EP3330472B1 - Karusselltüranordnung und verfahren zur kompensation einer ungleichförmigen externen kraft - Google Patents
Karusselltüranordnung und verfahren zur kompensation einer ungleichförmigen externen kraft Download PDFInfo
- Publication number
- EP3330472B1 EP3330472B1 EP16202036.6A EP16202036A EP3330472B1 EP 3330472 B1 EP3330472 B1 EP 3330472B1 EP 16202036 A EP16202036 A EP 16202036A EP 3330472 B1 EP3330472 B1 EP 3330472B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fluctuation
- turnstile
- rotation
- rotational speed
- revolving door
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 21
- 238000011156 evaluation Methods 0.000 claims description 27
- 230000006870 function Effects 0.000 description 9
- 230000001276 controlling effect Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- ORQBXQOJMQIAOY-UHFFFAOYSA-N nobelium Chemical compound [No] ORQBXQOJMQIAOY-UHFFFAOYSA-N 0.000 description 3
- 238000003475 lamination Methods 0.000 description 2
- 230000005405 multipole Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 240000006829 Ficus sundaica Species 0.000 description 1
- 241000256251 Spodoptera frugiperda Species 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E06—DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
- E06B—FIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
- E06B3/00—Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
- E06B3/90—Revolving doors; Cages or housings therefor
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05F—DEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
- E05F15/00—Power-operated mechanisms for wings
- E05F15/60—Power-operated mechanisms for wings using electrical actuators
- E05F15/603—Power-operated mechanisms for wings using electrical actuators using rotary electromotors
- E05F15/608—Power-operated mechanisms for wings using electrical actuators using rotary electromotors for revolving wings
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05F—DEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
- E05F15/00—Power-operated mechanisms for wings
- E05F15/70—Power-operated mechanisms for wings with automatic actuation
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05F—DEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
- E05F15/00—Power-operated mechanisms for wings
- E05F15/70—Power-operated mechanisms for wings with automatic actuation
- E05F15/73—Power-operated mechanisms for wings with automatic actuation responsive to movement or presence of persons or objects
- E05F15/75—Power-operated mechanisms for wings with automatic actuation responsive to movement or presence of persons or objects responsive to the weight or other physical contact of a person or object
Definitions
- the present invention relates to a revolving door arrangement and a method for compensating for a force fluctuation which acts non-uniformly on a door leaf of a revolving door arrangement as a function of a rotational position.
- Revolving door arrangements which have an asynchronous motor with a downstream transmission.
- a multi-stage gear e.g. worm gear, toothed belt stages
- a multi-tooth shaft is used, which is firmly connected to the drive unit. This drive system is first built into the ceiling structure. Then the turnstile including the door wing is installed.
- EP 3 034 759 A1 relates to a method for controlling a revolving door, in which the motor is arranged coaxially with the turnstile.
- EP 3 034 759 A1 discloses all features of the preamble of claims 1 and 7.
- US 5,647,173 discloses an operating method for a revolving door in which a user pressing on the door leaf is assisted in operating the revolving door by a support force which is generated by means of an electric motor.
- a disadvantage of the designs known in the prior art is that the door leaves experience a non-uniform external frictional force as they move through the drum / post. This leads to a non-uniform moment which the electric drive has to apply over the rotational positions. The result is fluctuations in speed, which result in less comfort for the user. In addition, operating noise of the revolving door assembly appear irregular, which affects the quality impression on the user.
- the object is thus achieved by a method for compensating a force fluctuation which acts non-uniformly on a door leaf of a revolving door arrangement as a function of a rotational position.
- the revolving door arrangement comprises a turnstile carrying the door leaf, an evaluation unit and an electric drive with a stator and a rotor.
- the turnstile comprises at least two door leaves and is rotatably supported about an axis of rotation, an axial direction being defined along the axis of rotation and a radial direction perpendicular to the axial direction.
- the electric drive can be designed, for example, as an electronically commutated multi-pole motor with a stator comprising a stator laminated core and several coils, and a rotor comprising a rotor laminated core and several permanent magnets.
- the rotor can be arranged coaxially to the axis of rotation and connected to the turnstile for direct, gearless drive.
- An evaluation unit is set up to carry out logical steps for the operation of the revolving door arrangement.
- the evaluation unit can be understood as an electronic control unit. It can be a programmable processor, a microcontroller or the like. exhibit.
- the hardware described above is operated according to the invention as follows. First, the turnstile is rotated (in a learning trip). This can be done by means of the drive.
- the fluctuation in force and / or fluctuation in rotational speed and / or fluctuation in torque acting externally on the door leaf is determined as a function of the rotational position.
- a force sensor, a current sensor or a high-resolution position sensor can be used to determine the non-uniformity of the above-mentioned operating variables over the rotational positions.
- a signal can then be made from the determined nonuniformities of the operating parameters can be determined which is suitable for compensating the irregularities. If the turnstile is operated in a regulated mode during the learn run, force fluctuations and / or torque fluctuations can be determined, but only slight fluctuations in rotational speed.
- the values actually generated by the control method are suitable on the basis of the periodicity of the force fluctuations / torque fluctuations for applying a corresponding precontrol, which will be discussed further below.
- the stator is controlled after the end of the learning run with an electrical signal which is predefined on the basis of the fluctuation variables determined as a function of the rotational position.
- the predefined electrical signal was therefore created on the basis of the knowledge of the fluctuation in force during the learning trip and was dimensioned such that the fluctuations in force or fluctuations in torque do not manifest themselves in a fluctuation in the rotational speed over the rotary positions of the turnstile.
- a compensation carried out according to the invention is again subjected to a learning trip according to the invention, in order to be able to compensate for the possibly remaining speed fluctuations even better afterwards and / or worn out irregularities (e.g. due to changed friction parameters, worn brushes) the door leaves or the like) to recognize and compensate.
- a revolving door arrangement designed according to the invention has a uniform rotational movement and a smooth sound image.
- the electrical signal can be predefined or pre-controlled, for example, with regard to a voltage and / or a current and / or an amplitude and / or a frequency and / or a pulse-pause ratio (in the case of pulse width modulation, PWM).
- PWM pulse width modulation
- an electrical DC voltage can be used as the operating voltage by means of a Evaluation unit are chopped into suitable pulses, which transmit an electrical signal suitable for compensating the fluctuation in force to the electrical drive. This does not exclude that further signal processing steps are carried out between the evaluation unit and the final stage of the drive.
- a position sensor arranged in the drive is preferably used, which gives the evaluation unit information about the current position of the rotor / turnstile.
- Hall sensors can be arranged in the stator of the drive, which receive the magnetic field of the rotor and forward corresponding electrical signals to an evaluation unit.
- the evaluation unit can determine the absolute and / or the relative position of the turnstile and assign the fluctuations in force as well as the parameters of the predefined electrical signal to the rotational positions of the turnstile.
- the data relating to the force fluctuation / rotational speed fluctuation / torque fluctuation (depending on the selected control method) determined during the learning trip can represent a current consumption of the electrical drive and / or an electrical voltage at the connections of the stator of the electrical drive via the rotational positions and / or rotational positions of the Mark the turnstile over time.
- the electrical voltage or the electrical current, which were used during the learning run in a regulated operation in order to compensate for the fluctuations in force / fluctuations in rotational speed, can be plotted over the rotary positions of the turnstile or over the time of a complete turn of the turnstile.
- the electrical quantities voltage / current fed in to compensate for the fluctuation in force become temporal and spatial lagging behind the positions where they are actually required. They can therefore preferably be assigned to the rotary positions of the turnstile, so that an even more suitable electrical signal (pilot control signal, pilot control table) can then be predefined by shifting relative to the rotary positions in the direction of previous rotary positions. Depending on the resolution of the rotational position detection, the values determined by the control can therefore be assigned to a previous rotation position closest to one another or to a rotation position preceding by several rotation positions. The shift range of the control values depends in particular on the time offset of the controller used, which results between the input signal and the corresponding output signal.
- Post crossings are also taught in during the learning trip according to the invention.
- the door When the brushes of the door leaves pass over the vertical posts of the drum walls, the door usually brakes slightly. This affects the smooth running of the revolving door.
