EP3301350A1 - Light module for a motor vehicle headlamp - Google Patents
Light module for a motor vehicle headlamp Download PDFInfo
- Publication number
- EP3301350A1 EP3301350A1 EP17190034.3A EP17190034A EP3301350A1 EP 3301350 A1 EP3301350 A1 EP 3301350A1 EP 17190034 A EP17190034 A EP 17190034A EP 3301350 A1 EP3301350 A1 EP 3301350A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- light
- optics
- module
- light module
- distribution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000009826 distribution Methods 0.000 claims abstract description 99
- 230000003287 optical effect Effects 0.000 claims abstract description 54
- 239000004065 semiconductor Substances 0.000 claims abstract description 40
- 239000012780 transparent material Substances 0.000 claims description 2
- 230000003044 adaptive effect Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 229920003023 plastic Polymers 0.000 description 4
- IYLGZMTXKJYONK-ACLXAEORSA-N (12s,15r)-15-hydroxy-11,16-dioxo-15,20-dihydrosenecionan-12-yl acetate Chemical compound O1C(=O)[C@](CC)(O)C[C@@H](C)[C@](C)(OC(C)=O)C(=O)OCC2=CCN3[C@H]2[C@H]1CC3 IYLGZMTXKJYONK-ACLXAEORSA-N 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 238000001746 injection moulding Methods 0.000 description 3
- 230000000873 masking effect Effects 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- IYLGZMTXKJYONK-UHFFFAOYSA-N ruwenine Natural products O1C(=O)C(CC)(O)CC(C)C(C)(OC(C)=O)C(=O)OCC2=CCN3C2C1CC3 IYLGZMTXKJYONK-UHFFFAOYSA-N 0.000 description 3
- 238000007493 shaping process Methods 0.000 description 3
- 241001136792 Alle Species 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 241000226585 Antennaria plantaginifolia Species 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 238000001454 recorded image Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/20—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
- F21S41/25—Projection lenses
- F21S41/26—Elongated lenses
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/10—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
- F21S41/14—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
- F21S41/141—Light emitting diodes [LED]
- F21S41/143—Light emitting diodes [LED] the main emission direction of the LED being parallel to the optical axis of the illuminating device
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/10—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
- F21S41/14—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
- F21S41/141—Light emitting diodes [LED]
- F21S41/147—Light emitting diodes [LED] the main emission direction of the LED being angled to the optical axis of the illuminating device
- F21S41/148—Light emitting diodes [LED] the main emission direction of the LED being angled to the optical axis of the illuminating device the main emission direction of the LED being perpendicular to the optical axis
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/20—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
- F21S41/25—Projection lenses
- F21S41/265—Composite lenses; Lenses with a patch-like shape
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/30—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
- F21S41/32—Optical layout thereof
- F21S41/33—Multi-surface reflectors, e.g. reflectors with facets or reflectors with portions of different curvature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V5/00—Refractors for light sources
- F21V5/008—Combination of two or more successive refractors along an optical axis
Definitions
- a light module of the type mentioned is, for example. From the DE 10 2005 015 007 A1 or the US 2014/0092619 A1 known. In the known light modules, however, it is such that the primary optics has a focal point which lies on the light-emitting surface of the semiconductor light source, and by the primary optics, a real intermediate image at the focal point of the secondary optics is generated by the Secondary optics for generating the resulting light distribution of the light module is projected onto the roadway in front of the motor vehicle. This results in a relatively large construction, especially in the light exit direction considered quite long light module.
- a catadioptric transparent optical attachment whose total reflecting interface is divided into differently shaped area to produce a light distribution with a light-dark boundary.
- This solution is very light efficient.
- the disadvantage is that for typical light distributions, such as a low beam distribution according to regulation UN-ECE R112, the volume of the optics is so large that material thicknesses of> 20mm arise.
- an attachment optics with such a thickness can no longer be produced cost-effectively, because, for example, the process cycle time increases due to the longer curing times of the sprayed transparent plastic material with the center thickness of the optics in the production by injection molding.
- the shape of the light exit surface is basically circular or elliptical and an adaptation to other requirements, for example a rectangular exit surface, is only possible at the expense of light efficiency.
- a headlamp is known with a light module that can produce different light spots that can be switched individually. Each light spot is generated by the image of an associated LED.
- the optics consists of two lenses. The LEDs are arranged on a substrate and all use at the same time the optical system consisting of the two lenses. In this way, an adaptive high beam can be realized.
- the lenses form an imaging optical system rotationally symmetric lenses.
- the light exit surface is basically given by the shape of a lens, that is, by an approximately circular surface. Deviation from this form directly affects the light output and the quality of the light distribution. A broadening of the light exit surface can also be achieved only by increasing the center thickness of the second optics. However, this also means that center thicknesses of> 20mm are produced quickly, which lead to longer cycle times and higher production costs.
- the present invention is intended to reduce the size of the light module, in particular in the light exit direction. At the same time the light exit surface of the light module is to be varied without sacrificing the efficiency and the production of the optics of the light module can be realized particularly cost.
- the light module has at least one primary optic whose focal point, viewed counter to a light exit direction, is arranged behind the at least one semiconductor light source. Furthermore, the light module has a secondary optics whose focal point or focal line, viewed counter to the light exit direction, is likewise arranged behind the at least one semiconductor light source. Finally, the entire optical system of the light module, which comprises the at least one primary optics and the secondary optics, has a focal point or a focal line, which is arranged in the region of the light-emitting surface of the at least one semiconductor light source.
- an optical system of at least one thin-walled first optics (primary optics) and a thin-walled second optics (secondary optics) is realized.
- An optic is here called thin-walled, if it has a maximum center thickness of ⁇ 20mm. All first optics share a common second optics. All optics are preferably astigmatic optics that have significantly different focal lengths in a vertical and a horizontal plane.
- An optical system comprising at least one primary optic and the secondary optics forms an anamorphic image of the luminous surface of the at least one semiconductor light source.
- the anamorphic image causes in the horizontal and vertical planes different magnifications and thus different dimensions of the beam cone, which is generated by the semiconductor light source arise.
- By a suitable design of the vertical and horizontal focal lengths of the optics it is possible to make the light exit surface of the second optics and thus of the light module in two mutually perpendicular directions with different expansion, without this at the expense of the light output.
- the division of one to two or more optics also allows the realization of a high numerical aperture at the same time large focal length or low magnification without the need for thick-walled (> 20mm center thickness) optics are required consuming and time-consuming manufacturing processes and therefore are not inexpensive to manufacture ,
- the first optics serve to bundle the light in a first step and for light shaping. They may therefore have differently shaped areas (segments or facets) to direct light meeting the different areas to different positions in the image plane.
- Such a catadioptric attachment optics is basically from DE 10 2011 078 653 A1 known.
- the attachment optics of the light module according to the invention differs from the known intent optics by the way in which it is arranged in the light module and in particular with respect to the at least one semiconductor light source and the secondary optics.
- the semiconductor light source which is associated with a first optical system, generates a light distribution that can have one or more arbitrarily shaped light-dark boundaries by the optical system consisting of first and second optics.
- the resulting total light distribution of the light module results from the superimposition of the individual light light distributions, which are generated by a respective light source, an associated primary optics and a secondary optics.
- Each individual light distribution can have a different form of the light distributions and the light-dark boundaries, in that the respectively first optics are embodied differently or the type, shape or position of the semiconductor light source is selected differently.
- the primary optic is embodied as a catadioptric facing optic made of a transparent material
- the light entry and / or light exit surfaces may have a wave or pincushion modulation which serves to scatter the light in one or more directions. This scattering serves to the light distribution to make it wider or to homogenize the intensity or color appearance.
