EP3269460B1 - Bottle cleaning device and method for a process water circuit using the bottle cleaning device - Google Patents
Bottle cleaning device and method for a process water circuit using the bottle cleaning device Download PDFInfo
- Publication number
- EP3269460B1 EP3269460B1 EP17162514.8A EP17162514A EP3269460B1 EP 3269460 B1 EP3269460 B1 EP 3269460B1 EP 17162514 A EP17162514 A EP 17162514A EP 3269460 B1 EP3269460 B1 EP 3269460B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- heat exchanger
- medium
- water reservoir
- water
- reservoir
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims description 149
- 238000004140 cleaning Methods 0.000 title claims description 33
- 238000000034 method Methods 0.000 title claims description 26
- 239000013505 freshwater Substances 0.000 claims description 27
- 238000002156 mixing Methods 0.000 claims description 18
- 238000001816 cooling Methods 0.000 claims description 12
- 238000010438 heat treatment Methods 0.000 claims description 9
- 238000002203 pretreatment Methods 0.000 claims description 3
- 238000007865 diluting Methods 0.000 claims description 2
- 238000004064 recycling Methods 0.000 description 5
- 238000005406 washing Methods 0.000 description 4
- 239000003513 alkali Substances 0.000 description 3
- 239000003518 caustics Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000003507 refrigerant Substances 0.000 description 3
- 239000002351 wastewater Substances 0.000 description 3
- LVGUZGTVOIAKKC-UHFFFAOYSA-N 1,1,1,2-tetrafluoroethane Chemical compound FCC(F)(F)F LVGUZGTVOIAKKC-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 235000013361 beverage Nutrition 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B9/00—Cleaning hollow articles by methods or apparatus specially adapted thereto
- B08B9/08—Cleaning containers, e.g. tanks
- B08B9/20—Cleaning containers, e.g. tanks by using apparatus into or on to which containers, e.g. bottles, jars, cans are brought
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B9/00—Cleaning hollow articles by methods or apparatus specially adapted thereto
- B08B9/08—Cleaning containers, e.g. tanks
- B08B9/20—Cleaning containers, e.g. tanks by using apparatus into or on to which containers, e.g. bottles, jars, cans are brought
- B08B9/28—Cleaning containers, e.g. tanks by using apparatus into or on to which containers, e.g. bottles, jars, cans are brought the apparatus cleaning by splash, spray, or jet application, with or without soaking
- B08B9/30—Cleaning containers, e.g. tanks by using apparatus into or on to which containers, e.g. bottles, jars, cans are brought the apparatus cleaning by splash, spray, or jet application, with or without soaking and having conveyors
Definitions
- the invention relates to a bottle cleaning device according to claim 1 and a method for a process water circuit using the bottle cleaning device according to claim 7.
- DE 32 05 956 A1 discloses a device for bottle cleaning, in which the water flowing out of the first preheating device is cooled in a recooling device by means of a heat exchanger and fed to the waste water, and in which the water thus heated in the recooling device is cooled by means of a heat pump and the recooling device is led to it.
- the lye of the second preheating device is heated by means of the heat pump.
- the heat and fresh water consumption of this device is thus low. This is due to the fact that the energy circuit for heating and cooling is closed and only the heat loss has to be replaced by energy supply.
- DE 24 54 100 discloses a container cleaning machine in which the containers with conveyors are successively transported through several machine stages, in which they are treated with immersion or spraying with cleaning liquids, only a middle stage being externally heated and the treatment temperature in the container transport direction gradually increasing before this middle stage and behind it gradually falls off.
- the object of the invention is to optimize a bottle cleaning device with regard to its fresh water consumption.
- a bottle cleaning device comprises a fresh water reservoir, which is connected to a recycling water reservoir, which is connected to a cold water reservoir, which is connected to a second hot water reservoir, which is connected to a first hot water reservoir, which is connected to a post-lye reservoir, which is connected to a detergent solution bath or to a pretreatment zone in such a way that water is produced the fresh water reservoir into the recycle water reservoir, from the recycle water reservoir into the cold water reservoir, from the cold water reservoir into the second hot water reservoir, from the second hot water reservoir into the first hot water reservoir, from the first hot water reservoir for refilling or diluting into the replenishment reserve Lye bath or can enter the pretreatment zone.
- the bottle cleaning device also includes the recycle water reservoir, the cold water reservoir, the second hot water reservoir, the first hot water reservoir, the after-lye reservoir and the lye bath.
- the bottle cleaning device comprises a mixing valve which is connected to the first hot water reservoir and the cold water reservoir via feed lines and is designed to mix water supplied from the first hot water reservoir and the cold water reservoir to mixed water.
- the bottle cleaning device also comprises a first heat exchanger which is designed to cool the mixed water and at the same time heat up a first medium, a second heat exchanger which is designed to cool the first medium and at the same time heat up a second medium, and a third heat exchanger which does so is designed to cool down the second medium and at the same time heat up a third medium and a fourth heat exchanger which is designed to cool down the third medium and at the same time heat up alkali from the alkali bath. Furthermore, the bottle cleaning device comprises a return line which is designed to supply the mixed water cooled in the first heat exchanger to the recycling water reservoir.
- the first and second heat exchangers can be regarded as an intermediate circuit in which the first medium circulates and which is required for the two-stage high-temperature heat pump.
- the two-stage high-temperature heat pump comprises the second and third heat exchangers in the first stage and the third and fourth heat exchangers in the second stage.
- the second heat exchanger of the first stage serves as an evaporator for the second medium and the third heat exchanger as a condenser for the second medium.
- the third heat exchanger serves as an evaporator for the third medium and the fourth heat exchanger as a condenser for the third medium.
- the refrigerant R134a can be used for the second medium, since no high-temperature capability is required here.
- the refrigerant ⁇ KO 1 can be used for the third medium.
- This bottle washer saves up to 30% in fresh water consumption as it allows water to be extracted from the washing process and treated, to cool and reintroduce the cleaning process as a fresh water replacement.
- the extracted water from the cold water reservoir and the first hot water reservoir has a temperature of about 50 ° C after mixing.
- this mixed water In order to use this mixed water as a fresh water substitute, it must be cooled to around 15 ° C so that its temperature is roughly the same as that of the fresh water.
- the heat content of the branched-off water is high, and therefore a great cooling capacity has to be applied.
- the two-stage high-temperature heat pump described has proven to be the most suitable cooling.
- the bottle cleaning device can further comprise a first compressor, in a first direction of flow of the second medium, after the second heat exchanger and a first expansion throttle, in the first direction of flow of the second medium, after the third heat exchanger, and also a second compressor, in a second direction of flow of the third Medium, after the third heat exchanger and a second expansion throttle, in the second flow direction of the third medium, after the fourth heat exchanger.
- first and second flow direction are used in order to be able to clearly assign the respective flow direction to the respective (second or third) medium.
- the first and second compressors as well as the first and second expansion throttles are also part of the two-stage high-temperature heat pump.
- the medium generally a refrigerant, which has been transferred from the liquid to the gaseous state in an evaporator, is sucked in by a compressor and compressed in the compressor to the pressure which is necessary to liquefy the medium.
- the compressor compresses the vaporous medium from a low initial pressure to a high final pressure, the temperature of the medium rises, so that this medium can be used again to heat another medium.
- the mixing valve can comprise a temperature-controlled servomotor.
- a temperature sensor at the outlet of the mixing valve can give a signal to a controller that regulates the servomotor, so that the volume flow of the water from the cold water reservoir and the Volume flow of water from the first hot water reservoir can be regulated and a desired mixing temperature can be achieved by regulating the mixing ratio.
- the first compressor and / or the second compressor can each comprise a screw compressor.
- a screw compressor can work at very high pressures.
- two spiral rotors rotate in opposite directions of rotation.
- One rotor can have four convex teeth and the other rotor can have six concave teeth. If the rotors rotate against each other, small chambers are created which convey the gas in the screw compressor in one direction. There is suction on the suction side, which sucks in the gaseous medium, and ejection on the discharge side.
- the first heat exchanger can comprise a plate heat exchanger.
- a plate heat exchanger achieves a very compact design through the construction of several corrugated plates, which are assembled alternately rotated by 180 °. This creates flow gaps through which the warm medium to be cooled and the medium to be heated are passed alternately. There is a large heat transfer area. With the counterflow heat exchanger, the medium runs on the primary side opposite to that on the secondary side. The temperature difference between the incoming and outgoing medium on an evaporator of the heat exchanger should only be between 5 and 7 K difference, otherwise the heat transfer coefficient will be smaller if the temperature difference between the incoming and outgoing medium is too large.