- An object of the present invention is to improve the synchronism properties of revolving doors.
- An embodiment of a solution according to the invention is reproduced in other words below:
- the method is used to control a revolving door system which has a revolving door with a turnstile and at least one control.
- the turnstile is operatively connected to at least one electric drive.
- the controller records the motor current and / or the motor voltage of the electric drive during a learn run.
- the controller also detects position information that represents the angular position of the rotor of the electric drive.
- a control signal is then generated by the control for accelerating the revolving door by means of the electric drive to a constant angular velocity.
- a change in the motor torque or the motor voltage with the Corresponding position information is stored, in which a change in the motor current and / or the motor voltage has occurred.
- Information about a change in the motor current and / or a motor voltage with corresponding position information, in which a change in the motor current or the motor voltage is to be carried out, can be stored in the control.
- position information can first be recorded, the motor current or the motor voltage can be adjusted by the amount of the stored change in the motor current and / or the change in the stored motor voltage before or when the stored position information is passed over next time, and the motor current or the Motor voltage by the amount of the stored change in the motor current or the change in the stored motor voltage after driving over the stored position information.
- a revolving door arrangement which has a turnstile which has at least one door leaf, preferably two, three, four, five or more door leaves. Furthermore, an evaluation unit and an electric drive with a stator and a rotor for rotating the turnstile are provided.
- the rotor can be arranged coaxially with an axis of rotation of the turnstile and can be connected to the turnstile for direct, gearless drive.
- the evaluation unit is set up to carry out the steps of a method according to the invention, as described in detail above in connection with the first-mentioned aspect of the invention.
- the features, combinations of features and the advantages resulting from these correspond so clearly to those of the first-mentioned aspect of the invention that reference is made to the above statements in order to avoid repetitions.
- the stator of the electric drive can be provided for fixed assembly.
- it can be set up to be fastened to a ceiling (for example a suspended ceiling and / or a concrete ceiling).
- the stator can be arranged on the axis of the door cross such that, together with the rotor, it forms an air gap arranged coaxially to the axis of the turnstile.
- no gear is preferably provided between the drive and the turnstile. The result is a play-free kinematic relationship between the drive and the turnstile.
- the revolving door arrangement can furthermore have a frequency converter, which preferably also has the evaluation unit and an output stage for controlling the electric drive.
- the evaluation unit is set up to implement a parameter of an electrical signal for controlling the electrical drive by means of pulse width modulation.
- the frequency converter is set up to control the output stage with a multi-phase representation of the electrical signal as a function of the pulse-width-modulated signal.
- a power signal can be generated by means of the output stage, which enables the drive to be energized as a function of an output signal from the evaluation unit.
- the components required for operating the revolving door arrangement according to the invention can thus be matched to one another in the best possible way. They can preferably be arranged in a common housing.
- the housing can include the frequency converter, the output stage and the evaluation unit.
- the housing can have a (in particular common) connection for an operating voltage of the aforementioned components.
- the drive can also be supplied with electrical energy via the operating voltage.
- the evaluation unit can be set up, based on a position sensor in the electric drive, a current speed, a to determine the current position and / or a current speed of the turnstile.
- the position sensor can have at least one, preferably two, in particular three or more Hall sensors.
- the position sensor system can also have an encoder on the rotor of the drive. This can be used as part of a learning trip to identify an absolute turnstile position. It can also have a magnetic mode of operation (for example a permanent magnet in conjunction with a Hall sensor).
- the Hall sensors can in particular be arranged in the stator of the electric drive and can be set up to generate a signal as a function of a magnetic alternating field generated by means of the rotor, with the aid of which the positioning, the speed and / or the current speed of the rotor (and thus of the turnstile) are to be determined.
- the electric drive can be designed as a brushless motor. The result is a highly efficient electrical drive and an exact positioning of the rotor by means of the method according to the invention.
- Fig. 1 shows an isometric view of a revolving door arrangement 1.
- the revolving door arrangement 1 comprises a turnstile 2.
- This turnstile 2 has four door leaves 3.
- the door leaves 3 are each angled at 90 ° to one another.
- the turnstile 2 is arranged rotatably about an axis of rotation 4.
- the axis of rotation 4 extends in the axial direction 5.
- a radial direction 6 is defined perpendicular to the axial direction 5.
- a circumferential direction 7 is defined around the axial direction 5.
- a drive 8 is arranged on the turnstile 2.
- This drive 8 is designed as an electronically commutated multi-pole motor.
- the rotor 17 (s. Fig. 2 )
- This drive 8 is connected coaxially to the axis of rotation 4 with the turnstile 2. As a result, the drive 8 enables a direct and gearless drive of the turnstile 2.
- Fig. 2 shows a section through the revolving door arrangement 1. Of the revolving door arrangement 1, only the drive 8 is shown.
- the drive 8 comprises a stator 10 and the rotor 17 Fig. 1 shows, the drive 8 is arranged above the turnstile 2.
- the rotor 17 is located between the turnstile 2 and the stator 10.
- Fig. 2 shows a non-rotatably connected to the rotor 17 connecting element, designed as a multi-tooth shaft.
- the turnstile 2 is connected to the rotor 17 in a rotationally fixed manner via this connecting element.
- the stator 10 comprises a stator disk 12.
- a stator laminated core 11 is arranged on the outer circumference of the stator disk 12.
- the individual coils 13 of the stator 10 are placed on this stator laminated core 11.
- Each coil comprises a coil body 14, for example made of plastic.
- the windings 15 of the individual coil 13 are located on this coil former 14.
- the rotor 17 comprises a rotor disk 43. This rotor disk 43 lies opposite the stator disk 12.
- the stator laminated core 11 with the coils 13 is arranged between the two disks 43, 12.
- a rotor laminated core 18 is arranged on the outer circumference of the rotor disk 43.
- a plurality of permanent magnets 19 are arranged radially within the rotor lamination stack 18 on the rotor lamination stack 18.
- an axial bearing 20 and a radial bearing 21 are formed between the stator disc 12 and the rotor disc 43.
- the axial bearing 20 and the radial bearing 21 are designed as slide bearings.
- a frequency converter 25 which has a connection 27 for an operating voltage.
- An evaluation unit 9, a motor IC 36 (integrated circuit for drive control) and an output stage 26 for controlling the drive 8 are provided within the frequency converter 25.
- the evaluation unit 9, the motor IC 36 and the output stage 26 are in connection with Fig. 4 discussed in more detail.
- the in Fig. 1 The drive 8 shown is part of the revolving door arrangement 1.
- This revolving door arrangement 1 is in section in FIG Fig. 2 shown.
- the revolving door arrangement 1 includes an adapter unit in addition to the drive 8 101.
- This adapter unit 101 is used for mounting the drive 8 on a superordinate ceiling structure 103.
- the ceiling structure 103 comprises two parallel horizontal beams.
- the adapter unit 101 comprises at least one ceiling fastening element 102. This is designed here as a right-angled angle.
- the ceiling fastening element 102 is fastened in the profiles of the ceiling structure 103 via a screw connection and corresponding slot nuts.
- the adapter unit 101 further comprises an adapter plate 107.
- the ceiling fastening element 102 is firmly connected, for example welded, to this adapter plate 107.
- a plurality of fixing elements 104 of the adapter unit 101 are fastened to the circumference of the adapter plate 107. These fixing elements 104 each serve to fasten a suspended ceiling element 105.
- the adapter unit 101 further comprises at least one drive fastening element 106. This is designed here as a screw connection and is used to fasten the drive 8 to the adapter unit 101, in particular to the adapter plate 107.
- Fig. 2 and 3rd show preferred pre-fixing units 110.
- These pre-fixing units 110 here comprise a snap hook. This makes it possible to lift the drive 8 from below onto the adapter plate 107.
- the pre-fixing units 110 snap into place and the drive 8 is pre-fixed to the adapter unit 110.
- the drive fastening elements 106 which are designed as screw connections, can then be placed.
- connection recess 111 in the adapter plate 107.
- an electrical contact in particular one or two plugs, accessible from above within the drive 8.
- the drive 8 has position sensors 28 in the form of Hall sensors which are arranged on the circumference of the stator.