- the secondary optics serve optically exclusively for a further focusing of the light, preferably in only one plane. It forms the light exit surface of the optical system of the light module and, in contrast to the first optics, has no visible different regions for light shaping. All first optics share the second optics, i. All optical axes of the subsystems of light sources and associated first optics pass through the second optics.
- the focal length of the second optical system in a first plane is greater than 100 mm and thus greater than the length of the optical system in the light exit direction, measured along an optical axis from the light source to the light exit surface of the second optical system.
- the focal length in the perpendicular second plane is much larger, typically infinite.
- the width of a cylindrical lens can be flexibly adapted to design specifications.
- the width can be made considerably larger than the height, which is not possible with a conventional non-anamorphic optical system consisting of rotationally symmetrical single optics.
- the headlight 1 comprises a housing 2, which is preferably made of plastic.
- the housing 2 has in the light exit direction 3, a light exit opening 4, which is closed by a transparent cover 5.
- the cover 5 may be provided at least in regions with optically active elements (for example in the form of cylindrical lenses or prisms) (so-called diffusion disc) in order to effect a scattering of the light passing through, in particular in the horizontal direction.
- the cover 5 may also be formed without optically active elements as a clear disk.
- an inventive light module 10 is arranged inside the housing 2.
- the light module 10 is used to generate any resulting drive-light distribution or a part thereof, for example.
- a low beam, high beam, adaptive driving light city lights, country lights, motorway lights, Operafernlicht, marker light
- fog light or the like for example.
- light module 10 together with the light module 10, other light modules for generating any desired light can also be provided in the housing 2 Travel light distribution or a part thereof, or lighting modules for the realization of any lighting function (eg flashing light, position light, parking light, daytime running light, parking light, reversing light, brake light or the like) may be arranged.
- the light module 10 according to the invention will be described below with reference to FIGS FIGS. 1 to 30 explained in more detail.
- the light module 10 comprises a first optics or primary optics 11, which in this example is designed as a catadioptric transparent optic consisting of a refractive lens part and a totally reflecting reflection part.
- a first optics or primary optics 11 which in this example is designed as a catadioptric transparent optic consisting of a refractive lens part and a totally reflecting reflection part.
- Such optics is in itself, for example, from the DE 10 2011 078 653 A1 are known, to which reference is made here in terms of structure and operation of the optics.
- Such an optic 11 can be easily manufactured eg by injection molding of plastic such as polycarbonate.
- a semiconductor light source 12 for example in the form of one or more LEDs or their light-emitting surface (eg LED chip), to be emitted into a 180 ° half-space above an extension plane of the light-emitting surface to collect and bundle in a first step.
- the reflective surfaces of the optic 11 are segmented or faceted. By means of the segments or facets 13, images of the light-emitting surface are imaged such that a horizontal light-dark boundary (cf., for example, the light-dark boundary 31 of the dimmed light distribution 30 in FIG FIG. 7 ) arises.
- FIG. 1 shows the light-shaping segments or facets 13 in the reflective part of the optics 11.
- a light exit surface 14 of the first optics 11 may be waved modulated to distribute the light passing through in the horizontal direction and to homogenize.
- a sinusoidal modulation of the light exit surface 14 in the form of waves is, for example, in FIG. 5 shown where the waves (light areas) by the reference numeral 20 and the adjacent valleys (dark areas) by the reference numeral 21 are designated.
- the waves 20 and valleys 21 have a longitudinal extension in the vertical direction 22.
- the wave-shaped modulation of the light exit surface 14 takes place in a direction perpendicular to horizontal direction 23, ie the waves 20 and valleys 21 alternate in the direction 23.
- the exit surface 14 may also have a pincushion-shaped modulation, can be distributed and homogenized by the light passing through not only in the horizontal direction, but also in the vertical direction.
- the second optics or secondary optics 15 is in the in FIG. 1 illustrated example formed as a cylindrical lens that focuses vertically. These optics 15 can be easily made of plastic by injection molding or glass by molding, casting or grinding and polishing.
- the secondary optics 15 has a significantly greater width than height.
- An optical axis of the optical system comprising the at least one light source 12, the at least one primary optics 11 and the secondary optics 15 is designated by the reference numeral 16.
- a focal point 17 of the primary optics 11 is arranged behind the at least one semiconductor light source 12, as viewed against a light exit direction. Further, a focal point 18 or a focal line 18a (see. FIGS. 9 to 12 ) of the secondary optics 15 counter to the light exit direction 3 viewed also behind the at least one semiconductor light source 12 is arranged.
- the focal point 18 is the Secondary optics 15 behind the focal point 17 of the primary optics 11 arranged.
- the two foci 17, 18 can also be arranged congruently or in such a way that the focal point 17 of the primary optics 11 is arranged behind the focal point 18 of the secondary optics 15.
- both foci 17, 18 are arranged on the optical axis 16 of the optical system of the light module 10.
- a focal line 18a of the secondary optics 15 would pass through the optical axis 16. But that does not necessarily have to be this way. It is also conceivable that the focal points 17, 18 are arranged offset to the optical axis 16 and a focal line 18a extends at a distance from the optical axis 16.
- the entire optical system of the light module 10, which comprises the at least one primary optics 11 and the secondary optics 15, has a focal point 19 or a focal line 19a (cf. FIGS. 9 to 12 ) which is arranged in the region of the light-emitting surface of the at least one semiconductor light source 12.
- the focal point 19 of the optical system is preferably arranged on the light-emitting surface, very particularly preferably in the middle thereof, or the focal line 19a extends on the light-emitting surface.
- FIG. 2 is the light module 10 off FIG. 1 showing, by way of example, light beams which were emitted from the semiconductor light source 12 into the 180 ° half-space around the optical axis 16. These light beams are collimated by the first optics 11 and formed by the segments or facets 13 and the light exit surface 14, to be finally further collimated by the secondary optics 15 in the vertical plane.
- the light module 10 thus has a two-part focusing of the light beams.
- the arrangement of the optics 11, 15 in the light module 10 allows its particularly compact design, especially in the direction of the optical axis 16 considered.
- the optical system of the light module 10 has a virtual (not real) image plane, which can be recognized by the divergent light beams.
- the optical system is not imaging, ie no images of the light source 12 are generated.
- FIG. 3 shows a vertical section through the arrangement FIG. 2 , It can be clearly seen that the catadioptric primary optics 11 shown here have a refractive lens part in the center around the optical axis 16 and an outer reflective part surrounding the lens section with totally reflecting boundary surfaces 13.
- a light entrance surface of the reflecting part of the primary optics 11 is designated by the reference numeral 14a and a light entry surface of the central lens part of the primary optics 11 by the reference numeral 14b.
- the focal points 17, 18, 19 and their positions relative to one another and with respect to the semiconductor light source 12 can be clearly seen.
- FIG. 4 is the optical system of the light module 10 off FIG. 3 are shown with exemplary light rays that extend in the vertical plane and have their origin in the center of the light-emitting surface of the semiconductor light source 12. Extensions 18a 'of the light rays 18a to the rear, ie opposite to the light exit direction 3, intersect at the focal point 18 of the secondary optics 15. Between the focal point 18 and the semiconductor light source 12, the focal point 17 of the primary optics 11 is arranged. The focal point 19 of the entire system is arranged on the light-emitting surface of the light source 12.
- FIG. 6 shows a plan view of the light module 10 from the FIGS. 1 to 4 , It can be clearly seen that in the horizontal plane by the secondary optics 15 practically no collimation of the light rays takes place. With this structure, a resulting light distribution 30 can be generated, as for example.
- FIG. 7 shows a arranged at a distance (eg 25m) in front of the motor vehicle or in front of the light module 10 measuring screen on which a horizontal axis and a vertical axis are plotted, which intersect at a point.