- the second heat exchanger and / or the third heat exchanger and / or the fourth heat exchanger can each comprise a shell-and-tube heat exchanger.
- a tube bundle heat exchanger consists of a jacket and a tube bundle. One medium flows through the tube bundle of U-tubes on the primary side and another medium flows through the secondary side in the jacket.
- a process for a process water circuit using a bottle cleaning device as described above or below comprises the following steps: branching off water from the cold reservoir and water from the first hot water reservoir and supplying this water to the mixing valve, mixing this water by means of the mixing valve with a temperature-controlled one Actuator, supplying the mixed water through the first filter to the first heat exchanger and cooling the mixed water in the first heat exchanger while heating a countercurrent first medium in the first heat exchanger and supplying the cooled mixed water via a second filter to the recycle water reservoir.
- the heated first medium can be fed to the second heat exchanger and the first medium can be cooled in the second heat exchanger, and at the same time a countercurrent second medium can be heated in the second heat exchanger and the cooled first medium can be fed to the first heat exchanger.
- the first and the second medium can each circulate in a line system in the intermediate circuit or in the first stage of the two-stage high-temperature heat pump.
- the heated third medium can then be fed to the fourth heat exchanger by the second compressor and the third medium can be cooled in the fourth heat exchanger.
- countercurrent lye can be heated from the lye bath in the fourth heat exchanger, then the heated lye can be fed to the lye bath and the cooled third medium can be fed via the second expansion throttle to the third heat exchanger.
- the third medium can circulate in a line system in the second stage of the two-stage high-temperature heat pump.
- the lye can be led from the lye bath to the fourth heat exchanger and back to the lye bath by means of another line system.
- fresh water can be fed into the bottle cleaning machine at the beginning in order to fill the cascade of successive water reservoirs.
- water from the cold reservoir and water from the first hot water reservoir can be branched off and then fed to the mixing valve.
- Figure 1 shows a block diagram of a process water circuit 1 of a bottle washing machine, which comprises a fresh water reservoir 2, a recycle water reservoir 3, a cold water reservoir 4, a second hot water reservoir 5, a first hot water reservoir 6, a post-alkali reservoir 7 and a caustic bath 8.
- Water is fed from the first hot water reservoir 6 to a pretreatment zone 9, which comprises a pre-soaking bath and spray devices.
- Bottles to be cleaned can be fed to the bottle cleaning machine by means of a conveyor belt. After these bottles have been introduced into bottle cells of a bottle carrier, they are fed upside down to a pretreatment zone 9, in which there is first a residual emptying and then a pre-cleaning and heating of the bottles.
- the caustic bath 8 is provided at approximately 78-80 ° C., into which the bottles are placed.
- a plurality of soapy baths can also be provided.
- the labels detach from the bottles in the lye bath without dissolving.
- the detached labels are regularly removed from the lye bath 8 in order to keep its contamination low.
- the bottles are first of all with an after-liquor from the after-liquor reservoir 7 at about 60 ° C., then with water from the first hot water reservoir 6 at about 50 ° C., then with water from the second hot water reservoir 5 at about 40 ° C. , then treated with cold water from the cold reservoir 4 at about 30 ° C and finally with fresh water from the fresh water reservoir 2 at about 15 ° C.
- the sequential cooling minimizes tensions in the material of the bottles, and the bottles are also prepared for subsequent cold filling.
- the cleaned bottles are then removed from the bottle cells of the bottle carrier and can be transported away with a delivery belt, for example to a filling device.
- the direction of flow of the water in the bottle washer is opposite to the direction of transport of the bottles, i.e. from the aftertreatment zone to the main treatment zone and then to the pretreatment zone 9.
- the bottles in the pretreatment zone 9 are still comparatively heavily soiled and therefore do not have to be sprayed unnecessarily with fresh water, but can instead be sprayed with water that has already been used for other process steps and by means of a or more filters has been cleaned. Detached labels are also regularly removed from the caustic baths. The last spraying of the bottles before they leave the bottle washer must be done with fresh water, and therefore the bottle washer is filled with fresh water there.
- the bottle washer is constructed in a cascade, so that the water fed in overflows from treatment zone to treatment zone and can therefore also be used there. Fresh water is preferably fed in at the beginning of the cascade.
- a drain for a crate washer can be provided from the first water reservoir 6 so that the beverage crates do not have to be rinsed with fresh water.
- the container brewing machine can also be supplied with water by the bottle washing machine; for example, the water from a high pressure pre-injection of the pre-treatment zone 9 can be used.
- the after-liquor in the after-liquor reservoir 7 becomes too alkaline, it can be diluted with water from the first hot water reservoir 6. If the fill level in the lye bath 8 is too low, it can be refilled from the after-lye reservoir 7 by means of after-lye. If the lye 8 is too watered down, lye is replenished through a dosing station.
- One consideration of saving resources in the bottle cleaning process is to remove water from the post-treatment of the bottle cleaning, to prepare it, to cool it and to feed it back into the process as a fresh water substitute.
- the extracted water must be cooled down from 50 ° C to 15 ° C so that its temperature corresponds approximately to the temperature of the fresh water used.
- the large amount of heat generated during cooling can be used to heat the hot alkaline baths.
- the volume flow of the flowing first medium must be taken into account, among other things.
- the mixed water cooled in the first heat exchanger 12 leaves the first heat exchanger 12 via a first outlet 14 with a temperature of T 2 acc.
- the first heat exchanger 12 is part of an intermediate circuit which is required for the two-stage high-temperature heat pump 38.
- the intermediate circuit comprises the first heat exchanger 12, a second heat exchanger 18 and a pump 19 which is provided for the transport of the first medium in the intermediate circuit and which is adjustable by means of a control valve and a pressure gauge.
- a second medium with a temperature T 1 M2 flows from a second inlet 22 in the opposite direction to the first medium.
- the second medium leaves the second heat exchanger 18 after heating via a second outlet 23 with a temperature of T 2 M2 .
- the second medium is passed through a first compressor 24 to increase its pressure and temperature to T 3 M2 .
- the second medium then enters the third heat exchanger 25 via a first inlet 26 and leaves it again via a first outlet 27 at a temperature of T 4 M2 .
- This third heat exchanger 25 serves as an evaporator for the second medium, and from there the condensed second medium arrives at the temperature T 4 M2 . to a first expansion throttle 28. From there, the second medium with the temperature T 1 M2 is fed back to the second heat exchanger 18 via the second inlet 22.
- the third heat exchanger 25 thus serves as a condenser for the second medium.
- the refrigerant R134a can be used as the second medium.
- a third medium flows in the opposite direction to the second medium.
- the compressed third medium is fed into the fourth heat exchanger via a first inlet 33 32 introduced, is liquefied in the fourth heat exchanger 32 and leaves this via a first outlet 34 with a temperature T 4 M3 . From there the third medium reaches a second expansion throttle 35 and from there with the temperature T 1 M3 to the third heat exchanger 25.
- the liquor flows from the liquor reservoir 8 in the opposite direction to the third medium.
- the third heat exchanger 25 thus serves as an evaporator for the third medium and the fourth heat exchanger 32 as a condenser for the third medium.
- the refrigerant ⁇ KO 1 can be used as the third medium.
- FIG. 2 shows a flow diagram of a method for a process water cycle.
- a first step 100 fresh water is first fed into the bottle cleaning machine in order to fill the cascade of successive water reservoirs.
- a second step 101 water is branched off from the cold reservoir 4 and the first hot water reservoir 7 and fed to a mixing valve 10.
- this water of different temperatures is mixed by means of the mixing valve 10 with a temperature-controlled servomotor.
- a fourth step 103 the mixed water is fed to a first heat exchanger 12 via a first filter 11 and cooled in the first heat exchanger 12. At the same time, a counter-flowing first medium is heated in the first heat exchanger 12.
- a fifth step 104 the cooled mixed water is fed to a recycling water reservoir 2 via a second filter 17.
- the cooled, mixed water is then available to the cascade of the bottle washer again.
- a sixth step 105 the heated first medium is fed to a second heat exchanger 18, in which it is cooled. At the same time, a counter-flowing second medium is heated in the second heat exchanger 18. The cooled first medium is then fed back to the first heat exchanger 12.
- a seventh step 106 the heated second medium is fed through a first compressor 24 to a third heat exchanger 25, in which the second medium is cooled. At the same time, a counter-flowing third medium is heated in the third heat exchanger 25. The cooled second medium is fed back to the second heat exchanger 18 via a first expansion throttle 28.
- the heated third medium is fed through a second compressor 31 to a fourth heat exchanger 32 and cooled there.
- countercurrent lye from the lye bath 8 is heated in the fourth heat exchanger and then fed back to the lye bath 8.
