EP3282517B1 - Alimentations multiples par réseau d'antennes directionnelles à l'aide d'un coupleur multiport quasi-périodique - Google Patents
Alimentations multiples par réseau d'antennes directionnelles à l'aide d'un coupleur multiport quasi-périodique Download PDFInfo
- Publication number
- EP3282517B1 EP3282517B1 EP16184004.6A EP16184004A EP3282517B1 EP 3282517 B1 EP3282517 B1 EP 3282517B1 EP 16184004 A EP16184004 A EP 16184004A EP 3282517 B1 EP3282517 B1 EP 3282517B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- antenna
- port
- subset
- quasi
- antenna horn
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q25/00—Antennas or antenna systems providing at least two radiating patterns
- H01Q25/007—Antennas or antenna systems providing at least two radiating patterns using two or more primary active elements in the focal region of a focusing device
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/27—Adaptation for use in or on movable bodies
- H01Q1/28—Adaptation for use in or on aircraft, missiles, satellites, or balloons
- H01Q1/288—Satellite antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q19/00—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
- H01Q19/10—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
- H01Q19/12—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
- H01Q19/17—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source comprising two or more radiating elements
Definitions
- the invention relates to a multiple feeds per beam antenna array feed system using a quasi-periodic multi-port coupler, for example for use in satellite communication.
- antenna beams In feed systems using the multiple feeds per beam principle, antenna beams, herein referred to as beams, are excited by a plurality of single antennas. Adjacent beams use at least one shared antenna of the single antennas which provides an overlap of the adjacent beams. In order to prevent mutual influence on the signals of adjacent beams, these beams must be orthogonal to each other. This mutual influence can be prevented by using orthogonal polarization. If a same polarization is used, it is necessary that a single antenna commonly used for adjacent beams has a coupler or coupling-network. A usage of usual 4-port couplers or 6-port couplers enforces orthogonality of excitation coefficient sets of commonly used antennas. This limits an optimal choice of the excitation coefficients and leads to degradation in antenna gain of typically 1 dB. This is typically called dual-mode or triple mode loss depending on a number of commonly used antennas.
- feed systems are subject to disadvantages, such as multimode losses, excitation coefficients being either not freely and optimally selectable, beams not being practical for illuminating big areas without a gap, or a down-/upstream antenna array needing another reflector.
- US 4 236 161 A discloses an offset antenna and feed combination for use in a satellite communication system.
- JP H06 85534 A discloses a multiple feeds per beam antenna array feed system.
- the output ports of the quasi-periodic multi-port coupler is arranged, such that each of the output ports can feed one of the plurality of antennas of the antenna array. Further, the output ports are arranged and adapted to distribute the power. A part of the power is outputted by two output ports of the plurality of output ports of the quasi-periodic multi-port coupler. The two output ports may be adapted and arranged to combine the part of the power up-/downstream the common antenna and to feed the antenna with the part of the power.
- the antenna array is further adapted and arranged to be fed by or to feed the quasi-periodic multi-port coupler, such that only one common antenna between adjacent beams exists, for example for each quasi periodic coupler.
- the two output ports adjacent to the input port's corresponding output port are directly adjacent to the input port's corresponding output port.
- the advantage of the quasi-periodic multi-port coupler is that a signal fed to one of the input ports can be directly received/transmitted to its corresponding output port and the directly adjacent output ports.
- the coupling effect on all other output ports beside the two directly adjacent output ports as well as unused input ports is negligible.
- the quasi-periodic multi-port coupler is able to isolate input signals fed to the at least two input ports.
- multi-port can be understood as a port having at least 2 or more ports.
- quadsi-periodic can be understood as periodic in a rough estimation, such that the coupling values of the quasi-periodic multi-port coupler have nearly the same values for each beam to be transmitted/received. Since the coupling values may differ from the exact same values for each coupling value, the term “quasi-periodic” may further be understood as an expression commonly used by a skilled person in the field of high frequency technology.
- common antenna or “commonly used antenna” is to may- be understood as the antenna being part of two beams. Further, the terms “common antenna” and “commonly used antenna” may also be referred to as “shared antenna”.
- beam is to be understood as an electromagnetic wave formed by more than one antenna.
