[go: up one dir, main page]

EP3310936B1 - Steel for small-calibre weapon - Google Patents

Steel for small-calibre weapon Download PDF

Info

Publication number
EP3310936B1
EP3310936B1 EP16736530.3A EP16736530A EP3310936B1 EP 3310936 B1 EP3310936 B1 EP 3310936B1 EP 16736530 A EP16736530 A EP 16736530A EP 3310936 B1 EP3310936 B1 EP 3310936B1
Authority
EP
European Patent Office
Prior art keywords
steel
composition
ppm
content
advantageously
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16736530.3A
Other languages
German (de)
French (fr)
Other versions
EP3310936A1 (en
Inventor
Jacques J BELLUS
Dominique Thierree
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aubert and Duval SA
Original Assignee
Aubert and Duval SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aubert and Duval SA filed Critical Aubert and Duval SA
Priority to SI201630662T priority Critical patent/SI3310936T1/en
Priority to PL16736530T priority patent/PL3310936T3/en
Publication of EP3310936A1 publication Critical patent/EP3310936A1/en
Application granted granted Critical
Publication of EP3310936B1 publication Critical patent/EP3310936B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/10Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes shotgun barrels
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41AFUNCTIONAL FEATURES OR DETAILS COMMON TO BOTH SMALLARMS AND ORDNANCE, e.g. CANNONS; MOUNTINGS FOR SMALLARMS OR ORDNANCE
    • F41A21/00Barrels; Gun tubes; Muzzle attachments; Barrel mounting means
    • F41A21/20Barrels or gun tubes characterised by the material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41CSMALLARMS, e.g. PISTOLS, RIFLES; ACCESSORIES THEREFOR
    • F41C3/00Pistols, e.g. revolvers