- the cooled third medium is fed back to the third heat exchanger 25 via a second expansion throttle 35.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Cleaning In General (AREA)
- Cleaning By Liquid Or Steam (AREA)
Description
Die Erfindung betrifft eine Flaschenreinigungsvorrichtung gemäß Anspruch 1 und ein Verfahren für einen Prozesswasserkreislauf unter Verwendung der Flaschenreinigungsvorrichtung gemäß Anspruch 7.The invention relates to a bottle cleaning device according to
Die Aufgabe der Erfindung besteht darin, eine Flaschenreinigungsvorrichtung hinsichtlich ihres Frischwasserverbrauchs zu optimieren.The object of the invention is to optimize a bottle cleaning device with regard to its fresh water consumption.
Die Aufgabe wird gelöst durch die Flaschenreinigungsvorrichtung nach Anspruch 1 und das Verfahren nach Anspruch 7. Bevorzugte Ausführungsformen und Weiterbildungen sind in den Unteransprüchen offenbart.The object is achieved by the bottle cleaning device according to
Eine Flaschenreinigungsvorrichtung umfasst ein Frischwasserreservoir, das mit einem Recyclewasserreservoir, das mit einem Kaltwasserreservoir, das mit einem zweiten Warmwasserreservoir, das mit einem ersten Warmwasserreservoir, das mit einem Nachlaugenreservoir, das das mit einem Laugenbad oder mit einer Vorbehandlungszone jeweils derart verbunden ist, dass Wasser aus dem Frischwasserreservoir in das Recyclewasserreservoir, aus dem Recyclewasserreservoir in das Kaltwasserreservoir, aus dem Kaltwasserreservoir in das zweite Warmwasserreservoir, aus dem zweiten Warmwasserreservoir in das erste Warmwasserreservoir, aus dem ersten Warmwasserreservoir zum Nachfüllen oder Verdünnen in das Nachlaugenreservoir und aus dem Nachlaugenreservoir zum Nachfüllen in das Laugenbad oder in die Vorbehandlungszone übertreten kann. Das Recyclewasserreservoir, das Kaltwasserreservoir, das zweite Warmwasserreservoir, das erste Warmwasserreservoir, das Nachlaugenreservoir und das Laugenbad werden ebenfalls von der Flaschenreinigungsvorrichtung umfasst. Zudem umfasst die Flaschenreinigungsvorrichtung ein Mischventil, das über Zuleitungen mit dem ersten Warmwasserreservoir und dem Kaltwasserreservoir verbunden ist, und das dazu ausgelegt ist, von dem ersten Warmwasserreservoir und dem Kaltwasserreservoir zugeführtes Wasser zu gemischtem Wasser zu mischen. Die Flaschenreinigungsvorrichtung umfasst zudem einen ersten Wärmetauscher, der dazu ausgelegt ist, das gemischte Wasser abzukühlen und gleichzeitig ein erstes Medium aufzuheizen, einen zweiten Wärmetauscher, der dazu ausgelegt ist, das erste Medium abzukühlen und gleichzeitig ein zweites Medium aufzuheizen, einen dritten Wärmetauscher, der dazu ausgelegt ist, das zweite Medium abzukühlen und gleichzeitig ein drittes Medium aufzuheizen und einen vierten Wärmetauscher, der dazu ausgelegt ist, das dritte Medium abzukühlen und gleichzeitig Lauge aus dem Laugenbad aufzuheizen. Des Weiteren umfasst die Flaschenreinigungsvorrichtung eine Rückführleitung, die dazu ausgelegt ist, das in dem ersten Wärmetauscher abgekühlte, gemischte Wasser dem Recyclewasserreservoir zuzuführen.A bottle cleaning device comprises a fresh water reservoir, which is connected to a recycling water reservoir, which is connected to a cold water reservoir, which is connected to a second hot water reservoir, which is connected to a first hot water reservoir, which is connected to a post-lye reservoir, which is connected to a detergent solution bath or to a pretreatment zone in such a way that water is produced the fresh water reservoir into the recycle water reservoir, from the recycle water reservoir into the cold water reservoir, from the cold water reservoir into the second hot water reservoir, from the second hot water reservoir into the first hot water reservoir, from the first hot water reservoir for refilling or diluting into the replenishment reserve Lye bath or can enter the pretreatment zone. The bottle cleaning device also includes the recycle water reservoir, the cold water reservoir, the second hot water reservoir, the first hot water reservoir, the after-lye reservoir and the lye bath. In addition, the bottle cleaning device comprises a mixing valve which is connected to the first hot water reservoir and the cold water reservoir via feed lines and is designed to mix water supplied from the first hot water reservoir and the cold water reservoir to mixed water. The bottle cleaning device also comprises a first heat exchanger which is designed to cool the mixed water and at the same time heat up a first medium, a second heat exchanger which is designed to cool the first medium and at the same time heat up a second medium, and a third heat exchanger which does so is designed to cool down the second medium and at the same time heat up a third medium and a fourth heat exchanger which is designed to cool down the third medium and at the same time heat up alkali from the alkali bath. Furthermore, the bottle cleaning device comprises a return line which is designed to supply the mixed water cooled in the first heat exchanger to the recycling water reservoir.
Beim Übertreten des Wassers von einer Stufe der Kaskade zu einer nächsten Stufe können zusammen mit dem Wasser auch Stoffe die im Wasser der einen Stufe gelöst sind, mit übertreten. Der Anteil dieser Stoffe kann aber durch Filterung reduziert werden.When the water is passed from one stage of the cascade to a next stage, substances dissolved in the water of one stage can also pass along with the water. The proportion of these substances can, however, be reduced by filtering.
Der erste und der zweite Wärmetauscher können als ein Zwischenkreislauf angesehen werden, in dem das erste Medium umläuft und der für die zweistufige Hochtemperaturwärmepumpe erforderlich ist.The first and second heat exchangers can be regarded as an intermediate circuit in which the first medium circulates and which is required for the two-stage high-temperature heat pump.
Die zweistufige Hochtemperaturwärmepumpe umfasst in der ersten Stufe den zweiten und den dritten Wärmetauscher und in der zweiten Stufe den dritten und den vierten Wärmetauscher. Der zweite Wärmetauscher der ersten Stufe dient als Verdampfer für das zweite Medium und der dritte Wärmetauscher als Verflüssiger für das zweite Medium. In der zweiten Stufe dient der dritte Wärmetauscher als Verdampfer für das dritte Medium und der vierte Wärmetauscher als Verflüssiger für das dritte Medium.The two-stage high-temperature heat pump comprises the second and third heat exchangers in the first stage and the third and fourth heat exchangers in the second stage. The second heat exchanger of the first stage serves as an evaporator for the second medium and the third heat exchanger as a condenser for the second medium. In the second stage, the third heat exchanger serves as an evaporator for the third medium and the fourth heat exchanger as a condenser for the third medium.
Für das zweite Medium kann das Kältemittel R134a verwendet werden, da hier keine Hochtemperaturfähigkeit erforderlich ist. Für das dritte Medium kann das Kältemittel ÖKO 1 verwendet werden.The refrigerant R134a can be used for the second medium, since no high-temperature capability is required here. The refrigerant ÖKO 1 can be used for the third medium.
Diese Flaschenreinigungsmaschine ermöglicht eine Einsparung des Frischwasserverbrauchs von bis zu 30 %, da sie ermöglicht dem Reinigungsvorgang Wasser zu entziehen, es aufzubereiten, zu kühlen und dem Reinigungsprozess als Frischwasserersatz wieder zuzuführen. Das entzogene Wasser aus dem Kaltwasserreservoir und dem ersten Warmwasserreservoir weist nach der Mischung eine Temperatur von etwa 50 °C auf. Um dieses gemischte Wasser als Frischwasserersatz verwenden zu können, muss es auf etwa 15 °C gekühlt werden, damit seine Temperatur in etwa der des Frischwassers entspricht. Der Wärmeinhalt des abgezweigten Wassers ist hoch, und somit ist eine große Kühlleistung aufzubringen. Die beschriebene zweistufige Hochtemperaturwärmepumpe hat sich als geeignetste Kühlung herausgestellt.This bottle washer saves up to 30% in fresh water consumption as it allows water to be extracted from the washing process and treated, to cool and reintroduce the cleaning process as a fresh water replacement. The extracted water from the cold water reservoir and the first hot water reservoir has a temperature of about 50 ° C after mixing. In order to use this mixed water as a fresh water substitute, it must be cooled to around 15 ° C so that its temperature is roughly the same as that of the fresh water. The heat content of the branched-off water is high, and therefore a great cooling capacity has to be applied. The two-stage high-temperature heat pump described has proven to be the most suitable cooling.
