[go: up one dir, main page]

EP3269460B1 - Bottle cleaning device and method for a process water circuit using the bottle cleaning device - Google Patents

Bottle cleaning device and method for a process water circuit using the bottle cleaning device Download PDF

Info

Publication number
EP3269460B1
EP3269460B1 EP17162514.8A EP17162514A EP3269460B1 EP 3269460 B1 EP3269460 B1 EP 3269460B1 EP 17162514 A EP17162514 A EP 17162514A EP 3269460 B1 EP3269460 B1 EP 3269460B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
medium
water reservoir
water
reservoir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17162514.8A
Other languages
German (de)
French (fr)
Other versions
EP3269460A1 (en
Inventor
Lucas Adamski
Anna Zweigardt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krones AG
Original Assignee
Krones AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=58412920&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3269460(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Krones AG filed Critical Krones AG
Publication of EP3269460A1 publication Critical patent/EP3269460A1/en
Application granted granted Critical
Publication of EP3269460B1 publication Critical patent/EP3269460B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto
    • B08B9/08Cleaning containers, e.g. tanks
    • B08B9/20Cleaning containers, e.g. tanks by using apparatus into or on to which containers, e.g. bottles, jars, cans are brought
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto
    • B08B9/08Cleaning containers, e.g. tanks
    • B08B9/20Cleaning containers, e.g. tanks by using apparatus into or on to which containers, e.g. bottles, jars, cans are brought
    • B08B9/28Cleaning containers, e.g. tanks by using apparatus into or on to which containers, e.g. bottles, jars, cans are brought the apparatus cleaning by splash, spray, or jet application, with or without soaking
    • B08B9/30Cleaning containers, e.g. tanks by using apparatus into or on to which containers, e.g. bottles, jars, cans are brought the apparatus cleaning by splash, spray, or jet application, with or without soaking and having conveyors