Definitions

  • the present invention relates to a new steel intended to be used for the manufacture of a small caliber weapon tube, exhibiting good hammering ability and good bursting resistance during excessive inflation of the tube under high pressure.
  • the impact properties of steel are not addressed by this document, and the request AT508777 illustrates in its figure 2 a value in standard impact strength of 30J at - 40 ° C.
  • these high contents of chromium, molybdenum and vanadium require high treatment temperatures for quenching greater than 940 ° C., which can generate an increase in distortions after quenching and accentuates the risk of decarburization.
  • Japanese demand JP2000-080444 also describes a family of steel for gun barrel application. It is a steel with a lower chromium content than conventional steels 3% Cr but with a higher content of Mo and V. However, the family described only achieves a limited level of HRC hardness at 36 HRC. This level of hardness is very far from the levels required for high-end applications: 46-48 HRC. In addition, the claimed low temperature resilience level is low compared to a standard 3% Cr steel, since the minimum claimed is 16 J for a minimum level of 20 J with 3% Cr.
  • the inventors have surprisingly realized that it is possible to obtain a new family of steels which is less expensive than those of the prior art, having a toughness value greater than current steels and in particular at least 40J at -40 ° C, while having a hardness required for high-end applications (46-48 HRC).
  • This family of steels can therefore be used in the manufacture of a high-end small-caliber and therefore high-quality weapon tube having good safety for the user, since this family of steels has good hammering ability. and good resistance to bursting during excessive inflation of the tube under high pressure without being too expensive.
  • This family is characterized by a low Mn content associated with a low Si content, while avoiding the addition of excessively high contents of Cr, Mo and V, particularly expensive elements.
  • the inevitable impurities in particular in the form of lead (Pb), Bismuth (Bi), magnesium (Mg), cobalt (Co), are kept at the lowest level.
  • These impurities are generally due mainly to the manufacturing process and the quality of the oven.
  • the steel composition according to the invention comprises a carbon content (C) of between 0.28 and 0.35% by weight relative to the total weight of the composition.
  • C carbon content
  • the carbon content makes it possible to achieve the desired hardness (46-48 HRC) with a minimum of 0.28% while not being detrimental to impact resistance with a maximum of 0.35 %.
  • a higher content would not make it possible to obtain good impact resistance properties at low temperature, the high carbon content raising the ductile / brittle transition temperature to temperatures close to 0 ° C.
  • the steel composition according to the invention comprises a manganese (Mn) content of between 0.10 and 0.30% by weight relative to the total weight of the composition: a minimum content of 0.10% is essential to ensure deoxidation of the liquid metal in order to obtain less than 15 ppm of oxygen on the product. Furthermore, the Mn content must not be too high to obtain a good level of resilience.
  • the Mn content is between 0.10 and 0.20%, by weight relative to the total weight of the composition.
  • a low content of Mn limited to 0.3% appreciably improves the level of resilience at -40 ° C, and a content even more limited to 0.20% improves even more significantly the level of resilience at -40 ° C , all the more with a suitable tempering time, while keeping sufficient mechanical strength.
  • This low Mn content must be accompanied by a low S content in order to avoid any embrittlement by sulfides with low melting point.
  • the steel composition according to the invention comprises a silicon (Si) content of between 0.10 and 0.20%, by weight relative to the total weight of the composition: in fact, the inventors have noticed that the combination with a low Si content and a low Mn content makes it possible to improve the resilience value at low temperature.
  • the Si content must not be below 0.10% in order to ensure sufficient deoxidation during the preparation of the liquid metal.
  • the steel composition according to the invention comprises a chromium (Cr) content of between 2.80 and 3.40% by weight relative to the total weight of the composition.
  • This content must be at least 2.80% to ensure the high mechanical properties after tempering at a minimum temperature of 530 ° C.
  • This element being expensive it is desirable to limit its addition on an economic level.
  • it is very likely that beyond 3.40% chromium, there is no significant improvement in mechanical properties.
  • the limitation to a chromium content of 3.4% makes it possible to carry out a solution treatment for quenching at 920 ° C. This temperature limitation makes it possible to limit the phenomena of decarburization and to minimize the phenomena of distortion on quenching.
  • a maximum temperature of 940 ° C for the quenching operation is indeed desirable in order to limit the magnification of the austenitic grain which negatively affects the level of resilience at low temperature (-40 ° C).
  • the chromium content is between 2.80 and 3.20%, even more advantageously between 2.90 and 3.10%, by weight relative to the total weight of the composition.
  • the steel composition according to the invention comprises a molybdenum (Mo) content of between 0.70 and 1.60% by weight relative to the total weight of the composition.
  • Mo molybdenum
  • This content must be at least 0.70% to ensure the high mechanical properties after tempering at a minimum temperature of 530 ° C. This element being expensive it is desirable to limit its addition on an economic level.
  • the molybdenum content is between 0.70 and 1.30% by weight relative to the total weight of the composition. Indeed, this range seems to be the best compromise between the mechanical properties and the cost of the steel obtained. Even more advantageously the molybdenum content is between 0.70 and 1.10%, in particular between 0.80 and 0.90%, by weight relative to the total weight of the composition.
  • the steel composition according to the invention comprises a vanadium (V) content of between 0.20 and 0.50% by weight relative to the total weight of the composition.
  • V vanadium
  • a small addition of Vanadium makes it possible to control the size of the austenitic grain. A fine grain size improves the resistance to low temperature resilience.
  • vanadium is also a fairly expensive element. Therefore, the best compromise between the resilience behavior at low temperature and the cost of the steel obtained is between 0.20 and 0.50% by weight.
  • the vanadium content is between 0.20 and 0.40%, even more advantageously between 0.20 and 0.30%, by weight relative to the total weight of the composition.
  • the steel composition according to the invention must not comprise more than 0.025% of aluminum (Al) in percentages by weight relative to the total weight of the composition, in order to avoid the formation of alumina detrimental to the desired properties.
  • Al aluminum
  • the aluminum content must be greater than 0.006%, in particular 0.008%, by weight relative to the total weight of the composition, in order to ensure sufficient deoxidation of the metal, the silicon content being limited. at 0.200%.
  • the aluminum content of the composition according to the present invention is between 0.006 and 0.025%, advantageously between 0.008 and 0.025%, by weight relative to the total weight of the composition.
  • the steel composition according to the present invention has a low residual content in order to limit the risk of embrittlement.
  • a maximum Phosphorus (P) content of 50 ppm, advantageously a maximum of 20 ppm, combined with limited contents of arsenic (As), antimony (Sb) and tin (Sn) with a sum of these three elements less than 100 ppm provides a very good compromise between strength and toughness.
  • the content of tin of the steel composition according to the invention is less than 40 ppm.
  • the arsenic content of the steel composition according to the invention is less than 40 ppm.
  • the antimony content of the steel composition according to the invention is less than 20 ppm.
  • the steel composition according to the invention must not comprise more than 0.10% nickel (Ni) in percentages by weight relative to the total weight of the composition in order to achieve low H 2 contents.
  • Ni nickel
  • the nickel content of the composition according to the present invention is less than or equal to 0.08%.
  • the steel composition according to the invention must not comprise more than 0.10% copper (Cu) in percentages by weight relative to the total weight of the composition, in order to avoid weakening the steel.
  • Cu copper
  • the copper content of the composition according to the present invention is less than or equal to 0.05%.
  • the steel composition according to the invention must not comprise more than 10 ppm of sulfur (S) in percentages by weight relative to the total weight of the composition in order to avoid any embrittlement by sulfides with low melting point.
  • the method according to the present invention therefore comprises a step a) for producing the steel.
  • This step therefore makes it possible to obtain the steel having the composition according to the present invention.
  • Advantageously step a) of preparation is implemented in an electric arc furnace followed by refining in a pocket with degassing treatment (Vacuum Arc Degassing), possibly with a reflow step under conductive slag (ESR) or under vacuum. (VAR), or by VIM-VAR or VIM-ESR methods.
  • step b) of transformation of the steel obtained in step a).
  • step b) consists of a rolling, forging, hammering, stamping or any other means making it possible to correct the steel, even more advantageously it is a rolling step.
  • the method according to the present invention finally comprises a step c) of thermal treatment of the steel comprising an tempering treatment at a temperature of at least 530 ° C, advantageously between 530 and 550 ° C, in particular 545 ° C , for an overall duration of between 2 and 6 hours, advantageously for an overall duration of 4 hours.
  • This tempering heat treatment gives the final mechanical properties of the steel blank.
  • the microstructure obtained is of returned martensite type with possibly the presence of some ferritic ranges in very small proportion.
  • step c) comprises several income treatments, in particular several income treatments of 2 hours each, the added durations of which correspond to the overall duration of said step (that is to say advantageously between 2 and 6 hours, more preferably 4 hours).
  • step c) comprises two or three income treatments of 2 hours each (overall duration of 4 and 6 hours respectively), in particular two income treatments of 2 hours each, which therefore corresponds to an income treatment with an overall duration of 4 hours.
  • step c) can consist of a single income treatment or of several income treatments. However, in a preferred mode, it consists of a single income treatment.
  • Stage c) comprises, before the tempering treatment, quenching at a temperature of at least 900 ° C., advantageously between 900 and 930 ° C., more advantageously of 920 ° C., in particular for between 10 and 30 minutes, especially for 20 minutes. It is a standard treatment well known to those skilled in the art.
  • the heat treatment step c) can be followed by a step d) consisting of a nitriding operation, advantageously at a maximum temperature of 545 ° C. This is a step well known to those skilled in the art.
  • the present invention also relates to a steel blank capable of being obtained by the method according to the invention.
  • This blank is made from steel having the composition according to the present invention and as described above.
  • the steel blank thus obtained has good hammering ability and good ability to withstand bursting during excessive swelling of the tube under high pressure. It has a good compromise between strength and toughness, in particular at low temperature, that is to say at a temperature less than or equal to -40 ° C.
  • the steel blank according to the invention has a hardness of between 46 and 48 HRC measured according to standard ASTM E18 or equivalent standard.
  • the steel blank according to the invention has a resilience KV at -40 ° C of at least 40 Joules, advantageously at least 43 Joules, in particular at least minus 44 Joules, more particularly at least 46 Joules, the resilience being measured according to standard NF-EN ISO 148-1 or equivalent standard.
  • the steel blank according to the invention has a mechanical resistance Rm at ambient temperature of between 1500 and 1600MPa, advantageously between 1510 and 1560 MPa, the mechanical resistance being measured according to NF EN ISO 6892-1 or equivalent standard.
  • the present invention also relates to the use of a steel blank according to the invention or of a steel composition according to the invention for the manufacture of a pressure device element, in particular such as plugs or sleeves, in particular of cylinder head, or tubes of pressure vessels supporting in particular from 4,000 to 10,000 bars, including in particular cannon tubes.
  • a pressure device element in particular such as plugs or sleeves, in particular of cylinder head, or tubes of pressure vessels supporting in particular from 4,000 to 10,000 bars, including in particular cannon tubes.
  • the pressure device element is a barrel tube, in particular of small caliber weapons, more particularly for light weapons, even more advantageously for high-end weapons.
  • the guns thus obtained are of very good quality, and offer very good security for their user.
  • the resilience KV to is measured according to standard NF-EN ISO 148-1
  • the mechanical resistance Rm is measured according to standard NF EN ISO 6892-1
  • the hardness is measured according to standard ASTM E18.
  • Comparative example 1 - casting A (steel composition with Si and Mn contents greater than 0.2%)
  • a standard industrial production of 60 tonnes consisting of a melting in an electric oven including the melting operation itself as well as an advanced dephosphorization operation, followed by a ladle refining operation allowing fine adjustment of the chemical elements and obtaining a good level of deoxidation with degassing treatment at the end of production, making it possible to ensure desulfurization as well as low hydrogen contents (the H 2 content is typically less than 2 ppm and preferably less than 1.5 ppm, in in particular about 1.2 ppm), was used to manufacture a 3% CrMoV steel composition with an Si and Mn content greater than 0.2%.
  • the O 2 content is between 7 and 12 ppm.
  • the casting was rolled into bars.
  • the resilience KV at 20 ° C is 60 Joules minimum, the resilience at -40 ° C is 37.7J. The resilience is therefore less than 40J at -40 ° C.
  • Comparative example 2 - casting B (steel composition with Si and Mn contents greater than 0.2% and low P, As, Sb and Sn contents)
  • the casting is obtained by the same process as that of Example 1.
  • the only difference concerns the chemical composition of the steel. It is shown in Table 2 below. ⁇ u> Table 2 - Chemical composition in% by mass of flow B except (*) in ppm ⁇ /u> VS mn Yes Cr MB V P Or al Cu 0.312 0.483 0.288 3 0.812 0,278 ⁇ 0.002 0,052 0,013 0,036 S * As * Sb * Sn * ⁇ 10 29 ⁇ 15 18
  • the casting was rolled into bars.
  • the resilience values at -40 ° C obtained for flow B with a low residual content (P, As, Sb and Sn), with heat treatments identical to those carried out on flow A, are 38.7J (average of 3 values).
  • a very low P value obtained thanks in particular to an elaboration process particularly followed in an electric furnace by a controlled insufflation of oxygen as well as in the control of the chemical quality of metallic and non-metallic additions, does not allow significantly increase the resilience values at low temperature (-40 ° C), as well as very low residual values As, Sb and Sn, the sum of which is for flow B of 62 ppm.
  • the resilience is therefore less than 40J at - 40 ° C.
  • Example 1 - casting C composition according to the invention
  • the casting is obtained by the same process as that of Example 1.
  • the only difference concerns the chemical composition of the steel. It is indicated in Table 3 below and corresponds to a composition according to the invention.
  • Table 3 Chemical composition in% by mass of flow C except (*) in ppm ⁇ /u> VS mn Yes Cr MB V P Or al Cu 0.312 0.18 0.115 2.98 0.842 0,278 0,002 0.058 0,015 0,035 S * As * Sb * Sn * 9 24 ⁇ 15 30
  • the casting was rolled into bars.
  • the resilience values at -40 ° C obtained for flow C with heat treatments identical to those carried out in flow A reach 43.3J on an average of 6 tests.
  • the hardness obtained remains between 46 and 48 HRC.
  • the austenitic grain size also remains very fine with an ASTM index greater than or equal to 10.
  • Example 2 - casting D (composition according to the invention)
  • the casting is obtained by the same process as that of Example 1.
  • the only difference concerns the chemical composition of the steel. It is shown in Table 4 below. ⁇ u> Table 4 - Chemical composition in% by mass of flow D except (*) in ppm ⁇ /u> VS mn Yes Cr MB V P Or al Cu 0.316 0.188 0,193 2.99 0.847 0,275 0,002 0.053 0.014 0,029 S * As * Sb * Sn * 4 26 17 36
  • the casting was rolled into bars.
  • the resilience values at -40 ° C obtained for casting C with heat treatments identical to those carried out on casting A reach 43 J on an average of 6 tests.
  • the hardness obtained is between 46-48 HRC.
  • the increase in resilience is therefore also significant compared to flows A and B (comparative examples 1 and 2) with a gain of around 15%.
  • the Si and Mn content (less than 0.20%) therefore has a significant impact on the resilience at -40 ° C.
  • the casting is obtained by the same process as that of Example 1.
  • the only difference concerns the chemical composition of the steel. It is shown in Table 5 below. ⁇ u> Table 5 - Chemical composition in% by mass of flow E except (*) in ppm ⁇ /u> VS mn Yes Cr MB V P Or al Cu 0.311 0.454 0.132 3.06 0.841 0.287 ⁇ 0.004 0,046 0,011 0,039 S * As * Sb * Sn * ⁇ 10 34 ⁇ 15 26
  • the casting was rolled into bars.
  • the toughness obtained KV at -40 ° C is lower than that obtained on flows C and D having Mn contents ⁇ 0.200%, while remaining greater than 40J.
  • the casting C (example 1) after its preparation and its rolling into bars underwent a heat treatment at 920 ° C for 20 minutes then one or more steps of tempering at 545 ° C for 2 hours.
  • the number of tempers is easily convertible into an equivalent treatment time for a single tempering operation at 545 ° C.
  • Table 7 shows that a single income treatment with a time corresponding to 2 income treatments at 545 ° C or 3 income treatments at 545 ° C gives very similar results.
  • Table 7 - KV at -40 ° C and Rm as a function of the tempering time at 545 ° C of flow C ⁇ /u> Income time Rm (MPa) Average KV (J) 2 hours 1552 42.7 4 hours 1549 45.3 6 hours 1533 47.5
  • the adaptation of the number of incomes or its equivalent in time of income makes it possible to significantly increase the level of resilience.
  • the gain compared to casting A treated under standard conditions is from 25% to 30% approximately for casting C.
  • casting C Only the casting C allows to pass to a level of resilience greater than 45J with a number of tempering at 545 ° C adapted.
  • the low content of silicon alone (less than 0.2%: casting E) makes it possible to increase the level of resilience up to approximately 44J. It should be noted that in the case of steel with a high content of Si and Mn (casting A), the number of incomes does not influence the level of resilience. The average value in resilience even tends to decrease significantly after the third income treatment.
  • Example 5 Impact of the quenching temperature of the heat treatment on a flow F according to the invention : 920 ° C vs. 960 ° C
  • Casting F is obtained by the same process as that of Example 1. The only difference concerns the chemical composition of the steel. It is shown in Table 9 below. ⁇ u> Table 9 - Chemical composition in% by mass of flow F ⁇ /u> VS mn Yes Cr MB V 0.30 0.19 0.19 3.1 1.1 0.28
  • the resilience value at -40 ° C obtained for casting F with a heat treatment with quenching at 920 ° C and a single income of 2 hours at 545 ° C reaches 42 J; whereas for the same casting F, a heat treatment with quenching at 960 ° C and a single tempering of 2 hours at 545 ° C leads to a resilience value at -40 ° C of 27 J.
  • a high quenching temperature at 960 ° C, therefore degrades the resilience of the steel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)
  • Forging (AREA)

Description

La présente invention concerne un nouvel acier destiné à être utilisé pour la fabrication de tube d'arme de petit calibre, présentant une bonne aptitude au martelage et une bonne résistance à l'éclatement lors d'un gonflement excessif du tube sous forte pression.The present invention relates to a new steel intended to be used for the manufacture of a small caliber weapon tube, exhibiting good hammering ability and good bursting resistance during excessive inflation of the tube under high pressure.

Lors de l'utilisation d'une arme, son canon est soumis à de fortes contraintes thermiques et mécaniques. Il est en particulier important que le canon n'éclate pas lors de la mise à feu de l'arme, ce qui pourrait blesser son utilisateur. Il est donc nécessaire de disposer d'armes ayant une haute sécurité et une grande qualité. Pour cela, il est nécessaire de disposer d'acier ayant de bonnes caractéristiques mécaniques et en particulier une bonne résistance à l'éclatement, même à une température très basse.When using a weapon, its barrel is subjected to strong thermal and mechanical stresses. It is in particular important that the barrel does not burst when firing the weapon, which could injure its user. It is therefore necessary to have weapons with high security and high quality. For this, it is necessary to have available steel having good mechanical characteristics and in particular good resistance to bursting, even at a very low temperature.