- the position sensors 28 are set up to identify position sensors (not shown) on the rotor (not shown) and to report a rotational position of the drive 8 to the evaluation unit (not shown).
- Fig. 4 shows a table in which exemplary rotational positions 32 are identified by unitless, ascending numbers.
- control values 33 are shown, which were used in a learning trip to generate a uniform speed behavior of the revolving door arrangement.
- identical control values 33 (5, 5.5) were used.
- a force fluctuation in the area of the next higher rotational positions 32 (4, 5) leads to increased control values 33 (7, 6).
- the control values 33 (5.5) used at the beginning were used again.
- the control values 33 (7, 6) in the table shown have been shifted in the direction of previous rotational positions 32 (3, 4).
- FIG. 5 shows a flow diagram illustrating steps of an exemplary embodiment of a method according to the invention for compensating a force fluctuation which acts non-uniformly on a door leaf of a revolving door arrangement as a function of a rotational position.
- step S100 the turnstile of the revolving door arrangement is rotated in the course of a learning trip.
- step S200 the force fluctuation acting externally on the door leaf is determined by a rotation speed fluctuation. This does not exclude that a control process tries to compensate for the fluctuating rotational speed. Only one parameter for the fluctuation in force / fluctuation in rotational speed has to be recorded in the course of the learn run and saved as a function of the rotational position.
- step S300 a large number of values obtained by a control system for compensating the fluctuation in force or fluctuation in rotational speed are applied for a control signal above the rotary positions of the turnstile.
- discrete rotational positions can be provided with a respective control value and stored.
- step S400 the values are shifted relative to the associated rotational positions in order to generate the electrical signal, as a result of which a pilot control table or a pilot control signal are generated.
- the electrical values generated during the control are assigned to an immediately preceding rotational position in order to generate the earliest possible compensation for the periodically occurring fluctuations in force.
- step S500 the stator of the electric drive is controlled with an electrical signal predefined on the basis of the pilot control table in order to compensate for the fluctuations in the speed of rotation of the turnstile.
- Fig. 6 shows a block diagram of an embodiment of a revolving door arrangement according to the invention.
- An operating voltage of 24 V is applied to the electrical system via a connection 27 connected.
- a DC / DC converter 41 feeds a microcontroller as an evaluation unit 9 with a voltage of 5V or optionally 3.3V.
- the operating voltage is applied via a diode 42 to a motor IC 36 and an output stage 26 for energizing the stator 10.
- the motor voltage can be in a predefined range, for example.
- the microcontroller can have further input variables (not shown). E.g. the Hall sensors can be connected to the microcontroller to determine a rotational position of the drive.
- the microcontroller supplies pulse-width-modulated signals for controlling the output stage to the motor IC 36. These also have a level of 5V or 3.3V.
- the pulse width modulated signals are used to control the three phases U, V, W of the stator 10 z. B. with 6 signals U_H, U_L, V_H, V_L, W_H, W_L (H - High, L - Low).
- a control line 39 and an error reporting line 40 are provided between the microcontroller and the motor IC 36.
- the motor IC 36 can be used to output high / low signals with adapted voltage levels GH_U, GL_U, GH_V, GL_V, GH_W, GL_W to control the MOSFETS of the output stage 26.
- the motor IC 36 is used for short-circuit prevention for the control of the output stage 26. In other words, it is avoided that transistors of the output stage 26 arranged in a common bridge branch are simultaneously switched on and the output stage is thereby damaged.
- the control signals GH_U, GL_U, GH_V, GL_V, GH_W, GL_W are also designed as pulse width modulated signals.
- the respective high (H) signal essentially represents the respective level reversal of the low (L) signal for the phases U, V, W, with a dead time to avoid the abovementioned short circuit between the edges of the signals.
- the microcontroller, the motor IC 36 and the output stage 26 are shown as components of a frequency converter 25, the components of which can be arranged in a common housing.
- the components of the frequency converter 25 can be arranged on a common circuit board.
Landscapes
- Engineering & Computer Science (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Power-Operated Mechanisms For Wings (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
Description
- Die vorliegende Erfindung betrifft eine Karusselltüranordnung sowie ein Verfahren zur Kompensation einer in Abhängigkeit einer Drehposition von extern ungleichförmig auf einen Türflügel einer Karusselltüranordnung wirkenden Kraftschwankung.
- Bekannt sind Karusselltüranordnungen, welche einen Asynchronmotor mit nachgeschaltetem Getriebe aufweisen. Hierbei kommt typischerweise ein mehrstufiges Getriebe (z. B. Schneckenradgetriebe, Zahnriemenstufen) zum Einsatz. Zum Antreiben des Drehkreuzes der Karusselltüranordnung wird eine Vielzahnwelle genutzt, die fest mit der Antriebseinheit verbunden ist. Dieses Antriebssystem wird zuerst in die Deckenkonstruktion eingebaut. Anschließend wird das Drehkreuz inklusive der Türflügel montiert.
-
EP 3 034 759 A1 betrifft ein Verfahren zur Steuerung einer Karusselltür, bei welcher der Motor koaxial zum Drehkreuz angeordnet ist. -
EP 3 034 759 A1 offenbart alle Merkmale des Oberbegriffs von Anspruch 1 und 7. -
US 5,647,173 offenbart ein Betriebsverfahren für eine Karusselltür, bei welchem ein auf das Türblatt drückender Anwender durch eine Unterstützungskraft, welche mittels eines Elektromotors erzeugt wird, bei der Bedienung der Karusselltür unterstützt wird. -
US 5,647,173 offenbart alle Merkmale des Oberbegriffs von Anspruch 1 und 7. - Nachteilig an den im Stand der Technik bekannten Ausführungen ist, dass die Türflügel im Laufe ihrer Bewegung durch die Trommel/Pfosten eine ungleichförmige externe Reibungskraft erfahren. Dies führt zu einem ungleichförmigen Moment, welches der elektrische Antrieb über den Drehpositionen aufzubringen hat. Das Ergebnis sind Drehzahlschwankungen, welche Komforteinbußen für den Anwender mit sich bringen. Überdies können Betriebsgeräusche der Karusselltüranordnung ungleichförmig anmuten, worunter der Qualitätseindruck beim Anwender leidet.
- Es ist eine Aufgabe der vorliegenden Erfindung, eine Karusselltüranordnung und ein Verfahren anzugeben, welche die vorgenannten Nachteile ausräumen.
- Die Lösung der vorgenannten Aufgabe erfolgt durch die Merkmale der unabhängigen Ansprüche. Die abhängigen Ansprüche haben vorteilhafte Ausgestaltungen der Erfindung zum Gegenstand.