- multi-port is to be understood as having more than one port as an input port and/or output port.
- multiple feeds may be understood as having a number of waveguides being combined by a part the antenna array to a beam.
- two beams of the at least two beams is to be understood that the exactly/only one antenna, for example per quasi-periodic multi-port coupler, of the subset is used as a common antenna with respect to exactly/only two beams of more than two beams, when more than two beams are to be transmitted or received by the antenna array.
- the common antenna only forms part of two adjacent beams.
- adjacent beams may be understood as two beams spatially adjacent.
- plural of antennas may be understood as a number of antennas higher than three.
- the antennas can be horn antennas.
- the quasi-periodic multi-port coupler is further be adapted and arranged to distribute power in a predetermined ratio from the input port of the at least two input ports to the output port corresponding to the input port and to the two output ports adjacent to the output port corresponding to the input port.
- the number of input ports of the quasi-periodic multi-port coupler determines the number of beams of the quasi-periodic multi-port coupler.
- the output port corresponding to the input port and the two output ports adjacent to the output port corresponding to the input port may form at least part of the multiple feeds.
- the common antenna is adapted and arranged to transmit electromagnetic waves corresponding to two different beams.
- the common antenna is adapted and arranged to receive electromagnetic waves corresponding to two different beams.
- the subset can have another common antenna.
- the other common antenna may not form part of more than two adjacent beams.
- the other common antenna is adapted and arranged to transmit electromagnetic waves corresponding to two different beams, when there are more than two beams to be transmitted.
- the other common antenna is adapted and arranged to receive electromagnetic waves corresponding to two different beams, when there are more than two beams to be received.
- the multiple feeds per beam antenna array feed system further comprises at least two input sources.
- Each input source of the at least two input sources is connected to the at least two input ports.
- Each of the at least two input sources may be adapted and arranged to feed a different one of the at least two input ports.
- the quasi-periodic multi-port coupler may have a negligible coupling effect on output ports different to the output port corresponding to the input port and to the two adjacent output ports as well as to the unused input ports.
- the quasi-periodic multi-port coupler may be further adapted and arranged to isolate each of the at least two input ports.
- the commonly used antenna is adapted and arranged to transmit or receive an electromagnetic wave having a single polarization.
- the single polarization is the same polarization as of the other antennas of the plurality of antennas.
- the commonly used antenna may be adapted and arranged to transmit or receive a part of a first and second beam.
- the first and the second beam correspond to electromagnetic waves having the same polarization.
- An advantage of the foregoing claims is that a gap between adjacent areas to be illuminated by the antenna array is closed, while maintaining a high gain with respect to commonly known horn antenna arrays with multiple feeds per beam.
- the multiple feeds per beam antenna array feed system may be for use on a satellite.
- the term "use on a satellite” may be understood as being mounted on a satellite or being partly arranged within or at the satellite.
- the satellite can be a Very High Throughput Satellite, VHTS.
- VHTS Very High Throughput Satellite
- the multiple feeds per beam antenna array feed system can further comprise another quasi-periodic multi-port coupler.
- the other quasi-periodic multi-port coupler can be connected to the antenna array.
- the other quasi-periodic multi-port coupler is adapted and arranged to be fed or to feed the antenna array.
- the antenna array is adapted and arranged to be fed or to feed the other quasi-periodic multi-port coupler.
- Exactly two antennas of the subset can be used as common antennas with respect to three beams of the beams to be transmitted or to be received by the antenna array.
- Figure 1 schematically illustrates a principal antenna allocation, herein below exemplified as horn allocation.
- A, B,..., O may also be referred to as the antenna element in this example. It can be even more than those 15 different allocations or less than 15 allocations.
- This principle illustration with these 15 different allocations has 3 different bullet possibilities of exciting a beam.
- beam clusters of 3, 4 or 7 elements That means that a cluster of 3, 4 or 7 elements can excite a beam. That means that in this example beams can be generated from a cluster of 3, 4 or 7 horn antennas.
- B is a common element/antenna of C 31 and C 32
- C is a common element/antenna of C 32 and C 33
- D is a common element/antenna of C 33 and C 34
- F is a common element/antenna of C 31 and C 35
- G is a common element/antenna of C 32 and C 36
- H is a common element/antenna of C 33 and C 37
- I is a common element/antenna of C 34 and C 38 .