Les demandes AT508777 et US 2011/0253270A1 décrivent une famille d'aciers pour la fabrication de tubes d'arme de petit calibre avec des teneurs en éléments principaux plus élevées que les teneurs communément développées pour ces applications. Ainsi en particulier cet acier comprend :

  • 3,6 - 4,4% Cr, avantageusement 3,8 - 4,2 % ;
  • 1,2 - 1,8% Mo, avantageusement 1,4 - 1,6 % et
  • 0,42 - 0,5% V, avantageusement 0,44 - 0,48 %.
The requests AT508777 and US 2011 / 0253270A1 describe a family of steels for the manufacture of small caliber weapon tubes with higher contents of main elements than the contents commonly developed for these applications. Thus in particular this steel comprises:
  • 3.6 - 4.4% Cr, advantageously 3.8 - 4.2%;
  • 1.2 - 1.8% Mo, advantageously 1.4 - 1.6% and
  • 0.42 - 0.5% V, advantageously 0.44 - 0.48%.

Ces documents précisent que ces fortes teneurs en chrome et molybdène ont un effet avantageux sur les comportements de trempe du matériau et ses propriétés à haute température. En effet d'après l'exemple comparatif de la figure 1 du document AT508777 , l'acier V320 qui a une teneur en chrome et en molybdène bien inférieure, ne remplit pas les conditions pour servir de tube à canon dès 390°C. En revanche, la famille d'acier décrite dans ce document permet d'obtenir les propriétés mécaniques désirées avec des températures de revenu supérieures à 560°C, ce qui permet ainsi de présenter des résistances mécaniques à chaud élevées jusqu'à des températures de 500°C. Toutefois l'utilisation d'une teneur en chrome, en molybdène et en vanadium élevée est coûteuse. Par ailleurs, les propriétés de résilience de l'acier ne sont pas abordées par ce document, et la demande AT508777 illustre dans sa figure 2 une valeur en résilience standard de 30J à - 40°C. Or, il serait intéressant de pouvoir disposer d'un acier ayant une meilleure valeur de résilience, en particulier d'au moins 40J à -40 °C, tout en diminuant les coûts de production de cet acier. De plus, ces fortes teneurs en chrome, molybdène et vanadium nécessitent des températures de traitement pour la trempe élevées supérieures à 940°C, ce qui peut générer une augmentation des distorsions après trempe et accentue le risque de décarburation.These documents state that these high contents of chromium and molybdenum have an advantageous effect on the quenching behavior of the material and its properties at high temperature. Indeed according to the comparative example of Figure 1 of the document AT508777 , V320 steel which has a much lower chromium and molybdenum content, does not meet the conditions to serve as a barrel tube from 390 ° C. On the other hand, the steel family described in this document makes it possible to obtain the desired mechanical properties with tempering temperatures above 560 ° C., which thus makes it possible to exhibit high mechanical strengths up to temperatures of 500 ° C. However, the use of a high chromium, molybdenum and vanadium content is expensive. Furthermore, the impact properties of steel are not addressed by this document, and the request AT508777 illustrates in its figure 2 a value in standard impact strength of 30J at - 40 ° C. However, it would be advantageous to be able to have a steel having a better impact value, in particular at least 40J at -40 ° C, while reducing the production costs of this steel. In addition, these high contents of chromium, molybdenum and vanadium require high treatment temperatures for quenching greater than 940 ° C., which can generate an increase in distortions after quenching and accentuates the risk of decarburization.

La demande japonaise JP2000-080444 décrit également une famille d'acier pour application tube d'arme. Il s'agit d'un acier à teneur en chrome plus faible que les aciers conventionnels 3%Cr mais avec une teneur plus élevée en Mo et V. Toutefois la famille décrite ne permet d'atteindre qu'un niveau limité en dureté HRC à 36 HRC. Ce niveau de dureté est très loin des niveaux requis pour des applications haut de gamme : 46-48 HRC. En outre le niveau de résilience basse température revendiqué est faible comparé à un acier 3%Cr standard, puisque le minimum revendiqué est de 16 J pour un niveau minimum de 20 J avec le 3%Cr.Japanese demand JP2000-080444 also describes a family of steel for gun barrel application. It is a steel with a lower chromium content than conventional steels 3% Cr but with a higher content of Mo and V. However, the family described only achieves a limited level of HRC hardness at 36 HRC. This level of hardness is very far from the levels required for high-end applications: 46-48 HRC. In addition, the claimed low temperature resilience level is low compared to a standard 3% Cr steel, since the minimum claimed is 16 J for a minimum level of 20 J with 3% Cr.

Il serait donc intéressant de pouvoir disposer d'un acier ayant une meilleure valeur de résilience, en particulier d'au moins 40J à -40 °C, tout en ayant la dureté requise pour des applications haut de gamme : 46-48 HRC.It would therefore be interesting to be able to have a steel having a better impact strength, in particular at least 40J at -40 ° C, while having the hardness required for high-end applications: 46-48 HRC.

Le brevet US 2 876 095 décrit deux familles d'acier pour application tube d'arme à durée de vie améliorée à l'aide d'addition de terres rares au cours de l'élaboration du métal liquide. Les teneurs en chrome et en molybdène y sont plus basses que celles des autres aciers de l'art antérieur. Mais ce brevet ne décrit pas de propriétés mécaniques particulières et en particulier n'indique pas la résistance mécanique à chaud ni la résilience de l'acier.The patent US 2,876,095 describes two families of steel for application of a weapon tube with improved lifetime using the addition of rare earths during the production of the liquid metal. The chromium and molybdenum contents are lower there than those of other steels of the prior art. However, this patent does not describe any particular mechanical properties and in particular does not indicate the mechanical strength when hot or the resilience of the steel.

Le brevet US 4 622 080 décrit un acier pour tube à canon dont la teneur en manganèse est de 0,50-1,00%.The patent US 4,622,080 describes a steel for a barrel tube, the manganese content of which is 0.50-1.00%.

Les inventeurs se sont aperçus de manière surprenante, qu'il était possible d'obtenir une nouvelle famille d'aciers moins coûteuse que celles de l'art antérieure, ayant une valeur de résilience supérieure aux aciers actuels et en particulier d'au moins 40J à -40 °C, tout en ayant une dureté requise pour des applications haut de gamme (46-48 HRC). Cette famille d'aciers peut donc être utilisée dans la fabrication de tube d'arme de petit calibre haut de gamme et donc de haute qualité et ayant une bonne sécurité pour l'utilisateur, puisque cette famille d'aciers présente une bonne aptitude au martelage et une bonne résistance à l'éclatement lors d'un gonflement excessif du tube sous forte pression sans être trop coûteuse. Cette famille est caractérisée par une faible teneur en Mn associée à une faible teneur en Si, tout en évitant l'ajout de trop fortes teneurs en Cr, Mo et V, éléments particulièrement coûteux.The inventors have surprisingly realized that it is possible to obtain a new family of steels which is less expensive than those of the prior art, having a toughness value greater than current steels and in particular at least 40J at -40 ° C, while having a hardness required for high-end applications (46-48 HRC). This family of steels can therefore be used in the manufacture of a high-end small-caliber and therefore high-quality weapon tube having good safety for the user, since this family of steels has good hammering ability. and good resistance to bursting during excessive inflation of the tube under high pressure without being too expensive. This family is characterized by a low Mn content associated with a low Si content, while avoiding the addition of excessively high contents of Cr, Mo and V, particularly expensive elements.

La présente invention concerne donc une composition d'acier étant constituée par:

  • Carbone : 0,28-0,35 ;
  • Manganèse : 0,10- 0,30, de préférence 0,10-0,20 ;
  • Silicium : 0,10-0,20 ;
  • Chrome : 2,80-3,40;
  • Molybdène : 0,70-1,60, de préférence 0,70-1,30 ;
  • Vanadium : 0,20-0,50, de préférence 0,20-0,40;
  • Phosphore : ≤0,005;
  • Nickel : ≤ 0,10;
  • Aluminium : ≤0,025, de préférence 0,006 - 0,025 ;
  • Cuivre : ≤ 0,10;
  • Arsenic + Antimoine + Etain : < 100 ppm;
  • Soufre : < 10ppm
  • Fer : solde
en pourcentages en poids de la composition totale, ainsi que les impuretés inévitables.The present invention therefore relates to a steel composition consisting of:
  • Carbon: 0.28-0.35;
  • Manganese: 0.10-0.30, preferably 0.10-0.20;
  • Silicon: 0.10-0.20;
  • Chrome: 2.80-3.40;
  • Molybdenum: 0.70-1.60, preferably 0.70-1.30;
  • Vanadium: 0.20-0.50, preferably 0.20-0.40;
  • Phosphorus: ≤0.005;
  • Nickel: ≤ 0.10;
  • Aluminum: ≤0.025, preferably 0.006 - 0.025;
  • Copper: ≤ 0.10;
  • Arsenic + Antimony + Tin: <100 ppm;
  • Sulfur: <10ppm
  • Iron: balance
in percentages by weight of the total composition, as well as the inevitable impurities.

En particulier les impuretés inévitables, notamment sous forme de plomb (Pb), de Bismuth (Bi), de magnésium (Mg), de cobalt (Co), sont maintenues au plus bas niveau. Ces impuretés sont généralement dues essentiellement au procédé de fabrication et à la qualité de l'enfournement.In particular the inevitable impurities, in particular in the form of lead (Pb), Bismuth (Bi), magnesium (Mg), cobalt (Co), are kept at the lowest level. These impurities are generally due mainly to the manufacturing process and the quality of the oven.

La composition d'acier selon l'invention comprend une teneur en carbone (C) comprise entre 0,28 et 0,35% en poids par rapport au poids total de la composition. En effet la teneur en carbone permet d'assurer l'atteinte de la dureté recherchée (46-48 HRC) avec un minimum à 0,28% tout en n'étant pas préjudiciable à la résistance au choc avec un maximum à 0,35%. Une teneur plus élevée ne permettrait pas d'obtenir de bonnes propriétés en résistance au choc à basse température, la teneur en carbone élevée remontant la température de transition ductile/fragile vers des températures proches de 0°C.The steel composition according to the invention comprises a carbon content (C) of between 0.28 and 0.35% by weight relative to the total weight of the composition. Indeed, the carbon content makes it possible to achieve the desired hardness (46-48 HRC) with a minimum of 0.28% while not being detrimental to impact resistance with a maximum of 0.35 %. A higher content would not make it possible to obtain good impact resistance properties at low temperature, the high carbon content raising the ductile / brittle transition temperature to temperatures close to 0 ° C.