Definitions

  • the invention relates to a bottle cleaning device according to claim 1 and a method for a process water circuit using the bottle cleaning device according to claim 7.
  • DE 32 05 956 A1 discloses a device for bottle cleaning, in which the water flowing out of the first preheating device is cooled in a recooling device by means of a heat exchanger and fed to the waste water, and in which the water thus heated in the recooling device is cooled by means of a heat pump and the recooling device is led to it.
  • the lye of the second preheating device is heated by means of the heat pump.
  • the heat and fresh water consumption of this device is thus low. This is due to the fact that the energy circuit for heating and cooling is closed and only the heat loss has to be replaced by energy supply.
  • DE 24 54 100 discloses a container cleaning machine in which the containers with conveyors are successively transported through several machine stages, in which they are treated with immersion or spraying with cleaning liquids, only a middle stage being externally heated and the treatment temperature in the container transport direction gradually increasing before this middle stage and behind it gradually falls off.
  • the object of the invention is to optimize a bottle cleaning device with regard to its fresh water consumption.
  • a bottle cleaning device comprises a fresh water reservoir, which is connected to a recycling water reservoir, which is connected to a cold water reservoir, which is connected to a second hot water reservoir, which is connected to a first hot water reservoir, which is connected to a post-lye reservoir, which is connected to a detergent solution bath or to a pretreatment zone in such a way that water is produced the fresh water reservoir into the recycle water reservoir, from the recycle water reservoir into the cold water reservoir, from the cold water reservoir into the second hot water reservoir, from the second hot water reservoir into the first hot water reservoir, from the first hot water reservoir for refilling or diluting into the replenishment reserve Lye bath or can enter the pretreatment zone.
  • the bottle cleaning device also includes the recycle water reservoir, the cold water reservoir, the second hot water reservoir, the first hot water reservoir, the after-lye reservoir and the lye bath.
  • the bottle cleaning device comprises a mixing valve which is connected to the first hot water reservoir and the cold water reservoir via feed lines and is designed to mix water supplied from the first hot water reservoir and the cold water reservoir to mixed water.
  • the bottle cleaning device also comprises a first heat exchanger which is designed to cool the mixed water and at the same time heat up a first medium, a second heat exchanger which is designed to cool the first medium and at the same time heat up a second medium, and a third heat exchanger which does so is designed to cool down the second medium and at the same time heat up a third medium and a fourth heat exchanger which is designed to cool down the third medium and at the same time heat up alkali from the alkali bath. Furthermore, the bottle cleaning device comprises a return line which is designed to supply the mixed water cooled in the first heat exchanger to the recycling water reservoir.
  • the first and second heat exchangers can be regarded as an intermediate circuit in which the first medium circulates and which is required for the two-stage high-temperature heat pump.
  • the two-stage high-temperature heat pump comprises the second and third heat exchangers in the first stage and the third and fourth heat exchangers in the second stage.
  • the second heat exchanger of the first stage serves as an evaporator for the second medium and the third heat exchanger as a condenser for the second medium.
  • the third heat exchanger serves as an evaporator for the third medium and the fourth heat exchanger as a condenser for the third medium.
  • the refrigerant R134a can be used for the second medium, since no high-temperature capability is required here.
  • the refrigerant ⁇ KO 1 can be used for the third medium.
  • This bottle washer saves up to 30% in fresh water consumption as it allows water to be extracted from the washing process and treated, to cool and reintroduce the cleaning process as a fresh water replacement.
  • the extracted water from the cold water reservoir and the first hot water reservoir has a temperature of about 50 ° C after mixing.
  • this mixed water In order to use this mixed water as a fresh water substitute, it must be cooled to around 15 ° C so that its temperature is roughly the same as that of the fresh water.
  • the heat content of the branched-off water is high, and therefore a great cooling capacity has to be applied.
  • the two-stage high-temperature heat pump described has proven to be the most suitable cooling.
  • the bottle cleaning device can further comprise a first compressor, in a first direction of flow of the second medium, after the second heat exchanger and a first expansion throttle, in the first direction of flow of the second medium, after the third heat exchanger, and also a second compressor, in a second direction of flow of the third Medium, after the third heat exchanger and a second expansion throttle, in the second flow direction of the third medium, after the fourth heat exchanger.
  • first and second flow direction are used in order to be able to clearly assign the respective flow direction to the respective (second or third) medium.
  • the first and second compressors as well as the first and second expansion throttles are also part of the two-stage high-temperature heat pump.
  • the medium generally a refrigerant, which has been transferred from the liquid to the gaseous state in an evaporator, is sucked in by a compressor and compressed in the compressor to the pressure which is necessary to liquefy the medium.
  • the compressor compresses the vaporous medium from a low initial pressure to a high final pressure, the temperature of the medium rises, so that this medium can be used again to heat another medium.
  • the mixing valve can comprise a temperature-controlled servomotor.
  • a temperature sensor at the outlet of the mixing valve can give a signal to a controller that regulates the servomotor, so that the volume flow of the water from the cold water reservoir and the Volume flow of water from the first hot water reservoir can be regulated and a desired mixing temperature can be achieved by regulating the mixing ratio.
  • the first compressor and / or the second compressor can each comprise a screw compressor.
  • a screw compressor can work at very high pressures.
  • two spiral rotors rotate in opposite directions of rotation.
  • One rotor can have four convex teeth and the other rotor can have six concave teeth. If the rotors rotate against each other, small chambers are created which convey the gas in the screw compressor in one direction. There is suction on the suction side, which sucks in the gaseous medium, and ejection on the discharge side.
  • the first heat exchanger can comprise a plate heat exchanger.
  • a plate heat exchanger achieves a very compact design through the construction of several corrugated plates, which are assembled alternately rotated by 180 °. This creates flow gaps through which the warm medium to be cooled and the medium to be heated are passed alternately. There is a large heat transfer area. With the counterflow heat exchanger, the medium runs on the primary side opposite to that on the secondary side. The temperature difference between the incoming and outgoing medium on an evaporator of the heat exchanger should only be between 5 and 7 K difference, otherwise the heat transfer coefficient will be smaller if the temperature difference between the incoming and outgoing medium is too large.
  • the second heat exchanger and / or the third heat exchanger and / or the fourth heat exchanger can each comprise a shell-and-tube heat exchanger.
  • a tube bundle heat exchanger consists of a jacket and a tube bundle. One medium flows through the tube bundle of U-tubes on the primary side and another medium flows through the secondary side in the jacket.
  • a process for a process water circuit using a bottle cleaning device as described above or below comprises the following steps: branching off water from the cold reservoir and water from the first hot water reservoir and supplying this water to the mixing valve, mixing this water by means of the mixing valve with a temperature-controlled one Actuator, supplying the mixed water through the first filter to the first heat exchanger and cooling the mixed water in the first heat exchanger while heating a countercurrent first medium in the first heat exchanger and supplying the cooled mixed water via a second filter to the recycle water reservoir.
  • the heated first medium can be fed to the second heat exchanger and the first medium can be cooled in the second heat exchanger, and at the same time a countercurrent second medium can be heated in the second heat exchanger and the cooled first medium can be fed to the first heat exchanger.
  • the first and the second medium can each circulate in a line system in the intermediate circuit or in the first stage of the two-stage high-temperature heat pump.
  • the heated third medium can then be fed to the fourth heat exchanger by the second compressor and the third medium can be cooled in the fourth heat exchanger.
  • countercurrent lye can be heated from the lye bath in the fourth heat exchanger, then the heated lye can be fed to the lye bath and the cooled third medium can be fed via the second expansion throttle to the third heat exchanger.
  • the third medium can circulate in a line system in the second stage of the two-stage high-temperature heat pump.
  • the lye can be led from the lye bath to the fourth heat exchanger and back to the lye bath by means of another line system.
  • fresh water can be fed into the bottle cleaning machine at the beginning in order to fill the cascade of successive water reservoirs.
  • water from the cold reservoir and water from the first hot water reservoir can be branched off and then fed to the mixing valve.
  • Figure 1 shows a block diagram of a process water circuit 1 of a bottle washing machine, which comprises a fresh water reservoir 2, a recycle water reservoir 3, a cold water reservoir 4, a second hot water reservoir 5, a first hot water reservoir 6, a post-alkali reservoir 7 and a caustic bath 8.
  • Water is fed from the first hot water reservoir 6 to a pretreatment zone 9, which comprises a pre-soaking bath and spray devices.
  • Bottles to be cleaned can be fed to the bottle cleaning machine by means of a conveyor belt. After these bottles have been introduced into bottle cells of a bottle carrier, they are fed upside down to a pretreatment zone 9, in which there is first a residual emptying and then a pre-cleaning and heating of the bottles.
  • the caustic bath 8 is provided at approximately 78-80 ° C., into which the bottles are placed.
  • a plurality of soapy baths can also be provided.
  • the labels detach from the bottles in the lye bath without dissolving.
  • the detached labels are regularly removed from the lye bath 8 in order to keep its contamination low.
  • the bottles are first of all with an after-liquor from the after-liquor reservoir 7 at about 60 ° C., then with water from the first hot water reservoir 6 at about 50 ° C., then with water from the second hot water reservoir 5 at about 40 ° C. , then treated with cold water from the cold reservoir 4 at about 30 ° C and finally with fresh water from the fresh water reservoir 2 at about 15 ° C.
  • the sequential cooling minimizes tensions in the material of the bottles, and the bottles are also prepared for subsequent cold filling.
  • the cleaned bottles are then removed from the bottle cells of the bottle carrier and can be transported away with a delivery belt, for example to a filling device.
  • the direction of flow of the water in the bottle washer is opposite to the direction of transport of the bottles, i.e. from the aftertreatment zone to the main treatment zone and then to the pretreatment zone 9.
  • the bottles in the pretreatment zone 9 are still comparatively heavily soiled and therefore do not have to be sprayed unnecessarily with fresh water, but can instead be sprayed with water that has already been used for other process steps and by means of a or more filters has been cleaned. Detached labels are also regularly removed from the caustic baths. The last spraying of the bottles before they leave the bottle washer must be done with fresh water, and therefore the bottle washer is filled with fresh water there.
  • the bottle washer is constructed in a cascade, so that the water fed in overflows from treatment zone to treatment zone and can therefore also be used there. Fresh water is preferably fed in at the beginning of the cascade.
  • a drain for a crate washer can be provided from the first water reservoir 6 so that the beverage crates do not have to be rinsed with fresh water.
  • the container brewing machine can also be supplied with water by the bottle washing machine; for example, the water from a high pressure pre-injection of the pre-treatment zone 9 can be used.
  • the after-liquor in the after-liquor reservoir 7 becomes too alkaline, it can be diluted with water from the first hot water reservoir 6. If the fill level in the lye bath 8 is too low, it can be refilled from the after-lye reservoir 7 by means of after-lye. If the lye 8 is too watered down, lye is replenished through a dosing station.
  • One consideration of saving resources in the bottle cleaning process is to remove water from the post-treatment of the bottle cleaning, to prepare it, to cool it and to feed it back into the process as a fresh water substitute.
  • the extracted water must be cooled down from 50 ° C to 15 ° C so that its temperature corresponds approximately to the temperature of the fresh water used.
  • the large amount of heat generated during cooling can be used to heat the hot alkaline baths.
  • the volume flow of the flowing first medium must be taken into account, among other things.
  • the mixed water cooled in the first heat exchanger 12 leaves the first heat exchanger 12 via a first outlet 14 with a temperature of T 2 acc.
  • the first heat exchanger 12 is part of an intermediate circuit which is required for the two-stage high-temperature heat pump 38.
  • the intermediate circuit comprises the first heat exchanger 12, a second heat exchanger 18 and a pump 19 which is provided for the transport of the first medium in the intermediate circuit and which is adjustable by means of a control valve and a pressure gauge.
  • a second medium with a temperature T 1 M2 flows from a second inlet 22 in the opposite direction to the first medium.
  • the second medium leaves the second heat exchanger 18 after heating via a second outlet 23 with a temperature of T 2 M2 .
  • the second medium is passed through a first compressor 24 to increase its pressure and temperature to T 3 M2 .
  • the second medium then enters the third heat exchanger 25 via a first inlet 26 and leaves it again via a first outlet 27 at a temperature of T 4 M2 .
  • This third heat exchanger 25 serves as an evaporator for the second medium, and from there the condensed second medium arrives at the temperature T 4 M2 . to a first expansion throttle 28. From there, the second medium with the temperature T 1 M2 is fed back to the second heat exchanger 18 via the second inlet 22.
  • the third heat exchanger 25 thus serves as a condenser for the second medium.
  • the refrigerant R134a can be used as the second medium.
  • a third medium flows in the opposite direction to the second medium.
  • the compressed third medium is fed into the fourth heat exchanger via a first inlet 33 32 introduced, is liquefied in the fourth heat exchanger 32 and leaves this via a first outlet 34 with a temperature T 4 M3 . From there the third medium reaches a second expansion throttle 35 and from there with the temperature T 1 M3 to the third heat exchanger 25.
  • the liquor flows from the liquor reservoir 8 in the opposite direction to the third medium.
  • the third heat exchanger 25 thus serves as an evaporator for the third medium and the fourth heat exchanger 32 as a condenser for the third medium.
  • the refrigerant ⁇ KO 1 can be used as the third medium.
  • FIG. 2 shows a flow diagram of a method for a process water cycle.
  • a first step 100 fresh water is first fed into the bottle cleaning machine in order to fill the cascade of successive water reservoirs.
  • a second step 101 water is branched off from the cold reservoir 4 and the first hot water reservoir 7 and fed to a mixing valve 10.
  • this water of different temperatures is mixed by means of the mixing valve 10 with a temperature-controlled servomotor.
  • a fourth step 103 the mixed water is fed to a first heat exchanger 12 via a first filter 11 and cooled in the first heat exchanger 12. At the same time, a counter-flowing first medium is heated in the first heat exchanger 12.
  • a fifth step 104 the cooled mixed water is fed to a recycling water reservoir 2 via a second filter 17.
  • the cooled, mixed water is then available to the cascade of the bottle washer again.
  • a sixth step 105 the heated first medium is fed to a second heat exchanger 18, in which it is cooled. At the same time, a counter-flowing second medium is heated in the second heat exchanger 18. The cooled first medium is then fed back to the first heat exchanger 12.
  • a seventh step 106 the heated second medium is fed through a first compressor 24 to a third heat exchanger 25, in which the second medium is cooled. At the same time, a counter-flowing third medium is heated in the third heat exchanger 25. The cooled second medium is fed back to the second heat exchanger 18 via a first expansion throttle 28.
  • the heated third medium is fed through a second compressor 31 to a fourth heat exchanger 32 and cooled there.
  • countercurrent lye from the lye bath 8 is heated in the fourth heat exchanger and then fed back to the lye bath 8.
  • the cooled third medium is fed back to the third heat exchanger 25 via a second expansion throttle 35.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Cleaning In General (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Description