- Somit wird die Aufgabe durch ein Verfahren zur Kompensation einer in Abhängigkeit einer Drehposition von extern ungleichförmig auf einen Türflügel einer Karusselltüranordnung wirkenden Kraftschwankung gelöst. Die Karusselltüranordnung umfasst einen den Türflügel tragendes Drehkreuz, eine Auswerteeinheit und einen elektrischen Antrieb mit einem Stator und einem Rotor. Das Drehkreuz umfasst zumindest zwei Türflügel und ist um eine Drehachse drehbar gelagert, wobei entlang der Drehachse eine Axialrichtung und senkrecht zur Axialrichtung eine Radialrichtung definiert sind. Der elektrische Antrieb kann bspw. als elektronisch kommutierter Vielpolmotor mit einem Stator umfassend ein Statorblechpaket und mehrere Spulen, und einen Rotor umfassend ein Rotorblechpaket und mehrere Permanentmagneten ausgebildet sein. Der Rotor ist koaxial zur Drehachse anordenbar und mit dem Drehkreuz zum direkten, getriebelosen Antrieb verbindbar. Eine Auswerteeinheit ist eingerichtet, logische Schritte für den Betrieb der Karusselltüranordnung auszuführen. Die Auswerteeinheit kann als elektronisches Steuergerät verstanden werden. Sie kann einen programmierbaren Prozessor, einen Mikrocontroller o. Ä. aufweisen. Die vorstehend beschriebene Hardware wird erfindungsgemäß wie folgt betrieben. Zunächst wird das Drehkreuz (in einer Lernfahrt) rotiert. Dies kann mittels des Antriebs erfolgen. Hierbei wird die von extern auf den Türflügel wirkende Kraftschwankung und/oder Drehgeschwindigkeitsschwankung und/oder Drehmomentschwankung in Abhängigkeit der Drehposition ermittelt. Beispielsweise kann ein Kraftsensor, ein Stromsensor oder ein hochauflösender Positionssensor verwendet werden, um die Ungleichförmigkeit der genannten Betriebsgrößen über den Drehpositionen zu ermitteln. Aus den ermittelten Ungleichförmigkeiten der Betriebsparameter kann anschließend ein Signal ermittelt werden, welches sich zur Kompensation der Ungleichförmigkeiten eignet. Sofern das Drehkreuz während der Lernfahrt in einem geregelten Modus betrieben wird, sind zwar Kraftschwankungen und/oder Drehmomentschwankungen ermittelbar, jedoch nur geringe Drehgeschwindigkeitsschwankungen. In diesem Fall eignen sich die tatsächlich durch das Regelungsverfahren erzeugten Werte aufgrund der Periodizität der Kraftschwankungen/Drehmomentschwankungen zum Anlegen einer entsprechenden Vorsteuerung, auf welche weiter unten eingegangen wird. Zur Kompensation der Kraft-/Drehgeschwindigkeits- und/oder Drehmomentschwankung wird der Stator nach Beenden der Lernfahrt mit einem anhand der in Abhängigkeit der Drehposition ermittelten Schwankungsgrößen vordefinierten elektrischen Signals angesteuert. Das vordefinierte elektrische Signal wurde also aufgrund der Erkenntnisse über die Kraftschwankung während der Lernfahrt erstellt und derart bemessen, dass die Kraftschwankungen bzw. Drehmomentschwankungen sich nicht in einer Drehgeschwindigkeitsschwankung über den Drehpositionen des Drehkreuzes äußern. Dies schließt nicht aus, dass eine erfindungsgemäß vorgenommene Kompensation erneut einer erfindungsgemäßen Lernfahrt unterzogen wird, um die ggfs. verbleibenden Drehzahlschwankungen anschließend noch besser kompensieren zu können und/oder im Laufe der Zeit veränderte Ungleichförmigkeiten (z. B. durch veränderte Reibparameter, abgenutzte Bürsten an den Türflügeln o. Ä.) zu erkennen und zu kompensieren. Im Ergebnis hat eine erfindungsgemäß ausgestaltete Karusselltüranordnung eine gleichförmige Rotationsbewegung und ein ebenmäßiges Klangbild.
- Das elektrische Signal kann bspw. hinsichtlich einer Spannung und/oder eines Stroms und/oder einer Amplitude und/oder einer Frequenz und/oder eines Puls-Pause-Verhältnisses (im Falle einer Pulsweitenmodulation, PWM) vordefiniert bzw. vorgesteuert sein. Beispielsweise kann eine elektrische Gleichspannung als Betriebsspannung mittels einer Auswerteeinheit in geeignete Pulse zerhackt werden, welche ein zur Kompensation der Kraftschwankung geeignetes elektrisches Signal an den elektrischen Antrieb übermittelt. Dies schließt nicht aus, dass zwischen der Auswerteeinheit und der Endstufe des Antriebs weitere Signalverarbeitungsschritte ausgeführt werden.
- Bevorzugt wird ein im Antrieb angeordneter Positionssensor verwendet, welcher der Auswerteeinheit Aufschluss über die aktuelle Position des Rotors/des Drehkreuzes gibt. Beispielsweise können Hallsensoren im Stator des Antriebs angeordnet sein, welche das Magnetfeld des Rotors empfangen und entsprechende elektrische Signale an eine Auswerteeinheit weiterleiten. Anhand einer Referenz kann die Auswerteeinheit die absolute und/oder die relative Position des Drehkreuzes ermitteln und die Kraftschwankungen ebenso wie die Parameter des vordefinierten elektrischen Signals den Drehpositionen des Drehkreuzes zuordnen.
- Die während der Lernfahrt ermittelten Daten bezüglich der Kraftschwankung/Drehgeschwindigkeitsschwankung/Drehmomentschwan kung (in Abhängigkeit des gewählten Ansteuerverfahrens) können eine Stromaufnahme des elektrischen Antriebs und/oder eine elektrische Spannung an den Anschlüssen des Stators des elektrischen Antriebs über den Drehpositionen repräsentieren und/oder Drehpositionen des Drehkreuzes über der Zeit kennzeichnen. Die elektrische Spannung bzw. der elektrische Strom, welche während der Lernfahrt in einem geregelten Betrieb verwendet wurden, um die Kraftschwankungen/Drehgeschwindigkeitsschwankungen zu kompensieren, können über den Drehpositionen des Drehkreuzes oder über der Zeit einer vollständigen Drehung des Drehkreuzes aufgetragen werden. Da jedes noch so gute Regelsystem die Gesetze der Kausalität respektiert, werden die zur Kompensation der Kraftschwankung eingespeisten elektrischen Größen Spannung/Strom zeitlich und räumlich den Positionen nacheilen, an welchen sie eigentlich erforderlich sind. Bevorzugt können sie daher den Drehpositionen des Drehkreuzes zugeordnet werden, so dass anschließend durch Verschieben gegenüber den Drehpositionen in Richtung vorangegangener Drehpositionen ein noch besser geeignetes elektrisches Signal (Vorsteuersignal, Vorsteuertabelle) vordefiniert werden kann. Je nach Auflösung der Drehpositionserkennung können die per Regelung ermittelten Werte also jeweils einer nächstliegend vorangegangenen Drehposition oder einer um mehrere Drehpositionen vorangegangenen Drehposition zugeordnet werden. Die Verschiebungsweite der Regelwerte hängt insbesondere von dem Zeitversatz des verwendeten Reglers auf, welcher sich zwischen dessen Eingangssignal und korrespondierendem Ausgangssignal ergibt.
- Bei der erfindungsgemäßen Lernfahrt werden auch Pfostenüberfahrten eingelernt. Beim Überfahren der Vertikalpfosten der Trommelwände durch die Bürsten der Türflügel kommt es üblicherweise zu einem leichten Abbremsen der Tür. Hierdurch wird der gleichmäßige Rundlauf der Karusselltür beeinträchtigt. Ein Ziel der vorliegenden Erfindung besteht darin, die Gleichlaufeigenschaften von Karusselltüren zu verbessern. Nachfolgend wird eine Ausgestaltung einer erfindungsgemäßen Lösung mit anderen Worten wiedergegeben: Das Verfahren dient der Steuerung einer Karusselltüranlage, welche eine Karusselltür mit einem Drehkreuz und wenigstens eine Steuerung aufweist. Das Drehkreuz ist antreibend mit wenigstens einem elektrischen Antrieb wirkverbunden. Während einer Lernfahrt erfasst die Steuerung den Motorstrom und/oder die Motorspannung des elektrischen Antriebs. Die Steuerung erfasst zudem Positionsinformationen, welche die Winkelposition des Rotors des elektrischen Antriebs repräsentieren. Anschließend wird ein Steuersignal durch die Steuerung zur Beschleunigung der Karusselltür mittels des elektrischen Antriebs auf eine konstante Winkelgeschwindigkeit erzeugt. Nach Erreichen der konstanten Winkelgeschwindigkeit wird eine Veränderung des Motormoments bzw. der Motorspannung mit dem korrespondierenden Positionsinformationen gespeichert, bei welchen eine Veränderung des Motorstroms und/oder der Motorspannung aufgetreten ist. In der Steuerung können Informationen einer Veränderung des Motorstroms und/oder einer Motorspannung mit korrespondierenden Positionsinformationen gespeichert sein, bei denen eine Veränderung des Motorstroms bzw. der Motorspannung vorzunehmen ist. Hierzu können zunächst Positionsinformationen erfasst werden, eine Anpassung des Motorstroms bzw. der Motorspannung um den Betrag der gespeicherten Veränderung des Motorstroms und/oder der Veränderung der gespeicherten Motorspannung vor einem oder beim nächsten Überfahren der gespeicherten Positionsinformationen vorgenommen werden und eine Anpassung des Motorstroms bzw. der Motorspannung um den Betrag der gespeicherten Veränderung des Motorstroms bzw. der Veränderung der gespeicherten Motorspannung nach dem Überfahren der gespeicherten Positionsinformationen vorgenommen werden.