La composition d'acier selon l'invention comprend une teneur en manganèse (Mn) comprise entre 0,10 et 0,30% en poids par rapport au poids total de la composition: une teneur minimale à 0,10% est indispensable pour assurer une désoxydation du métal liquide afin d'obtenir moins de 15 ppm d'oxygène sur produit. Par ailleurs la teneur en Mn ne doit pas être trop élevée pour obtenir de bon niveau de résilience. Avantageusement la teneur en Mn est comprise entre 0,10 et 0,20%, en poids par rapport au poids total de la composition. En effet, une faible teneur en Mn limitée à 0,3% améliore sensiblement le niveau de résilience à -40°C, et une teneur encore plus limitée à 0,20 % améliore encore plus significativement le niveau de résilience à -40 °C, d'autant plus avec un temps de revenu adapté, tout en gardant une résistance mécanique suffisante. Cette faible teneur en Mn doit s'accompagner d'une faible teneur en S afin d'éviter toute fragilisation par des sulfures à bas point de fusion.The steel composition according to the invention comprises a manganese (Mn) content of between 0.10 and 0.30% by weight relative to the total weight of the composition: a minimum content of 0.10% is essential to ensure deoxidation of the liquid metal in order to obtain less than 15 ppm of oxygen on the product. Furthermore, the Mn content must not be too high to obtain a good level of resilience. Advantageously, the Mn content is between 0.10 and 0.20%, by weight relative to the total weight of the composition. Indeed, a low content of Mn limited to 0.3% appreciably improves the level of resilience at -40 ° C, and a content even more limited to 0.20% improves even more significantly the level of resilience at -40 ° C , all the more with a suitable tempering time, while keeping sufficient mechanical strength. This low Mn content must be accompanied by a low S content in order to avoid any embrittlement by sulfides with low melting point.

La composition d'acier selon l'invention comprend une teneur en Silicium (Si) comprise entre 0,10 et 0,20%, en poids par rapport au poids total de la composition: en effet, les inventeurs se sont aperçus que la combinaison d'une basse teneur en Si et d'une basse teneur en Mn permet d'améliorer la valeur de résilience à basse température. Toutefois, la teneur en Si ne doit pas être en dessous de 0,10% afin d'assurer une désoxydation suffisante au cours de l'élaboration du métal liquide.The steel composition according to the invention comprises a silicon (Si) content of between 0.10 and 0.20%, by weight relative to the total weight of the composition: in fact, the inventors have noticed that the combination with a low Si content and a low Mn content makes it possible to improve the resilience value at low temperature. However, the Si content must not be below 0.10% in order to ensure sufficient deoxidation during the preparation of the liquid metal.

La composition d'acier selon l'invention comprend une teneur en chrome (Cr) comprise entre 2,80 et 3,40 % en poids par rapport au poids total la composition. Cette teneur doit être d'au minimum 2,80 % pour assurer les propriétés mécaniques élevées après revenu à une température minimale de 530°C. Cet élément étant couteux il est souhaitable de limiter son addition sur un plan économique. En outre il est fort probable qu'au-delà de 3,40 % de chrome, il n'y ait pas d'amélioration significative des propriétés mécaniques. En outre la limitation à une teneur en chrome à 3,4% permet de réaliser un traitement de mise en solution pour la trempe à 920°C. Cette limitation en température permet de limiter les phénomènes de décarburation et de minimiser les phénomènes de distorsion à la trempe. Une température maximale de 940°C pour l'opération de trempe est en effet souhaitable afin de limiter le grossissement du grain austénitique ce qui affecte négativement le niveau de résilience à basse température (-40°C). De façon avantageuse la teneur en chrome est comprise entre 2,80 et 3,20 %, de façon encore plus avantageuse entre 2,90 et 3,10 %, en poids par rapport au poids total de la composition.The steel composition according to the invention comprises a chromium (Cr) content of between 2.80 and 3.40% by weight relative to the total weight of the composition. This content must be at least 2.80% to ensure the high mechanical properties after tempering at a minimum temperature of 530 ° C. This element being expensive it is desirable to limit its addition on an economic level. In addition, it is very likely that beyond 3.40% chromium, there is no significant improvement in mechanical properties. In addition, the limitation to a chromium content of 3.4% makes it possible to carry out a solution treatment for quenching at 920 ° C. This temperature limitation makes it possible to limit the phenomena of decarburization and to minimize the phenomena of distortion on quenching. A maximum temperature of 940 ° C for the quenching operation is indeed desirable in order to limit the magnification of the austenitic grain which negatively affects the level of resilience at low temperature (-40 ° C). Advantageously, the chromium content is between 2.80 and 3.20%, even more advantageously between 2.90 and 3.10%, by weight relative to the total weight of the composition.

La composition d'acier selon l'invention comprend une teneur en molybdène (Mo) comprise entre 0,70 et 1,60% en poids par rapport au poids total la composition. Cette teneur doit être d'au minimum 0,70% pour assurer les propriétés mécaniques élevées après revenu à une température minimale de 530°C. Cet élément étant couteux il est souhaitable de limiter son addition sur un plan économique. De façon avantageuse la teneur en molybdène est comprise entre 0,70 et 1,30% en poids par rapport au poids total de la composition. En effet cette gamme semble être le meilleur compromis entre les propriétés mécaniques et le coût de l'acier obtenu. De façon encore plus avantageuse la teneur en molybdène est comprise entre 0,70 et 1,10%, en particulier entre 0,80 et 0,90%, en poids par rapport au poids total de la composition.The steel composition according to the invention comprises a molybdenum (Mo) content of between 0.70 and 1.60% by weight relative to the total weight of the composition. This content must be at least 0.70% to ensure the high mechanical properties after tempering at a minimum temperature of 530 ° C. This element being expensive it is desirable to limit its addition on an economic level. Advantageously, the molybdenum content is between 0.70 and 1.30% by weight relative to the total weight of the composition. Indeed, this range seems to be the best compromise between the mechanical properties and the cost of the steel obtained. Even more advantageously the molybdenum content is between 0.70 and 1.10%, in particular between 0.80 and 0.90%, by weight relative to the total weight of the composition.

La composition d'acier selon l'invention comprend une teneur en vanadium (V) comprise entre 0,20 et 0,50% en poids par rapport au poids total de la composition. En effet, une faible addition de Vanadium permet de contrôler la taille de grain austénitique. Une taille de grain fine permet d'améliorer la tenue en résilience basse température. Toutefois le vanadium est également un élément assez coûteux. Donc le meilleur compromis entre la tenue en résilience à basse température et le coût de l'acier obtenu se situe entre 0,20 et 0,50% en poids. De façon avantageuse, la teneur en vanadium est comprise entre 0,20 et 0,40%, de façon encore plus avantageuse entre 0,20 et 0,30%, en poids par rapport au poids total de la composition.The steel composition according to the invention comprises a vanadium (V) content of between 0.20 and 0.50% by weight relative to the total weight of the composition. Indeed, a small addition of Vanadium makes it possible to control the size of the austenitic grain. A fine grain size improves the resistance to low temperature resilience. However, vanadium is also a fairly expensive element. Therefore, the best compromise between the resilience behavior at low temperature and the cost of the steel obtained is between 0.20 and 0.50% by weight. Advantageously, the vanadium content is between 0.20 and 0.40%, even more advantageously between 0.20 and 0.30%, by weight relative to the total weight of the composition.

La composition d'acier selon l'invention ne doit pas comprendre plus de 0,025% d'aluminium (Al) en pourcentages en poids par rapport au poids total la composition, afin d'éviter la formation d'alumine préjudiciable aux propriétés recherchées. Dans un mode de réalisation avantageux la teneur en aluminium doit être supérieure à 0,006%, en particulier à 0,008 %, en poids par rapport au poids total de la composition, afin d'assurer une désoxydation suffisante du métal, la teneur en Silicium étant limitée à 0,200%. Ainsi dans un mode de réalisation particulier, la teneur en aluminium de la composition selon la présente invention est comprise entre 0,006 et 0,025 %, avantageusement entre 0,008 et 0,025 %, en poids par rapport au poids total de la composition.The steel composition according to the invention must not comprise more than 0.025% of aluminum (Al) in percentages by weight relative to the total weight of the composition, in order to avoid the formation of alumina detrimental to the desired properties. In an advantageous embodiment, the aluminum content must be greater than 0.006%, in particular 0.008%, by weight relative to the total weight of the composition, in order to ensure sufficient deoxidation of the metal, the silicon content being limited. at 0.200%. Thus, in a particular embodiment, the aluminum content of the composition according to the present invention is between 0.006 and 0.025%, advantageously between 0.008 and 0.025%, by weight relative to the total weight of the composition.

La composition d'acier selon la présente invention présente une faible teneur en résiduels afin de limiter le risque de fragilisation. Ainsi une teneur en Phosphore (P) maximum de 50 ppm, avantageusement un maximum de 20 ppm, combinée à des teneurs limitées en arsenic (As), antimoine (Sb) et étain (Sn) avec une somme de ces trois éléments inférieure à 100 ppm permet d'obtenir un très bon compromis résistance/ténacité. Dans un mode de réalisation avantageux, la teneur en étain de la composition d'acier selon l'invention est inférieure à 40 ppm. Dans un autre mode de réalisation avantageux, la teneur en arsenic de la composition d'acier selon l'invention est inférieure à 40ppm. Dans encore un autre mode de réalisation avantageux, la teneur en antimoine de la composition d'acier selon l'invention est inférieure à 20ppm.The steel composition according to the present invention has a low residual content in order to limit the risk of embrittlement. Thus a maximum Phosphorus (P) content of 50 ppm, advantageously a maximum of 20 ppm, combined with limited contents of arsenic (As), antimony (Sb) and tin (Sn) with a sum of these three elements less than 100 ppm provides a very good compromise between strength and toughness. In an advantageous embodiment, the content of tin of the steel composition according to the invention is less than 40 ppm. In another advantageous embodiment, the arsenic content of the steel composition according to the invention is less than 40 ppm. In yet another advantageous embodiment, the antimony content of the steel composition according to the invention is less than 20 ppm.

La composition d'acier selon l'invention ne doit pas comprendre plus de 0,10% de nickel (Ni) en pourcentages en poids par rapport au poids total de la composition afin d'atteindre des teneurs en H2 faibles. Dans un mode de réalisation particulier, la teneur en nickel de la composition selon la présente invention est inférieure ou égale à 0,08%.The steel composition according to the invention must not comprise more than 0.10% nickel (Ni) in percentages by weight relative to the total weight of the composition in order to achieve low H 2 contents. In a particular embodiment, the nickel content of the composition according to the present invention is less than or equal to 0.08%.

La composition d'acier selon l'invention ne doit pas comprendre plus de 0,10% de cuivre (Cu) en pourcentages en poids par rapport au poids total de la composition, afin d'éviter de fragiliser l'acier. Dans un mode de réalisation particulier, la teneur en cuivre de la composition selon la présente invention est inférieure ou égale à 0,05%.The steel composition according to the invention must not comprise more than 0.10% copper (Cu) in percentages by weight relative to the total weight of the composition, in order to avoid weakening the steel. In a particular embodiment, the copper content of the composition according to the present invention is less than or equal to 0.05%.