- "Common" may be understood as being shared by adjacent clusters generating/exciting an adjacent beam, wherein the common element is part of the generating of both adjacent beams.
- Those antennas/elements of the illustration in figure 1 are part of the multiple feeds per beam antenna array feed system comprising a quasi-periodic multi-port coupler.
- the quasi-periodic multi-port coupler is adapted and arranged to distribute power from an input port of at least two input ports to the input port's corresponding output port and to two output ports adjacent to the input port's corresponding output port.
- the antenna array is connected to the quasi-periodic multi-port coupler based on the number of clusters.
- the antenna array is further adapted and arranged to be fed by or to feed the quasi-periodic multi-port coupler, such that only one common antenna between adjacent beams exist and that a beam is generated with a number of cluster elements according to a cluster prerequisite, for example a usage of a 3 elements cluster, 4-elements or 7-elements cluster. Other constellations of clusters are possible.
- the antenna array is further adapted and arranged to transmit at least two beams. These two beams might be referred to as electromagnetic beams having a specific polarization, such as linear, circular or elliptical polarization.
- the antenna array comprises a plurality of antennas.
- Each antenna of the plurality of antennas is adapted and arranged to transmit an electromagnetic wave having a same polarization, for example fed by the same quasi periodic coupler.
- This same polarization may be a linear, circular or elliptical polarization being the same for all antenna/horn elements, such as for A, B,..., O shown in figure 1 .
- a combination of electromagnetic waves transmitted or received by a subset of the plurality of antennas forms one of the at least two beams.
- the subset might be referred to as the clusters and further illustrated in the following figures 2A , 3A and 4A for example.
- Exactly one antenna of the subset is used as a common antenna with respect to two beams of the at least two beams to be transmitted or received by the antenna array.
- the at least two beams to be transmitted or received by the antenna array are 8 beams being excited by C 31 , C 32 , C 33 , C 34 , C 35 , C 36 , C 37 , C 38 .
- the at least two beams to be transmitted or received by the antenna array are four beams being excited by C 41 , C 42 , C 43 , C 44 .
- the at least two beams to be transmitted or received by the antenna array are two beams being excited by C 71 and C 72 .
- FIG. 2A schematically illustrates an example of a 3 elements cluster.
- a power is divided within the quasi-periodic multi-port coupler and provided/fed to the antenna elements illustrated in figure 2A .
- Multi-port means that there are multiple input and multiple output ports, wherein the number of the input ports and the number of the output ports can be different. It can even be one input port and multiple output ports.
- An output port corresponding to the input port of the quasi-periodic multi-port coupler receives power from one of the input ports as well as two adjacent output ports referred to as adjacent output ports to the input ports corresponding output port.
- two clusters of elements with corresponding beams are illustrated in figure 2A .
- the two excited beams share the common element B, wherein the cluster C 31 generates/excites a first beam and C 32 generates/excites a second beam.
- the element J does not play a role and could be omitted.
- Figure 2B schematically illustrates the principle in a planar line diagram illustrating two beams B1 and B2.
- B1 is divided onto the antenna elements A, F and B; and
- B2 is divided onto the antenna elements B, G and C.
- a possible third beam would share the element C in this example.
- FIG 3A schematically illustrates an example of a 4 elements cluster.
- a power is divided within the quasi-periodic multi-port coupler and provided/fed to the antenna elements illustrated in figure 3A .
- two clusters of elements with corresponding beams are illustrated in figure 3A .
- the two excited beams share the common element G, wherein the cluster C 41 generates/excites a first beam and C 42 generates/excites a second beam.
- This array is not limited to the 15 elements A, B,..., O. There can be less or even more elements/antennas. The same applies to the following figures below.
- the two elements A and K do not play a role and could be omitted.
- Figure 3B schematically illustrates the principle in a planar line diagram illustrating two beams B1 and B2.
- B1 is divided onto the antenna elements F, B, G and L (illustrated in figure 3A ); and B2 is divided onto the antenna elements G, C, H and M (illustrated in figure 3A ).
- a possible third beam would share the element H in this example.