- the light distribution 30 forms a sharp light-dark boundary 31 just below the 0 ° line (vertical) and can therefore be used as a low beam distribution or as part of it.
- lines with the same illuminance levels are shown in the light distribution 30.
- a solid line for 10.0 lx is denoted by reference numeral 32, a dashed line for 1.0 lx to 33 and a dashed line for 0.1 lx to 34.
- reference numeral 32 For the definition of the light-dark boundary 31 different criteria can be used.
- the position of the 0.1 lx iso-line 34 was used as a simple criterion.
- FIG. 8 shows how the light distribution 30 is formed by a superimposition of different images 36 of the light-emitting surface of the light source 12.
- the different segments or facets 13 of the interfaces of the primary optics 11 are designed such that the respective uppermost corner or edge of the image lies on the line which marks the desired position of the light-dark boundary 31.
- all the images 36 have a rectangular shape with very different length and width, although the light source 12 in this example is an LED whose luminous surface has a square shape.
- These pictures 36 arise because the illustration of the system is anamorphic, so the LED chip image 36 is increased differently in the horizontal and vertical directions.
- the horizontal magnification is always greater than the vertical in the system described, because the vertical focal length of the entire system is longer than the horizontal focal length.
- FIG. 9 There is shown an optical system of a light module 10 comprising three semiconductor light sources 12, three primary optics 11 associated therewith in the form of catadioptric optics and a secondary optic 15 in the form of a cylindrical lens.
- the cylindrical lens comprises a focal or focus line 18a.
- the light-emitting surfaces of the LEDs 12 are arranged on a line 19 a, which preferably runs parallel to the focal line 18 a of the secondary optics 15.
- the line 19 a corresponds to a focal line of the entire optical system of the light module 10.
- the secondary optics 15 is designed in the form of a curved cylindrical lens in order to realize an appealing design of the light exit surface of the light module 10.
- the cylindrical lens 15 is bent in particular in a horizontal plane.
- the curvature of the lens surface in vertical section has remained constant in this case.
- the focal length of the cylindrical lens 15 changes in the Vertical section not, but the position and shape of the focal line 18a, which is now also bent in the horizontal plane.
- the distance to the second optical system 15 on the respective optical axis 16 of the first optical system 11 changes for each first optical system 11.
- first optics 11 and second optics 15 thereby generates different horizontal and vertical magnifications and each first optic 11 must therefore be designed differently.
- the focal line 18a of the secondary optics 15 and the focal line 19a of the entire optical system no longer run parallel to each other.
- each optical subsystem (with elements 12, 11, 15) is to produce a comparable light distribution, as is the case, for example, in the case of pixel-shaped light distributions for adaptive high-beam distributions (eg, partial high-beam, marker light, etc.).
- each subsystem supplies the same magnification of the images of the light-emitting surface of the semiconductor light sources 12 in the horizontal or vertical direction. To achieve this, the position of the LEDs 12 on a line 19a parallel to the focal line 18a of the secondary optics 15 must be selected. A corresponding example is in FIG. 12 shown.
- FIG. 13 FIG. 4 shows an example of how the LED chip images 41 of different regions 13 of a first optical system 11 can be positioned to produce a striped light distribution 40 with vertical light-dark boundaries 42 and horizontal light-dark boundaries 43.
- FIGS. 14 to 21 show examples of a total of 21 individual light distributions 50, each of which can be generated by an LED 12 with associated first optics 11 and the second optics 15 in the form of a cylindrical lens.
- FIG. 14 shows the individual light distributions 50 of LEDs # 1 to # 3, FIG. 15 from LEDs # 4 to # 6, FIG. 16 from LEDs # 7 to # 9, FIG. 17 of LEDs # 10 and # 11, FIG. 18 from LEDs # 12 to # 14, FIG. 19 from LEDs # 15 to # 17, FIG. 20 from LEDs # 18 to # 20 and FIG. 21 from LED # 21.
- the individual light distributions 50 each have two vertical light-dark boundaries 51 and two horizontal light-dark boundaries 52. This illuminates a defined angle range horizontally and vertically.
- lines with the same illuminance levels are shown in the individual light distributions 50.
- a solid line for 50.0 lx is denoted by reference numeral 53, a dashed line for 10 lx 54 and a dotted line for 0.1 lx 55.
- the position of the 0.1 lx iso-line 55 was used as a simple criterion.
- the illuminated angle range is, according to this definition, approximately horizontal 3 ° wide and vertical 10 ° high.
- FIG. 22 shown resulting light distribution 60, which can serve as a high beam distribution.
- lines with the same illuminance levels are shown in the light distribution 60.
- a solid line for 50.0 lx is designated by reference numeral 61, a dashed line for 10 lx by 62 and a dashed line for 0.1 lx by 63. Since the individual light distributions 50 are offset horizontally by approximately 1.5 ° to each other, by deactivating or dimming individual LEDs, 12 angular ranges with a minimum of approximately 1.5 ° width can be switched to dark.
- FIG. 23 An example of a total light distribution 60 with twice 1.5 ° wide dark masking area 64 shows FIG. 23 ,
- the LEDs # 13 and # 14 must be switched off or dimmed (the lower two individual light distributions 50 off FIG. 18 ).
- the light distribution 60 off FIG. 23 can be used as a partial remote light.
- the motor vehicle are installed in the headlamp 1 with the light module 10 according to the invention, via suitable means for detecting other road users in front of the motor vehicle. These means include, for example, a video camera for capturing images of the area in front of the motor vehicle and a computing unit for evaluating the recorded images and for detecting oncoming or preceding ones Vehicles in a certain area of the pictures.
- the Ausblend Scheme 64 can change dynamically, for example, when an oncoming other road users on the motor vehicle passes with the light module 10 or when a leading road user drives on a winding road in front of the motor vehicle. It is also conceivable to provide a plurality of masking regions 64 in the high beam distribution 60, if necessary. In addition, the width of the masking area 64 can be adapted individually to the current traffic situation.
- the LEDs 12 are supplied with pulse width modulation for this purpose. By changing the pulse width, the luminous flux can be controlled.
- the first optics 11 is implemented as a reflector and the second optics 15 as a cylindrical lens.
- the FIGS. 26 to 29 show single light distributions 70 generated by the subsystems # 1 to # 5 each comprising an LED 12, a reflector 11 and the cylindrical lens 15.
- Subsystems # 1 to # 3 produce, for example, light distributions 70 with a horizontal light-dark boundary 71, which lies just below vertical 0 ° (cf. FIGS. 26 to 28 ).
- lines with the same illuminance levels are shown in the individual light distributions 70.
- a solid line for 4.0 lx is denoted by reference numeral 72, a dashed line for 0.4 lx by 73 and a dashed line for 0.1 lx by 74.
- the position of the 0.1 lx iso line 74 was used as a simple criterion.
- FIG. 26 is the single light distribution 70, generated by subsystem # 1, in FIG FIG. 27 through subsystem # 2 and in FIG. 28 the single light distribution 70 generated by subsystem # 3 is shown.
- a single light distribution 70 is shown as coming from the subsystem # 4 (LED # 4, Reflector # 4 and Cylindrical Lens 15) and Subsystem # 5 (LED # 5, Reflector # 5 and Cylindrical Lens 15) of the light module 10, respectively FIG. 25 is produced.
- the light distribution 70 has a light-dark boundary 71a rising obliquely from the center (intersection of the horizontal and the vertical) to the top right (towards the own traffic side).
- the illumination intensity distribution in the light distributions 70 is illustrated by iso-lines.
- a solid line for 4.0 lx is denoted by reference numeral 72, a dashed line for 1.0 lx to 73a and a Dotted line for 0.1 lx designated 74.