Das Verwenden des recycelten Wassers ermöglicht somit eine Einsparung von etwa 30 % des Frischwassers, und somit auch eine um etwa 30 % verkleinerte Abwassermenge. Durch die Rückführung der Wärme kann zudem Energie eingespart werden, die sonst für die Erwärmung des Wassers verwenden werden müsste. Daher ist es möglich nach den heute bestehenden Wasser-, Abwasser- und Energiekosten eine derart modifizierte Flaschenreinigungsmaschine nach wenigen Jahren zu amortisieren.The use of recycled water thus enables savings of around 30% in fresh water, and thus also a waste water quantity reduced by around 30%. By recycling the heat, energy can also be saved that would otherwise have to be used to heat the water. It is therefore possible to amortize such a modified bottle cleaning machine after a few years based on the current water, wastewater and energy costs.
Die Flaschenreinigungsvorrichtung kann weiter einen ersten Verdichter, in einer ersten Fließrichtung des zweiten Mediums, nach dem zweiten Wärmetauscher und eine erste Entspannungsdrossel, in der ersten Fließrichtung des zweiten Mediums, nach dem dritten Wärmetauscher umfassen und zudem einen zweiten Verdichter, in einer zweiten Fließrichtung des dritten Mediums, nach dem dritten Wärmetauscher und eine zweite Entspannungsdrossel, in der zweiten Fließrichtung des dritten Mediums, nach dem vierten Wärmetauscher umfassen. Die Bezeichnungen "erste" bzw. "zweite" Fließrichtung werden verwendet, um die jeweilige Fließrichtung dem jeweiligen (zweiten bzw. dritten) Medium eindeutig zuweisen zu können.The bottle cleaning device can further comprise a first compressor, in a first direction of flow of the second medium, after the second heat exchanger and a first expansion throttle, in the first direction of flow of the second medium, after the third heat exchanger, and also a second compressor, in a second direction of flow of the third Medium, after the third heat exchanger and a second expansion throttle, in the second flow direction of the third medium, after the fourth heat exchanger. The designations "first" and "second" flow direction are used in order to be able to clearly assign the respective flow direction to the respective (second or third) medium.
Der erste und der zweite Verdichter sowie die erste und die zweite Entspannungsdrossel sind ebenfalls Teil der zweistufigen Hochtemperaturwärmepumpe.The first and second compressors as well as the first and second expansion throttles are also part of the two-stage high-temperature heat pump.
Von einem Verdichter wird das Medium, im Allgemeinen ein Kältemittel, das in einem Verdampfer vom flüssigen in den gasförmigen Zustand übertragen wurde, angesaugt und im Verdichter auf den Druck komprimiert, der zur Verflüssigung des Mediums notwendig ist. Während der Verdichter das dampfförmige Medium von einem niedrigen Anfangsdruck zu einem hohen Enddruck verdichtet, erhöht sich die Temperatur des Mediums, so dass dieses Medium wieder zur Erwärmung eines anderen Mediums verwendet werden kann..The medium, generally a refrigerant, which has been transferred from the liquid to the gaseous state in an evaporator, is sucked in by a compressor and compressed in the compressor to the pressure which is necessary to liquefy the medium. As the compressor compresses the vaporous medium from a low initial pressure to a high final pressure, the temperature of the medium rises, so that this medium can be used again to heat another medium.
Das Mischventil kann einen temperaturgesteuerten Stellmotor umfassen. Ein Temperaturfühler am Ausgang des Mischventils kann ein Signal an eine Steuerung geben, die den Stellmotor regelt, so dass der Volumenstrom des Wassers aus dem Kaltwasserreservoir und der Volumenstrom des Wassers aus dem ersten Warmwasserreservoir geregelt werden kann und dadurch eine gewünschte Mischtemperatur durch Regeln des Mischverhältnisses erreicht werden kann.The mixing valve can comprise a temperature-controlled servomotor. A temperature sensor at the outlet of the mixing valve can give a signal to a controller that regulates the servomotor, so that the volume flow of the water from the cold water reservoir and the Volume flow of water from the first hot water reservoir can be regulated and a desired mixing temperature can be achieved by regulating the mixing ratio.
Der erste Verdichter und/oder der zweite Verdichter können jeweils einen Schraubenverdichter umfassen. Ein Schraubenverdichter kann bei sehr hohen Drücken arbeiten. Hierzu drehen zwei spiralförmige Rotoren in gegenläufiger Rotationsrichtung. Der eine Rotor kann vier konvex geformte Zähne und der andere Rotor kann sechs konkav geformte Zähne umfassen. Drehen sich die Rotoren gegeneinander, entstehen kleine Kammern, die das Gas in dem Schraubenverdichter in eine Richtung fördern. Es entstehen ein Sog an der Ansaugseite, der das gasförmige Medium ansaugt, und ein Ausstoßen an der Ausstoßseite.The first compressor and / or the second compressor can each comprise a screw compressor. A screw compressor can work at very high pressures. For this purpose, two spiral rotors rotate in opposite directions of rotation. One rotor can have four convex teeth and the other rotor can have six concave teeth. If the rotors rotate against each other, small chambers are created which convey the gas in the screw compressor in one direction. There is suction on the suction side, which sucks in the gaseous medium, and ejection on the discharge side.
Der erste Wärmetauscher kann einen Plattenwärmetauscher umfassen. Ein Plattenwärmetauscher erreicht eine sehr kompakte Bauweise durch den Aufbau aus mehreren gewellte Platten, die abwechselnd um 180° gedreht zusammengesetzt sind. Dadurch entstehen Fließspalte durch die abwechselnd das warme, abzukühlende Medium und das zu erwärmende Medium hindurch geleitet werden. Es besteht eine große Wärmeübertragungsfläche. Beim Gegenstromwärmetauscher läuft auf der Primärseite das Medium entgegensetzt zu dem auf der Sekundärseite. Der Temperaturunterschied zwischen ein- und auslaufendem Medium an einem Verdampfer des Wärmetauschers sollte nur zwischen 5 und 7 K Unterschied betragen, da sonst bei einem zu großen Temperaturunterschied zwischen ein- und auslaufendem Medium der Wärmeübergangskoeffizient kleiner wird.The first heat exchanger can comprise a plate heat exchanger. A plate heat exchanger achieves a very compact design through the construction of several corrugated plates, which are assembled alternately rotated by 180 °. This creates flow gaps through which the warm medium to be cooled and the medium to be heated are passed alternately. There is a large heat transfer area. With the counterflow heat exchanger, the medium runs on the primary side opposite to that on the secondary side. The temperature difference between the incoming and outgoing medium on an evaporator of the heat exchanger should only be between 5 and 7 K difference, otherwise the heat transfer coefficient will be smaller if the temperature difference between the incoming and outgoing medium is too large.
Der zweite Wärmetauscher und/oder der dritte Wärmetauscher und/oder der vierte Wärmetauscher können jeweils einen Rohrbündelwärmetauscher umfassen. Ein Rohrbündelwärmetauscher besteht aus einem Mantel und einem Rohrbündel. Ein Medium fließt auf der Primärseite durch die Rohrbündel von U-Rohren und ein anderes Medium durch die Sekundärseite im Mantel.The second heat exchanger and / or the third heat exchanger and / or the fourth heat exchanger can each comprise a shell-and-tube heat exchanger. A tube bundle heat exchanger consists of a jacket and a tube bundle. One medium flows through the tube bundle of U-tubes on the primary side and another medium flows through the secondary side in the jacket.
Ein Verfahren für einen Prozesswasserkreislauf unter Verwendung einer Flaschenreinigungsvorrichtung wie oben oder weiter unten beschrieben umfasst die folgenden Schritte: Abzweigen von Wasser aus dem Kaltreservoir und von Wasser aus dem ersten Warmwasserreservoir und Zuführen dieses Wassers zu dem Mischventil, Mischen dieses Wassers mittels des Mischventils mit einem temperaturgesteuerten Stellmotor, Zuführen des gemischten Wassers über den ersten Filter zu dem ersten Wärmetauscher und Abkühlen des gemischten Wassers in dem ersten Wärmetauscher und gleichzeitig Erhitzen eines gegenströmenden ersten Mediums in dem ersten Wärmetauscher und Zuführen des abgekühlten gemischten Wassers über einen zweiten Filter zu dem Recyclewasserreservoir.A process for a process water circuit using a bottle cleaning device as described above or below comprises the following steps: branching off water from the cold reservoir and water from the first hot water reservoir and supplying this water to the mixing valve, mixing this water by means of the mixing valve with a temperature-controlled one Actuator, supplying the mixed water through the first filter to the first heat exchanger and cooling the mixed water in the first heat exchanger while heating a countercurrent first medium in the first heat exchanger and supplying the cooled mixed water via a second filter to the recycle water reservoir.