- Antenna elements L and M respectively are fed by another coupler, in particular a four-port coupler.
- the four-port coupler can be upstream or downstream with respect to the quasi-periodic multi-port coupler.
- FIG 4A schematically illustrates an example of a 7 elements cluster.
- a power is divided within the quasi-periodic multi-port coupler and provided/fed to the antenna elements illustrated in figure 4A .
- two clusters of elements with corresponding beams are illustrated in figure 4A .
- the two excited beams share the common element H, wherein the cluster C 71 generates/excites a first beam and C 72 generates/excites a second beam.
- Figure 4B schematically illustrates the principle in a planar line diagram illustrating two beams B1 and B2.
- B1 is divided onto the antenna elements F, G and H; and B2 is divided onto the antenna elements H, I, J.
- a possible third beam would share the element J in this example, when there are more elements on the right side as of figure 4A .
- Antenna elements B, C, L and M, and D, E, N and O respectively are fed by standard power dividers, in particular a four-port coupler, such as for example a 90° hybrid, a symmetrical power divider or a directional coupler.
- the power divider can be upstream or downstream with respect to the quasi-periodic multi-port coupler.
- Figure 5 schematically illustrates an excitation of 7 antennas per beam and two quasi periodic couplers with corresponding output ports.
- Figure 5 shows the case, wherein two adjacent beams can be shared by two single antennas. The two shared single antennas can be fed by two different quasi-periodic multi-port couplers.
- two 6-port couplers would be necessary to feed the antenna array.
- a signal fed to the antenna array would be split onto ports P1, P4 and antenna D, which is illustrated as a horn, which is the preferred antenna type in this scenario.
- a signal fed to the antenna array would be split onto ports P2, P5 and antenna I.
- a signal fed to the antenna array would be split onto ports P3, P6 and antenna N.
- the first and second beams share two antennas, namely the antennas F and G.
- the second and third beams share two antennas, namely the antennas K and L.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Astronomy & Astrophysics (AREA)
- General Physics & Mathematics (AREA)
- Remote Sensing (AREA)
- Aviation & Aerospace Engineering (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Claims (9)
- Système d'alimentation d'un réseau d'antennes directionnelles à alimentations multiples comprenant:un coupleur multiport quasi-périodique comprenant au moins deux ports d'entrée et étant conçu et agencé pour distribuer la puissance provenant de chaque port d'entrée des au moins deux ports d'entrée à un port de sortie correspondant au port d'entrée respectif et à deux ports de sortie directement adjacents au port de sortie correspondant au port d'entrée respectif, dans lequel les valeurs de couplage du coupleur multiport quasi-périodique ont presque les mêmes valeurs pour chaque faisceau à transmettre ou à recevoir, et dans lequel un nombre de ports d'entrée détermine un nombre de faisceaux à transmettre ou à recevoir; etun réseau d'antennes connecté au coupleur multiport quasi-périodique, conçu et agencé pour être alimenté par celui-ci ou pour l'alimenter, et conçu et agencé en outre pour transmettre ou recevoir au moins deux faisceaux, dans lequel le réseau d'antennes comprend cinq éléments cornets d'antenne ou plus formant au moins deux sous-ensembles, chaque élément cornet d'antenne des cinq éléments cornets d'antenne ou plus étant conçu et agencé pour transmettre ou recevoir une onde électromagnétique ayant la même polarisation, et dans lequel une combinaison d'ondes électromagnétiques transmises ou reçues par un premier sous-ensemble des deux au moins sous-ensembles forme l'un des au moins deux faisceaux, et dans lequel une combinaison d'ondes électromagnétiques transmises ou reçues par un deuxième sous-ensemble des au moins deux sous-ensembles forme un autre parmi les au moins deux faisceaux, dans lequel le premier sous-ensemble comprend au moins trois des cinq éléments cornets d'antenne ou plus et le deuxième sous-ensemble comprend au moins trois des cinq éléments cornets d'antenne ou plus, et dans lequel un seul élément cornet d'antenne des au moins trois éléments cornets d'antenne du premier sous-ensemble est un élément cornet d'antenne commun du premier sous-ensemble et du deuxième sous-ensemble,dans lequel l'élément cornet d'antenne commun fait partie de deux faisceaux adjacents des deux faisceaux ou plus, dans lequel, pour chaque sous-ensemble, chaque port de sortie correspondant à un port d'entrée respectif des au moins deux ports d'entrée et des deux ports de sortie directement adjacents au port de sortie correspondant au port d'entrée respectif des au moins deux ports d'entrée est conçu pour alimenter ou être alimenté par un seul élément cornet d'antenne des trois éléments cornets d'antenne des trois éléments cornets d'antenne ou plus d'un sous-ensemble des au moins deux sous-ensembles,et dans lequel l'élément cornet d'antenne commun est un élément cornet d'antenne parmi les trois éléments cornets d'antenne des trois éléments cornets d'antenne ou plus d'un sous-ensemble qui est conçu pour être alimenté par ou pour alimenter l'un des trois ports de sortie correspondant à un port d'entrée respectif des au moins deux ports d'entrée du coupleur multiport quasi-périodique.
