EP3277486A1 - Fiber application head comprising a special application roller - Google Patents
Fiber application head comprising a special application rollerInfo
- Publication number
- EP3277486A1 EP3277486A1 EP16714464.1A EP16714464A EP3277486A1 EP 3277486 A1 EP3277486 A1 EP 3277486A1 EP 16714464 A EP16714464 A EP 16714464A EP 3277486 A1 EP3277486 A1 EP 3277486A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- application
- roller
- head
- fibers
- roll
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D7/00—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
- B05D7/50—Multilayers
- B05D7/52—Two layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C35/00—Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
- B29C35/02—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
- B29C35/08—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
- B29C35/0805—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/30—Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
- B29C70/38—Automated lay-up, e.g. using robots, laying filaments according to predetermined patterns
- B29C70/382—Automated fiber placement [AFP]
- B29C70/384—Fiber placement heads, e.g. component parts, details or accessories
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/30—Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
- B29C70/38—Automated lay-up, e.g. using robots, laying filaments according to predetermined patterns
- B29C70/386—Automated tape laying [ATL]
- B29C70/388—Tape placement heads, e.g. component parts, details or accessories
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C35/00—Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
- B29C35/02—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
- B29C35/08—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
- B29C35/0805—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
- B29C2035/0822—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using IR radiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C35/00—Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
- B29C35/02—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
- B29C35/08—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
- B29C35/0805—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
- B29C2035/0838—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using laser
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C35/00—Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
- B29C35/16—Cooling
- B29C2035/1658—Cooling using gas
Definitions
- the present invention relates to a fiber application head for a fiber application machine for producing parts made of composite material, and more particularly to a so-called fiber placement head equipped with a particular application roller.
- the present invention also relates to a method of manufacturing parts made of composite material by means of a corresponding application head.
- Fiber application machines commonly known as fiber placement machines, are known for contacting drape tools, such as a male or female mold, with a wide web of multiple flat fibers.
- continuous, ribbon type dry or impregnated with thermosetting or thermoplastic resin, especially carbon fibers consisting of a multitude of carbon threads or filaments.
- thermoplastic or thermosetting resin conventionally in an amount of at least 40% by weight
- the prepreg preform obtained after draping is cured or polymerized by passing through an oven to obtain a piece of composite material.
- the fibers comprise a reduced quantity of so-called binding resin, also called a binder, generally a thermoplastic resin, in an amount of less than or equal to 5% by weight, to give a character sticky to the fibers during draping.
- binding resin also called a binder
- thermoplastic resin in an amount of less than or equal to 5% by weight
- These machines conventionally comprise a fiber application head, a displacement system of said head, fiber storage means, and fiber routing means for conveying the fibers. fibers of said storage means to the head.
- the head conventionally comprises an application roller, also called compaction roller, intended to come into contact against the mold for applying the strip, and fiber guiding means on said application roller.
- the head further generally comprises a heating system for heating the fibers.
- the compaction roller presses the fiber web against the application surface of the mold, or against the previously deposited fiber web or strips, in order to facilitate the adhesion of the strips deposited between them, as well as to progressively evacuate trapped air between the deposited tapes.
- the heating system provides a heating of the fiber web to be applied, and / or the mold or strips already applied upstream of the compaction roller, just before the compaction of the web, in order to at least soften the resin of pre impregnation or binding resin, and thus promote the adhesion of the strips together.
- the prepreg fibers are simply heated to soften them, typically at temperatures of the order of 40 ° C.
- the heating system conventionally comprises an infrared heating system comprising one or more infrared lamps.
- the preimpregnated or bindered fibers must be heated to higher temperatures, at least up to the melting temperature of the resin, of the order of 200 ° C for resins nylon type, and up to about 400 ° C for PEEK type resins.
- the fiber placement heads are conventionally equipped with heat-resistant metal compacting rollers, which can further be cooled from the inside via a water circuit.
- segmented metal compacting rollers comprising several independent roller segments mounted side by side on the same axis, each segment being movable radially and independently, and being resiliently biased against the application surface.
- Flexible rolls formed from a so-called high temperature elastomer, including a thermal stabilizer, are also used. To cool them, it has been proposed to equip the placement heads with a cooling system capable of delivering a flow of air to cool the roll from the outside or from the inside, as described in the patent document FR 2948058. Despite these cooling systems, the flexible rolls may tend to deteriorate rapidly in the case of the implementation of thermoplastic resins.
- the object of the present invention is to provide a solution to overcome the aforementioned drawbacks, which allows in particular the implementation of a wide variety of resins, both thermosetting and thermoplastic, with a substantially uniform compacting of the applied band, and which be simple of design and realization.
- the present invention proposes a fiber application head for producing parts made of composite material, comprising
- an application roll for applying a strip formed of one or more fibers to an application surface
- a main guiding system for guiding at least one fiber towards said application roller
- a heating system able to emit thermal radiation in the direction of the strip, just before application by the application roller,
- a cooling system capable of cooling the application roll from the outside, such as a gas flow
- the head comprises a drive system, preferably motorized, adapted to drive in rotation the application roller, when the roller is not in contact with the application surface, outside the trajectories of removal .
- the head is equipped with a system for driving the roller to rotate the roller when the latter is no longer in contact with the application surface, so that the entire surface outer roll is brought to the level of cooling system, for example vis-à-vis a gaseous flow from said cooling system, and thus optimize the cooling of the roll when the head does not apply fibers between two trajectories.
- a system for driving the roller to rotate the roller when the latter is no longer in contact with the application surface so that the entire surface outer roll is brought to the level of cooling system, for example vis-à-vis a gaseous flow from said cooling system, and thus optimize the cooling of the roll when the head does not apply fibers between two trajectories.