Die Erfindung betrifft eine Flaschenreinigungsvorrichtung gemäß Anspruch 1 und ein Verfahren für einen Prozesswasserkreislauf unter Verwendung der Flaschenreinigungsvorrichtung gemäß Anspruch 7.The invention relates to a bottle cleaning device according to claim 1 and a method for a process water circuit using the bottle cleaning device according to claim 7.

Stand der TechnikState of the art

DE 32 05 956 A1 offenbart eine Vorrichtung zur Flaschenreinigung, bei der das aus der ersten Vorwärmeinrichtung ablaufende Wasser in einer Rückkühleinrichtung mittels eines Wärmetauschers abgekühlt und dem Abwasser zugeführt wird und bei der das hiermit erwärmte Wasser der Rückkühleinrichtung mittels einer Wärmepumpe abgekühlt und der Rückkühleinrichtung dazu geführt wird. Mittels der Wärmepumpe wird die Lauge der zweiten Vorwärmeinrichtung erwärmt. Der Wärme- und Frischwasserverbrauch dieser Vorrichtung ist somit gering. Dies beruht auf der Tatsache, dass der Energiekreis zum Erwärmen und Abkühlen geschlossen ist und nur der Wärmeverlust durch Energiezufuhr ersetzt werden muss. DE 32 05 956 A1 discloses a device for bottle cleaning, in which the water flowing out of the first preheating device is cooled in a recooling device by means of a heat exchanger and fed to the waste water, and in which the water thus heated in the recooling device is cooled by means of a heat pump and the recooling device is led to it. The lye of the second preheating device is heated by means of the heat pump. The heat and fresh water consumption of this device is thus low. This is due to the fact that the energy circuit for heating and cooling is closed and only the heat loss has to be replaced by energy supply.

DE 24 54 100 offenbart eine Behälterreinigungsmaschine, in der die Behälter mit Fördermitteln nacheinander durch mehrere Maschinenstufen transportiert werden, in denen sie durch Eintauchen oder Abspritzen mit Reinigungsflüssigkeiten behandelt werden, wobei nur eine mittlere Stufe fremdbeheizt ist und die Behandlungstemperatur in Behältertransportrichtung vor dieser mittleren Stufe stufenweise ansteigt und hinter dieser stufenweise abfällt. DE 24 54 100 discloses a container cleaning machine in which the containers with conveyors are successively transported through several machine stages, in which they are treated with immersion or spraying with cleaning liquids, only a middle stage being externally heated and the treatment temperature in the container transport direction gradually increasing before this middle stage and behind it gradually falls off.

Aufgabetask

Die Aufgabe der Erfindung besteht darin, eine Flaschenreinigungsvorrichtung hinsichtlich ihres Frischwasserverbrauchs zu optimieren.The object of the invention is to optimize a bottle cleaning device with regard to its fresh water consumption.