- Système d'alimentation d'un réseau d'antennes directionnelles à alimentations multiples selon la revendication 1, dans lequel le réseau d'antennes est disposé et conçu pour transmettre ou recevoir au moins trois faisceaux, et dans lequel un autre élément cornet d'antenne des au moins trois éléments de cornet d'antenne du premier sous-ensemble est un autre élément cornet d'antenne commun du premier sous-ensemble et d'un troisième sous-ensemble des trois éléments cornets d'antenne ou plus.
- Système d'alimentation d'un réseau d'antennes directionnelles à alimentations multiples selon l'une quelconque des revendications précédentes, comprenant en outre:
au moins deux sources d'entrée, chacune connectée aux au moins deux ports d'entrée, chacune des au moins deux sources d'entrée étant conçue et agencée pour alimenter un port d'entrée différent parmi les au moins deux ports d'entrée. - Système d'alimentation d'un réseau d'antennes directionnelles à alimentations multiples selon l'une quelconque des revendications précédentes, dans lequel l'élément cornet d'antenne commune est conçu et agencé pour transmettre ou recevoir une onde électromagnétique ayant une seule polarisation.
- Système d'alimentation d'un réseau d'antennes directionnelles à alimentations multiples selon l'une quelconque des revendications précédentes, dans lequel l'élément cornet d'antenne commune est conçu et agencé pour transmettre ou recevoir une partie d'un premier et d'un second faisceau correspondant chacun à des ondes électromagnétiques ayant la même polarisation.
- Utilisation du système d'alimentation d'un réseau d'antennes directionnelles à alimentations multiples selon l'une quelconque des revendications précédentes dans un satellite.
- Utilisation du système d'alimentation d'un réseau d'antennes directionnelles à alimentations multiples selon la revendication 6, dans lequel le satellite est un satellite à très haut débit, VHTS.
- Système d'alimentation ayant de multiples alimentations par réseau d'antennes directionnelles comprenant:un premier coupleur multiport quasi-périodique comprenant au moins deux ports d'entrée et conçu et agencé pour distribuer la puissance de chaque port d'entrée des au moins deux ports d'entrée à un port de sortie correspondant au port d'entrée respectif et à deux ports de sortie directement adjacents au port de sortie correspondant au port d'entrée respectif, dans lequel les valeurs de couplage du coupleur multiport quasi-périodique ont presque les mêmes valeurs pour chaque faisceau à transmettre ou à recevoir, et dans lequel un nombre de ports d'entrée détermine un nombre de faisceaux à transmettre ou à recevoir;un second coupleur multiport quasi-périodique connecté au réseau d'antennes et comprenant au moins deux ports d'entrée et étant conçu et agencé pour distribuer la puissance de chaque port d'entrée des au moins deux ports d'entrée à un port de sortie correspondant au port d'entrée respectif et à deux ports de sortie directement adjacents au port de sortie correspondant au port d'entrée respectif, dans lequel les valeurs de couplage du second coupleur multiport quasi-périodique ont presque les mêmes valeurs pour chaque faisceau à transmettre