- This drive rotation of the roller provides a more efficient and homogeneous cooling of the roller between two removal paths, and thus allows to limit or even eliminate overheating of the application roller, particularly in the case of a flexible roller.
- the drive system comprises at least one motorized drive means, driven in rotation by a motor, operable between an inactive position in which said drive means is spaced from the application roller, and a active position in which said drive means is in contact with the application roller for positively driving the latter in rotation.
- the application roller being rotatably mounted about its axis of rotation
- the drive system comprises at least one motorized drive roller, driven in rotation by a motor, of axis of rotation. parallel to the axis of rotation of the application roller, said roller being operable between an inactive position in which the roller is spaced from the cylindrical outer surface of the application roller, and an active position in which the roller is in contact with the cylindrical outer surface of the application roller for positively driving the latter in rotation.
- the drive roller cooperates with one of the ends of the axis of the roller, with which said roller is integral in rotation, the drive roller coming into active position in contact with said roller axis.
- the drive system comprises actuating means for example of the jack type, for automatically operating the roller between its two positions, for example by a pivoting movement.
- the roller is for example rotated by an electric motor, the latter being preferably controlled to drive the roller only when the latter is in the active position.
- the cooling system is able to emit a gaseous flow towards the application roll to externally cool the application roll, the gas flow being directed on a portion of the cylindrical outer surface of the roller. In the absence of rotation of the roll, the gaseous flow can not be directed towards the entirety of the outer surface of the roll, and can not in particular be oriented towards the portion of the outer surface through which the roll is intended to come into contact.
- the cooling system is capable of emitting a gaseous flow at ambient temperature, preferably between 15 ° C. and 30 ° C., or a gaseous flow cooled to a temperature below 15 ° C., preferably air flow.
- the cooling system comprises a deflector or nozzle fed with a gaseous flow, the nozzle partially covering the cylindrical outer surface of the roll on a surface portion opposite to the heating system.
- the aforementioned drive roller is positioned in the nozzle.
- the cooling system comprises any suitable means for externally cooling the roll, such as, for example, a cooled roll brought into contact with the compacting roll, said cooled roll also being able to be used to drive in rotation the compacting roller.
- the heating system is of the laser type.
- the heating system is of the infrared type and comprises at least a first infrared lamp capable of heating the strip between its exit from the main guidance system and the contact zone between the application roller and the surface application, and preferably at least a second infrared lamp capable of heating, upstream of the roll, the application surface and / or one or more strips previously applied.
- said application roll comprises a rigid central tube through which said roll is rotatably mounted on a support structure of the machine, for example removable via assembly parts, and a cylinder made of a flexible or flexible material, elastically deformable, assembled coaxially on said central tube, optionally provided with a release layer.
- the cylinder of flexible material allows the compacting roller to adapt to variations in curvature of the application surface and thus to apply a substantially uniform pressure on the entire deposited strip.
- the cylinder is for example an elastomer, in particular a silicone.
- the drive system according to the invention is particularly advantageous in the case of a flexible roller.
- the head constitutes a fiber placement head comprising cutting means and means of rerouting, and possibly fiber blocking means.
- the present invention also relates to a method of manufacturing a composite material part comprising the application of continuous fibers on an application surface for example to form a preform comprising several folds of fibers superimposed in different orientations, each fold being produced by applying one or more strips in an orientation, each strip being formed of one or more fibers, characterized in that the application of fibers is carried out by means of a fiber application head as described above by relative movement of the applicator head with respect to the drape surface along depositing paths, said application roller being rotated by the drive system between two depositing paths, when the roll is more in contact with the application surface, in particular during the connection paths between two removal paths, to cool the roll.
- the fibers conventionally used are continuous flat fibers, also called wicks, generally unidirectional, and comprising a multitude of filaments.
- the deposited fibers may be dry fibers or fibers pre-impregnated with thermosetting or thermoplastic resin.
- the fibers typically have widths of 1/8, 1/4 or 1/2 inches.
- the term "fibers" also means fibers of greater width, greater than 1/2 inch, conventionally called band in placement technology.
- said roll is externally cooled by a gaseous flow directed towards its cylindrical outer surface during the application operations, during the laying paths and the connecting paths, and as well as preferably when the head is in the waiting position.
- the process according to the invention is particularly advantageous in the case of dry preforms made from dry fibers provided with a binder and / or thermoplastic preforms made from fibers pre-impregnated with thermoplastic resin.
- the method further comprises a resin impregnation step in the dry preform, by adding one or more impregnation resins by infusion or injection to the dry preform, and a step of hardening to obtain a composite material part.
- the preform may optionally be subjected to an additional consolidation step to obtain a final piece of composite material. In situ consolidation can also be achieved when fiber is applied.
- the application of fibers may be performed on the application surface of a tool to form a preform, as described above.
- the application of fibers is carried out directly on the application surface of a prefabricated part, to reinforce this part with unidirectional fiber reinforcements, the prefabricated part being for example a part obtained by injection, molding or additive manufacturing, from one or more thermoplastic and / or thermosetting resins.
- the heating system is activated before each removal path, when the roller is not in contact with the application surface, in particular during connection path between two removal paths, in order to guarantee a sufficient heating from the start of the removal path.
- This embodiment is particularly suitable in the case of an infrared heating system, in particular for heating dry fibers or fibers pre-impregnated with thermoplastic resin, the drive means to prevent overheating of the roll by the heating system.
- FIG. 1 is a partial schematic side view of a fiber placement head according to one embodiment of the invention.