- reference numeral 72 A solid line for 4.0 lx is denoted by reference numeral 72, a dashed line for 1.0 lx to 73a and a Dotted line for 0.1 lx designated 74.
- FIG. 30 shows the resulting total light distribution 80 of the light module 10 in the form of a low-beam light distribution with an asymmetric light-dark boundary 81.
- the light distribution 80 results from a superposition of the individual light distributions 70 of the LEDs # 1 to # 5 out of the FIGS. 26 to 29 .
- the light-dark boundary 81 of the light distribution 80 has a section 81a that rises approximately from the center (intersection of the horizontal and the vertical) to the top right (towards the own traffic side).
- the illumination intensity distribution in the light distributions 80 is illustrated by iso-lines.
- a solid line for 10.0 lx is denoted by reference numeral 82, a dashed line for 1.0 lx to 83a and a dashed line for 0.1 lx to 84.
- a plurality of LEDs 12 use a first optical system 11.
- the number of generated light areas ("pixels") of an adaptive high beam distribution can be increased without the number of first optics 11 having to be increased.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Optics & Photonics (AREA)
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
Abstract
Die Erfindung betrifft ein Lichtmodul (10) für einen Kraftfahrzeugscheinwerfer (1), umfassend: - eine Halbleiterlichtquelle (12) zum Abstrahlen von Licht, - eine Primäroptik (11) zum Bündeln des abgestrahlten Lichts und mit einem Brennpunkt (17), der entgegen einer Lichtaustrittsrichtung (3) betrachtet hinter der mindestens einen Halbleiterlichtquelle (12) angeordnet ist, - eine Sekundäroptik (15) zur weiteren Bündelung des von der Primäroptik (11) bereits gebündelten Lichts und zur Erzeugung einer resultierenden Lichtverteilung (30; 40; 60; 80) des Lichtmoduls (10) auf einer Fahrbahn vor dem Kraftfahrzeug, wobei die Sekundäroptik (15) einen Brennpunkt (18) oder eine Brennlinie (18a) aufweist, der bzw. die entgegen einer Lichtaustrittsrichtung (3) betrachtet hinter der mindestens einen Halbleiterlichtquelle (12) angeordnet ist, und wobei - das gesamte optische System des Lichtmoduls (10) einen Brennpunkt (19) oder eine Brennlinie (19a) aufweist, der bzw. die im Bereich der Licht emittierenden Fläche der mindestens einen Halbleiterlichtquelle (12) angeordnet ist.The invention relates to a light module (10) for a motor vehicle headlight (1), comprising: a semiconductor light source (12) for emitting light, a primary optic (11) for bundling the radiated light and having a focal point (17), which, viewed counter to a light exit direction (3), is arranged behind the at least one semiconductor light source (12), a secondary optics (15) for further bundling the light already collimated by the primary optics (11) and for producing a resulting light distribution (30; 40; 60; 80) of the light module (10) on a roadway in front of the motor vehicle, the secondary optics ( 15) has a focal point (18) or a focal line (18a), which is arranged behind the at least one semiconductor light source (12), as viewed against a light exit direction (3), and wherein - The entire optical system of the light module (10) has a focal point (19) or a focal line (19a) which is arranged in the region of the light-emitting surface of the at least one semiconductor light source (12).
Description
Die vorliegende Erfindung betrifft ein Lichtmodul für einen Kraftfahrzeugscheinwerfer, umfassend:
- mindestens eine Halbleiterlichtquelle mit einer Licht emittierenden Fläche zum Abstrahlen von Licht,
- mindestens eine Primäroptik zum Bündeln zumindest eines Teils des abgestrahlten Lichts,
- eine Sekundäroptik zur weiteren Bündelung des von der mindestens einen ersten Optik bereits gebündelten Lichts und zur Erzeugung einer resultierenden Lichtverteilung des Lichtmoduls auf einer Fahrbahn vor dem Kraftfahrzeug.
- at least one semiconductor light source having a light-emitting surface for emitting light,
- at least one primary optics for bundling at least part of the emitted light,
- a secondary optics for further bundling the light already collimated by the at least one first optic and for producing a resulting light distribution of the light module on a roadway in front of the motor vehicle.
Ein Lichtmodul der eingangs genannten Art ist bspw. aus der
Ferner ist aus der
Aus der
Durch die vorliegende Erfindung soll die Größe des Lichtmoduls, insbesondere in Lichtaustrittsrichtung verringert werden. Gleichzeitig soll die Lichtaustrittsfläche des Lichtmoduls ohne Einbußen beim Wirkungsgrad variiert und die Herstellung der Optiken des Lichtmoduls besonders kostengünstig realisiert werden können.The present invention is intended to reduce the size of the light module, in particular in the light exit direction. At the same time the light exit surface of the light module is to be varied without sacrificing the efficiency and the production of the optics of the light module can be realized particularly cost.
Zur Lösung dieser Aufgabe wird ausgehend von dem Lichtmodul der eingangs genannten Art vorgeschlagen, dass das Lichtmodul mindestens eine Primäroptik aufweist, deren Brennpunkt entgegen einer Lichtaustrittsrichtung betrachtet hinter der mindestens einen Halbleiterlichtquelle angeordnet ist. Ferner weist das Lichtmodul eine Sekundäroptik auf, deren Brennpunkt oder Brennlinie entgegen der Lichtaustrittsrichtung betrachtet ebenfalls hinter der mindestens einen Halbleiterlichtquelle angeordnet ist. Schließlich weist das gesamte optische System des Lichtmoduls, das die mindestens eine Primäroptik und die Sekundäroptik umfasst, einen Brennpunkt oder eine Brennlinie auf, die bzw. der im Bereich der Licht emittierenden Fläche der mindestens einen Halbleiterlichtquelle angeordnet ist.To solve this problem, it is proposed, starting from the light module of the type mentioned above, that the light module has at least one primary optic whose focal point, viewed counter to a light exit direction, is arranged behind the at least one semiconductor light source. Furthermore, the light module has a secondary optics whose focal point or focal line, viewed counter to the light exit direction, is likewise arranged behind the at least one semiconductor light source. Finally, the entire optical system of the light module, which comprises the at least one primary optics and the secondary optics, has a focal point or a focal line, which is arranged in the region of the light-emitting surface of the at least one semiconductor light source.
Die beschriebenen Mängel des Standes der Technik werden durch die Erfindung dadurch beseitigt, dass die Lichtverteilung aus einem optischen System von mindestens einer dünnwandigen ersten Optik (Primäroptik) und einer dünnwandigen zweiten Optik (Sekundäroptik) realisiert wird. Eine Optik wird hier als dünnwandig bezeichnet, wenn sie eine maximale Mittendicke von <20mm aufweist. Alle ersten Optiken teilen sich eine gemeinsame zweite Optik. Alle Optiken sind vorzugsweise astigmatische Optiken, die in einer vertikalen und einer horizontalen Ebene deutlich unterschiedliche Brennweiten aufweisen. Ein optisches System umfassend mindestens eine Primäroptik und die Sekundäroptik bildet eine anamorphe Abbildung der leuchtenden Fläche der mindestens einen Halbleiterlichtquelle. Die anamorphe Abbildung bewirkt, dass in den horizontalen und vertikalen Ebenen unterschiedliche Vergrößerungen und damit unterschiedliche Ausdehnungen des Strahlkegels, der durch die Halbleiterlichtquelle erzeugt wird, entstehen. Durch eine geeignete Auslegung der vertikalen und horizontalen Brennweiten der Optiken wird es möglich, die Lichtaustrittsfläche der zweiten Optik und damit des Lichtmoduls in zwei zueinander senkrechten Richtungen mit unterschiedlicher Ausdehnung zu gestalten, ohne dass dies auf Kosten der Lichtausbeute geht. Die Aufteilung von einer auf zwei oder mehr Optiken ermöglicht zudem die Realisierung einer hohen numerischen Apertur bei gleichzeitig großer Brennweite bzw. geringer Vergrößerung ohne dass dafür dickwandige (> 20mm Mittendicke) Optiken benötigt werden, die aufwändige und zeitintensive Herstellungsprozesse benötigen und daher nicht kostengünstig herzustellen sind. Die hohe numerische Apertur und große Brennweite haben zur Folge, dass sowohl eine hohe optische Effizienz (= Lichtausbeute) als auch eine hohe Beleuchtungsstärke in der Bildebene des Lichtmoduls erzielt werden können.