- Gemäß einem zweiten Aspekt der vorliegenden Erfindung wird eine Karusselltüranordnung vorgeschlagen, welche ein Drehkreuz aufweist, welches mindestens einen Türflügel, bevorzugt zwei, drei, vier, fünf oder mehr Türflügel aufweist. Weiter sind eine Auswerteeinheit und ein elektrischer Antrieb mit einem Stator und einem Rotor zum rotatorischen Antreiben des Drehkreuzes vorgesehen. Der Rotor ist koaxial zu einer Drehachse des Drehkreuzes anordenbar und mit dem Drehkreuz zum direkten, getriebelosen Antrieb verbindbar. Die Auswerteeinheit ist eingerichtet, die Schritte eines erfindungsgemäßen Verfahrens, wie es in Verbindung mit dem erstgenannten Erfindungsaspekt oben im Detail beschrieben ist, auszuführen. Die Merkmale, Merkmalskombinationen und die sich aus diesen ergebenden Vorteile entsprechen derart ersichtlich denjenigen des erstgenannten Erfindungsaspektes, dass zur Vermeidung von Wiederholungen auf die obigen Ausführungen verwiesen wird.
- Der Stator des elektrischen Antriebs kann zur feststehenden Montage vorgesehen sein. Insbesondere kann er eingerichtet sein, an einer Decke (z. B. eine abgehängte Decke und/oder eine Betondecke) befestigt zu werden. Der Stator kann derart auf der Achse des Türkreuzes angeordnet sein, dass er gemeinsam mit dem Rotor einen koaxial zur Achse des Drehkreuzes angeordneten Luftspalt ausbildet. Mit anderen Worten ist bevorzugt kein Getriebe zwischen dem Antrieb und dem Drehkreuz vorgesehen. Im Ergebnis ist eine spielfreie kinematische Beziehung zwischen dem Antrieb und dem Drehkreuz gegeben.
- Die Karusselltüranordnung kann weiter einen Frequenzumrichter aufweisen, welcher bevorzugt auch die Auswerteeinheit und eine Endstufe zur Ansteuerung des elektrischen Antriebs aufweist. Die Auswerteeinheit ist eingerichtet, durch eine Pulsweitenmodulation einen Parameter eines elektrischen Signals zur Ansteuerung des elektrischen Antriebs zu realisieren. Der Frequenzumrichter ist eingerichtet, in Abhängigkeit des pulsweitenmodulierten Signals die Endstufe mit einer mehrphasigen Repräsentation des elektrischen Signals anzusteuern. Mit anderen Worten kann ein Leistungssignal mittels der Endstufe erzeugt werden, welches eine Bestromung des Antriebs in Abhängigkeit eines Ausgangssignals der Auswerteeinheit ermöglicht. Die zum Betrieb der erfindungsgemäßen Karusselltüranordnung erforderlichen Komponenten können somit bestmöglich aufeinander abgestimmt sein. Bevorzugt können sie in einem gemeinsamen Gehäuse angeordnet sein. Das Gehäuse kann den Frequenzumrichter, die Endstufe und die Auswerteeinheit umfassen. Das Gehäuse kann einen (insbesondere gemeinsamen) Anschluss für eine Betriebsspannung der vorgenannten Komponenten aufweisen. Insbesondere kann auch der Antrieb über die Betriebsspannung mit elektrischer Energie versorgt werden.
- Die Auswerteeinheit kann eingerichtet sein, auf Basis eines Positionssensors im elektrischen Antrieb eine aktuelle Drehzahl, eine aktuelle Position und/oder eine aktuelle Geschwindigkeit des Drehkreuzes zu ermitteln. Der Positionssensor kann mindestens einen, bevorzugt zwei, insbesondere drei oder mehr Hallsensoren aufweisen. Die Positionssensorik kann zudem einen Geber auf dem Rotor des Antriebs aufweisen. Dieser kann im Rahmen einer Lernfahrt zur Identifikation einer absoluten Drehkreuzposition verwendet werden. Er kann ebenfalls eine magnetische Wirkungsweise (z.B. ein Permanentmagnet in Verbindung mit einem Hallsensor) aufweisen. Die Hallsensoren können insbesondere im Stator des elektrischen Antriebs angeordnet sein und eingerichtet sein, in Abhängigkeit eines mittels des Rotors erzeugten magnetischen Wechselfeldes ein Signal zu erzeugen, mithilfe dessen die Positionierung, die Drehzahl und/oder die aktuelle Geschwindigkeit des Rotors (und somit des Drehkreuzes) zu ermitteln sind. Der elektrische Antrieb kann als bürstenloser Motor ausgeführt sein. Im Ergebnis ergeben sich ein hocheffizienter elektrischer Antrieb und eine exakte Positionierung des Rotors mittels des erfindungsgemäßen Verfahrens.
- Nachfolgend wird die Erfindung anhand der begleitenden Zeichnungen im Detail erläutert. Dabei zeigen:
- Fig. 1
- eine Karusselltüranordnung gemäß einem Ausführungsbeispiel der vorliegenden Erfindung;
- Fig. 2
- die Karusselltüranordnung in einer Schnittdarstellung;
- Fig. 3
- wesentliche Bestandteile der Karusselltüranordnung in einer Explosionsdarstellung;
- Fig. 4
- ein Schema zur Erzeugung einer Vorsteuertabelle bzw. zur Erzeugung eines vordefinierten elektrischen Signals aus Regelwerten;
- Fig. 5
- ein Flussdiagramm veranschaulichend Schritte eines Ausführungsbeispiels eines erfindungsgemäßen Verfahrens; und
- Fig. 6
- ein Blockschaltbild eines Ausführungsbeispiels einer erfindungsgemäßen Karusselltüranordnung.
-
Fig. 1 zeigt eine isometrische Ansicht einer Karusselltüranordnung 1. Die Karusselltüranordnung 1 umfasst ein Drehkreuz 2. Dieses Drehkreuz 2 weist vier Türflügel 3 auf. Die Türflügel 3 sind jeweils um 90° zueinander abgewinkelt. Das Drehkreuz 2 ist um eine Drehachse 4 drehbar angeordnet. Die Drehachse 4 streckt sich in Axialrichtung 5. Senkrecht zur Axialrichtung 5 ist eine Radialrichtung 6 definiert. Um die Axialrichtung 5 ist eine Umfangsrichtung 7 definiert. - Auf dem Drehkreuz 2 ist ein Antrieb 8 angeordnet. Dieser Antrieb 8 ist als elektronisch kommutierter Vielpolmotor ausgebildet. Der Rotor 17 (s.
Fig. 2 ) dieses Antriebs 8 ist koaxial zur Drehachse 4 mit dem Drehkreuz 2 verbunden. Dadurch ermöglicht der Antrieb 8 einen direkten und getriebelosen Antrieb des Drehkreuzes 2. -
Fig. 2 zeigt einen Schnitt durch die Karusselltüranordnung 1. Von der Karusselltüranordnung 1 ist lediglich der Antrieb 8 gezeigt. - Der Antrieb 8 umfasst einen Stator 10 und den Rotor 17. Wie
Fig. 1 zeigt, ist der Antrieb 8 über dem Drehkreuz 2 angeordnet. Dabei befindet sich der Rotor 17 zwischen dem Drehkreuz 2 und dem Stator 10. -
Fig. 2 zeigt ein drehfest mit dem Rotor 17 verbundenes Verbindungselement, ausgebildet als Vielzahnwelle. Über dieses Verbindungselement ist das Drehkreuz 2 drehfest mit dem Rotor 17 verbunden. - Der Stator 10 umfasst eine Statorscheibe 12. Am äußeren Umfang der Statorscheibe 12 ist ein Statorblechpaket 11 angeordnet. Auf diesem Statorblechpaket 11 stecken die einzelnen Spulen 13 des Stators 10.