- FIG. 2 is a partial schematic sectional view of the head of Figure 1 illustrating the cooling system and the heating system;
- FIGS. 3 and 4 are respectively a front view and a side view of the roll of FIG. 1 equipped with the cooling system and a roller drive system according to the invention, with the drive roller in an inactive position discarded;
- FIG. 5 is a sectional view along the V-V sectional plane of Figure 4, illustrating the inactive position of the drive roller;
- FIGS. 6 and 7 are views similar to those of FIGS. 4 and 5, illustrating the driving roller in the driving active position
- FIG. 8 is a schematic top view of the drape surface of a tool illustrating the removal paths and the connecting paths of a head according to the invention for draping a fold.
- FIGS. 1 to 5 illustrate a fiber placement head 1 equipped with a drive system 5 according to the invention, allowing automatic draping in contact on the application surface 91 of a mold 9 of strips formed of several fibers, by relative movement of the head relative to the mold via a displacement system.
- the head 1 comprises a compacting roll 3, a main guide system 12 for guiding the fibers towards the roll in the form of two plies of fibers, to form a fiber web in which the fibers are disposed substantially edge-to-edge .
- the head comprises for example a system of main guide as described in the aforementioned patent document, comprising first guide channels and second guide channels in which pass respectively first fibers 81 of the first web and the second fibers 82 of the second web.
- the first channels and the second channels are staggered in two guide planes, shown diagrammatically under the references PI and P2, approaching each other from upstream to downstream, so that the fibers 81, 82 two plies are substantially disposed edge to edge at the compacting roller.
- These guide channels are for example formed at the assembly interface of a central piece 121, wedge-shaped, and two side plates 122, 123.
- the head comprises a support structure 13 on which is mounted the main guide system 12 and by which the head can be assembled to a displacement system (not shown) which is able to move the head in at least three directions perpendicular to each other. other.
- the displacement system comprises for example a robot comprising a wrist or poly-articulated arm at the end of which is mounted said head.
- the head is fixed and the mold is adapted to be moved relative to the head to perform the draping operations.
- the fibers are conveyed from storage means (not shown) to the head via conveying means (not shown).
- the fiber storage means may comprise a creel in the case of fibers packaged in the form of coils.
- the conveying means may be formed of flexible tubes, each tube receiving a fiber in its internal passage.
- the head comprises cutting means for individually cutting each fiber passing in the main guide system, locking means for individually blocking each fiber that has just been cut, and re-routing means for individually redirecting up to to roll each fiber just cut, this in order to be able to stop at any time and resume the application of a fiber, and choose the width of the band.
- cutting means for individually cutting each fiber passing in the main guide system
- locking means for individually blocking each fiber that has just been cut
- re-routing means for individually redirecting up to to roll each fiber just cut, this in order to be able to stop at any time and resume the application of a fiber, and choose the width of the band.
- the roller 3 is rotatably mounted about an axis Al of rotation on two assembly parts 14, by which the roller is removably mounted on the support structure 13.
- the fiber placement head advantageously comprises a roll of compaction adapted to adapt to the application surface, in particular to convex and / or concave application surfaces to ensure substantially uniform compaction over the entire width of the strip.
- the roller is for example a compacting roller made of a so-called flexible material, which is elastically deformable by compression.
- the compacting roll comprises a cylindrical body or cylinder 31 made of a flexible material, such as an elastomer.
- the cylinder has a cylindrical central passage for its assembly on a support core formed of a cylindrical rigid central tube 32, for example metallic.
- the cylinder 31 and the central tube 32 are coaxial and are integral in rotation with one another.
- the cylinder is advantageously coated externally with an anti-adherent outer layer 33, formed for example by a Teflon film heat-shrunk on the outer surface of the cylinder. Teflon film, by which the roll is in contact with the web, limits the adhesion of the roll to the fibers as well as the clogging of the roll.
- the roller is rotatably mounted by its rigid tube to the two assembly parts via bearings.
- the heating system 2 is disposed upstream of the roll with respect to the direction of advance of the head during draping, illustrated by the arrow referenced SI.
- the heating system is for example of the infrared type, as described in the patent application filed by the applicant, entitled “Fiber application head with special application roller". It comprises a first lamp 21 with infrared radiation, called infrared lamp, for heating the fibers coming out of the main guide system 12, and two second infrared lamps 22, arranged upstream of the first infrared lamp, for heating, upstream of the roll of compaction with respect to the direction of advancement of the head, the draping surface and / or the previously draped fibers.
- the lamps 21, 22 are mounted on a support system 23 which is assembled at the head, and are arranged parallel to the axis A1 of the compacting roller, so that the radiation of the first lamp 21 is oriented towards the roller, while the radiation of the second lamps 22 are oriented towards the application surface.
- the support system 23 comprises two arms 231 between which the lamps 21, 22 are mounted, the arms being assembled at their first end to the assembly pieces 14.
- the first lamp can also make it possible to heat the nip between the roll and the application surface, as well as possibly the part of the application surface or previously draped fibers which is just upstream of the roller.
- the roll is cooled by a cooling system 4 comprising a deflector or nozzle 40 supplied with air.
- the nozzle is disposed on the side of the roll which is opposed to the heating system and extends around the roll to utilize the cylindrical outer surface 34 of the roll over a large area of more than 180 ° which is opposite the surface of the roll. application.
- the nozzle also has lateral returns which partially cover the outer lateral surfaces 35 of the roll.
- the nozzle is supplied with an air flow by pipes (not shown) connected to the nozzle via connectors mounted at the passages 41 ( Figure 3) of the nozzle.
- the arrows Fl in FIG. 2 schematically represent the air flow in the nozzle for cooling the roll.
- the air flow is for example a flow of air pulsed at room temperature of the order of 20 ° C.
- the head is further equipped with a drive system 5 adapted to rotate the roller when the roller is not in contact with the application surface.