Die ersten Optiken dienen zum Bündeln des Lichts in einem ersten Schritt und zur Lichtformung. Sie können daher unterschiedlich geformte Bereiche (Segmente oder Facetten) aufweisen, um Licht, das auf die verschiedenen Bereiche trifft, in unterschiedliche Positionen in der Bildebene zu lenken. Eine derartige katadioptrische Vorsatzoptik ist grundsätzlich aus der
The first optics serve to bundle the light in a first step and for light shaping. They may therefore have differently shaped areas (segments or facets) to direct light meeting the different areas to different positions in the image plane. Such a catadioptric attachment optics is basically from
Die Halbleiterlichtquelle, die einer ersten Optik zugeordnet ist, erzeugt durch das optische System bestehend aus erster und zweiter Optik eine Lichtverteilung, die eine oder mehrere beliebig geformte Helldunkelgrenzen aufweisen kann. Die resultierende Gesamtlichtverteilung des Lichtmoduls ergibt sich aus der Überlagerung der Einzellichtlichtverteilungen, die durch jeweils eine Lichtquelle eine zugeordnete Primäroptik und eine Sekundäroptik erzeugt wird. Jede Einzellichtverteilung kann eine unterschiedliche Form der Lichtverteilungen und der Helldunkelgrenzen aufweisen, indem die jeweils erste Optik unterschiedlich ausgeführt wird oder die Art, Form oder Lage der Halbleiterlichtquelle unterschiedlich gewählt wird.The semiconductor light source, which is associated with a first optical system, generates a light distribution that can have one or more arbitrarily shaped light-dark boundaries by the optical system consisting of first and second optics. The resulting total light distribution of the light module results from the superimposition of the individual light light distributions, which are generated by a respective light source, an associated primary optics and a secondary optics. Each individual light distribution can have a different form of the light distributions and the light-dark boundaries, in that the respectively first optics are embodied differently or the type, shape or position of the semiconductor light source is selected differently.
Wenn die Primäroptik als eine katadioptrische Vorsatzoptik aus einem transparenten Material ausgebildet ist, können die Lichteintritts- und/oder Lichtaustrittsflächen eine wellen- oder kissenförmige Modulation aufweisen, die dazu dient, das Licht in einer oder mehreren Richtungen zu streuen. Diese Streuung dient dazu, die Lichtverteilung breiter zu gestalten oder bzgl. Intensität oder Farberscheinung zu homogenisieren.If the primary optic is embodied as a catadioptric facing optic made of a transparent material, the light entry and / or light exit surfaces may have a wave or pincushion modulation which serves to scatter the light in one or more directions. This scattering serves to the light distribution to make it wider or to homogenize the intensity or color appearance.
Die Sekundäroptik dient optisch ausschließlich einer weiteren Fokussierung des Lichts, vorzugsweise in nur einer Ebene. Sie bildet die Lichtaustrittsfläche des optischen Systems des Lichtmoduls und weist im Gegensatz zur ersten Optik keine sichtbaren unterschiedlichen Bereiche zur Lichtformung auf. Alle ersten Optiken teilen sich die zweite Optik, d.h. alle optischen Achsen der Teilsysteme aus Lichtquellen und zugeordneten ersten Optiken verlaufen durch die zweite Optik. Typischerweise ist die Brennweite der zweiten Optik in einer ersten Ebene größer als 100mm und damit größer als die Länge des optischen Systems in Lichtaustrittsrichtung, gemessen entlang einer optischen Achse von der Lichtquelle bis zu der Lichtaustrittsfläche der zweiten Optik. Die Brennweite in der dazu senkrechten zweiten Ebene ist deutlich größer, typischerweise unendlich. Das bewirkt, dass eine Verbreiterung der zweiten Optik in der Richtung, die in der zweiten Ebene und senkrecht zur optischen Achse liegt, wenig Auswirkung auf die Qualität der Lichtverteilung hat, da sich die Vergrößerung des Gesamtsystems aus erster und zweiter Optik dadurch nicht ändert. Das wiederum heißt, dass z.B. die Breite einer Zylinderlinse flexibel an gestalterische Vorgaben angepasst werden kann. Insbesondere kann z.B. die Breite merklich größer als die Höhe gestaltet werden, was bei einem herkömmlichen nicht-anamorphen optischen System, bestehend aus rotationssymmetrischen Einzeloptiken nicht möglich ist.The secondary optics serve optically exclusively for a further focusing of the light, preferably in only one plane. It forms the light exit surface of the optical system of the light module and, in contrast to the first optics, has no visible different regions for light shaping. All first optics share the second optics, i. All optical axes of the subsystems of light sources and associated first optics pass through the second optics. Typically, the focal length of the second optical system in a first plane is greater than 100 mm and thus greater than the length of the optical system in the light exit direction, measured along an optical axis from the light source to the light exit surface of the second optical system. The focal length in the perpendicular second plane is much larger, typically infinite. This causes a broadening of the second optics in the direction that lies in the second plane and perpendicular to the optical axis, has little effect on the quality of the light distribution, since the increase in the total system of first and second optics thereby does not change. This in turn means that e.g. The width of a cylindrical lens can be flexibly adapted to design specifications. In particular, e.g. the width can be made considerably larger than the height, which is not possible with a conventional non-anamorphic optical system consisting of rotationally symmetrical single optics.