ou à recevoir, et dans lequel un nombre de ports d'entrée détermine un nombre de faisceaux à transmettre ou à recevoir, et dans lequel le second coupleur multiport quasi-périodique est conçu et agencé pour être alimenté ou pour alimenter le réseau d'antennes, etun réseau d'antennes connecté au premier coupleur multiport quasi-périodique et au second coupleur multiport quasi-périodique et conçu et agencé pour être alimenté par ces derniers ou alimenter ces derniers, et en outre conçu et agencé pour transmettre ou pour recevoir au moins deux faisceaux, dans lequel le réseau d'antennes comprend dix éléments cornets d'antenne ou plus formant au moins deux sous-ensembles, chaque élément cornet d'antenne des dix éléments cornet d'antenne ou plus étant conçu et agencé pour transmettre ou recevoir une onde électromagnétique ayant la même polarisation, et dans lequel une combinaison d'ondes électromagnétiques transmises ou reçues par un premier sous-ensemble des au moins deux sous-ensembles forme l'un des au moins deux faisceaux, et dans lequel une combinaison d'ondes électromagnétiques transmises ou reçues par un second sous-ensemble des au moins deux sous-ensembles forme un autre des au moins deux faisceaux, le premier sous-ensemble comprenant au moins six des dix éléments cornets d'antenne ou plus et le second sous-ensemble comprenant au moins six des dix éléments cornets d'antenne ou plus,dans lequel seuls deux éléments cornets d'antenne parmi les au moins six éléments cornets d'antenne du premier sous-ensemble sont des éléments cornets d'antenne communs du premier sous-ensemble et du second sous-ensemble, dans lequel les seuls éléments cornets d'antenne communs font partie de deux faisceaux adjacents parmi les deux faisceaux ou plus,dans lequel, pour chaque sous-ensemble, chacun du port de sortie correspondant à un port d'entrée respectif des au moins deux ports d'entrée du premier coupleur multiport quasi-périodique et les deux ports de sortie directement adjacents au port de sortie correspondant au port d'entrée respectif des au moins deux ports d'entrée du premier coupleur multiport quasi-périodique est conçu pour alimenter ou être alimenté par un seul élément cornet d'antenne sur les trois éléments cornets d'antenne des trois éléments cornets d'antenne ou plus d'un sous-ensemble parmi les deux au moins sous-ensembles,dans lequel, pour chaque sous-ensemble, chacun du port de sortie correspondant à un port d'entrée respectif des au moins deux ports d'entrée du second coupleur multiport quasi-périodique et les deux ports de sortie directement adjacents au port de sortie correspondant au port d'entrée respectif des au moins deux ports d'entrée du second coupleur multiport quasi-périodique est conçu pour alimenter ou être alimenté par un seul élément cornet d'antenne sur trois éléments cornets d'antenne sur les trois éléments cornets d'antenne ou plus d'un sous-ensemble parmi les au moins sous-ensembles,et dans lequel le premier coupleur multiport quasi-périodique et le second coupleur multiport quasi-périodique sont chacun conçus et agencés pour être alimentés par ou alimenter un élément différent parmi les deux éléments cornets d'antenne communs.