- the drive system 5 comprises a drive roller 51 connected to the drive shaft of a motor 52 to be rotated about an axis A2, parallel to the axis A of rotation of the roller.
- the roller is for example mounted to rotate directly on the drive shaft.
- the motor is mounted on a first plate 53 pivotally mounted about an axis A3 on a support 54.
- the drive system is mounted on one side of the roller by its support 54 on one of the two assembly parts 14.
- the roller is positioned in the nozzle, the drive shaft passing through a lateral opening 55 ( Figure 7) of the nozzle 4.
- the opening 55 advantageously allows the passage of the roller in the nozzle during assembly of the drive system on the assembly part.
- the roller By pivoting the plate about the axis A3, the roller can be operated from an inactive position illustrated in Figure 5, wherein the roller 51 is spaced from the roller 3, and an active position shown in Figure 7 in which the roller is in contact with the roller and rotates the latter.
- the roller is biased elastically towards its spaced position via a tension spring, shown schematically under the reference 56 in FIG. 3, connected at its ends to the first plate 53 and to a second plate 57 fixedly mounted on the support 54. position not active, the first plate 53 is in abutment against the second plate 57.
- the operation of the roller to its active position is performed by means of a jack 58, fixedly mounted by its cylinder or cylinder body on the second plate, and whose rod 58a is in contact at its end with the first plate.
- the displacement of the cylinder rod from a rest position illustrated in FIG. 4 to an extended position illustrated in FIG. 6 makes it possible to pivot the first plate 53 against the restoring force of the spring 56 in order to bring the roller into position. its active position illustrated in Figure 4.
- FIG. 8 illustrates an example of use of the drive system for draping a fold on the application surface 91 of the mold 9, the fold 6 being formed here of six parallel strips of eight fibers.
- the infrared lamps 21, 22 of the heating system are activated before the draping of a strip, during the so-called connection paths, in particular between two removal paths, when the roller is not in contact with the surface. of draping, so that the heating system is at its maximum heating capacity when the fiber descends from the main guidance system, and thus obtain sufficient heating at the beginning of trajectory, and uniform over the entire trajectory of removal.
- the rotational drive of the roller prevents the same portion of the roller from being irradiated by the first lamp and allows cooling of the entire roller by the cooling system.
- the head For draping the fold, the head performs a first connecting path L j from an original position or waiting position P 0 to a position P t in which the head is in contact with the surface of the mold.
- this link path L 1 the heating system is activated to preheat the lamps, and the drive roller is maneuvered to active position by controlling the cylinder to rotate the roller.
- the heating system is activated over the entire connecting path, or only on a part of the path of removal for a sufficient time to reach the desired heating capacity.
- the roller At point P15 or slightly before reaching point P 1? the roller is returned to the inactive position, and the head is moved along the path of removal D t to the point P 2 to drape the first band 61 of fibers.
- the head is then moved, without contact with the application surface, along a second connecting path L 2 , to the point P 3 .
- the heating system is deactivated at the point P 2 and is activated again before reaching the point P 3 , and the driving roller is operated in the active position by controlling the cylinder to make turn the roller.
- the roller is returned to the inactive position, and the head is moved along the path of removal D 2 to the point P 4 to drape the second band 62 of fibers .
- the other bands of the fold are made in the same way by moving the head according to removal paths and connecting paths. After the path of removal for the last D 6 band, the head performs a link path, to return to the point of origin or to drape the band of the next fold. During this connecting path, the roller is rotated by the drive roller.
- the rotation drive of the roll can be maintained when the head is left in the original position between two draping operations to cool the roll well before draping a fold.
- the heating system is a laser-type heating system, the radiation of which is directed towards the strip, just prior to its compacting, as well as towards the strip or strips already deposited.
- the radiation is thus directed obliquely towards the roll to heat a section of tape disposed on the roll, before its compacting by the latter.
- the roller used is then advantageously substantially transparent to the radiation emitted by the laser.