La composition d'acier selon l'invention ne doit pas comprendre plus de 10ppm de soufre (S) en pourcentages en poids par rapport au poids total de la composition afin d'éviter toute fragilisation par des sulfures à bas point de fusion.The steel composition according to the invention must not comprise more than 10 ppm of sulfur (S) in percentages by weight relative to the total weight of the composition in order to avoid any embrittlement by sulfides with low melting point.

Dans un mode de réalisation particulièrement avantageux, la composition d'acier selon la présente invention est constituée par:

  • Carbone : 0,28-0,35 ;
  • Manganèse : 0,10-0,20 ;
  • Silicium : 0,10-0,20 ;
  • Chrome : 2,80-3,40;
  • Molybdène : 0,70-1,30 ;
  • Vanadium : 0,20-0,40;
  • Phosphore : ≤0,005;
  • Nickel : ≤ 0,10;
  • Aluminium : ≤0,025, de préférence 0,006 - 0,025 ;
  • Cuivre : ≤ 0,10;
  • Arsenic + Antimoine + Etain : < 100 ppm;
  • Soufre : < 10ppm
  • Fer : solde
en pourcentages en poids de la composition totale, ainsi que les impuretés inévitables.In a particularly advantageous embodiment, the steel composition according to the present invention consists of:
  • Carbon: 0.28-0.35;
  • Manganese: 0.10-0.20;
  • Silicon: 0.10-0.20;
  • Chrome: 2.80-3.40;
  • Molybdenum: 0.70-1.30;
  • Vanadium: 0.20-0.40;
  • Phosphorus: ≤0.005;
  • Nickel: ≤ 0.10;
  • Aluminum: ≤0.025, preferably 0.006 - 0.025;
  • Copper: ≤ 0.10;
  • Arsenic + Antimony + Tin: <100 ppm;
  • Sulfur: <10ppm
  • Iron: balance
in percentages by weight of the total composition, as well as the inevitable impurities.

La présente invention concerne également un procédé de fabrication d'une ébauche en acier ayant la composition d'acier selon l'invention, caractérisé en ce qu'il comprend :

  1. a) une étape d'élaboration de l'acier ;
  2. b) une étape de transformation de l'acier
  3. c) un traitement thermique de l'acier comprenant une trempe à une température d'au moins 900°C et un traitement de revenu à une température d'au moins 530°C, avantageusement comprise entre 530 et 550°C, pendant une durée globale comprise entre 2 et 6 heures, avantageusement pendant une durée globale de 4 heures.
The present invention also relates to a process for manufacturing a steel blank having the steel composition according to the invention, characterized in that it comprises:
  1. a) a stage of steel making;
  2. b) a steel transformation stage
  3. c) a heat treatment of the steel comprising a quenching at a temperature of at least 900 ° C and an tempering treatment at a temperature of at least 530 ° C, advantageously between 530 and 550 ° C, for a period overall between 2 and 6 hours, advantageously for an overall duration of 4 hours.

Le procédé selon la présente invention comprend donc une étape a) d'élaboration de l'acier. Cette étape permet donc l'obtention de l'acier ayant la composition selon la présente invention. Avantageusement l'étape a) d'élaboration est mise en œuvre en four électrique à arc suivi d'un affinage en poche avec traitement de dégazage (Vacuum Arc Degassing), avec éventuellement une étape de refusion sous laitier conducteur (ESR) ou sous vide (VAR), ou par des procédés VIM-VAR ou VIM-ESR.The method according to the present invention therefore comprises a step a) for producing the steel. This step therefore makes it possible to obtain the steel having the composition according to the present invention. Advantageously step a) of preparation is implemented in an electric arc furnace followed by refining in a pocket with degassing treatment (Vacuum Arc Degassing), possibly with a reflow step under conductive slag (ESR) or under vacuum. (VAR), or by VIM-VAR or VIM-ESR methods.

L'élaboration par mise en oeuvre en four électrique à arc suivi d'un affinage en poche avec traitement de dégazage est le plus économique. Il permet d'obtenir un bon état inclusionnaire et des teneurs en gaz dissous faibles, en particulier des teneurs en H2 faibles. Toutefois un traitement de refusion sous laitier conducteur ou sous vide donne des résultats similaires. Ces procédés sont bien connus de l'homme du métier.The development by implementation in an electric arc furnace followed by a pocket refining with degassing treatment is the most economical. It makes it possible to obtain a good inclusive state and low dissolved gas contents, in particular low H 2 contents. However, a reflow treatment under conductive slag or under vacuum gives similar results. These methods are well known to those skilled in the art.

Le procédé selon la présente invention comprend en outre une étape b) de transformation de l'acier obtenu à l'étape a). Avantageusement, l'étape b) consiste en une étape de laminage, forgeage, martelage, matriçage ou tout autre moyen permettant de corroyer l'acier, de façon encore plus avantageuse il s'agit d'une étape de laminage.The method according to the present invention further comprises a step b) of transformation of the steel obtained in step a). Advantageously, step b) consists of a rolling, forging, hammering, stamping or any other means making it possible to correct the steel, even more advantageously it is a rolling step.

Le procédé selon la présente invention comprend enfin une étape c) de traitement thermique de l'acier comprenant un traitement de revenu à une température d'au moins 530°C, avantageusement comprise entre 530 et 550°C, en particulier de 545 °C, pendant une durée globale comprise entre 2 et 6 heures, avantageusement pendant une durée globale de 4 heures.The method according to the present invention finally comprises a step c) of thermal treatment of the steel comprising an tempering treatment at a temperature of at least 530 ° C, advantageously between 530 and 550 ° C, in particular 545 ° C , for an overall duration of between 2 and 6 hours, advantageously for an overall duration of 4 hours.

Ce traitement thermique de revenu donne les propriétés mécaniques finales de l'ébauche d'acier. La microstructure obtenue est de type martensite revenue avec éventuellement présence de quelques plages ferritiques en proportion très faible.This tempering heat treatment gives the final mechanical properties of the steel blank. The microstructure obtained is of returned martensite type with possibly the presence of some ferritic ranges in very small proportion.

Dans un mode de réalisation particulier, l'étape c) comprend plusieurs traitements de revenu, en particulier plusieurs traitements de revenu de 2 heures chacun, dont les durées additionnées correspondent à la durée globale de ladite étape (c'est-à-dire avantageusement entre 2 et 6 heures, plus avantageusement 4 heures). Dans un mode de réalisation avantageux l'étape c) comprend deux ou trois traitements de revenu de 2 heures chacun (durée globale de 4 et 6 heures respectivement), en particulier deux traitements de revenu de 2 heures chacun, ce qui correspond donc à un traitement de revenu ayant une durée globale de 4 heures.In a particular embodiment, step c) comprises several income treatments, in particular several income treatments of 2 hours each, the added durations of which correspond to the overall duration of said step (that is to say advantageously between 2 and 6 hours, more preferably 4 hours). In an advantageous embodiment, step c) comprises two or three income treatments of 2 hours each (overall duration of 4 and 6 hours respectively), in particular two income treatments of 2 hours each, which therefore corresponds to an income treatment with an overall duration of 4 hours.

Ainsi donc, l'étape c) peut consister en un seul traitement de revenu ou en plusieurs traitements de revenu. Toutefois dans un mode préféré, elle consiste en un unique traitement de revenu.Thus, step c) can consist of a single income treatment or of several income treatments. However, in a preferred mode, it consists of a single income treatment.

L'étape c) comprend avant le traitement de revenu, une trempe à une température d'au moins 900 °C, avantageusement comprise entre 900 et 930°C, plus avantageusement de 920°C, en particulier pendant entre 10 et 30 minutes, plus particulièrement pendant 20 minutes. Il s'agit d'un traitement standard bien connu de l'homme du métier.Stage c) comprises, before the tempering treatment, quenching at a temperature of at least 900 ° C., advantageously between 900 and 930 ° C., more advantageously of 920 ° C., in particular for between 10 and 30 minutes, especially for 20 minutes. It is a standard treatment well known to those skilled in the art.

Dans encore un mode de réalisation particulier, l'étape de traitement thermique c) peut être suivie par une étape d) consistant en une opération de nitruration, avantageusement à une température au maximum de 545 °C. Il s'agit d'une étape bien connue de l'homme du métier.In yet another particular embodiment, the heat treatment step c) can be followed by a step d) consisting of a nitriding operation, advantageously at a maximum temperature of 545 ° C. This is a step well known to those skilled in the art.

La présente invention concerne également une ébauche d'acier susceptible d'être obtenue par le procédé selon l'invention. Cette ébauche est faite à base d'acier ayant la composition selon la présente invention et telle que décrite ci-dessus.The present invention also relates to a steel blank capable of being obtained by the method according to the invention. This blank is made from steel having the composition according to the present invention and as described above.

Grâce aux traitements thermiques de revenu du procédé selon l'invention, l'ébauche d'acier ainsi obtenue présente une bonne aptitude au martelage et une bonne aptitude à la résistance à l'éclatement lors d'un gonflement excessif du tube sous forte pression. Elle présente un bon compromis résistance/ténacité, en particulier à basse température, c'est-à-dire à une température inférieure ou égale à -40 °C.Thanks to the heat treatment treatments of the process according to the invention, the steel blank thus obtained has good hammering ability and good ability to withstand bursting during excessive swelling of the tube under high pressure. It has a good compromise between strength and toughness, in particular at low temperature, that is to say at a temperature less than or equal to -40 ° C.

Dans un mode de réalisation de la présente invention, l'ébauche d'acier selon l'invention présente une dureté comprise entre 46 et 48 HRC mesurée selon la norme ASTM E18 ou norme équivalente.In one embodiment of the present invention, the steel blank according to the invention has a hardness of between 46 and 48 HRC measured according to standard ASTM E18 or equivalent standard.

Dans un autre mode de réalisation de la présente invention, l'ébauche d'acier selon l'invention présente une résilience KV à -40°C d'au moins 40 Joules, avantageusement d'au moins 43 Joules, en particulier d'au moins 44 Joules, encore plus particulièrement d'au moins 46 Joules, la résilience étant mesurée selon la norme NF-EN ISO 148-1 ou norme équivalente.In another embodiment of the present invention, the steel blank according to the invention has a resilience KV at -40 ° C of at least 40 Joules, advantageously at least 43 Joules, in particular at least minus 44 Joules, more particularly at least 46 Joules, the resilience being measured according to standard NF-EN ISO 148-1 or equivalent standard.

Dans encore un autre mode de réalisation de la présente invention, l'ébauche d'acier selon l'invention présente une résistance mécanique Rm à la température ambiante comprise entre 1500 et 1600MPa, avantageusement entre 1510 et 1560 MPa, la résistance mécanique étant mesurée selon la norme NF EN ISO 6892-1 ou norme équivalente.In yet another embodiment of the present invention, the steel blank according to the invention has a mechanical resistance Rm at ambient temperature of between 1500 and 1600MPa, advantageously between 1510 and 1560 MPa, the mechanical resistance being measured according to NF EN ISO 6892-1 or equivalent standard.