Lösungsolution

Die Aufgabe wird gelöst durch die Flaschenreinigungsvorrichtung nach Anspruch 1 und das Verfahren nach Anspruch 7. Bevorzugte Ausführungsformen und Weiterbildungen sind in den Unteransprüchen offenbart.The object is achieved by the bottle cleaning device according to claim 1 and the method according to claim 7. Preferred embodiments and developments are disclosed in the subclaims.

Eine Flaschenreinigungsvorrichtung umfasst ein Frischwasserreservoir, das mit einem Recyclewasserreservoir, das mit einem Kaltwasserreservoir, das mit einem zweiten Warmwasserreservoir, das mit einem ersten Warmwasserreservoir, das mit einem Nachlaugenreservoir, das das mit einem Laugenbad oder mit einer Vorbehandlungszone jeweils derart verbunden ist, dass Wasser aus dem Frischwasserreservoir in das Recyclewasserreservoir, aus dem Recyclewasserreservoir in das Kaltwasserreservoir, aus dem Kaltwasserreservoir in das zweite Warmwasserreservoir, aus dem zweiten Warmwasserreservoir in das erste Warmwasserreservoir, aus dem ersten Warmwasserreservoir zum Nachfüllen oder Verdünnen in das Nachlaugenreservoir und aus dem Nachlaugenreservoir zum Nachfüllen in das Laugenbad oder in die Vorbehandlungszone übertreten kann. Das Recyclewasserreservoir, das Kaltwasserreservoir, das zweite Warmwasserreservoir, das erste Warmwasserreservoir, das Nachlaugenreservoir und das Laugenbad werden ebenfalls von der Flaschenreinigungsvorrichtung umfasst. Zudem umfasst die Flaschenreinigungsvorrichtung ein Mischventil, das über Zuleitungen mit dem ersten Warmwasserreservoir und dem Kaltwasserreservoir verbunden ist, und das dazu ausgelegt ist, von dem ersten Warmwasserreservoir und dem Kaltwasserreservoir zugeführtes Wasser zu gemischtem Wasser zu mischen. Die Flaschenreinigungsvorrichtung umfasst zudem einen ersten Wärmetauscher, der dazu ausgelegt ist, das gemischte Wasser abzukühlen und gleichzeitig ein erstes Medium aufzuheizen, einen zweiten Wärmetauscher, der dazu ausgelegt ist, das erste Medium abzukühlen und gleichzeitig ein zweites Medium aufzuheizen, einen dritten Wärmetauscher, der dazu ausgelegt ist, das zweite Medium abzukühlen und gleichzeitig ein drittes Medium aufzuheizen und einen vierten Wärmetauscher, der dazu ausgelegt ist, das dritte Medium abzukühlen und gleichzeitig Lauge aus dem Laugenbad aufzuheizen. Des Weiteren umfasst die Flaschenreinigungsvorrichtung eine Rückführleitung, die dazu ausgelegt ist, das in dem ersten Wärmetauscher abgekühlte, gemischte Wasser dem Recyclewasserreservoir zuzuführen.A bottle cleaning device comprises a fresh water reservoir, which is connected to a recycling water reservoir, which is connected to a cold water reservoir, which is connected to a second hot water reservoir, which is connected to a first hot water reservoir, which is connected to a post-lye reservoir, which is connected to a detergent solution bath or to a pretreatment zone in such a way that water is produced the fresh water reservoir into the recycle water reservoir, from the recycle water reservoir into the cold water reservoir, from the cold water reservoir into the second hot water reservoir, from the second hot water reservoir into the first hot water reservoir, from the first hot water reservoir for refilling or diluting into the replenishment reserve Lye bath or can enter the pretreatment zone. The bottle cleaning device also includes the recycle water reservoir, the cold water reservoir, the second hot water reservoir, the first hot water reservoir, the after-lye reservoir and the lye bath. In addition, the bottle cleaning device comprises a mixing valve which is connected to the first hot water reservoir and the cold water reservoir via feed lines and is designed to mix water supplied from the first hot water reservoir and the cold water reservoir to mixed water. The bottle cleaning device also comprises a first heat exchanger which is designed to cool the mixed water and at the same time heat up a first medium, a second heat exchanger which is designed to cool the first medium and at the same time heat up a second medium, and a third heat exchanger which does so is designed to cool down the second medium and at the same time heat up a third medium and a fourth heat exchanger which is designed to cool down the third medium and at the same time heat up alkali from the alkali bath. Furthermore, the bottle cleaning device comprises a return line which is designed to supply the mixed water cooled in the first heat exchanger to the recycling water reservoir.

Beim Übertreten des Wassers von einer Stufe der Kaskade zu einer nächsten Stufe können zusammen mit dem Wasser auch Stoffe die im Wasser der einen Stufe gelöst sind, mit übertreten. Der Anteil dieser Stoffe kann aber durch Filterung reduziert werden.When the water is passed from one stage of the cascade to a next stage, substances dissolved in the water of one stage can also pass along with the water. The proportion of these substances can, however, be reduced by filtering.

Der erste und der zweite Wärmetauscher können als ein Zwischenkreislauf angesehen werden, in dem das erste Medium umläuft und der für die zweistufige Hochtemperaturwärmepumpe erforderlich ist.The first and second heat exchangers can be regarded as an intermediate circuit in which the first medium circulates and which is required for the two-stage high-temperature heat pump.

Die zweistufige Hochtemperaturwärmepumpe umfasst in der ersten Stufe den zweiten und den dritten Wärmetauscher und in der zweiten Stufe den dritten und den vierten Wärmetauscher. Der zweite Wärmetauscher der ersten Stufe dient als Verdampfer für das zweite Medium und der dritte Wärmetauscher als Verflüssiger für das zweite Medium. In der zweiten Stufe dient der dritte Wärmetauscher als Verdampfer für das dritte Medium und der vierte Wärmetauscher als Verflüssiger für das dritte Medium.The two-stage high-temperature heat pump comprises the second and third heat exchangers in the first stage and the third and fourth heat exchangers in the second stage. The second heat exchanger of the first stage serves as an evaporator for the second medium and the third heat exchanger as a condenser for the second medium. In the second stage, the third heat exchanger serves as an evaporator for the third medium and the fourth heat exchanger as a condenser for the third medium.

Für das zweite Medium kann das Kältemittel R134a verwendet werden, da hier keine Hochtemperaturfähigkeit erforderlich ist. Für das dritte Medium kann das Kältemittel ÖKO 1 verwendet werden.The refrigerant R134a can be used for the second medium, since no high-temperature capability is required here. The refrigerant ÖKO 1 can be used for the third medium.