- the heating can be switched off during the link paths.
Landscapes
- Engineering & Computer Science (AREA)
- Composite Materials (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Thermal Sciences (AREA)
- Electromagnetism (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Toxicology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Moulding By Coating Moulds (AREA)
- Rolls And Other Rotary Bodies (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1500676A FR3034338B1 (en) | 2015-04-01 | 2015-04-01 | FIBER APPLICATION HEAD WITH PARTICULAR APPLICATION ROLLER |
PCT/FR2016/000057 WO2016156677A1 (en) | 2015-04-01 | 2016-03-24 | Fiber application head comprising a special application roller |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3277486A1 true EP3277486A1 (en) | 2018-02-07 |
Family
ID=53404622
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16714464.1A Withdrawn EP3277486A1 (en) | 2015-04-01 | 2016-03-24 | Fiber application head comprising a special application roller |
Country Status (4)
Country | Link |
---|---|
US (1) | US10369594B2 (en) |
EP (1) | EP3277486A1 (en) |
FR (1) | FR3034338B1 (en) |
WO (1) | WO2016156677A1 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3043010B1 (en) | 2015-10-28 | 2017-10-27 | Coriolis Composites | FIBER APPLICATION MACHINE WITH PARTICULAR CUTTING SYSTEMS |
FR3048373B1 (en) | 2016-03-07 | 2018-05-18 | Coriolis Group | PROCESS FOR MAKING PREFORMS WITH APPLICATION OF A BINDER ON DRY FIBER AND CORRESPONDING MACHINE |
FR3056438B1 (en) | 2016-09-27 | 2019-11-01 | Coriolis Group | METHOD FOR PRODUCING COMPOSITE MATERIAL PARTS BY IMPREGNATING A PARTICULAR PREFORM |
DE102017215624A1 (en) | 2017-09-05 | 2019-03-07 | Technische Universität Dresden | Process for the production of fiber composite semi-finished products or fiber composite components, apparatus for the production of fiber composite semi-finished products or fiber composite components |
US20210347115A1 (en) * | 2018-10-25 | 2021-11-11 | Make Composites, Inc. | Systems and methods of printing with fiber-reinforced materials |
US11214022B2 (en) * | 2019-02-28 | 2022-01-04 | The Boeing Company | Active cooling system for manufacturing composite structures |
US11872774B2 (en) * | 2020-09-29 | 2024-01-16 | Ford Global Technologies, Llc | Independent conductive tape dispensing system for manufacturing of electrical distribution circuits in vehicles |
CN112902470B (en) * | 2021-01-28 | 2022-06-21 | 安徽中科都菱商用电器股份有限公司 | Refrigerating system with intelligent control and fault diagnosis functions |
CN118721784B (en) * | 2024-07-24 | 2025-03-04 | 艾思博(武汉)科技有限公司 | In-situ forming device and processing method for high-temperature thermoplastic composite material |
Family Cites Families (114)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US494910A (en) | 1893-04-04 | Brake for baby-carriages | ||
US1100829A (en) | 1911-04-07 | 1914-06-23 | Goodrich Co B F | Hose construction. |
US1164303A (en) | 1913-03-21 | 1915-12-14 | Edward S Nicewarner | Laminated tube. |
US1301354A (en) | 1917-07-11 | 1919-04-22 | Cassius M Clay Baird | Hose construction. |
US3206429A (en) | 1961-05-17 | 1965-09-14 | Eastman Kodak Co | Antistatic polyethylene compositions containing n,n-diethanol oleamide |
US3238084A (en) | 1962-07-06 | 1966-03-01 | Union Carbide Corp | Device for manufacturing reinforced plastic material |
US3300355A (en) | 1963-06-20 | 1967-01-24 | William E Adams | Method of making irregularly shaped hollow plastic bodies |
US3265795A (en) | 1964-05-25 | 1966-08-09 | Koppers Co Inc | Method of skin molding |
DE1922327U (en) | 1965-05-05 | 1965-08-26 | Kalle Ag | CUTTER FOR PAPER AND FILM. |
FR1590718A (en) | 1968-10-10 | 1970-04-20 | ||
US3563122A (en) | 1969-05-22 | 1971-02-16 | Minnesota Mining & Mfg | Tape dispensing apparatus |
DE2032283A1 (en) | 1969-07-04 | 1971-03-25 | Hawker Siddeley Aviation Ltd , King ston upon Thames, Surrey (Großbritannien) | Large structure, especially the main component of an aircraft |
US3662821A (en) | 1971-02-01 | 1972-05-16 | Daniel I Saxon | Heat transfer roll with separate temperature zones for processing materials |
US3713572A (en) | 1971-02-03 | 1973-01-30 | Goldsworthy Eng Inc | Material feeding system |
US3856052A (en) | 1972-07-31 | 1974-12-24 | Goodyear Tire & Rubber | Hose structure |
FR2254428A1 (en) | 1973-12-13 | 1975-07-11 | Fiber Science Inc | Rotor or aircraft wing structure - has wound wire tubular longitudinal components encloseesed in cladding surface |
US4118814A (en) | 1975-11-17 | 1978-10-10 | Gerald Herbert Holtom | Manufacture of boat hulls and other hollow articles |
US4242160A (en) | 1979-02-02 | 1980-12-30 | United Technologies Corporation | Method of winding a wind turbine blade using a filament reinforced mandrel |
US4351588A (en) | 1979-04-24 | 1982-09-28 | Relium Ag | Process and means for controlling the radiant energies of the entire spectral range in rooms |
US4735672A (en) | 1982-05-27 | 1988-04-05 | Lockheed Corporation | Automated fiber lay-up machine |