La présente invention concerne également l'utilisation d'une ébauche d'acier selon l'invention ou d'une composition d'acier selon l'invention pour la fabrication d'un élément d'appareil à pression, notamment tels que des bouchons ou manchons, notamment de culasse, ou des tubes d'appareils à pression supportant notamment de 4000 à 10 000 bars, dont notamment des tubes de canons.The present invention also relates to the use of a steel blank according to the invention or of a steel composition according to the invention for the manufacture of a pressure device element, in particular such as plugs or sleeves, in particular of cylinder head, or tubes of pressure vessels supporting in particular from 4,000 to 10,000 bars, including in particular cannon tubes.

Avantageusement l'élément d'appareil à pression est un tube de canon, en particulier d'armes de petits calibres, plus particulièrement pour des armes légères, encore plus avantageusement pour des armes haut de gamme. Les canons ainsi obtenus sont de très bonne qualité, et présentent une très bonne sécurité pour leur utilisateur.Advantageously, the pressure device element is a barrel tube, in particular of small caliber weapons, more particularly for light weapons, even more advantageously for high-end weapons. The guns thus obtained are of very good quality, and offer very good security for their user.

L'invention sera mieux comprise à la lecture des exemples qui suivent qui sont donnés à titre indicatif non limitatif.The invention will be better understood on reading the examples which follow which are given as a non-limiting indication.

Dans les exemples, sauf indication contraire, tous les pourcentages sont exprimés en poids, la température est exprimée en degré Celsius et la pression est la pression atmosphérique.In the examples, unless otherwise indicated, all the percentages are expressed by weight, the temperature is expressed in degrees Celsius and the pressure is atmospheric pressure.

En outre, la résilience KV à est mesurée selon la norme NF-EN ISO 148-1, la résistance mécanique Rm est mesurée selon la norme NF EN ISO 6892-1 et la dureté est mesurée selon la norme ASTM E18.In addition, the resilience KV to is measured according to standard NF-EN ISO 148-1, the mechanical resistance Rm is measured according to standard NF EN ISO 6892-1 and the hardness is measured according to standard ASTM E18.

Exemple comparatif 1 - coulée A (composition d'acier avec teneurs en Si et en Mn supérieures à 0,2%) Comparative example 1 - casting A (steel composition with Si and Mn contents greater than 0.2%)

Une élaboration industrielle standard de 60 tonnes composée d'une fusion en four électrique comprenant l'opération de fusion proprement dite ainsi qu'une opération de déphosphoration poussée, suivie d'une opération affinage en poche permettant d'ajuster finement les éléments chimiques et obtenir un bon niveau de désoxydation avec traitement de dégazage en fin d'élaboration permettant d'assurer une désulfuration ainsi que de faibles teneurs en hydrogène (la teneur en H2 est typiquement inférieure à 2 ppm et de préférence inférieure à 1,5 ppm, en particulier d'environ 1,2ppm), a été utilisée pour fabriquer une composition d'acier 3%CrMoV avec teneur en Si et en Mn supérieure à 0,2%. La composition chimique de la composition d'acier obtenue est reportée dans le tableau 1 ci-après : Tableau 1 - Composition chimique en %massique de la coulée A sauf (*) en ppm C Mn Si Cr Mo V P Ni Al Cu 0,321 0,529 0,287 2,96 0,841 0,286 0,0044 0,086 0,012 0,038 S* As* Sb* Sn* <10 26 <15 37 A standard industrial production of 60 tonnes consisting of a melting in an electric oven including the melting operation itself as well as an advanced dephosphorization operation, followed by a ladle refining operation allowing fine adjustment of the chemical elements and obtaining a good level of deoxidation with degassing treatment at the end of production, making it possible to ensure desulfurization as well as low hydrogen contents (the H 2 content is typically less than 2 ppm and preferably less than 1.5 ppm, in in particular about 1.2 ppm), was used to manufacture a 3% CrMoV steel composition with an Si and Mn content greater than 0.2%. The chemical composition of the steel composition obtained is given in Table 1 below: <u> Table 1 - Chemical composition in% by mass of flow A except (*) in ppm </u> VS mn Yes Cr MB V P Or al Cu 0,321 0.529 0.287 2.96 0.841 0.286 0.0044 0.086 0.012 0,038 S * As * Sb * Sn * <10 26 <15 37

La teneur en O2 est comprise entre 7 et 12ppm.The O 2 content is between 7 and 12 ppm.

La coulée a été laminée en barres.The casting was rolled into bars.

Les propriétés mécaniques obtenues après traitement thermique à 920°C, pendant 20 minutes et revenu à 545°C durant 2 heures atteignent un niveau de dureté de 46 HRC avec une taille de grain relativement fine supérieure à un indice 10 ASTM. La résilience KV à 20°C est de 60 Joules minimum, la résilience à -40°C est de 37,7J. La résilience est donc inférieure à 40J à -40°C.The mechanical properties obtained after heat treatment at 920 ° C for 20 minutes and returned to 545 ° C for 2 hours reach a hardness level of 46 HRC with a relatively fine grain size greater than an ASTM 10 index. The resilience KV at 20 ° C is 60 Joules minimum, the resilience at -40 ° C is 37.7J. The resilience is therefore less than 40J at -40 ° C.

Exemple comparatif 2 - coulée B (composition d'acier avec teneurs en Si et en Mn supérieures à 0,2% et faibles teneurs en P, As, Sb et Sn) Comparative example 2 - casting B (steel composition with Si and Mn contents greater than 0.2% and low P, As, Sb and Sn contents)

La coulée est obtenue par le même procédé que celui de l'exemple 1. La seule différence concerne la composition chimique de l'acier. Elle est indiquée dans le tableau 2 ci-dessous. Tableau 2 - Composition chimique en %massique de la coulée B sauf (*) en ppm C Mn Si Cr Mo V P Ni Al Cu 0,312 0,483 0,288 3 0,812 0,278 <0,002 0,052 0,013 0,036 S* As* Sb* Sn* <10 29 <15 18 The casting is obtained by the same process as that of Example 1. The only difference concerns the chemical composition of the steel. It is shown in Table 2 below. <u> Table 2 - Chemical composition in% by mass of flow B except (*) in ppm </u> VS mn Yes Cr MB V P Or al Cu 0.312 0.483 0.288 3 0.812 0,278 <0.002 0,052 0,013 0,036 S * As * Sb * Sn * <10 29 <15 18

La coulée a été laminée en barres. Les valeurs de résilience à -40°C obtenues pour la coulée B avec une faible teneur en résiduels (P, As, Sb et Sn), avec des traitements thermiques identiques à ceux menés sur la coulée A, sont de 38,7J (moyenne de 3 valeurs). Ainsi une très faible valeur en P, obtenue grâce notamment à un procédé d'élaboration particulièrement suivi au four électrique par une insufflation contrôlée d'oxygène ainsi que dans la maîtrise de la qualité chimique des additions métalliques et non métalliques, ne permet pas d'augmenter significativement les valeurs de résilience à basse température (-40°C), de même que de très faibles valeurs en résiduels As, Sb et Sn dont la somme est pour la coulée B de 62 ppm. La résilience est donc inférieure à 40J à - 40°C.The casting was rolled into bars. The resilience values at -40 ° C obtained for flow B with a low residual content (P, As, Sb and Sn), with heat treatments identical to those carried out on flow A, are 38.7J (average of 3 values). Thus, a very low P value, obtained thanks in particular to an elaboration process particularly followed in an electric furnace by a controlled insufflation of oxygen as well as in the control of the chemical quality of metallic and non-metallic additions, does not allow significantly increase the resilience values at low temperature (-40 ° C), as well as very low residual values As, Sb and Sn, the sum of which is for flow B of 62 ppm. The resilience is therefore less than 40J at - 40 ° C.

Exemple 1 - coulée C (composition selon l'invention)Example 1 - casting C (composition according to the invention)

La coulée est obtenue par le même procédé que celui de l'exemple 1. La seule différence concerne la composition chimique de l'acier. Elle est indiquée dans le tableau 3 ci-dessous et correspond à une composition selon l'invention. Tableau 3 - Composition chimique en %massique de la coulée C sauf (*) en ppm C Mn Si Cr Mo V P Ni Al Cu 0,312 0,18 0,115 2,98 0,842 0,278 0,002 0,058 0,015 0,035 S* As* Sb* Sn* 9 24 <15 30 The casting is obtained by the same process as that of Example 1. The only difference concerns the chemical composition of the steel. It is indicated in Table 3 below and corresponds to a composition according to the invention. <u> Table 3 - Chemical composition in% by mass of flow C except (*) in ppm </u> VS mn Yes Cr MB V P Or al Cu 0.312 0.18 0.115 2.98 0.842 0,278 0,002 0.058 0,015 0,035 S * As * Sb * Sn * 9 24 <15 30

La coulée a été laminée en barres.The casting was rolled into bars.

Les valeurs de résilience à -40°C obtenues pour la coulée C avec des traitements thermique identiques à ceux menés sur la coulée A atteignent 43,3J sur une moyenne de 6 essais. La dureté obtenue reste comprise entre 46 et 48 HRC. La taille de grain austénitique reste également très fine avec un indice ASTM supérieur ou égal à 10.The resilience values at -40 ° C obtained for flow C with heat treatments identical to those carried out in flow A reach 43.3J on an average of 6 tests. The hardness obtained remains between 46 and 48 HRC. The austenitic grain size also remains very fine with an ASTM index greater than or equal to 10.

La hausse de la résilience est significative par rapport aux coulées A et B (exemples comparatifs 1 et 2) avec un gain de l'ordre de 15%.The increase in resilience is significant compared to flows A and B (comparative examples 1 and 2) with a gain of around 15%.

Exemple 2 - coulée D (composition selon l'invention) Example 2 - casting D (composition according to the invention)

La coulée est obtenue par le même procédé que celui de l'exemple 1. La seule différence concerne la composition chimique de l'acier. Elle est indiquée dans le tableau 4 ci-dessous. Tableau 4 - Composition chimique en %massique de la coulée D sauf (*) en ppm C Mn Si Cr Mo V P Ni Al Cu 0,316 0,188 0,193 2,99 0,847 0,275 0,002 0,053 0,014 0,029 S* As* Sb* Sn* 4 26 17 36 The casting is obtained by the same process as that of Example 1. The only difference concerns the chemical composition of the steel. It is shown in Table 4 below. <u> Table 4 - Chemical composition in% by mass of flow D except (*) in ppm </u> VS mn Yes Cr MB V P Or al Cu 0.316 0.188 0,193 2.99 0.847 0,275 0,002 0.053 0.014 0,029 S * As * Sb * Sn * 4 26 17 36

La coulée a été laminée en barres.The casting was rolled into bars.

