Process for liquefying a hydrocarbon-rich fraction

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20190216