GB2124130B (en) | 1982-07-24 | 1985-11-27 | Rolls Royce | Vacuum moulding fibre reinforced resin |
US4488466A (en) | 1982-09-07 | 1984-12-18 | Seal Tech Corp. | Apparatus for cutting sheet material |
US4976012A (en) | 1982-11-29 | 1990-12-11 | E. I Du Pont De Nemours And Company | Method of forming a web |
US4461669A (en) | 1983-09-30 | 1984-07-24 | The Boeing Company | Pivotal mount for laminating head |
DE3341564A1 (en) | 1983-11-17 | 1985-05-30 | Messerschmitt-Bölkow-Blohm GmbH, 8012 Ottobrunn | CURVED AREA COMPONENT, ESPECIALLY FOR AIRCRAFT AND DEVICE FOR THEIR PRODUCTION |
US4569716A (en) | 1984-03-05 | 1986-02-11 | Cincinnati Milacron Inc. | Strand laying head |
US4574029A (en) | 1984-04-27 | 1986-03-04 | Ltv Aerospace And Defense Company | Apparatus for forming concave tape wrapped composite structures |
US4714509A (en) | 1984-07-02 | 1987-12-22 | E. I. Dupont De Nemours And Company | Method and apparatus for laying down tapes |
FR2587318B1 (en) | 1985-09-18 | 1987-10-30 | Commissariat Energie Atomique | PROCESS AND MACHINE FOR THE MANUFACTURE OF HOLLOW PARTS OF REVOLUTION FORMED FROM WIRES EXTENDING ACCORDING TO THREE DIFFERENT DIRECTIONS. |
US4699031A (en) | 1986-02-20 | 1987-10-13 | Ametek, Inc. | Method and apparatus for automatically cutting a web of foam material into sheets and for dispensing the cut sheets |
NO871433L (en) | 1986-04-07 | 1987-10-08 | Hercules Inc | TRAADVIKLESYSTEM. |
DE3614365A1 (en) | 1986-04-28 | 1987-10-29 | Messerschmitt Boelkow Blohm | DEVICE FOR DEPOSITING A PRE-IMPREGNATED RIBBON |
JPS63173625A (en) | 1987-01-13 | 1988-07-18 | Nitto Boseki Co Ltd | Manufacturing method of fiber reinforced resin cylinder |
US4881998A (en) | 1987-01-23 | 1989-11-21 | Morton Thiokol, Inc. | Radiation gathering reflector and method of manufacture |
DE3743485A1 (en) | 1987-12-22 | 1989-07-13 | Mtu Muenchen Gmbh | METHOD FOR PRODUCING A SPACIOUSLY WINDED ROTOR BLADE |
JPH01281247A (en) | 1988-05-07 | 1989-11-13 | Shin Nippon Koki Kk | Controller for tape tension in automatic tape attaching device |
US4992133A (en) | 1988-09-30 | 1991-02-12 | Pda Engineering | Apparatus for processing composite materials |
US4990213A (en) | 1988-11-29 | 1991-02-05 | Northrop Corporation | Automated tape laminator head for thermoplastic matrix composite material |
US5015326A (en) | 1989-05-08 | 1991-05-14 | The Boeing Company | Compliant tape dispensing and compacting head |
US5110395A (en) | 1989-12-04 | 1992-05-05 | Cincinnati Milacron Inc. | Fiber placement head |
US5087187A (en) | 1990-03-09 | 1992-02-11 | United Technologies Corporation | Apparatus for molding hollow composite articles having internal reinforcement structures |
US5078592A (en) | 1990-04-09 | 1992-01-07 | Grimshaw Michael N | Heating system for composite tape |
CA2057222C (en) | 1990-12-19 | 1998-05-19 | Keith G. Shupe | Fiber placement delivery system |
US5200018A (en) | 1990-12-19 | 1993-04-06 | Hercules Incorporated | Ribbonizing apparatus for individually heating a plurality of laterally adjacent tows in a fiber placement device |
FR2686080B1 (en) | 1992-01-14 | 1994-11-10 | Aerospatiale | PROCESS FOR THE HOT CONTACT DEPOSITION OF FIBER COMPOSITE MATERIAL WITH A VITREOUS MATRIX AND DEVICE FOR IMPLEMENTING THE PROCESS. |
FR2687389B1 (en) * | 1992-02-17 | 1994-05-06 | Aerospatiale Ste Nationale Indle | DEVICE AND METHOD FOR PRODUCING A PART OF A COMPLEX STRUCTURE BY DEPOSITION IN CONTACT WITH WIRE OR TAPE. |
GB2268704B (en) | 1992-07-16 | 1996-01-10 | British Aerospace | Layup preparation for fibre reinforced composites |
GB2270672B (en) | 1992-09-02 | 1995-10-25 | Ferodo Caernarfon Ltd | Fabrication of friction elements |
FR2705655B1 (en) | 1993-05-26 | 1995-08-25 | Aerospatiale | Machine for winding-deposited in simultaneous contact with a plurality of individual wires. |
US5397523A (en) | 1993-07-20 | 1995-03-14 | Cincinnati Mliacron Inc. | Method and apparatus for sizing composite tows |
US5469686A (en) | 1993-09-27 | 1995-11-28 | Rockwell International Corp. | Composite structural truss element |
WO1995020104A1 (en) | 1994-01-20 | 1995-07-27 | Torres Martinez, Manuel | Fabrication of aerodynamic profiles |
DE4422002C2 (en) | 1994-06-23 | 1999-04-15 | Dornier Gmbh | Device for the mechanical placement of wet-impregnated endless fiber strands on arbitrarily curved surfaces or surface sections |
US5447586A (en) | 1994-07-12 | 1995-09-05 | E. I. Du Pont De Nemours And Company | Control of thermoplastic tow placement |
SG42955A1 (en) | 1994-08-15 | 1997-10-17 | Nitta Corp | Automatic tool changer |
US5587041A (en) | 1995-03-21 | 1996-12-24 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Composite prepreg application device |
IT1280200B1 (en) | 1995-07-14 | 1998-01-05 | Pilosio Spa | CONTINUOUS PRODUCTION PROCESS OF SANDWICH BOARDS AND RELATED PLANT |
US5700347A (en) * | 1996-01-11 | 1997-12-23 | The Boeing Company | Thermoplastic multi-tape application head |