Anschließend können ein Zuführen des erhitzten ersten Mediums zu dem zweiten Wärmetauscher und ein Abkühlen des ersten Mediums in dem zweiten Wärmetauscher und gleichzeitig ein Erhitzen eines gegenströmenden zweiten Mediums in dem zweiten Wärmetauscher und ein Zuführen des abgekühlten ersten Mediums zu dem ersten Wärmetauscher erfolgen. Das erste bzw. das zweite Medium können jeweils in einem Leitungssystem in dem Zwischenkreislauf bzw. in der ersten Stufe der zweistufigen Hochtemperaturwärmepumpe umlaufen.Subsequently, the heated first medium can be fed to the second heat exchanger and the first medium can be cooled in the second heat exchanger, and at the same time a countercurrent second medium can be heated in the second heat exchanger and the cooled first medium can be fed to the first heat exchanger. The first and the second medium can each circulate in a line system in the intermediate circuit or in the first stage of the two-stage high-temperature heat pump.
Dann können ein Zuführen des erhitzten zweiten Mediums durch den ersten Verdichter zu einem dritten Wärmetauscher und ein Abkühlen des zweiten Mediums in dem dritten Wärmetauscher und gleichzeitig ein Erhitzen eines gegenströmenden dritten Mediums in dem dritten Wärmetauscher und ein Zuführen des abgekühlten zweiten Mediums über die erste Entspannungsdrossel zu dem zweiten Wärmetauscher erfolgen.Then, feeding the heated second medium through the first compressor to a third heat exchanger and cooling the second medium in the third heat exchanger and simultaneously heating a countercurrent third medium in the third heat exchanger and feeding the cooled second medium via the first expansion throttle the second heat exchanger.
Danach können das erhitzte dritte Medium durch den zweiten Verdichter dem vierten Wärmetauscher zugeführt und das dritte Medium in dem vierten Wärmetauscher abgekühlt werden. Gleichzeitig kann ein Erhitzen gegenströmender Lauge aus dem Laugenbad in dem vierten Wärmetauscher erfolgen, danach ein Zuführen der erhitzten Lauge zu dem Laugenbad und ein Zuführen des abgekühlten dritten Mediums über die zweite Entspannungsdrossel zu dem dritten Wärmetauscher. Das dritte Medium kann in einem Leitungssystem in der zweiten Stufe der zweistufigen Hochtemperaturwärmepumpe umlaufen. Die Lauge kann mittels eines anderen Leitungssystems vom Laugenbad zu dem vierten Wärmetauscher und zurück zum Laugenbad geführt werden.The heated third medium can then be fed to the fourth heat exchanger by the second compressor and the third medium can be cooled in the fourth heat exchanger. At the same time, countercurrent lye can be heated from the lye bath in the fourth heat exchanger, then the heated lye can be fed to the lye bath and the cooled third medium can be fed via the second expansion throttle to the third heat exchanger. The third medium can circulate in a line system in the second stage of the two-stage high-temperature heat pump. The lye can be led from the lye bath to the fourth heat exchanger and back to the lye bath by means of another line system.
In dem Verfahren kann zu Beginn eine Einspeisung von Frischwasser in die Flaschenreinigungsmaschine erfolgen, um die Kaskade aufeinanderfolgender Wasserreservoirs zu füllen. Nach der Füllung mit Wasser und wenn die verschiedenen Wasserreservoirs die erforderlichen Wassertemperaturen erreicht haben, kann Wasser aus dem Kaltreservoir und Wasser aus dem ersten Warmwasserreservoir abgezweigt und dann dem Mischventil zugeführt werden.In the method, fresh water can be fed into the bottle cleaning machine at the beginning in order to fill the cascade of successive water reservoirs. After filling with water and when the various water reservoirs have reached the required water temperatures, water from the cold reservoir and water from the first hot water reservoir can be branched off and then fed to the mixing valve.
Die beigefügten Figuren stellen beispielhaft zum besseren Verständnis und zur Veranschaulichung Aspekte der Erfindung dar. Dabei zeigt:
-
ein Blockdiagramm eines Prozesswasserkreislaufs einer Flaschenreinigungsmaschine undFigur 1 -
ein Flussdiagramm eines Verfahrens für einen Prozesswasserkreislauf.Figur 2
-
Figure 1 a block diagram of a process water circuit of a bottle washer and -
Figure 2 a flowchart of a method for a process water cycle.
Der Flaschenreinigungsmaschine können zu reinigende Flaschen mittels eines Förderbands zugeführt werden. Nachdem diese Flaschen in Flaschenzellen eines Flaschenträgers eingebracht wurden, werden sie kopfüber einer Vorbehandlungszone 9 zugeführt, in der zunächst eine Restentleerung und dann eine Vorreinigung und das Anwärmen der Flaschen erfolgen.Bottles to be cleaned can be fed to the bottle cleaning machine by means of a conveyor belt. After these bottles have been introduced into bottle cells of a bottle carrier, they are fed upside down to a
In der Hauptbehandlungszone ist das Laugenbad 8 mit etwa 78 - 80°C vorgesehen, in das die Flaschen eingebracht werden. Es können auch mehrere Laugenbäder vorgesehen sein. Im Laugenbad lösen sich die Etiketten von den Flaschen, ohne sich dabei aufzulösen. Die abgelösten Etiketten werden regelmäßig aus dem Laugenbad 8 entfernt, um seine Verunreinigung klein zu halten.In the main treatment zone, the
In der der Hauptbehandlungszone nachfolgenden Nachbehandlungszone werden die Flaschen zuerst mit einer Nachlauge aus dem Nachlaugenreservoir 7 mit etwa 60°C, dann mit Wasser aus dem ersten Warmwasserreservoir 6 mit etwa 50°C, danach mit Wasser aus dem zweiten Warmwasserreservoir 5 mit etwa 40°C, anschließend mit Kaltwasser aus dem Kaltreservoir 4 mit etwa 30°C und zum Schluss mit Frischwasser aus dem Frischwasserreservoir 2 mit etwa 15°C behandelt. Durch die aufeinanderfolgende Abkühlung werden Spannungen in dem Material der Flaschen minimiert, und die Flaschen sind derart auch auf eine nachfolgende Kaltabfüllung vorbereitet.In the aftertreatment zone following the main treatment zone, the bottles are first of all with an after-liquor from the after-liquor reservoir 7 at about 60 ° C., then with water from the first
Danach werden die gereinigten Flaschen aus den Flaschenzellen des Flaschenträgers entfernt und können mit einem Abgabeband abtransportiert werden, beispielsweise hin zu einer Füllvorrichtung.The cleaned bottles are then removed from the bottle cells of the bottle carrier and can be transported away with a delivery belt, for example to a filling device.
Die Strömungsrichtung des Wassers in der Flaschenreinigungsmaschine verläuft entgegen der Transportrichtung der Flaschen, d.h. von der Nachbehandlungszone zu der Hauptbehandlungszone und dann zu der Vorbehandlungszone 9. Die Flaschen in der Vorbehandlungszone 9 sind noch vergleichsweise stark verschmutzt und müssen daher nicht unnötig mit Frischwasser abgespritzt werden, sondern können mit Wasser abgespritzt werden, das schon für andere Prozessschritte verwendet und mittels einem oder mehreren Filtern gereinigt wurde. In den Laugenbädern erfolgt zudem regelmäßig eine Austragung von abgelösten Etiketten. Die letzte Spritzung der Flaschen, bevor sie die Flaschenreinigungsmaschine verlassen, muss mit Frischwasser durchgeführt werden, und daher wird die Flaschenreinigungsmaschine dort mit Frischwasser befüllt.The direction of flow of the water in the bottle washer is opposite to the direction of transport of the bottles, i.e. from the aftertreatment zone to the main treatment zone and then to the
Die Flaschenreinigungsmaschine ist entsprechend kaskadenförmig aufgebaut, so dass das eingespeiste Wasser von Behandlungszone zu Behandlungszone überlaufen und somit auch dort verwendet werden kann. Am Anfang der Kaskade wird vorzugsweise Frischwasser eingespeist.The bottle washer is constructed in a cascade, so that the water fed in overflows from treatment zone to treatment zone and can therefore also be used there. Fresh water is preferably fed in at the beginning of the cascade.