- Jede Spule umfasst einen Spulenkörper 14, beispielsweise aus Kunststoff. Auf diesem Spulenkörper 14 befinden sich die Wicklungen 15 der einzelnen Spule 13.
- Der Rotor 17 umfasst eine Rotorscheibe 43. Diese Rotorscheibe 43 liegt der Statorscheibe 12 gegenüber. Zwischen den beiden Scheiben 43, 12 ist das Statorblechpaket 11 mit den Spulen 13 angeordnet. Am äußeren Umfang der Rotorscheibe 43 ist ein Rotorblechpaket 18 angeordnet. Radial innerhalb des Rotorblechpaketes 18 sind auf dem Rotorblechpaket 18 mehrere Permanentmagneten 19 angeordnet.
- Im Bereich der Drehachse 4 sind zwischen der Statorscheibe 12 und der Rotorscheibe 43 ein Axiallager 20 und ein Radiallager 21 ausgebildet. Im gezeigten Ausführungsbeispiel sind das Axiallager 20 und das Radiallager 21 als Gleitlager ausgebildet.
- In
Fig. 2 ist weiter ein Ausführungsbeispiel eines Frequenzumrichters 25 dargestellt, welcher über einen Anschluss 27 für eine Betriebsspannung verfügt. Innerhalb des Frequenzumrichters 25 sind eine Auswerteeinheit 9, ein Motor-IC 36 (integrierter Schaltkreis zur Antriebssteuerung) und eine Endstufe 26 zur Ansteuerung des Antriebs 8 vorgesehen. Die Auswerteeinheit 9, der Motor-IC 36 und die Endstufe 26 werden in Verbindung mitFig. 4 eingehender diskutiert. - Der in
Fig. 1 gezeigte Antrieb 8 ist Bestandteil der Karusselltüranordnung 1. Diese Karusselltüranordnung 1 ist im Schnitt inFig. 2 gezeigt. Zur Karusselltüranordnung 1 zählt neben dem Antrieb 8 eine Adaptereinheit 101. Diese Adaptereinheit 101 wird zur Montage des Antriebs 8 an einer übergeordneten Deckenkonstruktion 103 verwendet. Im gezeigten Beispiel umfasst die Deckenkonstruktion 103 zwei parallele horizontale Träger. - Die Adaptereinheit 101 umfasst zumindest ein Deckenbefestigungselement 102. Dieses ist hier als rechtwinklig gebogener Winkel ausgebildet. Das Deckenbefestigungselement 102 wird über eine Verschraubung und entsprechende Nutsteine in den Profilen der Deckenkonstruktion 103 befestigt.
- Die Adaptereinheit 101 umfasst ferner eine Adapterplatte 107. Mit dieser Adapterplatte 107 ist das Deckenbefestigungselement 102 fest verbunden, beispielsweise verschweißt.
- Am Umfang der Adapterplatte 107 sind mehrere Fixierungselemente 104 der Adaptereinheit 101 befestigt. Diese Fixierungselemente 104 dienen jeweils zur Befestigung eines Unterdeckenelementes 105.
- Die Adaptereinheit 101 umfasst ferner zumindest ein Antriebsbefestigungselement 106. Dieses ist hier als Verschraubung ausgebildet und dient zur Befestigung des Antriebs 8 an der Adaptereinheit 101, insbesondere an der Adapterplatte 107.
-
Fig. 2 und3 zeigen bevorzugte Vorfixiereinheiten 110. Diese Vorfixiereinheiten 110 umfassen hier einen Schnapphaken. Dadurch ist es möglich, den Antrieb 8 von unten an die Adapterplatte 107 anzuheben. Dabei rasten die Vorfixiereinheiten 110 ein und der Antrieb 8 ist an der Adaptereinheit 110 vorfixiert. Daraufhin können die als Verschraubungen ausgebildeten Antriebsbefestigungselemente 106 gesetzt werden. - Ferner zeigt die Darstellung in
Fig. 3 eine bevorzugte Anschlussaussparung 111 in der Adapterplatte 107. Über diese Anschlussaussparung 111 ist eine elektrische Kontaktierung, insbesondere ein oder zwei Stecker, innerhalb des Antriebs 8 von oben zugänglich. - Der Antrieb 8 weist Positionssensoren 28 in Form von Hallsensoren auf, welche am Umfang des Stators angeordnet sind. Die Positionssensoren 28 sind eingerichtet, (nicht dargestellte) Positionsgeber am (nicht dargestellten) Rotor zu erkennen und eine Drehposition des Antriebs 8 an die (nicht dargestellte) Auswerteeinheit zu melden.
-
Fig. 4 zeigt eine Tabelle, in welcher exemplarische Drehpositionen 32 durch einheitenlose, aufsteigende Ziffern gekennzeichnet werden. In der darunterliegenden Zeile werden Regelwerte 33 dargestellt, welche in einer Lernfahrt zur Erzeugung eines gleichmäßigen Drehzahlverhaltens der Karusselltüranordnung verwendet wurden. In den ersten drei Drehpositionen 32 (1, 2, 3) wurden identische Regelwerte 33 (5, 5,5) verwendet. Eine Kraftschwankung im Bereich der nächsthöheren Drehpositionen 32 (4, 5) führt zu erhöhten Regelwerten 33 (7, 6). Hinsichtlich höherer Drehpositionen 32 (6, 7) wurden wieder die eingangs verwendeten Regelwerte 33 (5,5) verwendet. Zur Erzeugung geeigneter Vorsteuerwerte 34 wurden die Regelwerte 33 (7, 6) in der dargestellten Tabelle in Richtung vorangegangener Drehpositionen 32 (3, 4) verschoben. Auf diese Weise wird bei Ansteuerung des elektrischen Antriebs einer erfindungsgemäßen Karusselltüranordnung vermieden, dass Drehzahlschwankungen im Zuge einer Regelung eigentlich zu spät angelegt werden. Mit anderen Worten werden die zur Kompensation erforderlichen elektrischen Signale zeitlich und bezüglich ihrer Drehpositionen vorgezogen auf den Stator des elektrischen Antriebs gelegt, um eine bestmögliche Kompensation der periodischen externen Kraftschwankungen zu erzeugen. -
Figur 5 zeigt ein Flussdiagramm veranschaulichend Schritte eines Ausführungsbeispiels eines erfindungsgemäßen Verfahrens zur Kompensation einer in Abhängigkeit einer Drehposition von extern ungleichförmig auf einen Türflügel einer Karusselltüranordnung wirkenden Kraftschwankung. In Schritt S100 wird im Zuge einer Lernfahrt das Drehkreuz der Karusselltüranordnung rotiert. In Schritt S200 wird die von extern auf den Türflügel wirkende Kraftschwankung durch eine Drehgeschwindigkeitsschwankung ermittelt. Dies schließt nicht aus, dass durch ein Regelungsverfahren unmittelbar versucht wird, die Drehgeschwindigkeitsschwankung zu kompensieren. Lediglich eine Kenngröße für die Kraftschwankung/Drehgeschwindigkeitsschwankung ist im Zuge der Lernfahrt aufzunehmen und in Abhängigkeit der Drehposition abzuspeichern. In Schritt S300 wird eine Vielzahl durch eine Regelung zur Kompensation der Kraftschwankung bzw. Drehgeschwindigkeitsschwankung erhaltener Werte für ein Regelsignal über den Drehpositionen des Drehkreuzes angelegt. Insbesondere können diskrete Drehpositionen mit einem jeweiligen Regelwert versehen und abgespeichert werden. Im Schritt S400 wird zur Erzeugung des elektrischen Signals eine Verschiebung der Werte gegenüber den zugehörigen Drehpositionen vorgenommen, wodurch eine Vorsteuertabelle bzw. ein Vorsteuersignal erzeugt werden. Hierbei werden die während der Regelung erzeugten elektrischen Werte einer unmittelbar vorausliegenden Drehposition zugeordnet, um eine frühestmögliche Kompensation der periodisch auftretenden Kraftschwankung zu erzeugen. Anschließend wird in Schritt S500 der Stator des elektrischen Antriebs mit einem anhand der Vorsteuertabelle vordefinierten elektrischen Signal angesteuert, um die Drehgeschwindigkeitsschwankungen des Drehkreuzes zu kompensieren. -