Les valeurs de résilience à -40°C obtenues pour la coulée C avec des traitements thermique identiques à ceux menés sur la coulée A atteignent 43 J sur une moyenne de 6 essais. La dureté obtenue est comprise entre 46-48 HRC.The resilience values at -40 ° C obtained for casting C with heat treatments identical to those carried out on casting A reach 43 J on an average of 6 tests. The hardness obtained is between 46-48 HRC.

La hausse de la résilience est donc également significative par rapport aux coulées A et B (exemples comparatifs 1 et 2) avec un gain de l'ordre de 15%. La teneur en Si et Mn (inférieure à 0,20%) a donc un impact significatif sur la résilience à -40°C.The increase in resilience is therefore also significant compared to flows A and B (comparative examples 1 and 2) with a gain of around 15%. The Si and Mn content (less than 0.20%) therefore has a significant impact on the resilience at -40 ° C.

Exemple comparatif 3 - coulée E Comparative example 3 - casting E

La coulée est obtenue par le même procédé que celui de l'exemple 1. La seule différence concerne la composition chimique de l'acier. Elle est indiquée dans le tableau 5 ci-dessous. Tableau 5 - Composition chimique en %massique de la coulée E sauf (*) en ppm C Mn Si Cr Mo V P Ni Al Cu 0,311 0,454 0,132 3,06 0,841 0,287 <0,004 0,046 0,011 0,039 S* As* Sb* Sn* <10 34 <15 26 The casting is obtained by the same process as that of Example 1. The only difference concerns the chemical composition of the steel. It is shown in Table 5 below. <u> Table 5 - Chemical composition in% by mass of flow E except (*) in ppm </u> VS mn Yes Cr MB V P Or al Cu 0.311 0.454 0.132 3.06 0.841 0.287 <0.004 0,046 0,011 0,039 S * As * Sb * Sn * <10 34 <15 26

La coulée a été laminée en barres.The casting was rolled into bars.

Pour la coulée E, les valeurs de résiliences à -40°C obtenues avec des traitements thermiques strictement identiques à ceux réalisés dans les exemples comparatifs 1 et 2 et dans les exemples 1 et 2 sur les coulées A à D présentent une moyenne de 41,16J (moyenne sur 6 essais). La fourchette de dureté obtenue est de 46-48 HRC.For casting E, the resilience values at -40 ° C obtained with heat treatments strictly identical to those carried out in comparative examples 1 and 2 and in examples 1 and 2 on castings A to D have an average of 41.16J (average over 6 trials). The hardness range obtained is 46-48 HRC.

Ainsi donc si la teneur en Mn de la composition d'acier est supérieure à 0,200%, la ténacité obtenue KV à -40°C est inférieure à celles obtenues sur les coulées C et D présentant des teneurs en Mn <0,200%, tout en restant supérieur à 40J.Thus, if the Mn content of the steel composition is greater than 0.200%, the toughness obtained KV at -40 ° C is lower than that obtained on flows C and D having Mn contents <0.200%, while remaining greater than 40J.

Exemple 4 - impact du traitement de revenu sur le compromis résistance/ténacité de la composition selon l'invention Example 4 Impact of the Income Treatment on the Resistance / Tenacity Compromise of the Composition According to the Invention

La coulée C (exemple 1) après son élaboration et son laminage en barres a subi un traitement thermique à 920°C pendant 20 minutes puis une ou plusieurs étapes de revenu à 545°C pendant 2 heures.The casting C (example 1) after its preparation and its rolling into bars underwent a heat treatment at 920 ° C for 20 minutes then one or more steps of tempering at 545 ° C for 2 hours.

Les propriétés mécaniques obtenues (résiliences KV à -40°C et résistance mécaniques Rm à température ambiante) selon le nombre de revenus sont indiquées dans le tableau 6 ci-dessous. Tableau 6 - KV à -40°C et Rm à température ambiante selon le nombre de revenus à 545°C pendant 2 heures de la coulée C Nombre de revenu Rm (MPa) Moyenne KV (J) X1 1552 42,7 X2 1541 44,1 X3 1530 47,3 X4 1516 46,5 The mechanical properties obtained (KV resilience at -40 ° C and mechanical resistance Rm at room temperature) according to the number of tempers are shown in Table 6 below. <u> Table 6 - KV at -40 ° C and Rm at room temperature depending on the number of tempers at 545 ° C for 2 hours of casting C </u> Number of income Rm (MPa) Average KV (J) X1 1552 42.7 X2 1541 44.1 X3 1530 47.3 X4 1516 46.5

Comme illustrée, plus le nombre de revenus augmente, plus la résilience à -40°C augmente, à l'exception du quatrième revenu pour lequel on observe une très légère baisse tout en présentant encore un très bon niveau. Le quatrième traitement de revenu fournit des résultats intéressants mais la résistance mécanique est nettement plus faible et très proche des 46HRC minimum recherchés pour cette application.As illustrated, the more the number of incomes increases, the more the resilience at -40 ° C increases, with the exception of the fourth income for which there is a very slight decrease while still exhibiting a very good level. The fourth tempering treatment provides interesting results but the mechanical resistance is clearly lower and very close to the minimum 46HRC sought for this application.

Le nombre de revenus est aisément convertible en un temps de traitement équivalent pour une seule opération de revenu à 545°C. Le tableau 7 ci-dessous montre qu'un seul traitement de revenu avec un temps correspondant à 2 traitements de revenu à 545°C ou 3 traitements de revenu à 545°C donne des résultats très similaires. Tableau 7 - KV à -40°C et Rm en fonction du temps de revenu à 545°C de la coulée C Temps de revenu Rm (MPa) Moyenne KV (J) 2 heures 1552 42,7 4 heures 1549 45,3 6 heures 1533 47,5 The number of tempers is easily convertible into an equivalent treatment time for a single tempering operation at 545 ° C. Table 7 below shows that a single income treatment with a time corresponding to 2 income treatments at 545 ° C or 3 income treatments at 545 ° C gives very similar results. <u> Table 7 - KV at -40 ° C and Rm as a function of the tempering time at 545 ° C of flow C </u> Income time Rm (MPa) Average KV (J) 2 hours 1552 42.7 4 hours 1549 45.3 6 hours 1533 47.5

L'adaptation du nombre de revenus ou son équivalent en temps de revenu permet d'augmenter significativement le niveau de résilience. Le gain par rapport à la coulée A traitée dans les conditions standard est de 25% à 30% environ pour la coulée C.The adaptation of the number of incomes or its equivalent in time of income makes it possible to significantly increase the level of resilience. The gain compared to casting A treated under standard conditions is from 25% to 30% approximately for casting C.

Il faut noter que cette amélioration résulte de la combinaison d'une basse teneur en Si et basse teneur en Mn (inférieure à 0,2%) avec une base 3%Cr-Mo-V comme montré dans le tableau 8 ci-dessous Tableau 8 - influence du nombre de revenus à 545°C durant 2 heures selon composition chimique sur Rm et KV à -40°C Nombre de revenu Rm (MPa) Moyenne KV à - 40°C (J) Coulée C (exemple 1) X1 1559 43,3 X2 1546 46 X3 1543 47,7 X4 1516 46,5 Coulée E (exemple 3) X1 1532 41 X2 1524 43,7 X3 1511 44 X4 1516 44,7 Coulée A (exemple comparatif 1) X1 1542 37,7 X2 1532 39 X3 1528 35,7 X4 1516 34,7 It should be noted that this improvement results from the combination of a low Si content and low Mn content (less than 0.2%) with a 3% Cr-Mo-V base as shown in Table 8 below. <u> Table 8 - influence of the number of incomes at 545 ° C for 2 hours according to chemical composition on Rm and KV at -40 ° C </u> Number of income Rm (MPa) Average KV at - 40 ° C (J) Casting C (example 1) X1 1559 43.3 X2 1546 46 X3 1543 47.7 X4 1516 46.5 Casting E (example 3) X1 1532 41 X2 1524 43.7 X3 1511 44 X4 1516 44.7 Casting A (comparative example 1) X1 1542 37.7 X2 1532 39 X3 1528 35.7 X4 1516 34.7

Seule la coulée C permet de passer à un niveau de résilience supérieure à 45J avec un nombre de revenu à 545°C adapté. La teneur basse en Silicium seule (inférieure à 0,2% : coulée E) permet d'augmenter le niveau de résilience jusqu'à 44J environ. Il faut noter que dans le cas de l'acier ayant une forte teneur en Si et en Mn (coulée A), le nombre de revenus n'influe pas sur le niveau de résilience. La valeur moyenne en résilience a même tendance à diminuer significativement au bout du 3ème traitement de revenu.Only the casting C allows to pass to a level of resilience greater than 45J with a number of tempering at 545 ° C adapted. The low content of silicon alone (less than 0.2%: casting E) makes it possible to increase the level of resilience up to approximately 44J. It should be noted that in the case of steel with a high content of Si and Mn (casting A), the number of incomes does not influence the level of resilience. The average value in resilience even tends to decrease significantly after the third income treatment.

Exemple 5 - Impact de la température de trempe du traitement thermique sur une coulée F selon l'invention : 920°C vs. 960°C Example 5 - Impact of the quenching temperature of the heat treatment on a flow F according to the invention : 920 ° C vs. 960 ° C

La coulée F est obtenue par le même procédé que celui de l'exemple 1. La seule différence concerne la composition chimique de l'acier. Elle est indiquée dans le tableau 9 ci-dessous. Tableau 9 - Composition chimique en %massique de la coulée F C Mn Si Cr Mo V 0,30 0,19 0,19 3,1 1,1 0,28 Casting F is obtained by the same process as that of Example 1. The only difference concerns the chemical composition of the steel. It is shown in Table 9 below. <u> Table 9 - Chemical composition in% by mass of flow F </u> VS mn Yes Cr MB V 0.30 0.19 0.19 3.1 1.1 0.28

La valeur de résilience à -40°C obtenue pour la coulée F avec un traitement thermique avec trempe à 920°C et un revenu unique de 2 heures à 545°C atteint 42 J ; alors que pour la même coulée F, un traitement thermique avec trempe à 960°C et un revenu unique de 2 heures à 545°C conduit à une valeur de résilience à -40°C de 27 J.The resilience value at -40 ° C obtained for casting F with a heat treatment with quenching at 920 ° C and a single income of 2 hours at 545 ° C reaches 42 J; whereas for the same casting F, a heat treatment with quenching at 960 ° C and a single tempering of 2 hours at 545 ° C leads to a resilience value at -40 ° C of 27 J.