Diese Flaschenreinigungsmaschine ermöglicht eine Einsparung des Frischwasserverbrauchs von bis zu 30 %, da sie ermöglicht dem Reinigungsvorgang Wasser zu entziehen, es aufzubereiten, zu kühlen und dem Reinigungsprozess als Frischwasserersatz wieder zuzuführen. Das entzogene Wasser aus dem Kaltwasserreservoir und dem ersten Warmwasserreservoir weist nach der Mischung eine Temperatur von etwa 50 °C auf. Um dieses gemischte Wasser als Frischwasserersatz verwenden zu können, muss es auf etwa 15 °C gekühlt werden, damit seine Temperatur in etwa der des Frischwassers entspricht. Der Wärmeinhalt des abgezweigten Wassers ist hoch, und somit ist eine große Kühlleistung aufzubringen. Die beschriebene zweistufige Hochtemperaturwärmepumpe hat sich als geeignetste Kühlung herausgestellt.This bottle washer saves up to 30% in fresh water consumption as it allows water to be extracted from the washing process and treated, to cool and reintroduce the cleaning process as a fresh water replacement. The extracted water from the cold water reservoir and the first hot water reservoir has a temperature of about 50 ° C after mixing. In order to use this mixed water as a fresh water substitute, it must be cooled to around 15 ° C so that its temperature is roughly the same as that of the fresh water. The heat content of the branched-off water is high, and therefore a great cooling capacity has to be applied. The two-stage high-temperature heat pump described has proven to be the most suitable cooling.

Das Verwenden des recycelten Wassers ermöglicht somit eine Einsparung von etwa 30 % des Frischwassers, und somit auch eine um etwa 30 % verkleinerte Abwassermenge. Durch die Rückführung der Wärme kann zudem Energie eingespart werden, die sonst für die Erwärmung des Wassers verwenden werden müsste. Daher ist es möglich nach den heute bestehenden Wasser-, Abwasser- und Energiekosten eine derart modifizierte Flaschenreinigungsmaschine nach wenigen Jahren zu amortisieren.The use of recycled water thus enables savings of around 30% in fresh water, and thus also a waste water quantity reduced by around 30%. By recycling the heat, energy can also be saved that would otherwise have to be used to heat the water. It is therefore possible to amortize such a modified bottle cleaning machine after a few years based on the current water, wastewater and energy costs.

Die Flaschenreinigungsvorrichtung kann weiter einen ersten Verdichter, in einer ersten Fließrichtung des zweiten Mediums, nach dem zweiten Wärmetauscher und eine erste Entspannungsdrossel, in der ersten Fließrichtung des zweiten Mediums, nach dem dritten Wärmetauscher umfassen und zudem einen zweiten Verdichter, in einer zweiten Fließrichtung des dritten Mediums, nach dem dritten Wärmetauscher und eine zweite Entspannungsdrossel, in der zweiten Fließrichtung des dritten Mediums, nach dem vierten Wärmetauscher umfassen. Die Bezeichnungen "erste" bzw. "zweite" Fließrichtung werden verwendet, um die jeweilige Fließrichtung dem jeweiligen (zweiten bzw. dritten) Medium eindeutig zuweisen zu können.The bottle cleaning device can further comprise a first compressor, in a first direction of flow of the second medium, after the second heat exchanger and a first expansion throttle, in the first direction of flow of the second medium, after the third heat exchanger, and also a second compressor, in a second direction of flow of the third Medium, after the third heat exchanger and a second expansion throttle, in the second flow direction of the third medium, after the fourth heat exchanger. The designations "first" and "second" flow direction are used in order to be able to clearly assign the respective flow direction to the respective (second or third) medium.

Der erste und der zweite Verdichter sowie die erste und die zweite Entspannungsdrossel sind ebenfalls Teil der zweistufigen Hochtemperaturwärmepumpe.The first and second compressors as well as the first and second expansion throttles are also part of the two-stage high-temperature heat pump.

Von einem Verdichter wird das Medium, im Allgemeinen ein Kältemittel, das in einem Verdampfer vom flüssigen in den gasförmigen Zustand übertragen wurde, angesaugt und im Verdichter auf den Druck komprimiert, der zur Verflüssigung des Mediums notwendig ist. Während der Verdichter das dampfförmige Medium von einem niedrigen Anfangsdruck zu einem hohen Enddruck verdichtet, erhöht sich die Temperatur des Mediums, so dass dieses Medium wieder zur Erwärmung eines anderen Mediums verwendet werden kann..The medium, generally a refrigerant, which has been transferred from the liquid to the gaseous state in an evaporator, is sucked in by a compressor and compressed in the compressor to the pressure which is necessary to liquefy the medium. As the compressor compresses the vaporous medium from a low initial pressure to a high final pressure, the temperature of the medium rises, so that this medium can be used again to heat another medium.

Das Mischventil kann einen temperaturgesteuerten Stellmotor umfassen. Ein Temperaturfühler am Ausgang des Mischventils kann ein Signal an eine Steuerung geben, die den Stellmotor regelt, so dass der Volumenstrom des Wassers aus dem Kaltwasserreservoir und der Volumenstrom des Wassers aus dem ersten Warmwasserreservoir geregelt werden kann und dadurch eine gewünschte Mischtemperatur durch Regeln des Mischverhältnisses erreicht werden kann.The mixing valve can comprise a temperature-controlled servomotor. A temperature sensor at the outlet of the mixing valve can give a signal to a controller that regulates the servomotor, so that the volume flow of the water from the cold water reservoir and the Volume flow of water from the first hot water reservoir can be regulated and a desired mixing temperature can be achieved by regulating the mixing ratio.

Der erste Verdichter und/oder der zweite Verdichter können jeweils einen Schraubenverdichter umfassen. Ein Schraubenverdichter kann bei sehr hohen Drücken arbeiten. Hierzu drehen zwei spiralförmige Rotoren in gegenläufiger Rotationsrichtung. Der eine Rotor kann vier konvex geformte Zähne und der andere Rotor kann sechs konkav geformte Zähne umfassen. Drehen sich die Rotoren gegeneinander, entstehen kleine Kammern, die das Gas in dem Schraubenverdichter in eine Richtung fördern. Es entstehen ein Sog an der Ansaugseite, der das gasförmige Medium ansaugt, und ein Ausstoßen an der Ausstoßseite.The first compressor and / or the second compressor can each comprise a screw compressor. A screw compressor can work at very high pressures. For this purpose, two spiral rotors rotate in opposite directions of rotation. One rotor can have four convex teeth and the other rotor can have six concave teeth. If the rotors rotate against each other, small chambers are created which convey the gas in the screw compressor in one direction. There is suction on the suction side, which sucks in the gaseous medium, and ejection on the discharge side.