Fig. 6 zeigt ein Blockschaltbild eines Ausführungsbeispiels einer erfindungsgemäßen Karusselltüranordnung. Über einen Anschluss 27 wird eine Betriebsspannung in Höhe von 24V an das elektrische System angeschlossen. Ein DC/DC-Wandler 41 speist einen Mikrocontroller als Auswerteeinheit 9 mit einer Spannung von 5V oder wahlweise 3,3V. Überdies wird die Betriebsspannung über eine Diode 42 auf einen Motor-IC 36 und eine Endstufe 26 für eine Bestromung des Stators 10 gegeben. Die Motorspannung kann bspw. in einem vordefinierten Bereich liegen. Der Mikrocontroller kann weitere Eingangsgrößen (nicht dargestellt) aufweisen. Bspw. können die Hallsensoren zur Ermittlung einer Drehposition des Antriebs an den Mikrocontroller angeschlossen sein. Der Mikrocontroller liefert pulsweitenmodulierte Signale zur Ansteuerung der Endstufe an den Motor-IC 36. Diese weisen ebenfalls einen Pegel von 5V bzw. 3,3V auf. Die pulsweitenmodulierten Signale dienen der Ansteuerung der drei Phasen U, V, W des Stators 10 z. B. mit 6 Signalen U_H, U_L, V_H, V_L, W_H, W_L (H - High, L - Low). Überdies sind eine Steuerleitung 39 und eine Fehlermeldungs-Leitung ("Error-Reporting") 40 zwischen dem Mikrocontroller und dem Motor-IC 36 vorgesehen. Mittels des Motor-IC 36 können High/Low-Signale mit angepassten Spannungspegeln GH_U, GL_U, GH_V, GL_V, GH_W, GL_W zur Ansteuerung der MOSFETS der Endstufe 26 ausgegeben werden. Überdies dient der Motor-IC 36 zur Kurzschlussprävention für die Ansteuerung der Endstufe 26. Mit anderen Worten wird vermieden, dass in einem gemeinsamen Brückenzweig angeordnete Transistoren der Endstufe 26 zeitgleich leitend geschaltet werden und die Endstufe hierdurch Schaden nimmt. Auch die Ansteuersignale GH_U, GL_U, GH_V, GL_V, GH_W, GL_W sind als pulsweitenmodulierte Signale ausgeführt. Das jeweilige High (H)-Signal stellt jedoch im Wesentlichen die jeweilige Pegelumkehr des Low (L)-Signals für die Phasen U, V, W dar, wobei eine Totzeit zur Vermeidung des oben genannten Kurzschlusses zwischen den Flanken der Signale liegt. Der Mikrocontroller, der Motor-IC 36 und die Endstufe 26 sind als Bestandteile eines Frequenzumrichters 25 dargestellt, dessen Bestandteile in einem gemeinsamen Gehäuse angeordnet sein können. Insbesondere können die Bestandteile des Frequenzumrichters 25 auf einer gemeinsamen Platine angeordnet sein. -
- 1
- Karusselltüranordnung
- 2
- Drehkreuz
- 3
- Türflügel
- 4
- Drehachse
- 5
- Axialrichtung
- 6
- Radialrichtung
- 7
- Umfangsrichtung
- 8
- Antrieb
- 9
- Auswerteeinheit
- 10
- Stator
- 11
- Statorblechpaket
- 12
- Statorscheibe
- 13
- Spulen
- 14
- Spulenkörper
- 15
- Wicklung
- 17
- Rotor
- 18
- Rotorblechpaket
- 19
- Permanentmagneten
- 20
- Axiallager
- 21
- Radiallager
- 25
- Frequenzumrichter
- 26
- Endstufe
- 27
- Anschluss für Betriebsspannung
- 28
- Positionssensor
- 36
- Motor-IC
- 39
- Steuerleitung
- 40
- Error Reporting
- 41
- DC/DC-Wandler
- 42
- Diode
- 43
- Rotorscheibe
- 101
- Adaptereinheit
- 102
- Deckenbefestigungselement
- 103
- Deckenkonstruktion
- 104
- Fixierungselement
- 105
- Unterdeckenelemente
- 106
- Antriebsbefestigungselemente
- 107
- Adapterplatte
- 110
- Vorfixiereinheit
- 111
- Anschlussaussparung
- 112
- Abdeckscheibe
- S100-S500
- Verfahrensschritte
Claims (12)
- Verfahren zur Kompensation einer in Abhängigkeit einer Drehposition von extern ungleichförmig auf einen Türflügel (3) einer Karusselltüranordnung (1) wirkenden Kraftschwankung, wobei die Karusselltüranordnung (1) umfasst:- ein den Türflügel (3) tragendes Drehkreuz (2),- eine Auswerteeinheit (9) und- einen elektrischen Antrieb (8) mitwobei der Rotor (17) koaxial zu einer Drehachse (4) des Drehkreuzes (2) anordenbar und mit dem Drehkreuz (2) zum direkten, getriebelosen Antrieb verbindbar ist, und das Verfahren gekennzeichnet ist durch:- einem Stator (10) und- einem Rotor (17)- Rotieren (S100) des Drehkreuzes (2),- Ermitteln (S200) der von extern auf den Türflügel (3) wirkenden Kraftschwankung und/oder einer Drehgeschwindigkeitsschwankung und/oder Drehmomentschwankung in Abhängigkeit der Drehposition und- Ansteuern (S500) des Stators (10) mit einem anhand der in Abhängigkeit der Drehposition ermittelten Kraftschwankung und/oder der Drehgeschwindigkeitsschwankung vordefinierten elektrischen Signal, mittels dessen die Kraftschwankung und/oder die Drehgeschwindigkeitsschwankung und/oder die Drehmomentschwankung kompensiert werden.
- Verfahren nach Anspruch 1, wobei das elektrische Signal hinsichtlich- einer Spannung und/oder- eines Stroms und/oder- einer Amplitude und/oder- einer Frequenz und/oder- eines Puls-Pause-Verhältnissesvordefiniert ist.
- Verfahren nach Anspruch 1 oder 2 weiter umfassend- Verwenden eines im elektrischen Antrieb (8) angeordneten Positionssensors (28) zum Ermitteln der Kraftschwankung bzw. der Drehgeschwindigkeitsschwankung.
- Verfahren nach einem der vorstehenden Ansprüche weiter umfassend die Schritte:- Ausführen einer Lernfahrt und- Abspeichern von Daten repräsentierend eine sich während der Lernfahrt einstellenden- Kraftschwankung und/oder- Drehgeschwindigkeitsschwankung und/oder- Drehmomentschwankungin Abhängigkeit der Drehposition.
- Verfahren nach Anspruch 4, wobei die Daten- eine Stromaufnahme des elektrischen Antriebs (8) und/oder- eine elektrische Spannung an den Anschlüssen des elektrischen Antriebs (8) über den Drehpositionen repräsentieren und/oder- Drehpositionen des Drehkreuzes über der Zeit repräsentieren.
- Verfahren nach einem der vorstehenden Ansprüche weiter umfassend- Ermitteln (S300) einer Vielzahl durch eine Regelung zur Kompensation der Kraftschwankung und/oder der Drehgeschwindigkeitsschwankung und/oder der Drehmomentschwankung erhaltener Werte (33) für ein Regelsignal über den Drehpositionen (32) des Drehkreuzes (2) und- Verschieben (S400) der Werte (33) gegenüber den zugehörigen Drehpositionen zur Erzeugung des elektrischen Signals (34).