Vom ersten Wasserreservoir 6 kann ein Abfluss für einen Kastenwäscher vorgesehen sein, damit die Getränkekisten nicht mit Frischwasser gespült werden müssen. Der Gebindeberiesler kann ebenfalls von der Flaschenreinigungsmaschine mit Wasser versorgt werden; beispielsweise kann das Wasser aus einer Hochdruckvorspritzung der Vorbehandlungszone 9 verwendet werden.A drain for a crate washer can be provided from the
Falls die Nachlauge in dem Nachlaugenreservoir 7 zu alkalisch wird, kann sie mit Wasser aus dem ersten Warmwasserreservoir 6 verdünnt werden. Falls der Füllstand im Laugenbad 8 zu niedrig ist, kann eine Nachfüllung mittels Nachlauge aus dem Nachlaugenreservoir 7 erfolgen. Ist die Lauge 8 zu sehr verwässert, wird durch eine Dosagestation Lauge nachdosiert.If the after-liquor in the after-liquor reservoir 7 becomes too alkaline, it can be diluted with water from the first
Eine Überlegung Ressourcen beim Reinigungsvorgang der Flaschen einzusparen, ist es, der Nachbehandlung der Flaschenreinigung Wasser zu entziehen, es aufzubereiten, zu kühlen und in den Prozess als Frischwasserersatz wieder einzuspeisen. Dabei muss das entzogene Wasser von 50°C herunter auf 15°C gekühlt werden, damit seine Temperatur in etwa der Temperatur des verwendeten Frischwassers entspricht. Die bei der Kühlung anfallende große Wärmemenge kann zur Erwärmung der heißen Laugenbäder genutzt werden.One consideration of saving resources in the bottle cleaning process is to remove water from the post-treatment of the bottle cleaning, to prepare it, to cool it and to feed it back into the process as a fresh water substitute. The extracted water must be cooled down from 50 ° C to 15 ° C so that its temperature corresponds approximately to the temperature of the fresh water used. The large amount of heat generated during cooling can be used to heat the hot alkaline baths.
Dabei sollte aber nicht der komplette Volumenstrom an Frischwasser durch recyceltes Wasser ersetzt werden; für die vorliegende Erfindung hat sich gezeigt, dass etwa 30 % des ursprünglichen Frischwasserverbrauchs der Flaschenreinigungsmaschine recycelt und dem Reinigungsprozess zugeführt werden können, ohne dass es zu Beeinträchtigungen kommt. Das Wasser für die Wiederverwendung wird dem ersten Warmwasserreservoir 6 und dem Kaltwasserreservoir 4 entzogen und einem Mischventil 10 mit einem temperaturgesteuerten Stellmotor zugeführt. Von dort wird das gemischte Wasser durch einen ersten Filter 11 geleitet und einem ersten Wärmetauscher 12 über einen ersten Eingang 13 zugeführt. Das gemischte Wasser besitzt dort eine Temperatur von T1 gem. Wasser = 50°C. In dem ersten Wärmetauscher 12 fließt ein erstes Medium mit einer Temperatur T1 M1 = 10 - 12°C von einem zweiten Eingang 15 gegenläufig zu dem gemischten Wasser und verlässt den ersten Wärmetauscher 12 nach Wärmeaufnahme über einen zweiten Ausgang 16 mit einer Temperatur T2 M1 = 19 - 50°C. Um einen vorgegebenen Temperaturwert der Temperatur T2 M1 zu erhalten, ist unter anderem der Volumenstrom des fließenden ersten Mediums zu beachten. Bei einer Temperatur von T2 M1 = 19°C kann der Volumenstrom in einem Bereich von 140 m3 pro Stunde liegen, bei einer Temperatur von T2 M1 = 50°C kann der Volumenstrom in einem Bereich von 25 m3 pro Stunde liegen. Das im ersten Wärmetauscher 12 abgekühlte gemischte Wasser verlässt den ersten Wärmetauscher 12 über einen ersten Ausgang 14 mit einer Temperatur von T2 gem. Wasser = 15°C. Dieses gekühlte gemischte Wasser wird durch einen zweiten Filter 17 geleitet und dem Recyclewasserreservoir 3 zugeführt, so dass dieses recycelte Wasser wieder der Kaskade der Flaschenreinigungsmaschine zugeführt werden kann, wodurch die sonst erforderliche Menge an Frischwasser entsprechend reduziert werden kann.However, the entire volume flow of fresh water should not be replaced by recycled water; for the present invention, it has been shown that about 30% of the original Fresh water consumption of the bottle washer can be recycled and fed into the cleaning process without there being any impairments. The water for reuse is withdrawn from the first
Der erste Wärmetauscher 12 ist Teil eines Zwischenkreislaufs, der für die zweistufige Hochtemperaturwärmepumpe 38 erforderlich ist. Der Zwischenkreislauf umfasst den ersten Wärmetauscher 12, einen zweiten Wärmetauscher 18 und eine Pumpe 19, die für den Transport des ersten Mediums in dem Zwischenkreislauf vorgesehen und die durch ein Stellventil und ein Manometer einstellbar ist. Das erste Medium gelangt über einen ersten Eingang 20 in den zweiten Wärmetauscher 18 mit einer Temperatur von T2 M1 = 19 - 50°. In dem zweiten Wärmetauscher 18 fließt ein zweites Medium mit einer Temperatur T1 M2 von einem zweiten Eingang 22 gegenläufig zu dem ersten Medium. Das erste Medium verlässt nach Abkühlung den zweiten Wärmetauscher 18 über einen ersten Ausgang 21 mit einer Temperatur von T1 M1 = 10 - 12°C.The
Das zweite Medium verlässt den zweiten Wärmetauscher 18 nach Erwärmung über einen zweiten Ausgang 23 mit einer Temperatur von T2 M2. Das zweite Medium wird durch einen ersten Verdichter 24 geleitet, um seinen Druck und seine Temperatur auf T3 M2 zu erhöhen. Danach gelangt das zweite Medium in den dritten Wärmetauscher 25 über einen ersten Eingang 26 und verlässt ihn wieder über einen ersten Ausgang 27 mit einer Temperatur von T4 M2. Dieser dritte Wärmetauscher 25 dient als Verdampfer für das zweite Medium, und von dort gelangt das kondensierte zweite Medium mit der Temperatur T4 M2. zu einer ersten Entspannungsdrossel 28. Von dort aus wird das zweite Medium mit der Temperatur T1 M2 wieder dem zweiten Wärmetauscher 18 über den zweiten Eingang 22 zugeführt. Somit dient der dritte Wärmetauscher 25 als Verflüssiger für das zweite Medium. Als zweites Medium kann das Kältemittel R134a verwendet werden.The second medium leaves the
In dem dritten Wärmetauscher 25 fließt gegenläufig zu dem zweiten Medium ein drittes Medium. Das dritte Medium gelangt über einen zweiten Eingang 29 mit einer Temperatur T1 M3 in den dritten Wärmetauscher 25 und verlässt diesen wieder über einen zweiten Ausgang 30 mit einer Temperatur T2 M3. Von dort gelangt das dritte Medium zu einem zweiten Verdichter 31. Nach der Verdichtung des dritten Mediums gelangt dieses mit einer Temperatur T3 M3 = 85°C zu einem vierten Wärmetauscher 32. Das verdichtete dritte Medium wird über einen ersten Eingang 33 in den vierten Wärmetauscher 32 eingebracht, wird in dem vierten Wärmetauscher 32 verflüssigt und verlässt diesen über einen ersten Ausgang 34 mit einer Temperatur T4 M3. Von dort gelangt das dritte Medium zu einer zweiten Entspannungsdrossel 35 und von dort mit der Temperatur T1 M3 wieder zu dem dritten Wärmetauscher 25.In the
In dem vierten Wärmetauscher 32 fließt gegenläufig zu dem dritten Medium die Lauge aus dem Laugenreservoir 8. Die Lauge gelangt mit einer Temperatur T1 Lauge = 78 - 80°C über einen zweiten Eingang 36 in den vierten Wärmetauscher 32, nimmt dort Wärme von dem dritten Medium auf und verlässt den vierten Wärmetauscher 32 mit einer Temperatur T2 Lauge = 80 - 85°C wieder über einen zweiten Ausgang 37. Von dort wird die Lauge zurück zum Laugenreservoir 8 geführt.In the
Somit dient der dritte Wärmetauscher 25 als Verdampfer für das dritte Medium und der vierte Wärmetauscher 32 als Verflüssiger für das dritte Medium. Als drittes Medium kann das Kältemittel ÖKO 1 verwendet werden.The