Une température de trempe élevée, à 960°C, dégrade donc la résilience de l'acier.A high quenching temperature, at 960 ° C, therefore degrades the resilience of the steel.

Claims (14)

  1. Steel composition essentially being constituted by:
    Carbon: 0.28-0.35;
    Manganese: 0.10-0.30, preferably 0.10-0.20;
    Silicon: 0.10-0.20;
    Chromium: 2.80-3.40;
    Molybdenum: 0.70-1.60, preferably 0.70-1.30;
    Vanadium: 0.20-0.50, preferably 0.20-0.40;
    Phosphorus: ≤ 0.005;
    Nickel: ≤ 0.10;
    Aluminium: ≤ 0.025, preferably 0.006-0.025;
    Copper: ≤ 0.10;
    Arsenic + Antimony + Tin: < 100 ppm;
    Sulfur: < 10 ppm;
    Iron: remainder;
    as weight percentages of the total composition, and also the inevitable impurities.
  2. Steel composition according to Claim 1, being constituted by:
    Carbon: 0.28-0.35;
    Manganese: 0.10-0.20;
    Silicon: 0.10-0.20;
    Chromium: 2.80-3.40;
    Molybdenum: 0.70-1.30;
    Vanadium: 0.20-0.40;
    Phosphorus: ≤ 0.005;
    Nickel: ≤ 0.10;
    Aluminium: ≤ 0.025, preferably 0.006-0.025;
    Copper: ≤ 0.10;
    Arsenic + Antimony + Tin: < 100 ppm;
    Sulfur: < 10 ppm;
    Iron: remainder;
    as weight percentages of the total composition, and also the inevitable impurities.
  3. Steel composition according to either of Claims 1 and 2, characterized in that the molybdenum content is between 0.7 and 1.1, as weight percentages of the total composition.
  4. Process for manufacturing a steel blank having the composition according to any one of Claims 1 to 3, characterized in that it comprises:
    a) a step of producing the steel;
    b) a step of transforming the steel;
    c) a heat treatment of the steel comprising quenching at a temperature of at least 900°C and a tempering treatment at a temperature of at least 530°C, advantageously between 530 and 550°C, for an overall time of between 2 and 6 hours, advantageously for an overall time of 4 hours.
  5. Manufacturing process according to Claim 4, characterized in that step c) comprises several tempering treatments, the cumulative times of which correspond to the overall time of said step, advantageously two tempering treatments of 2 hours each.
  6. Manufacturing process according to either of Claims 4 and 5, characterized in that the quenching temperature is between 900 and 930°C.
  7. Manufacturing process according to any one of Claims 4 to 6, characterized in that step b) consists of a rolling step.
  8. Manufacturing process according to any one of Claims 4 to 7, characterized in that the production step a) is performed in an electric arc furnace followed by vacuum arc degassing, optionally with a step of electroslag remelting (ESR) or vacuum arc remelting (VAR), or via VIM-VAR or VIM-ESR processes.
  9. Steel blank that may be obtained via a process according to any one of Claims 4 to 8.
  10. Steel blank according to Claim 9, characterized in that its hardness is between 46 and 48 HRC.
  11. Steel blank according to either of Claims 9 and 10, characterized in that its resilience KV at -40°C is at least 40 joules.
  12. Steel blank according to any one of Claims 9 to 11, characterized in that its mechanical strength Rm is between 1500 and 1600 MPa.
  13. Use of a blank according to any one of Claims 9 to 12 or of a steel composition according to any one of Claims 1 to 3 for the manufacture of a pressure appliance component.
  14. Use according to Claim 13, characterized in that the pressure appliance component is a barrel tube, in particular for small-calibre weapons.
EP16736530.3A 2015-06-19 2016-06-17 Steel for small-calibre weapon Active EP3310936B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SI201630662T SI3310936T1 (en) 2015-06-19 2016-06-17 Steel for small-calibre weapon
PL16736530T PL3310936T3 (en) 2015-06-19 2016-06-17 Steel for small-calibre weapon

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1555621A FR3037599B1 (en) 2015-06-19 2015-06-19 STEEL FOR SMALL ARMS
PCT/FR2016/051475 WO2016203169A1 (en) 2015-06-19 2016-06-17 Steel for small-calibre weapon

Publications (2)

Publication Number Publication Date
EP3310936A1 EP3310936A1 (en) 2018-04-25
EP3310936B1 true EP3310936B1 (en) 2020-01-01

Family

ID=54366301

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16736530.3A Active EP3310936B1 (en) 2015-06-19 2016-06-17 Steel for small-calibre weapon

Country Status (12)

Country Link
US (1) US10724124B2 (en)
EP (1) EP3310936B1 (en)
CN (1) CN107735501B (en)
ES (1) ES2781330T3 (en)
FR (1) FR3037599B1 (en)
IL (1) IL255846B (en)
MX (1) MX2017015836A (en)
PL (1) PL3310936T3 (en)
SI (1) SI3310936T1 (en)
TW (1) TWI700379B (en)
WO (1) WO2016203169A1 (en)
ZA (1) ZA201708049B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA118320U (en) * 2017-06-01 2017-07-25 Товариство З Обмеженою Відповідальністю "Науково-Виробнича Компанія "Техімпекс" ENGINE ENGINE KT-7,62

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2876095A (en) * 1953-08-13 1959-03-03 Republic Steel Corp Manufacture of gun barrels
DE3300175C2 (en) * 1983-01-05 1986-06-05 Wolfgang Th. Dipl.-Ing. 7238 Oberndorf Wegwerth Process for the manufacture of gun barrels
US5458703A (en) * 1991-06-22 1995-10-17 Nippon Koshuha Steel Co., Ltd. Tool steel production method
JP2000080444A (en) * 1998-08-31 2000-03-21 Sumitomo Heavy Ind Ltd Alloy steel for gun barrel
AT508777B1 (en) 2010-04-06 2011-04-15 Boehler Edelstahl Gmbh & Co Kg STOREY OF FIREARMS
CN101892443A (en) * 2010-07-09 2010-11-24 天津钢管集团股份有限公司 High strength and high toughness petroleum casing pipe at steel grade with yield strength of 170-180ksi and manufacturing method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US10724124B2 (en) 2020-07-28
FR3037599A1 (en) 2016-12-23
IL255846B (en) 2021-06-30
WO2016203169A1 (en) 2016-12-22
PL3310936T3 (en) 2020-06-01
ES2781330T3 (en) 2020-09-01
SI3310936T1 (en) 2020-04-30
CN107735501A (en) 2018-02-23
EP3310936A1 (en) 2018-04-25
FR3037599B1 (en) 2017-07-07
ZA201708049B (en) 2019-05-29
TW201708571A (en) 2017-03-01
IL255846A (en) 2018-01-31
MX2017015836A (en) 2018-04-10
US20180142332A1 (en) 2018-05-24
TWI700379B (en) 2020-08-01
CN107735501B (en) 2020-03-24

Similar Documents

Publication Publication Date Title
EP3074544B1 (en) Martensitic stainless steel, part made of said steel and method for manufacturing same
EP3286349B1 (en) Steel, product made of that steel and method to obtain the steel
EP3362585B1 (en) Steel, product made of that steel and method to obtain the steel
EP1373589A1 (en) Steel and steel tube for high-temperature use
EP1339880B1 (en) Method for making a strip or a workpiece cut out from a cold rolled maraging steel strip
EP1281785B1 (en) Austenitic stainless steel for cold deformation which may be followed by machining
EP3310936B1 (en) Steel for small-calibre weapon
FR2904634A1 (en) PROCESS FOR MANUFACTURING STEEL ELBOWS
FR2904635A1 (en) PROCESS FOR MANUFACTURING STEEL ELBOWS
EP1426452B1 (en) Manufacturing process of a bainitic steel article
EP1885900B1 (en) Steel for submarine hulls with improved weldability
EP1228253B1 (en) Steel composition, method for making same and parts produced from said compositions, particularly valves
DK2375212T3 (en) Run for firearms
EP1727919A2 (en) Steel for mechanical parts, method for producing mechanical parts from said steel and the thus obtainable mechanical parts
EP3411509B1 (en) Elemental composition for steel with improved anti-coking properties
EP3252175A1 (en) Molded steel alloy, corresponding part and manufacturing method

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171120

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20181008

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602016027314

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C21D0009100000

Ipc: C22C0038200000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 38/20 20060101AFI20190717BHEP

Ipc: C22C 38/60 20060101ALI20190717BHEP

Ipc: C22C 38/44 20060101ALI20190717BHEP

Ipc: C21D 1/18 20060101ALI20190717BHEP

Ipc: C22C 38/22 20060101ALI20190717BHEP

Ipc: C22C 38/04 20060101ALI20190717BHEP

Ipc: C22C 38/02 20060101ALI20190717BHEP

Ipc: C22C 38/42 20060101ALI20190717BHEP

Ipc: F41A 21/20 20060101ALI20190717BHEP

Ipc: C22C 38/46 20060101ALI20190717BHEP

Ipc: C22C 38/06 20060101ALI20190717BHEP

Ipc: C21D 9/10 20060101ALI20190717BHEP

Ipc: C22C 38/24 20060101ALI20190717BHEP

INTG Intention to grant announced

Effective date: 20190807

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AUBERT & DUVAL

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1219857

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016027314

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD AG PATENT- UND MARKENANWAELTE, CH

REG Reference to a national code

Ref country code: FI

Ref legal event code: FGE

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20200400790

Country of ref document: GR

Effective date: 20200518

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200501

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2781330

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200901

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016027314

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20201002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 1219857

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200101

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602016027314

Country of ref document: DE

Representative=s name: CBDL PATENTANWAELTE GBR, DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230509

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20240611

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20240606

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240607

Year of fee payment: 9

Ref country code: SE

Payment date: 20240619

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240625

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240701

Year of fee payment: 9

Ref country code: ES

Payment date: 20240731

Year of fee payment: 9

REG Reference to a national code

Ref country code: BE

Ref legal event code: PD

Owner name: AUBERT & DUVAL; FR

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), OTHER; FORMER OWNER NAME: AUBERT & DUVAL

Effective date: 20240717

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602016027314

Country of ref document: DE

Owner name: AUBERT & DUVAL, FR

Free format text: FORMER OWNER: AUBERT & DUVAL, PARIS, FR

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20250627

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20250606

Year of fee payment: 10

Ref country code: DE

Payment date: 20250618

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20250618

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20250618

Year of fee payment: 10

Ref country code: BE

Payment date: 20250618

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20250625

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20250620

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20250610

Year of fee payment: 10

Ref country code: AT

Payment date: 20250620

Year of fee payment: 10