US5766357A (en) | 1996-09-19 | 1998-06-16 | Alliant Techsystems Inc. | Apparatus for fiber impregnation |
US6073670A (en) | 1997-10-31 | 2000-06-13 | Isogrid Composites, Inc. | Multiple fiber placement head arrangement for placing fibers into channels of a mold |
FR2774325B1 (en) | 1998-02-05 | 2000-03-17 | Alexandre Hamlyn | METHOD FOR MANUFACTURING FLOATING BODIES AND MANDREL BOATS AND APPARATUSES FOR SUCH MANUFACTURE |
US6026883A (en) | 1998-04-30 | 2000-02-22 | Alliant Techsystems, Inc. | Self-contained apparatus for fiber element placement |
US6458309B1 (en) | 1998-06-01 | 2002-10-01 | Rohr, Inc. | Method for fabricating an advanced composite aerostructure article having an integral co-cured fly away hollow mandrel |
FR2784930B1 (en) | 1998-10-23 | 2007-09-28 | Vetrotex France Sa | HOLLOW REVOLUTION BODY OF COMPOSITE MATERIAL AND METHOD OF MANUFACTURING THE SAME |
FR2785623B1 (en) | 1998-11-10 | 2001-01-26 | Aerospatiale | METHOD AND DEVICE FOR DEPOSITING PRE-IMPREGNATED FIBER THREADS IN CONTACT, IN PARTICULAR FOR THE PRODUCTION OF COMPLEX STRUCTURES IN POLYMERIZED COMPOSITE MATERIAL BY IONIZATION |
US6256889B1 (en) | 1998-12-23 | 2001-07-10 | Michigan Tool Design | Auto glass replacement tool |
WO2000041523A2 (en) | 1999-01-12 | 2000-07-20 | Hunter Douglas Inc. | Nonwoven fabric and method and apparatus for manufacturing same |
US6251185B1 (en) | 1999-04-02 | 2001-06-26 | Molded Fiber Glass Companies | System for delivering chopped fiberglass strands to a preform screen |
US6889937B2 (en) | 1999-11-18 | 2005-05-10 | Rocky Mountain Composites, Inc. | Single piece co-cure composite wing |
US6451152B1 (en) | 2000-05-24 | 2002-09-17 | The Boeing Company | Method for heating and controlling temperature of composite material during automated placement |
DE10037773C1 (en) | 2000-08-03 | 2002-08-22 | Hennecke Gmbh | Method and device for producing molded plastic parts reinforced with long fibers |
EP1199161A1 (en) | 2000-10-20 | 2002-04-24 | SOLVAY POLYOLEFINS EUROPE - BELGIUM (Société Anonyme) | Polyethylene pipe |
US6527533B2 (en) | 2000-12-29 | 2003-03-04 | Ford Global Technologies, Inc. | Processing systems for automated manufacture of preforms |
WO2002070232A1 (en) | 2001-03-02 | 2002-09-12 | Toyota Motor Sales, Usa, Inc. | Filament winding apparatus and methods of winding filament |
US6772663B2 (en) | 2001-04-20 | 2004-08-10 | Tamarack Products, Inc. | Apparatus and method for rotary pressure cutting |
FR2831479B1 (en) | 2001-10-26 | 2004-01-02 | Coriolis Composites | METHOD FOR MANUFACTURING PROFILES HAVING A SPECIFIC SURFACE CONDITION IN FIBER REINFORCED SYNTHETIC RESINS AND MACHINE FOR CARRYING OUT THE METHOD |
US6755103B2 (en) | 2002-02-08 | 2004-06-29 | Wilson Tool International, Inc. | Ball-lock insert assemblies |
ES2212878B1 (en) | 2002-03-05 | 2005-07-16 | Manuel Torres Martinez | MULTI-APPLICATOR HEAD OF FIBER STRIPS. |
US6729576B2 (en) | 2002-08-13 | 2004-05-04 | Sikorsky Aircraft Corporation | Composite tail cone assembly |
US8336596B2 (en) | 2002-11-22 | 2012-12-25 | The Boeing Company | Composite lamination using array of parallel material dispensing heads |
US7093638B2 (en) | 2003-04-21 | 2006-08-22 | Lignum Vitae Limited | Apparatus and method for manufacture and use of composite fiber components |
JP2005007252A (en) | 2003-06-17 | 2005-01-13 | Tatsumi Nakazawa | Coater |
US7080441B2 (en) | 2003-07-28 | 2006-07-25 | The Boeing Company | Composite fuselage machine and method of automated composite lay up |
US7048024B2 (en) | 2003-08-22 | 2006-05-23 | The Boeing Company | Unidirectional, multi-head fiber placement |
US7083698B2 (en) | 2003-08-22 | 2006-08-01 | The Boeing Company | Automated composite lay-up to an internal fuselage mandrel |
US7293590B2 (en) | 2003-09-22 | 2007-11-13 | Adc Acquisition Company | Multiple tape laying apparatus and method |
FR2865156B1 (en) | 2004-01-19 | 2006-11-10 | Dcmp | DEVICE FOR REMOVING FLOOR OR WIRES IN A MOLD FOR MANUFACTURING PARTS OF COMPOSITE MATERIALS |
US8003034B2 (en) | 2004-04-21 | 2011-08-23 | Ingersoll Machine Tools, Inc. | Forming a composite structure by filament placement on a tool surface of a tablet |
JP2005329593A (en) | 2004-05-19 | 2005-12-02 | Fuji Heavy Ind Ltd | Automatic laminator |
US20060118244A1 (en) | 2004-12-02 | 2006-06-08 | The Boeing Company | Device for laying tape materials for aerospace applications |
US7472736B2 (en) | 2005-02-14 | 2009-01-06 | The Boeing Company | Modular head lamination device and method |
FR2882681B1 (en) * | 2005-03-03 | 2009-11-20 | Coriolis Composites | FIBER APPLICATION HEAD AND CORRESPONDING MACHINE |
US7410352B2 (en) | 2005-04-13 | 2008-08-12 | The Boeing Company | Multi-ring system for fuselage barrel formation |
US20070044896A1 (en) | 2005-08-25 | 2007-03-01 | Ingersoll Machine Tools, Inc. | Auto-splice apparatus and method for a fiber placement machine |
US7810539B2 (en) | 2005-08-25 | 2010-10-12 | Ingersoll Machine Tools, Inc. | Compaction roller for a fiber placement machine |