Die zweistufige Hochtemperaturwärmepumpe 38 umfasst den zweiten Wärmetauscher 18, den dritten Wärmetauscher 25, den vierten Wärmetauscher 32, den ersten Verdichter 24, den zweiten Verdichter 31, die erste Entspannungsdrossel 28 und die zweite Entspannungsdrossel 35. Da die zweistufige Hochtemperaturwärmepumpe 38 im Allgemeinen mit verschiedenen, umlaufenden Medien betrieben wird und auch der Volumenstrom in den jeweiligen Kreisläufen verschieden sein und/oder Anlagenbedingungen angepasst werden kann, ist es vorteilhaft für die zweistufige Hochtemperaturwärmepumpe 38 Randbedingungen anzugeben, wie beispielsweise T1 Lauge = 78 - 80°C, T2 Lauge = 80 - 85°C und T1 M1 = 10 - 12°C, um dann entsprechend Eigenschaften des zweiten 18, des dritten 25 und des vierten Wärmetauschers 32, des ersten und des zweiten Verdichters 31, der ersten 28 und der zweiten Entspannungsdrossel 35 vorzusehen.The two-stage high-
In einem dritten Schritt 102 wird dieses Wasser unterschiedlicher Temperatur mittels des Mischventils 10 mit einem temperaturgesteuerten Stellmotor gemischt.In a
In einem vierten Schritt 103 wird das gemischte Wasser über einen ersten Filter 11 einem ersten Wärmetauscher 12 zugeführt und in dem ersten Wärmetauscher 12 abgekühlt. Gleichzeitig wird ein gegenströmendes erstes Medium in dem ersten Wärmetauscher 12 erhitzt.In a
In einem fünften Schritt 104 wird das abgekühlte gemischte Wasser über einen zweiten Filter 17 einem Recyclewasserreservoir 2 zugeführt. Das abgekühlte gemischte Wasser steht somit der Kaskade der Flaschenreinigungsmaschine wieder zur Verfügung.In a
In einem sechsten Schritt 105 wird das erhitzte erste Medium einem zweiten Wärmetauscher 18 zugeführt, in dem es abgekühlt wird. Gleichzeitig wird ein gegenströmendes zweites Medium in dem zweiten Wärmetauscher 18 erhitzt. Das abgekühlte erste Medium wird danach wieder dem ersten Wärmetauscher 12 zugeführt.In a
In einem siebten Schritt 106 wird das erhitzte zweite Medium durch einen ersten Verdichter 24 einem dritten Wärmetauscher 25 zugeführt, in dem das zweite Medium abgekühlt wird. Gleichzeitig wird ein gegenströmendes drittes Medium in dem dritten Wärmetauscher 25 erhitzt. Das abgekühlte zweite Medium wird über eine erste Entspannungsdrossel 28 wieder dem zweiten Wärmetauscher 18 zugeführt.In a
In einem achten Schritt 107 wird das erhitzte dritte Medium durch einen zweiten Verdichter 31 einem vierten Wärmetauscher 32 zugeführt und dort abgekühlt. Gleichzeitig wird gegenströmende Lauge aus dem Laugenbad 8 in dem vierten Wärmetauscher erhitzt und danach wieder dem Laugenbad 8 zugeführt. Das abgekühlte dritte Medium wird über eine zweite Entspannungsdrossel 35 wieder dem dritten Wärmetauscher 25 zugeführt.In an
Claims (11)
- Bottle cleaning device comprising:- a fresh water reservoir (2) being connected with a recycle water reservoir (3), the recycle water reservoir (3) being connected with a cold water reservoir (4), the cold water reservoir (4) being connected with a second warm water reservoir (5), the second warm water reservoir (5) being connected with a first warm water reservoir (6), the first warm water reservoir (6) being connected with an post-lye reservoir (7), the post-lye reservoir (7) being connected with a lye bath (8) or with a pre-treatment zone (9) in such a way, respectively, that water from the fresh water reservoir (2) can pass into the recycle water reservoir (3), from the recycle water reservoir (3) in the cold water reservoir (4), from the cold water reservoir (4) in the second warm water reservoir (5), from the second warm water reservoir (5) in the first warm water reservoir (6), from the first warm water reservoir (6) for refilling or diluting in the post-lye reservoir (7) and from the post-lay reservoir (7) for refilling in the lye bath (8) or the pre-treatment zone (9),- mixing valve (10) being connected via feed pipes with the first warm water reservoir (6) and the cold water reservoir (4), and being adapted to mix water being infeed form the first warm water reservoir (6) and the cold water reservoir (4) to mixed water,- a first heat exchanger (12) being adapted to cool the mixed water and at the same time heat a first medium,- a second heat exchanger (18) being adapted to cool the first medium and at the same time heat a second medium,- a third heat exchanger (25) being adapted to cool the second medium and at the same time heat a third medium,- a fourth heat exchanger (32) being adapted to cool the third medium and at the same time heat lye of the lye bath (8) and- a return pipe being adapted to feed the mixed water that has been cooled in the first heat exchanger to the recycle water reservoir (3) .
- Bottle cleaning device according to claim 1, further comprising:- a first condenser (24) being located in a first flow direction of the second medium after the second heat exchanger (18) and a first release choke (28) being located in the first flow direction of the second medium after the third heat exchanger (25) and- a second condenser (31) being located in a second flow direction of the third medium after the third heat exchanger (25) and a second release choke (35) being located in the second flow direction of the third medium after the fourth heat exchanger (32).
- Bottle cleaning device according to claim 1 or 2, wherein the mixing valve (10) comprises a temperature controlled servomotor.
- Bottle cleaning device according to one of claims 1 to 3, wherein the first condenser (24) and/or the second condenser (31) each comprise a screw compressor.
- Bottle cleaning device according to one of claims 1 to 4, wherein the first heat exchanger (12) comprises a plate heat exchanger.
- Bottle cleaning device according to one of claims 1 to 5, wherein the second heat exchanger (18) and/or the third heat exchanger (25) and/or the fourth heat exchanger (32) each comprise a tube bundle heat exchanger.
- Method for a process water circuit using a bottle cleaning device according to one of claims 1 to 6 with the steps:- diverting (101) water from the cold water reservoir (4) and water from the first warm water reservoir (6) and infeeding (101) this water to the mixing valve (10),- mixing (102) this water by means of the mixing valve (10) with a temperature controlled servomotor,- infeeding (103) the mixed water via the first filter (11) to the first heat exchanger (12) and cooling (103) of the mixed water in the first heat exchanger (12) and at the same time heating (103) of a counter flowing first medium in the first heat exchanger (12) and- infeeding (104) of the cooled mixed water via a second filter (17) to the recycle water reservoir (3).
- Method according to claim 7 with the further steps:- infeeding (105) the heated first medium to the second heat exchanger (18) and cooling (105) the first medium in the second heat exchanger (18) and at the same time heating (105) of a counterflowing second medium in the second heat exchanger (18) and infeeding (105) the cooled first medium to the first heat exchanger (12).
- Method according to claim 8 with the further steps:- infeeding (106) the heated second medium via the first condenser (24) to the third heat exchanger (25) and cooling (106) the second medium in the third heat exchanger (25) and at the same time heating (106) the counterflowing third medium in the third heat exchanger (25) and infeeding (106) the cooled second medium via the first release choke (28) to the second heat exchanger (18).
- Method according to claim 9 with the further steps:- infeeding (107) the heated third medium via the second condenser (31) to a fourth heat exchanger (32) and cooling (107) the third medium in the fourth heat exchanger (32) and at the same time heating (107) counterflowing lye of the lye bath (8) in the fourth heat exchanger, afterwards infeeding (107) of the heated lye to the lye bath (8), infeeding the cooled third medium via the second release choke (35) to the third heat exchanger (25).