Vorteilhafte Weiterbildungen und weitere bevorzugte Ausführungsbeispiele der vorliegenden Erfindung können den Unteransprüchen sowie der nachfolgenden Figurenbeschreibung und den dazugehörigen Figuren entnommen werden. Es zeigen:
Figur 1- ein erfindungsgemäßes Lichtmodul gemäß einer bevorzugten Ausführungsform in einer perspektivischen Ansicht;
Figur 2- das Lichtmodul aus
mit beispielhaft eingezeichneten Lichtstrahlen, die von einer Licht emittierenden Fläche einer Halbleiterlichtquelle des Lichtmoduls ausgesandt wurden;Figur 1 Figur 3- einen Vertikalschnitt durch das Lichtmodul aus
;Figur 1 Figur 4- das
Lichtmodul aus Figur 3 mit beispielhaft eingezeichneten Lichtstrahlen, die ihren Ursprung in der Mitte der Licht emittierenden Fläche der Halbleiterlichtquelle des Lichtmoduls haben; Figur 5- eine Draufsicht auf eine Lichtaustrittsfläche einer ersten Optik des Lichtmoduls aus
den Figuren 1 ;bis 4 - Figur 6
- einen Horizontalschnitt durch das
Lichtmodul aus Figur 1 mit beispielhaft eingezeichneten Lichtstrahlen, die von der Licht emittierenden Fläche der Halbleiterlichtquelle des Lichtmoduls ausgesandt wurden; - Figur 7
- einen in Lichtaustrittsrichtung des Lichtmoduls in einem Abstand zu dem Lichtmodul angeordneten Messschirm mit einer darauf abgebildeten resultierenden Lichtverteilung des Lichtmoduls mit einer horizontalen Helldunkelgrenze;
Figur 8- den Messschirm aus
Figur 7 mit einer Veranschaulichung des Prinzips, wie die Helldunkelgrenze erzeugt wird; - Figur 9
- ein erfindungsgemäßes Lichtmodul gemäß einer anderen bevorzugten Ausführungsform in einer perspektivischen Ansicht;
Figur 10- ein erfindungsgemäßes Lichtmodul gemäß einer weiteren bevorzugten Ausführungsform in einer Draufsicht;
Figur 11- das
Lichtmodul aus Figur 10 in einer perspektivischen Ansicht; Figur 12- ein erfindungsgemäßes Lichtmodul gemäß noch einer weiteren bevorzugten Ausführungsform in einer Draufsicht;
Figur 13- einen in Lichtaustrittsrichtung des Lichtmoduls in einem Abstand zu dem Lichtmodul angeordneten Messschirm mit einer darauf abgebildeten streifenförmigen resultierenden Lichtverteilung des Lichtmoduls mit vertikalen und horizontalen Helldunkelgrenzen;
Figur 14- übereinander verschiedene Messschirme mit verschiedenen Lichtverteilungen, die
von den Lichtquellen 1bis 3 des Lichtmoduls erzeugt wurden; Figur 15- übereinander verschiedene Messschirme mit verschiedenen Lichtverteilungen, die
von den Lichtquellen 4 bis 6 des Lichtmoduls erzeugt wurden; Figur 16- übereinander verschiedene Messschirme mit verschiedenen Lichtverteilungen, die von den Lichtquellen 7 bis 9 des Lichtmoduls erzeugt wurden;
Figur 17- übereinander verschiedene Messschirme mit verschiedenen Lichtverteilungen, die
von den Lichtquellen 10 und 11 des Lichtmoduls erzeugt wurden; Figur 18- übereinander verschiedene Messschirme mit verschiedenen Lichtverteilungen, die
von den Lichtquellen 12bis 14 des Lichtmoduls erzeugt wurden; Figur 19- übereinander verschiedene Messschirme mit verschiedenen Lichtverteilungen, die
von den Lichtquellen 15bis 17 des Lichtmoduls erzeugt wurden; Figur 20- übereinander verschiedene Messschirme mit verschiedenen Lichtverteilungen, die
von den Lichtquellen 18bis 20 des Lichtmoduls erzeugt wurden; Figur 21- einen Messschirm mit einer Lichtverteilung, die
von der Lichtquelle 21 des Lichtmoduls erzeugt wurde; Figur 22- einen Messschirm mit einer resultierenden Gesamtlichtverteilung des Lichtmoduls,
wenn alle Lichtquellen 1bis 21aus den Figuren 14 eingeschaltet sind;bis 21 Figur 23- einen Messschirm mit einer resultierenden Gesamtlichtverteilung des Lichtmoduls, wenn bis auf die
Lichtquellen 13 und 14alle Lichtquellen 1bis 21aus den Figuren 14 eingeschaltet sind;bis 21 - Figur 24
- ein erfindungsgemäßes Lichtmodul gemäß einer weiteren bevorzugten Ausführungsform in einer perspektivischen Ansicht mit beispielhaft eingezeichneten Lichtstrahlen;
Figur 25- ein erfindungsgemäßes Lichtmodul gemäß noch einer weiteren bevorzugten Ausführungsform in einer perspektivischen Ansicht;
- Figur 26
- einen Messschirm mit einer Lichtverteilung, die von dem
optischen Teilsystem # 1aus Figur 25 mitder Lichtquelle # 1,einem Reflektor # 1 und der Sekundäroptik des Lichtmoduls erzeugt wurde; - Figur 27
- einen Messschirm mit einer Lichtverteilung, die von dem
optischen Teilsystem # 2aus Figur 25 mitder Lichtquelle # 2,einem Reflektor # 2 und der Sekundäroptik des Lichtmoduls erzeugt wurde; - Figur 28
- einen Messschirm mit einer Lichtverteilung, die von dem
optischen Teilsystem # 3aus Figur 25 mitder Lichtquelle # 3,einem Reflektor # 3 und der Sekundäroptik des Lichtmoduls erzeugt wurde; - Figur 29
- einen Messschirm mit einer Lichtverteilung, die von dem
optischen Teilsystem # 4aus Figur 25 mitder Lichtquelle # 4,einem Reflektor # 4 und der Sekundäroptik des Lichtmoduls und demoptischen Teilsystem # 5aus Figur 25 mitder Lichtquelle # 5,einem Reflektor # 5 und der Sekundäroptik des Lichtmoduls erzeugt wurde; Figur 30- einen Messschirm mit einer resultierenden Gesamtlichtverteilung des Lichtmoduls, die sich aus einer Überlagerung der Einzellichtverteilungen gemäß der
Figuren 26 bis 29 ergibt; und Figur 31- einen Kraftfahrzeugscheinwerfer mit einem erfindungsgemäßen Lichtmodul.
- FIG. 1
- an inventive light module according to a preferred embodiment in a perspective view;
- FIG. 2
- the light module off
FIG. 1 exemplified light beams emitted from a light emitting surface of a semiconductor light source of the light module; - FIG. 3
- a vertical section through the light module
FIG. 1 ; - FIG. 4
- the light module off
FIG. 3 exemplified light beams originating at the center of the light-emitting surface of the semiconductor light source of the light module; - FIG. 5
- a plan view of a light exit surface of a first optics of the light module from the
FIGS. 1 to 4 ; - FIG. 6
- a horizontal section through the light module
FIG. 1 exemplified light rays emitted from the light emitting surface of the semiconductor light source of the light module; - FIG. 7
- a measuring screen arranged in the light exit direction of the light module at a distance from the light module, with a resulting light distribution of the light module having a horizontal light-dark boundary imaged thereon;
- FIG. 8
- the screen off
FIG. 7 with an illustration of the principle of how the chiaroscuro boundary is generated; - FIG. 9
- an inventive light module according to another preferred embodiment in a perspective view;
- FIG. 10
- an inventive light module according to another preferred embodiment in a plan view;
- FIG. 11
- the light module off
FIG. 10 in a perspective view; - FIG. 12
- an inventive light module according to yet another preferred embodiment in a plan view;
- FIG. 13
- a measuring screen arranged in the light exit direction of the light module at a distance from the light module and having a strip-shaped resulting light distribution of the light module with vertical and horizontal light-dark boundaries imaged thereon;
- FIG. 14
- one above the other different screens with different light distributions, which were generated by the
light sources 1 to 3 of the light module; - FIG. 15
- one above the other different screens with different light distributions, which were generated by the
light sources 4 to 6 of the light module; - FIG. 16
- superimposed different screens with different light distributions, which were generated by the light sources 7 to 9 of the light module;
- FIG. 17
- superimposed different screens with different light distributions, which were generated by the
10 and 11 of the light module;light sources - FIG. 18
- superimposed different screens with different light distributions, which were generated by the
light sources 12 to 14 of the light module; - FIG. 19
- superimposed different screens with different light distributions, which were generated by the
light sources 15 to 17 of the light module; - FIG. 20
- superimposed different screens with different light distributions, which were generated by the
light sources 18 to 20 of the light module; - FIG. 21
- a screen having a light distribution generated by the
light source 21 of the light module; - FIG. 22
- a screen with a resulting total light distribution of the light module when all the
light sources 1 to 21 from theFIGS. 14 to 21 are turned on; - FIG. 23
- a measuring screen with a resulting total light distribution of the light module, except for the
13 and 14, alllight sources light sources 1 to 21 from theFIGS. 14 to 21 are turned on; - FIG. 24
- a light module according to the invention according to a further preferred embodiment in a perspective view with exemplified light beams;
- FIG. 25
- an inventive light module according to yet another preferred embodiment in a perspective view;
- FIG. 26
- a screen with a light distribution coming from the
optical subsystem # 1FIG. 25 was generated with thelight source # 1, areflector # 1 and the secondary optics of the light module; - FIG. 27
- a screen with a light distribution coming from the
optical subsystem # 2FIG. 25 was generated with thelight source # 2, areflector # 2 and the secondary optics of the light module; - FIG. 28
- a screen with a light distribution coming from the
optical subsystem # 3FIG. 25 was generated with thelight source # 3, areflector # 3 and the secondary optics of the light module; - FIG. 29
- a screen with a light distribution coming from the
optical subsystem # 4FIG. 25 with thelight source # 4, areflector # 4 and the secondary optics of the light module and theoptical subsystem # 5FIG. 25 with thelight source # 5, areflector # 5 and the secondary optics of the light module was generated; - FIG. 30
- a measuring screen with a resulting total light distribution of the light module, resulting from a superposition of the individual light distributions according to the
FIGS. 26 to 29 results; and - FIG. 31
- a motor vehicle headlight with a light module according to the invention.