Der erste Wärmetauscher kann einen Plattenwärmetauscher umfassen. Ein Plattenwärmetauscher erreicht eine sehr kompakte Bauweise durch den Aufbau aus mehreren gewellte Platten, die abwechselnd um 180° gedreht zusammengesetzt sind. Dadurch entstehen Fließspalte durch die abwechselnd das warme, abzukühlende Medium und das zu erwärmende Medium hindurch geleitet werden. Es besteht eine große Wärmeübertragungsfläche. Beim Gegenstromwärmetauscher läuft auf der Primärseite das Medium entgegensetzt zu dem auf der Sekundärseite. Der Temperaturunterschied zwischen ein- und auslaufendem Medium an einem Verdampfer des Wärmetauschers sollte nur zwischen 5 und 7 K Unterschied betragen, da sonst bei einem zu großen Temperaturunterschied zwischen ein- und auslaufendem Medium der Wärmeübergangskoeffizient kleiner wird.The first heat exchanger can comprise a plate heat exchanger. A plate heat exchanger achieves a very compact design through the construction of several corrugated plates, which are assembled alternately rotated by 180 °. This creates flow gaps through which the warm medium to be cooled and the medium to be heated are passed alternately. There is a large heat transfer area. With the counterflow heat exchanger, the medium runs on the primary side opposite to that on the secondary side. The temperature difference between the incoming and outgoing medium on an evaporator of the heat exchanger should only be between 5 and 7 K difference, otherwise the heat transfer coefficient will be smaller if the temperature difference between the incoming and outgoing medium is too large.

Der zweite Wärmetauscher und/oder der dritte Wärmetauscher und/oder der vierte Wärmetauscher können jeweils einen Rohrbündelwärmetauscher umfassen. Ein Rohrbündelwärmetauscher besteht aus einem Mantel und einem Rohrbündel. Ein Medium fließt auf der Primärseite durch die Rohrbündel von U-Rohren und ein anderes Medium durch die Sekundärseite im Mantel.The second heat exchanger and / or the third heat exchanger and / or the fourth heat exchanger can each comprise a shell-and-tube heat exchanger. A tube bundle heat exchanger consists of a jacket and a tube bundle. One medium flows through the tube bundle of U-tubes on the primary side and another medium flows through the secondary side in the jacket.

Ein Verfahren für einen Prozesswasserkreislauf unter Verwendung einer Flaschenreinigungsvorrichtung wie oben oder weiter unten beschrieben umfasst die folgenden Schritte: Abzweigen von Wasser aus dem Kaltreservoir und von Wasser aus dem ersten Warmwasserreservoir und Zuführen dieses Wassers zu dem Mischventil, Mischen dieses Wassers mittels des Mischventils mit einem temperaturgesteuerten Stellmotor, Zuführen des gemischten Wassers über den ersten Filter zu dem ersten Wärmetauscher und Abkühlen des gemischten Wassers in dem ersten Wärmetauscher und gleichzeitig Erhitzen eines gegenströmenden ersten Mediums in dem ersten Wärmetauscher und Zuführen des abgekühlten gemischten Wassers über einen zweiten Filter zu dem Recyclewasserreservoir.A process for a process water circuit using a bottle cleaning device as described above or below comprises the following steps: branching off water from the cold reservoir and water from the first hot water reservoir and supplying this water to the mixing valve, mixing this water by means of the mixing valve with a temperature-controlled one Actuator, supplying the mixed water through the first filter to the first heat exchanger and cooling the mixed water in the first heat exchanger while heating a countercurrent first medium in the first heat exchanger and supplying the cooled mixed water via a second filter to the recycle water reservoir.

Anschließend können ein Zuführen des erhitzten ersten Mediums zu dem zweiten Wärmetauscher und ein Abkühlen des ersten Mediums in dem zweiten Wärmetauscher und gleichzeitig ein Erhitzen eines gegenströmenden zweiten Mediums in dem zweiten Wärmetauscher und ein Zuführen des abgekühlten ersten Mediums zu dem ersten Wärmetauscher erfolgen. Das erste bzw. das zweite Medium können jeweils in einem Leitungssystem in dem Zwischenkreislauf bzw. in der ersten Stufe der zweistufigen Hochtemperaturwärmepumpe umlaufen.Subsequently, the heated first medium can be fed to the second heat exchanger and the first medium can be cooled in the second heat exchanger, and at the same time a countercurrent second medium can be heated in the second heat exchanger and the cooled first medium can be fed to the first heat exchanger. The first and the second medium can each circulate in a line system in the intermediate circuit or in the first stage of the two-stage high-temperature heat pump.

Dann können ein Zuführen des erhitzten zweiten Mediums durch den ersten Verdichter zu einem dritten Wärmetauscher und ein Abkühlen des zweiten Mediums in dem dritten Wärmetauscher und gleichzeitig ein Erhitzen eines gegenströmenden dritten Mediums in dem dritten Wärmetauscher und ein Zuführen des abgekühlten zweiten Mediums über die erste Entspannungsdrossel zu dem zweiten Wärmetauscher erfolgen.Then, feeding the heated second medium through the first compressor to a third heat exchanger and cooling the second medium in the third heat exchanger and simultaneously heating a countercurrent third medium in the third heat exchanger and feeding the cooled second medium via the first expansion throttle the second heat exchanger.

Danach können das erhitzte dritte Medium durch den zweiten Verdichter dem vierten Wärmetauscher zugeführt und das dritte Medium in dem vierten Wärmetauscher abgekühlt werden. Gleichzeitig kann ein Erhitzen gegenströmender Lauge aus dem Laugenbad in dem vierten Wärmetauscher erfolgen, danach ein Zuführen der erhitzten Lauge zu dem Laugenbad und ein Zuführen des abgekühlten dritten Mediums über die zweite Entspannungsdrossel zu dem dritten Wärmetauscher. Das dritte Medium kann in einem Leitungssystem in der zweiten Stufe der zweistufigen Hochtemperaturwärmepumpe umlaufen. Die Lauge kann mittels eines anderen Leitungssystems vom Laugenbad zu dem vierten Wärmetauscher und zurück zum Laugenbad geführt werden.The heated third medium can then be fed to the fourth heat exchanger by the second compressor and the third medium can be cooled in the fourth heat exchanger. At the same time, countercurrent lye can be heated from the lye bath in the fourth heat exchanger, then the heated lye can be fed to the lye bath and the cooled third medium can be fed via the second expansion throttle to the third heat exchanger. The third medium can circulate in a line system in the second stage of the two-stage high-temperature heat pump. The lye can be led from the lye bath to the fourth heat exchanger and back to the lye bath by means of another line system.