- Satellite comprenant le système d'alimentation d'un réseau d'antennes directionnelles à alimentations multiples selon l'une quelconque des revendications 1 à 5 ou 8.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16184004.6A EP3282517B1 (fr) | 2016-08-12 | 2016-08-12 | Alimentations multiples par réseau d'antennes directionnelles à l'aide d'un coupleur multiport quasi-périodique |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16184004.6A EP3282517B1 (fr) | 2016-08-12 | 2016-08-12 | Alimentations multiples par réseau d'antennes directionnelles à l'aide d'un coupleur multiport quasi-périodique |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3282517A1 EP3282517A1 (fr) | 2018-02-14 |
EP3282517B1 true EP3282517B1 (fr) | 2024-11-06 |
EP3282517C0 EP3282517C0 (fr) | 2024-11-06 |
Family
ID=56683833
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16184004.6A Active EP3282517B1 (fr) | 2016-08-12 | 2016-08-12 | Alimentations multiples par réseau d'antennes directionnelles à l'aide d'un coupleur multiport quasi-périodique |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP3282517B1 (fr) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4236161A (en) * | 1978-09-18 | 1980-11-25 | Bell Telephone Laboratories, Incorporated | Array feed for offset satellite antenna |
JPH0685534A (ja) * | 1992-08-31 | 1994-03-25 | Toshiba Corp | 反射鏡マルチビームアンテナ装置 |
FR2993715B1 (fr) * | 2012-07-20 | 2017-03-10 | Thales Sa | Source radiofrequence compacte, antenne et systeme d'antennes multifaisceaux comportant de telles sources compactes et systeme de telecommunication par satellite comportant au moins une telle antenne |
FR2993716B1 (fr) * | 2012-07-20 | 2016-09-02 | Thales Sa | Antenne d'emission et de reception multifaisceaux a plusieurs sources par faisceau, systeme d'antennes et systeme de telecommunication par satellite comportant une telle antenne |
-
2016
- 2016-08-12 EP EP16184004.6A patent/EP3282517B1/fr active Active
Also Published As
Publication number | Publication date |
---|---|
EP3282517C0 (fr) | 2024-11-06 |
EP3282517A1 (fr) | 2018-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5940570B2 (ja) | 基地局通信システムに最適化されたアレイアンテナ | |
US9728863B2 (en) | Power splitter comprising a tee coupler in the e-plane, radiating array and antenna comprising such a radiating array | |
SE510995C2 (sv) | Aktiv sändnings/mottagnings gruppantenn | |
CN106602265B (zh) | 波束成形网络及其输入结构、输入输出方法及三波束天线 | |
US20150188660A1 (en) | Apparatus and method for simultaneously transmitting and receiving orbital angular momentum (oam) modes | |
EP3232510A1 (fr) | Antenne à faisceaux multiples polarisés entrelacés | |
JP2018110454A (ja) | 振幅テーパード切り替えビーム・アンテナ・システム | |
US8654027B2 (en) | Antenna arrangement | |
US9478838B2 (en) | Orthomode coupler for an antenna system | |
EP3017506A1 (fr) | Système d'antenne à faisceaux multiples | |
EP2989683B1 (fr) | Antenne active à faible coût | |
CN103682682B (zh) | 一种多波束天线系统 | |
US10284325B2 (en) | Apparatus for OAM mode combination and antenna apparatus for multi-mode generation | |
EP3282517B1 (fr) | Alimentations multiples par réseau d'antennes directionnelles à l'aide d'un coupleur multiport quasi-périodique | |
US4691205A (en) | Beam forming network for circularly polarized shaped beam antenna system | |
US6897739B2 (en) | Waveguide power divider and combiner utilizing a resistive slot | |
CN110838621A (zh) | 多波束天线馈电装置及方法 | |
US10033099B2 (en) | Dual-polarized, dual-band, compact beam forming network | |
US9947978B1 (en) | Orthomode transducer | |
JP5589454B2 (ja) | モノパルスレーダ装置 | |
US10062971B2 (en) | Power divider | |
JPWO2006027828A1 (ja) | 電力分配装置、電力合成装置、モノパルス信号合成回路、アレーアンテナ給電回路およびビーム形成回路 | |
US3522610A (en) | Antenna array aperture multiplexing transmission feed and receive systems | |
JP4903100B2 (ja) | 導波管形電力合成分配器およびそれを用いたアレーアンテナ装置 | |
Wang et al. | Two-Layer three-beam-generating matrix for broadband beamforming with microstrip |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: SCHNEIDER, MICHAEL Inventor name: SZYMKIEWICZ, MICHAEL Inventor name: RATKORN, NORBERT Inventor name: HARTWANGER, CHRISTIAN |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: SCHNEIDER, MICHAEL Inventor name: KILIAN, MICHAEL Inventor name: RATKORN, NORBERT Inventor name: HARTWANGER, CHRISTIAN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180412 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20200528 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20240531 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602016090102 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 602016090102 Country of ref document: DE Owner name: AIRBUS DEFENCE AND SPACE GMBH, DE Free format text: FORMER OWNER: ANMELDERANGABEN UNKLAR / UNVOLLSTAENDIG, 80297 MUENCHEN, DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
U01 | Request for unitary effect filed |
Effective date: 20241205 |
|
U07 | Unitary effect registered |
Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT RO SE SI Effective date: 20241216 |