- Method according to one of claims 7 to 11, wherein in a first step (100) an infeed of fresh water in the bottle cleaning device takes place.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102016206185.2A DE102016206185A1 (en) | 2016-04-13 | 2016-04-13 | Bottle cleaning apparatus and method for a process water cycle using the bottle washer |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3269460A1 EP3269460A1 (en) | 2018-01-17 |
EP3269460B1 true EP3269460B1 (en) | 2020-03-18 |
Family
ID=58412920
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17162514.8A Active EP3269460B1 (en) | 2016-04-13 | 2017-03-23 | Bottle cleaning device and method for a process water circuit using the bottle cleaning device |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3269460B1 (en) |
CN (1) | CN207254880U (en) |
DE (1) | DE102016206185A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102023112140A1 (en) | 2023-05-09 | 2024-11-14 | Krones Aktiengesellschaft | filling line and method for supplying heat and/or cold to a washing machine and a pasteurizer of the filling line |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2510927A1 (en) | 1974-03-19 | 1975-09-25 | Cenzad Management Ag | METHOD AND DEVICE FOR PURIFYING OBJECTS |
DE2454100A1 (en) | 1974-11-14 | 1976-05-20 | Orthmann & Herbst | Container cleaning machine with multiple stage cleaning system - has central stage externally heated and heat exchanger units connecting initial and final process stages |
DE3118647A1 (en) | 1981-05-11 | 1982-11-25 | Holstein Und Kappert Gmbh, 4600 Dortmund | Apparatus for cleaning bottles |
DE3205956A1 (en) | 1982-02-19 | 1983-09-15 | Robert 6141 Einhausen Becker | Bottle-cleaning device, in which heat is recovered and fresh water saved |
DE3512463A1 (en) | 1985-04-04 | 1986-10-16 | Holstein Und Kappert Gmbh, 4600 Dortmund | METHOD FOR REDUCING HEAT CONSUMPTION ON BOTTLE CLEANING MACHINES |
DE20321071U1 (en) | 2003-05-05 | 2005-11-10 | Krones Ag | Assembly for treating objects with a liquid, and especially a bottle washing machine, has separate heat exchangers for the washing stages to give the required temperatures for cleaning and killing germs |
JP2010022943A (en) | 2008-07-18 | 2010-02-04 | Mayekawa Mfg Co Ltd | Bottle washing method and bottle washing machine |
WO2011023352A2 (en) | 2009-08-31 | 2011-03-03 | Karsten Uitz | Heat pump |
DE102013000522A1 (en) | 2013-01-15 | 2014-07-17 | Khs Gmbh | Method and plant for the treatment of KEGs |
DE102013114607A1 (en) | 2013-12-20 | 2015-06-25 | Khs Gmbh | Method for cleaning containers and container cleaning machine |
-
2016
- 2016-04-13 DE DE102016206185.2A patent/DE102016206185A1/en not_active Withdrawn
-
2017
- 2017-03-23 EP EP17162514.8A patent/EP3269460B1/en active Active
- 2017-04-13 CN CN201720388020.XU patent/CN207254880U/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2510927A1 (en) | 1974-03-19 | 1975-09-25 | Cenzad Management Ag | METHOD AND DEVICE FOR PURIFYING OBJECTS |
DE2454100A1 (en) | 1974-11-14 | 1976-05-20 | Orthmann & Herbst | Container cleaning machine with multiple stage cleaning system - has central stage externally heated and heat exchanger units connecting initial and final process stages |
DE3118647A1 (en) | 1981-05-11 | 1982-11-25 | Holstein Und Kappert Gmbh, 4600 Dortmund | Apparatus for cleaning bottles |
DE3205956A1 (en) | 1982-02-19 | 1983-09-15 | Robert 6141 Einhausen Becker | Bottle-cleaning device, in which heat is recovered and fresh water saved |
DE3512463A1 (en) | 1985-04-04 | 1986-10-16 | Holstein Und Kappert Gmbh, 4600 Dortmund | METHOD FOR REDUCING HEAT CONSUMPTION ON BOTTLE CLEANING MACHINES |
DE20321071U1 (en) | 2003-05-05 | 2005-11-10 | Krones Ag | Assembly for treating objects with a liquid, and especially a bottle washing machine, has separate heat exchangers for the washing stages to give the required temperatures for cleaning and killing germs |
JP2010022943A (en) | 2008-07-18 | 2010-02-04 | Mayekawa Mfg Co Ltd | Bottle washing method and bottle washing machine |
WO2011023352A2 (en) | 2009-08-31 | 2011-03-03 | Karsten Uitz | Heat pump |
DE102013000522A1 (en) | 2013-01-15 | 2014-07-17 | Khs Gmbh | Method and plant for the treatment of KEGs |
DE102013114607A1 (en) | 2013-12-20 | 2015-06-25 | Khs Gmbh | Method for cleaning containers and container cleaning machine |
Non-Patent Citations (2)
Title |
---|
ANONYMOUS: "Heiße Sache - Hochtemperatur-Wärmepumpen erschließen neue Einsatzbereiche in Industrie und Gewerbe | IKZ", 5 June 2013 (2013-06-05), XP093002025, Retrieved from the Internet <URL:https://www.ikz.de/detail/news/detail/heisse-sache-hochtemperatur-waermepumpen-erschliessen-neue-einsatzbereiche-in-industrie-und-gewerbe/> |
OSTER PATRIK: "Untersuchungen zur Nutzung des Wärmepumpenprozesses in modernen Flaschenreinigungsmaschinen als Beitrag zur Schonung von Energieresourcen ", DIPLOMARBEIT FACHHOCHSCHULE KOBLENZ, 1 March 2009 (2009-03-01), pages 1 - 108, XP093002009 |
Also Published As
Publication number | Publication date |
---|---|
CN207254880U (en) | 2018-04-20 |
EP3269460A1 (en) | 2018-01-17 |
DE102016206185A1 (en) | 2017-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2908927C2 (en) | ||
DE1778068A1 (en) | Method and device for the alternate pickling and cooling of vulcanizing and pressing devices | |
EP3068237B1 (en) | Method and system for pasteurization of products in containers | |
DE3029113A1 (en) | METHOD AND ARRANGEMENT FOR SAVING ENERGY IN PASTEURIZING SYSTEMS | |
EP2630230B1 (en) | Method and device for controlling the generation of hot water when brewing beer in a brewery | |
EP4068984B1 (en) | Plant for pasteurizing foodstuffs or beverages filled into closed containers by way of a process liquid | |
EP3269460B1 (en) | Bottle cleaning device and method for a process water circuit using the bottle cleaning device | |
DE2533150C2 (en) | ||
DE1298505B (en) | Process for preheating a liquid, which is produced as condensate of a multi-stage flash evaporation, and device for carrying out this process | |
DE2943797A1 (en) | METHOD AND SYSTEM FOR ALTERNATIVE HEATING AND COOLING A HEAT EXCHANGER | |
DE3245391C2 (en) | Process for the continuous dissolution of material finely divided in liquid | |
EP0070797A2 (en) | Installation using a loop-type reactor and process by which a liquid educt is subjected to a chemical reaction in a circulatory manner | |
DE3225403C2 (en) | Process for the step-by-step heating of an item in a treatment device and subsequent cooling | |
DE102013000522A1 (en) | Method and plant for the treatment of KEGs | |
DE1501101B2 (en) | Device for generating cold and / or for liquefying gases | |
DE2538730A1 (en) | COOLING HEAT RECOVERY SYSTEM | |
EP2786811A1 (en) | Device for supplying cleaning devices with cleaning and/or desinfecting fluid | |
DE102010002408A1 (en) | Cleaning system for containers and process for their operation | |
DE102011002721B4 (en) | container cleaning system | |
CH636829A5 (en) | DEVICES AND METHOD FOR THE OPERATION OF DEVICES FOR THE REGENERATION OF ION EXCHANGE AND ADSORPTION MEASURES, IN PARTICULAR IN WATER TREATMENT PLANTS. | |
DE2454100A1 (en) | Container cleaning machine with multiple stage cleaning system - has central stage externally heated and heat exchanger units connecting initial and final process stages | |
DE2558936C2 (en) | Sterilization device with at least one sterilization chamber | |
WO2004098800A1 (en) | Device for treating objects with liquids | |
EP2650622A1 (en) | Method for the thermal use of fluids and plant for the treatment of items | |
EP4335298A1 (en) | Method and apparatus for direct heating of liquid food products |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180216 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
INTG | Intention to grant announced |
Effective date: 20190705 |
|
INTG | Intention to grant announced |
Effective date: 20190716 |
|
INTC | Intention to grant announced (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20191009 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: ADAMSKI, LUCAS Inventor name: ZWEIGARDT, ANNA |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502017004247 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1245322 Country of ref document: AT Kind code of ref document: T Effective date: 20200415 Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200618 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20200318 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200618 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200619 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200718 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200812 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 502017004247 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200331 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200323 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
26 | Opposition filed |
Opponent name: KHS GMBH Effective date: 20201218 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200323 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200518 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20210323 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210323 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 |
|
PLCK | Communication despatched that opposition was rejected |
Free format text: ORIGINAL CODE: EPIDOSNREJ1 |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
APBM | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOSNREFNO |
|
APBP | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2O |
|
APBU | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9O |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R100 Ref document number: 502017004247 Country of ref document: DE |
|
PLBN | Opposition rejected |
Free format text: ORIGINAL CODE: 0009273 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: OPPOSITION REJECTED |
|
27O | Opposition rejected |
Effective date: 20221024 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1245322 Country of ref document: AT Kind code of ref document: T Effective date: 20220323 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230523 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220323 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240130 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240212 Year of fee payment: 8 |