- Karusselltüranordnung mit- einem einen Türflügel (3) tragenden Drehkreuz (2),- einer Auswerteeinheit (9) und- einem elektrischen Antrieb (8) mitwobei der Rotor (17) koaxial zu einer Drehachse (4) des Drehkreuzes (2) anordenbar und mit dem Drehkreuz (2) zum direkten, getriebelosen Antrieb verbindbar ist, wobei die Auswerteeinheit (9) eingerichtet ist,- einem Stator (10) und- einem Rotor (17)- eine Rotation des Drehkreuzes (2) mittels des Antriebs (8) zu veranlassen, dadurch gekennzeichnet, dass- eine von extern auf den Türflügel (3) wirkende Kraftschwankung und/oder eine Drehgeschwindigkeitsschwankung und/oder eine Drehmomentschwankung in Abhängigkeit der Drehposition zu ermitteln und- den Stator (10) mit einem anhand der in Abhängigkeit der Drehposition ermittelten Kraftschwankung und/oder der Drehgeschwindigkeitsschwankung und/oder der Drehmomentschwankung vordefinierten elektrischen Signal anzusteuern, mittels dessen die Kraftschwankung und/oder die Drehgeschwindigkeitsschwankung und/oder die Drehmomentschwankung kompensiert werden.
- Karusselltüranordnung nach Anspruch 7, welche eingerichtet ist, ein Verfahren nach einem der vorstehenden Ansprüche 1 bis 6 auszuführen.
- Karusselltüranordnung nach einem der Ansprüche 7 oder 8, wobei der Stator (10) zur feststehenden Montage, insbesondere zur Deckenmontage eingerichtet ist, und mit dem Rotor (17) einen koaxial zur Drehachse (4) des Drehkreuzes (2) angeordneten Luftspalt bildet.
- Karusselltüranordnung nach einem der Ansprüche 7 bis 9 weiter umfassend- einen die Auswerteeinheit (9) umfassenden Frequenzumrichter (25) mit- einer Endstufe (26), wobei- die Auswerteeinheit (9) eingerichtet ist,durch eine Pulsweitenmodulation einen Parameter des elektrischen Signals zur Kompensation der Kraftschwankung und/oder der Drehgeschwindigkeitsschwankung und/oder der Drehmomentschwankung zu realisieren, und- der Frequenzumrichter (25) eingerichtet ist, in Abhängigkeit des pulsweitenmodulierten Signals- die Endstufe (26) mit einer mehrphasigen Repräsentation des elektrischen Signals (34) anzusteuern.
- Karusselltüranordnung nach Anspruch 10 weiter umfassend- einen Anschluss (27) für eine Betriebsspannung und- ein Gehäuse, welchesumfasst, wobei insbesondere der Anschluss (27) für die Betriebsspannung eingerichtet ist, die Auswerteeinheit (9), den Frequenzumrichter (25) und die Endstufe (26) mit elektrischer Energie zu versorgen.- den Frequenzumrichter (25),- die Endstufe (26) und- die Auswerteeinheit (9)
- Karusselltüranordnung nach einem der Ansprüche 7 bis 11, wobei die Auswerteeinheit (9) eingerichtet ist, auf Basis eines Positionssensors (28), insbesondere eines Hallsensors im elektrischen Antrieb (8),- eine aktuelle Drehzahl und/oder- eine aktuelle Position und/oder- eine aktuelle Geschwindigkeitdes Drehkreuzes (2) zu ermitteln.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16202036.6A EP3330472B1 (de) | 2016-12-02 | 2016-12-02 | Karusselltüranordnung und verfahren zur kompensation einer ungleichförmigen externen kraft |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16202036.6A EP3330472B1 (de) | 2016-12-02 | 2016-12-02 | Karusselltüranordnung und verfahren zur kompensation einer ungleichförmigen externen kraft |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3330472A1 EP3330472A1 (de) | 2018-06-06 |
EP3330472B1 true EP3330472B1 (de) | 2020-03-25 |
Family
ID=57482275
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16202036.6A Active EP3330472B1 (de) | 2016-12-02 | 2016-12-02 | Karusselltüranordnung und verfahren zur kompensation einer ungleichförmigen externen kraft |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP3330472B1 (de) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110863912B (zh) * | 2019-10-11 | 2020-12-18 | 清华大学 | 一种利用主动减振的发动机灭缸方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5647173A (en) * | 1994-02-02 | 1997-07-15 | Dorma Gmbh + Co. Kg | Operating method for the operation of a revolving door |
EP3034759A1 (de) * | 2014-12-16 | 2016-06-22 | DORMA Deutschland GmbH | Verfahren zur Steuerung einer Karusselltür |
-
2016
- 2016-12-02 EP EP16202036.6A patent/EP3330472B1/de active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP3330472A1 (de) | 2018-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69726117T2 (de) | Motorantriebsregelung | |
EP1499008B1 (de) | Verfahren und Steuersystem zur elektronischen Kommutierung eines bürstenlosen Gleichstrommotors | |
DE3823487A1 (de) | Tuerschliessverfahren und -anordnung | |
DE102005044899A1 (de) | Servolenkvorrichtung, welche durch einen Motor betrieben wird | |
DE4138194C2 (de) | Verfahren und Vorrichtung zur Erfassung der Position und Bewegungsrichtung translatorisch und/oder rotatorisch bewegter Aggregate | |
EP2226463A2 (de) | Torantrieb mit zwei Motoren | |
DE102014101604A1 (de) | System und Verfahren zum Steuern eines bürstenlosen Gleichstromelektromotors mit sinusförmigem Antrieb für einen elektrischen Kraftfahrzeugaktuator | |
EP1420510A1 (de) | Verfahren zum Justieren einer Sensorvorrichtung zur Bestimmung der Drehlage eines Rotors eines elektronisch kommutierten Motors | |
EP1514342B1 (de) | Verfahren und schaltungsanordnung zum betreiben von schrittmotoren | |
DE3819064C3 (de) | Verfahren zur Steuerung von bürstenlosen Elektromotoren sowie Steuerschaltung hierfür | |
EP2621078A1 (de) | Verfahren und Vorrichtung zum Betreiben eines bürstenlosen Gleichstrommotors bei der Verstellung eines Stellelementes | |
EP3330472B1 (de) | Karusselltüranordnung und verfahren zur kompensation einer ungleichförmigen externen kraft | |
DE112005000321T5 (de) | Antriebsvorrichtung für ein Sonnendach | |
EP3555572B1 (de) | Verfahren und vorrichtung zum bestimmen einer position eines stellelements | |
DE102013005355A1 (de) | Verfahren zum Betrieb eines bürstenlosen Motors und Motor | |
DE102009001955A1 (de) | Verfahren und Verstärker zum Betreiben eines Synchronmotors | |
EP3330473B1 (de) | Karusselltüranordnung und verfahren zur kompensation einer externen kraftwirkung auf einen türflügel | |
EP3330466B1 (de) | Karusselltüranordnung und verfahren zum betrieb einer karusselltüranordnung | |
EP2220315B1 (de) | Möbelantrieb | |
EP3330477B1 (de) | Karusselltüranordnung und verfahren zum positionieren eines drehkreuzes einer karusselltüranordnung | |
DE102006020799A1 (de) | Verriegelungseinrichtung mit einem bürstenlosen Gleichstrom-Antriebsmotor | |
EP3330474B1 (de) | Softwarebasierte funktionsanpassung einer karusselltüranordnung | |
DE102008000707A1 (de) | Verfahren zum Positionieren eines Rotors eines Elektromotors | |
DE10216597A1 (de) | Lenkung mit elektrischer Lenkhilfe | |
DE4402411C2 (de) | Synchronmotor mit permanentmagneterregtem Rotor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20181204 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 502016009261 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: E06B0003900000 Ipc: E05F0015608000 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: E05F 15/75 20150101ALI20190912BHEP Ipc: E05F 15/608 20150101AFI20190912BHEP Ipc: E05F 15/70 20150101ALI20190912BHEP Ipc: E06B 3/90 20060101ALI20190912BHEP |
|
INTG | Intention to grant announced |
Effective date: 20191014 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502016009261 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1248753 Country of ref document: AT Kind code of ref document: T Effective date: 20200415 Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: FI Ref legal event code: FGE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: FREI PATENTANWALTSBUERO AG, CH |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200625 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200626 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200625 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200725 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200818 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502016009261 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 |
|
26N | No opposition filed |
Effective date: 20210112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20201202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20201231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201202 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201231 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201231 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20231228 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240101 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20241210 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20241219 Year of fee payment: 9 Ref country code: FI Payment date: 20241219 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20241220 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20241219 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20241125 Year of fee payment: 9 |