ATE453503T1 (en) | 2005-08-25 | 2010-01-15 | Ingersoll Machine Tools Inc | COMPACT FIBER LAYING DEVICE |
US20080093026A1 (en) | 2006-10-24 | 2008-04-24 | Niko Naumann | Device for pressing a tape |
US7735779B2 (en) | 2006-11-02 | 2010-06-15 | The Boeing Company | Optimized fuselage structure |
US7993124B2 (en) | 2006-12-28 | 2011-08-09 | The Boeing Company | Heating apparatus for a composite laminator and method |
FR2912680B1 (en) | 2007-02-21 | 2009-04-24 | Coriolis Composites Sa | METHOD AND DEVICE FOR MANUFACTURING PARTS OF COMPOSITE MATERIAL, IN PARTICULAR AIRBORNE FUSELAGE STRINGS |
DE102007009124B4 (en) | 2007-02-24 | 2011-11-03 | Evonik Degussa Gmbh | Induction-based manufacturing processes |
FR2912953B1 (en) | 2007-02-28 | 2009-04-17 | Coriolis Composites Sa | FIBER APPLICATION MACHINE WITH FLEXIBLE FIBER DELIVERY TUBES |
FR2913365B1 (en) | 2007-03-06 | 2013-07-26 | Coriolis Composites Attn Olivier Bouroullec | FIBER APPLICATION HEAD WITH PARTICULAR FIBER CUTTING SYSTEMS |
FR2913366B1 (en) | 2007-03-06 | 2009-05-01 | Coriolis Composites Sa | FIBER APPLICATION HEAD WITH INDIVIDUAL FIBER CUTTING AND BLOCKING SYSTEMS |
FR2915925B1 (en) | 2007-05-10 | 2013-02-22 | Coriolis Composites Attn Olivier Bouroullec | FIBER APPLICATION MACHINE WITH TOOL CHANGE SYSTEM |
FR2937582B1 (en) | 2008-10-28 | 2010-12-17 | Coriolis Composites | FIBER APPLICATION MACHINE WITH FLEXIBLE FIBER DELIVERY TUBES PLACED IN A COLD SHEATH |
FR2943943A1 (en) | 2009-04-02 | 2010-10-08 | Coriolis Composites | METHOD AND MACHINE FOR APPLYING A FIBER BAND TO CONVEXED SURFACES AND / OR WITH AREES |
FR2948058B1 (en) * | 2009-07-17 | 2011-07-22 | Coriolis Composites | FIBER APPLICATION MACHINE COMPRISING A FLEXIBLE COMPACTION ROLL WITH THERMAL CONTROL SYSTEM |
FR2948059B1 (en) | 2009-07-17 | 2011-08-05 | Coriolis Composites | FIBER APPLICATION MACHINE WITH TRANSPARENT COMPACTION ROLL ON THE RADIATION OF THE HEATING SYSTEM |
FR2982793B1 (en) | 2011-11-18 | 2019-06-28 | Coriolis Group | BI-DIRECTIONAL FIBER APPLICATION HEAD |
FR2999466B1 (en) | 2012-12-18 | 2015-06-19 | Airbus Operations Sas | FIBER PLACEMENT MACHINE COMPRISING A ROLLER WITH SWIVEL RINGS |
FR3006938B1 (en) | 2013-06-18 | 2015-10-02 | Coriolis Composites | HEAD OF BI DIRECTIONAL FIBER APPLICATION WITH TWO ROLLS |
FR3009510B1 (en) | 2013-08-06 | 2016-01-01 | Astrium Sas | HEAD FOR REMOVING THREADS FOR PRODUCING COMPOSITE MATERIALS |
FR3033729B1 (en) | 2015-03-16 | 2017-10-06 | Coriolis Composites | FIBER APPLICATION HEAD WITH INFRARED HEATING SYSTEM |
-
2015
- 2015-04-01 FR FR1500676A patent/FR3034338B1/en not_active Expired - Fee Related
-
2016
- 2016-03-24 EP EP16714464.1A patent/EP3277486A1/en not_active Withdrawn
- 2016-03-24 WO PCT/FR2016/000057 patent/WO2016156677A1/en active Application Filing
- 2016-03-24 US US15/562,955 patent/US10369594B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
FR3034338B1 (en) | 2017-04-21 |
US10369594B2 (en) | 2019-08-06 |
FR3034338A1 (en) | 2016-10-07 |
US20180111341A1 (en) | 2018-04-26 |
WO2016156677A1 (en) | 2016-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3277486A1 (en) | Fiber application head comprising a special application roller | |
FR2982793B1 (en) | BI-DIRECTIONAL FIBER APPLICATION HEAD | |
WO2016146902A1 (en) | Fibre application head with infrared heating system | |
EP3010702A1 (en) | Bidirectional fibre application head with two rollers | |
EP3426452B1 (en) | Process for producing preforms with application of a binder to dry fiber, and corresponding machine | |
EP3784483B1 (en) | Fibre application head comprising heating means associated with functional modules | |
EP4025413B1 (en) | Fibre application head with roller with rigid rings | |
WO2015170016A1 (en) | Method and machine for creating preforms by compactionless application of oriented fibers | |
EP3140104B1 (en) | Method for creating preforms by applying and shaping oriented fibers | |
WO2017089659A1 (en) | Fibre application head with flexible roller provided with a metallic exterior layer | |
WO2019092328A1 (en) | Fibre-application head having a flexible roller provided with a non-stick sleeve | |
EP3606735A1 (en) | Method for producing composite material parts from needled preforms | |
EP3784481B1 (en) | Fibre application head comprising multiple compacting rollers | |
WO2019207217A1 (en) | Fibre application head comprising a plurality of functional modules that are movable in translation in order to carry out maintenance operations | |
EP4076912B1 (en) | Fibre application head with retractable flap | |
EP3423262B1 (en) | Fibre application machine comprising a belt conveyor, and method for producing parts using such a machine | |
EP3784482B1 (en) | Fibre application head comprising compaction rams paired with functional modules |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20170913 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: CORIOLIS GROUP |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20200226 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20200708 |