In dem Verfahren kann zu Beginn eine Einspeisung von Frischwasser in die Flaschenreinigungsmaschine erfolgen, um die Kaskade aufeinanderfolgender Wasserreservoirs zu füllen. Nach der Füllung mit Wasser und wenn die verschiedenen Wasserreservoirs die erforderlichen Wassertemperaturen erreicht haben, kann Wasser aus dem Kaltreservoir und Wasser aus dem ersten Warmwasserreservoir abgezweigt und dann dem Mischventil zugeführt werden.In the method, fresh water can be fed into the bottle cleaning machine at the beginning in order to fill the cascade of successive water reservoirs. After filling with water and when the various water reservoirs have reached the required water temperatures, water from the cold reservoir and water from the first hot water reservoir can be branched off and then fed to the mixing valve.

Kurze FigurenbeschreibungBrief description of the figures

Die beigefügten Figuren stellen beispielhaft zum besseren Verständnis und zur Veranschaulichung Aspekte der Erfindung dar. Dabei zeigt:

  • Figur 1 ein Blockdiagramm eines Prozesswasserkreislaufs einer Flaschenreinigungsmaschine und
  • Figur 2 ein Flussdiagramm eines Verfahrens für einen Prozesswasserkreislauf.
The attached figures represent examples of aspects of the invention for better understanding and illustration.
  • Figure 1 a block diagram of a process water circuit of a bottle washer and
  • Figure 2 a flowchart of a method for a process water cycle.

Ausführliche FigurenbeschreibungDetailed description of the figures

Figur 1 zeigt ein Blockdiagramm eines Prozesswasserkreislaufs 1 einer Flaschenreinigungsmaschine, die ein Frischwasserreservoir 2, ein Recyclewasserreservoir 3, ein Kaltwasserreservoir 4, ein zweites Warmwasserreservoir 5, ein erstes Warmwasserreservoir 6, ein Nachlaugenreservoir 7 und ein Laugenbad 8 umfasst. Von dem ersten Warmwasserreservoir 6 wird Wasser einer Vorbehandlungszone 9 zugeführt, die ein Vorweichbad und Abspritzvorrichtungen umfasst. Figure 1 shows a block diagram of a process water circuit 1 of a bottle washing machine, which comprises a fresh water reservoir 2, a recycle water reservoir 3, a cold water reservoir 4, a second hot water reservoir 5, a first hot water reservoir 6, a post-alkali reservoir 7 and a caustic bath 8. Water is fed from the first hot water reservoir 6 to a pretreatment zone 9, which comprises a pre-soaking bath and spray devices.

Der Flaschenreinigungsmaschine können zu reinigende Flaschen mittels eines Förderbands zugeführt werden. Nachdem diese Flaschen in Flaschenzellen eines Flaschenträgers eingebracht wurden, werden sie kopfüber einer Vorbehandlungszone 9 zugeführt, in der zunächst eine Restentleerung und dann eine Vorreinigung und das Anwärmen der Flaschen erfolgen.Bottles to be cleaned can be fed to the bottle cleaning machine by means of a conveyor belt. After these bottles have been introduced into bottle cells of a bottle carrier, they are fed upside down to a pretreatment zone 9, in which there is first a residual emptying and then a pre-cleaning and heating of the bottles.

In der Hauptbehandlungszone ist das Laugenbad 8 mit etwa 78 - 80°C vorgesehen, in das die Flaschen eingebracht werden. Es können auch mehrere Laugenbäder vorgesehen sein. Im Laugenbad lösen sich die Etiketten von den Flaschen, ohne sich dabei aufzulösen. Die abgelösten Etiketten werden regelmäßig aus dem Laugenbad 8 entfernt, um seine Verunreinigung klein zu halten.In the main treatment zone, the caustic bath 8 is provided at approximately 78-80 ° C., into which the bottles are placed. A plurality of soapy baths can also be provided. The labels detach from the bottles in the lye bath without dissolving. The detached labels are regularly removed from the lye bath 8 in order to keep its contamination low.

In der der Hauptbehandlungszone nachfolgenden Nachbehandlungszone werden die Flaschen zuerst mit einer Nachlauge aus dem Nachlaugenreservoir 7 mit etwa 60°C, dann mit Wasser aus dem ersten Warmwasserreservoir 6 mit etwa 50°C, danach mit Wasser aus dem zweiten Warmwasserreservoir 5 mit etwa 40°C, anschließend mit Kaltwasser aus dem Kaltreservoir 4 mit etwa 30°C und zum Schluss mit Frischwasser aus dem Frischwasserreservoir 2 mit etwa 15°C behandelt. Durch die aufeinanderfolgende Abkühlung werden Spannungen in dem Material der Flaschen minimiert, und die Flaschen sind derart auch auf eine nachfolgende Kaltabfüllung vorbereitet.In the aftertreatment zone following the main treatment zone, the bottles are first of all with an after-liquor from the after-liquor reservoir 7 at about 60 ° C., then with water from the first hot water reservoir 6 at about 50 ° C., then with water from the second hot water reservoir 5 at about 40 ° C. , then treated with cold water from the cold reservoir 4 at about 30 ° C and finally with fresh water from the fresh water reservoir 2 at about 15 ° C. The sequential cooling minimizes tensions in the material of the bottles, and the bottles are also prepared for subsequent cold filling.

Danach werden die gereinigten Flaschen aus den Flaschenzellen des Flaschenträgers entfernt und können mit einem Abgabeband abtransportiert werden, beispielsweise hin zu einer Füllvorrichtung.The cleaned bottles are then removed from the bottle cells of the bottle carrier and can be transported away with a delivery belt, for example to a filling device.

Die Strömungsrichtung des Wassers in der Flaschenreinigungsmaschine verläuft entgegen der Transportrichtung der Flaschen, d.h. von der Nachbehandlungszone zu der Hauptbehandlungszone und dann zu der Vorbehandlungszone 9. Die Flaschen in der Vorbehandlungszone 9 sind noch vergleichsweise stark verschmutzt und müssen daher nicht unnötig mit Frischwasser abgespritzt werden, sondern können mit Wasser abgespritzt werden, das schon für andere Prozessschritte verwendet und mittels einem oder mehreren Filtern gereinigt wurde. In den Laugenbädern erfolgt zudem regelmäßig eine Austragung von abgelösten Etiketten. Die letzte Spritzung der Flaschen, bevor sie die Flaschenreinigungsmaschine verlassen, muss mit Frischwasser durchgeführt werden, und daher wird die Flaschenreinigungsmaschine dort mit Frischwasser befüllt.The direction of flow of the water in the bottle washer is opposite to the direction of transport of the bottles, i.e. from the aftertreatment zone to the main treatment zone and then to the pretreatment zone 9. The bottles in the pretreatment zone 9 are still comparatively heavily soiled and therefore do not have to be sprayed unnecessarily with fresh water, but can instead be sprayed with water that has already been used for other process steps and by means of a or more filters has been cleaned. Detached labels are also regularly removed from the caustic baths. The last spraying of the bottles before they leave the bottle washer must be done with fresh water, and therefore the bottle washer is filled with fresh water there.