In
Zusammen mit dem Lichtmodul 10 können in dem Gehäuse 2 auch noch andere Lichtmodule zur Erzeugung einer beliebigen Fahrt-Lichtverteilung oder eines Teils davon, oder Leuchtenmodule zur Realisierung einer beliebigen Leuchtenfunktion (z.B. Blinklicht, Positionslicht, Standlicht, Tagfahrlicht, Standlicht, Rückfahrlicht, Bremslicht oder ähnliches) angeordnet sein. Das erfindungsgemäße Lichtmodul 10 wird nachfolgend anhand der
Ein erstes Beispiel eines Lichtmoduls 10 wird nachfolgend anhand der
Die zweite Optik oder Sekundäroptik 15 ist in dem in
Ein Brennpunkt 17 der Primäroptik 11 ist entgegen einer Lichtaustrittsrichtung betrachtet hinter der mindestens einen Halbleiterlichtquelle 12 angeordnet. Ferner ein Brennpunkt 18 oder eine Brennlinie 18a (vgl.
In
In
Da es sich bei der zweiten Linse 15 um eine Zylinderoptik handelt, besitzt sie keinen Brennpunkt, sondern eine Brennlinie. Dadurch ist es einfach möglich, mehrere erste Optiken 11 einzusetzen, um z.B. den Lichtstrom des Gesamtsystems zu erhöhen. Hierzu müssen die zusätzlichen Optiken auf einer Linie platziert werden, die parallel zu der Brennlinie verläuft. Ein Beispiel für eine Realisierung eines solchen Systems zeigt
In der nächsten beispielhaften Realisierung eines erfindungsgemäßen Lichtmoduls 10 gemäß der
Die beschriebene Realisierung kann nachteilhaft sein, wenn jedes optische Teilsystem (mit Elementen 12, 11, 15) eine vergleichbare Lichtverteilung erzeugen soll, wie es z.B. bei pixelförmigen Lichtverteilungen für adaptive Fernlichtverteilungen (z.B. Teilfernlicht, Markierungslicht, etc.) der Fall ist. In diesem Fall ist es vorteilhaft, wenn jedes Teilsystem in horizontaler bzw. vertikaler Richtung die gleiche Vergrößerung der Bilder der Licht emittierenden Fläche der Halbleiterlichtquellen 12 liefert. Um dies zu erreichen, muss die Lage der LEDs 12 auf einer Linie 19a parallel zur Brennlinie 18a der Sekundäroptik 15 gewählt werden. Ein entsprechendes Beispiel ist in
Mit den zuvor beschriebenen Realisierungen der vorliegenden Erfindung wurde eine Lichtverteilung 30 mit einer horizontalen Helldunkelgrenze 31 (vgl.
Wenn mehrere LEDs 12 mit zugehöriger erster Optik 11 verwendet werden und wenn die LEDs 12 einzeln schaltbar sind, dann können adaptive Fernlichtverteilungen als resultierende Gesamtlichtverteilung des Lichtmoduls 10 realisiert werden, bei denen unterschiedliche definierte Winkelbereiche der Lichtverteilung durch verschiedene LEDs 12 ausgeleuchtet oder dunkel gelassen werden können. Die
Die Einzellichtverteilungen 50 weisen jeweils zwei vertikale Helldunkelgrenzen 51 und zwei horizontale Helldunkelgrenzen 52 auf. Dadurch wird ein definierter Winkelbereich horizontal und vertikal beleuchtet. Beispielhaft sind Linien mit gleichen Beleuchtungsstärken (sog. Isoluxlinien) in den Einzellichtverteilungen 50 eingezeichnet. Eine durchgezogene Linie für 50,0 lx ist mit dem Bezugszeichen 53, eine gestrichelte Linie für 10 lx mit 54 und eine gestrichpunktete Linie für 0,1 lx mit 55 bezeichnet. Für die Definition der Helldunkelgrenzen 51, 52 können verschiedene Kriterien herangezogen werden. In dem gezeigten Beispiel wurde als einfaches Kriterium die Lage der 0,1 lx Iso-Linie 55 angewandt. Der ausgeleuchtete Winkelbereich ist anhand dieser Definition jeweils ungefähr horizontal 3° breit und vertikal 10° hoch.The individual
Wenn alle LEDs 12 gleichzeitig angeschaltet sind, so entsteht die in
Um die erzeugte Lichtverteilung 60 noch flexibler steuern zu können, ist es sinnvoll, den Lichtstrom über eine variable Leistungsversorgung steuern zu können. Typischerweise werden die LEDs 12 dazu pulsweitenmoduliert bestromt. Durch Änderung der Pulsweite kann der Lichtstrom gesteuert werden.In order to be able to control the generated
In einem anderen Ausführungsbeispiel, das in
In
Eine weitere Variante ist, dass jeweils mehrere LEDs 12 eine erste Optik 11 nutzen. Auf diese Weise kann z.B. die Zahl der erzeugten Lichtbereiche ("Pixel") einer adaptiven Fernlichtverteilung erhöht werden, ohne dass die Anzahl der ersten Optiken 11 erhöht werden muss.Another variant is that in each case a plurality of
Claims (15)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102016118152.8A DE102016118152A1 (en) | 2016-09-26 | 2016-09-26 | Light module for a motor vehicle headlight |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3301350A1 true EP3301350A1 (en) | 2018-04-04 |
EP3301350B1 EP3301350B1 (en) | 2022-02-23 |
Family
ID=59829256
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17190034.3A Active EP3301350B1 (en) | 2016-09-26 | 2017-09-08 | Light module for a motor vehicle headlamp |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP3301350B1 (en) |
DE (1) | DE102016118152A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112513522A (en) * | 2018-07-31 | 2021-03-16 | 法雷奥照明公司 | Illumination module for imaging an illuminated surface of a light collector |
CN116221647A (en) * | 2023-05-08 | 2023-06-06 | 常州星宇车灯股份有限公司 | Car light high beam lighting system, lighting module and vehicle |
EP4368878A1 (en) * | 2022-11-08 | 2024-05-15 | Hella Autotechnik Nova, s.r.o. | Automobile headlight |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3550203B1 (en) * | 2018-04-04 | 2022-12-21 | ZKW Group GmbH | Light module for a swept-back motor vehicle lighting device |
CN212746315U (en) * | 2020-07-02 | 2021-03-19 | 华域视觉科技(上海)有限公司 | Lens unit, auxiliary low-beam module, lens, low-beam lighting module and vehicle |
DE102021124722A1 (en) | 2021-09-24 | 2023-03-30 | Bartenbach Holding Gmbh | radiator |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19853402A1 (en) * | 1997-12-05 | 1999-06-10 | Valeo Vision | Lighting device for car with light source, reflector and lens |
DE102005015007A1 (en) | 2004-04-02 | 2005-10-20 | Koito Mfg Co Ltd | vehicle light |
JP2007324003A (en) * | 2006-06-01 | 2007-12-13 | Ichikoh Ind Ltd | Vehicular lighting fixture |
DE102008027320A1 (en) | 2008-06-07 | 2009-12-10 | Hella Kgaa Hueck & Co. | Headlamp for vehicle, has light coupling and decoupling surfaces formed such that LED light sources represent hotspots infinitely so that vertical and horizontal end regions of hotspots lie proximate to one another |
DE102011078653A1 (en) | 2011-07-05 | 2013-01-10 | Automotive Lighting Reutlingen Gmbh | Attachment optics for the bundling of emitted light of at least one semiconductor light source |
WO2013138834A1 (en) * | 2012-03-21 | 2013-09-26 | Zizala Lichtsysteme Gmbh | Projection module for a motor vehicle |
DE102012211613A1 (en) * | 2012-07-04 | 2014-01-09 | Automotive Lighting Reutlingen Gmbh | light module |
US20140092619A1 (en) | 2012-10-01 | 2014-04-03 | Osram Sylvania Inc. | LED Low Profile Linear Front Fog Module |
DE102014203335A1 (en) * | 2014-02-25 | 2015-08-27 | Automotive Lighting Reutlingen Gmbh | Light module of a motor vehicle headlight and headlights with such a light module |
-
2016
- 2016-09-26 DE DE102016118152.8A patent/DE102016118152A1/en not_active Withdrawn
-
2017
- 2017-09-08 EP EP17190034.3A patent/EP3301350B1/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19853402A1 (en) * | 1997-12-05 | 1999-06-10 | Valeo Vision | Lighting device for car with light source, reflector and lens |
DE102005015007A1 (en) | 2004-04-02 | 2005-10-20 | Koito Mfg Co Ltd | vehicle light |
JP2007324003A (en) * | 2006-06-01 | 2007-12-13 | Ichikoh Ind Ltd | Vehicular lighting fixture |
DE102008027320A1 (en) | 2008-06-07 | 2009-12-10 | Hella Kgaa Hueck & Co. | Headlamp for vehicle, has light coupling and decoupling surfaces formed such that LED light sources represent hotspots infinitely so that vertical and horizontal end regions of hotspots lie proximate to one another |
DE102011078653A1 (en) | 2011-07-05 | 2013-01-10 | Automotive Lighting Reutlingen Gmbh | Attachment optics for the bundling of emitted light of at least one semiconductor light source |
WO2013138834A1 (en) * | 2012-03-21 | 2013-09-26 | Zizala Lichtsysteme Gmbh | Projection module for a motor vehicle |
DE102012211613A1 (en) * | 2012-07-04 | 2014-01-09 | Automotive Lighting Reutlingen Gmbh | light module |
US20140092619A1 (en) | 2012-10-01 | 2014-04-03 | Osram Sylvania Inc. | LED Low Profile Linear Front Fog Module |
DE102014203335A1 (en) * | 2014-02-25 | 2015-08-27 | Automotive Lighting Reutlingen Gmbh | Light module of a motor vehicle headlight and headlights with such a light module |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112513522A (en) * | 2018-07-31 | 2021-03-16 | 法雷奥照明公司 | Illumination module for imaging an illuminated surface of a light collector |
CN112513522B (en) * | 2018-07-31 | 2024-10-11 | 法雷奥照明公司 | Illumination module for imaging the illuminated surface of a light collector |
EP4368878A1 (en) * | 2022-11-08 | 2024-05-15 | Hella Autotechnik Nova, s.r.o. | Automobile headlight |
CN116221647A (en) * | 2023-05-08 | 2023-06-06 | 常州星宇车灯股份有限公司 | Car light high beam lighting system, lighting module and vehicle |
Also Published As
Publication number | Publication date |
---|---|
DE102016118152A1 (en) | 2018-03-29 |
EP3301350B1 (en) | 2022-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2910847B1 (en) | Light module of a motor vehicle headlight and headlight with such a light module | |
EP2799762B1 (en) | Light module for a motor vehicle headlamp | |
EP2799761B1 (en) | Light module for a motor vehicle headlamp | |
DE112013007443B4 (en) | Headlamp for use in a vehicle | |
DE102012202290B4 (en) | Light module for a glare-free motor vehicle high beam | |
EP3301350B1 (en) | Light module for a motor vehicle headlamp | |
EP2893249B1 (en) | Lighting unit for a headlight | |
EP2789901B1 (en) | Light module of a motor vehicle lighting device | |
EP2505910B1 (en) | Motor vehicle headlamp with a semiconductor light source | |
DE102014200368B4 (en) | Partial remote light projection light module for a motor vehicle headlight | |
DE102014205994B4 (en) | Light module with semiconductor light source and attachment optics and motor vehicle headlight with such a light module | |
EP2846077A2 (en) | Projection lens for use in an LED module of a motor vehicle headlight, and LED module and motor vehicle headlamp with such a projection lens | |
DE102014215785B4 (en) | Projection light module for a motor vehicle headlight | |
DE202011103703U1 (en) | Light module of a motor vehicle for generating a sports distribution of a high beam light distribution and motor vehicle headlights with such a module | |
DE102004043706A1 (en) | Optical system for a motor vehicle headlight, lighting unit for a motor vehicle headlight and motor vehicle headlight | |
EP2730836B1 (en) | Light module for a headlight of a motor vehicle | |
EP2784376A2 (en) | Motor vehicle light for dynamic light functions | |
EP2863108B1 (en) | LED module of a motor vehicle headlamp | |
EP2543926A2 (en) | Lens for bundling emitted light by means of a semiconductor light source (LED) | |
EP2523022A1 (en) | Lighting module of a motor vehicle headlamp for creating a variable light distribution and motor vehicle headlamp with such a lighting module | |
DE102016103288A1 (en) | Luminaire module especially for street lights | |
EP2500630B1 (en) | Transparent lens of a motor vehicle lighting device | |
EP3765781B1 (en) | Light module for motor vehicle headlight | |
DE10312364A1 (en) | Motor vehicle headlamp with enhanced light dark boundary on the road has light diode source with ovoid central region and two parabolic reflectors | |
EP3719391B1 (en) | Partial high beam module for a motor vehicle headlight |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20181004 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F21S 41/26 20180101AFI20210720BHEP Ipc: F21S 41/265 20180101ALI20210720BHEP Ipc: F21S 41/143 20180101ALI20210720BHEP Ipc: F21S 41/148 20180101ALI20210720BHEP Ipc: F21S 41/33 20180101ALI20210720BHEP Ipc: F21V 5/00 20180101ALI20210720BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20210914 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502017012630 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1470735 Country of ref document: AT Kind code of ref document: T Effective date: 20220315 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20220223 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220223 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220223 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220623 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220523 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220223 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220223 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220223 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220223 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220523 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220223 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220223 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220524 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220223 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220623 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220223 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220223 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220223 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220223 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220223 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220223 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502017012630 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220223 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20221124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220223 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220223 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20220908 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20220930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220908 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220930 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220223 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220908 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220930 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220908 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1470735 Country of ref document: AT Kind code of ref document: T Effective date: 20220908 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220908 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20170908 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220223 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220223 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220223 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220223 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240820 Year of fee payment: 8 |