Die Flaschenreinigungsmaschine ist entsprechend kaskadenförmig aufgebaut, so dass das eingespeiste Wasser von Behandlungszone zu Behandlungszone überlaufen und somit auch dort verwendet werden kann. Am Anfang der Kaskade wird vorzugsweise Frischwasser eingespeist.The bottle washer is constructed in a cascade, so that the water fed in overflows from treatment zone to treatment zone and can therefore also be used there. Fresh water is preferably fed in at the beginning of the cascade.

Vom ersten Wasserreservoir 6 kann ein Abfluss für einen Kastenwäscher vorgesehen sein, damit die Getränkekisten nicht mit Frischwasser gespült werden müssen. Der Gebindeberiesler kann ebenfalls von der Flaschenreinigungsmaschine mit Wasser versorgt werden; beispielsweise kann das Wasser aus einer Hochdruckvorspritzung der Vorbehandlungszone 9 verwendet werden.A drain for a crate washer can be provided from the first water reservoir 6 so that the beverage crates do not have to be rinsed with fresh water. The container brewing machine can also be supplied with water by the bottle washing machine; for example, the water from a high pressure pre-injection of the pre-treatment zone 9 can be used.

Falls die Nachlauge in dem Nachlaugenreservoir 7 zu alkalisch wird, kann sie mit Wasser aus dem ersten Warmwasserreservoir 6 verdünnt werden. Falls der Füllstand im Laugenbad 8 zu niedrig ist, kann eine Nachfüllung mittels Nachlauge aus dem Nachlaugenreservoir 7 erfolgen. Ist die Lauge 8 zu sehr verwässert, wird durch eine Dosagestation Lauge nachdosiert.If the after-liquor in the after-liquor reservoir 7 becomes too alkaline, it can be diluted with water from the first hot water reservoir 6. If the fill level in the lye bath 8 is too low, it can be refilled from the after-lye reservoir 7 by means of after-lye. If the lye 8 is too watered down, lye is replenished through a dosing station.

Eine Überlegung Ressourcen beim Reinigungsvorgang der Flaschen einzusparen, ist es, der Nachbehandlung der Flaschenreinigung Wasser zu entziehen, es aufzubereiten, zu kühlen und in den Prozess als Frischwasserersatz wieder einzuspeisen. Dabei muss das entzogene Wasser von 50°C herunter auf 15°C gekühlt werden, damit seine Temperatur in etwa der Temperatur des verwendeten Frischwassers entspricht. Die bei der Kühlung anfallende große Wärmemenge kann zur Erwärmung der heißen Laugenbäder genutzt werden.One consideration of saving resources in the bottle cleaning process is to remove water from the post-treatment of the bottle cleaning, to prepare it, to cool it and to feed it back into the process as a fresh water substitute. The extracted water must be cooled down from 50 ° C to 15 ° C so that its temperature corresponds approximately to the temperature of the fresh water used. The large amount of heat generated during cooling can be used to heat the hot alkaline baths.

Dabei sollte aber nicht der komplette Volumenstrom an Frischwasser durch recyceltes Wasser ersetzt werden; für die vorliegende Erfindung hat sich gezeigt, dass etwa 30 % des ursprünglichen Frischwasserverbrauchs der Flaschenreinigungsmaschine recycelt und dem Reinigungsprozess zugeführt werden können, ohne dass es zu Beeinträchtigungen kommt. Das Wasser für die Wiederverwendung wird dem ersten Warmwasserreservoir 6 und dem Kaltwasserreservoir 4 entzogen und einem Mischventil 10 mit einem temperaturgesteuerten Stellmotor zugeführt. Von dort wird das gemischte Wasser durch einen ersten Filter 11 geleitet und einem ersten Wärmetauscher 12 über einen ersten Eingang 13 zugeführt. Das gemischte Wasser besitzt dort eine Temperatur von T1 gem. Wasser = 50°C. In dem ersten Wärmetauscher 12 fließt ein erstes Medium mit einer Temperatur T1 M1 = 10 - 12°C von einem zweiten Eingang 15 gegenläufig zu dem gemischten Wasser und verlässt den ersten Wärmetauscher 12 nach Wärmeaufnahme über einen zweiten Ausgang 16 mit einer Temperatur T2 M1 = 19 - 50°C. Um einen vorgegebenen Temperaturwert der Temperatur T2 M1 zu erhalten, ist unter anderem der Volumenstrom des fließenden ersten Mediums zu beachten. Bei einer Temperatur von T2 M1 = 19°C kann der Volumenstrom in einem Bereich von 140 m3 pro Stunde liegen, bei einer Temperatur von T2 M1 = 50°C kann der Volumenstrom in einem Bereich von 25 m3 pro Stunde liegen. Das im ersten Wärmetauscher 12 abgekühlte gemischte Wasser verlässt den ersten Wärmetauscher 12 über einen ersten Ausgang 14 mit einer Temperatur von T2 gem. Wasser = 15°C. Dieses gekühlte gemischte Wasser wird durch einen zweiten Filter 17 geleitet und dem Recyclewasserreservoir 3 zugeführt, so dass dieses recycelte Wasser wieder der Kaskade der Flaschenreinigungsmaschine zugeführt werden kann, wodurch die sonst erforderliche Menge an Frischwasser entsprechend reduziert werden kann.However, the entire volume flow of fresh water should not be replaced by recycled water; for the present invention, it has been shown that about 30% of the original Fresh water consumption of the bottle washer can be recycled and fed into the cleaning process without there being any impairments. The water for reuse is withdrawn from the first hot water reservoir 6 and the cold water reservoir 4 and fed to a mixing valve 10 with a temperature-controlled servomotor. From there, the mixed water is passed through a first filter 11 and fed to a first heat exchanger 12 via a first inlet 13. The mixed water there has a temperature of T 1 acc. Water = 50 ° C. In the first heat exchanger 12, a first medium with a temperature T 1 M1 = 10-12 ° C. flows from a second inlet 15 in the opposite direction to the mixed water and leaves the first heat exchanger 12 after absorbing heat via a second outlet 16 with a temperature T 2 M1 = 19 - 50 ° C. In order to obtain a predetermined temperature value of the temperature T 2 M1 , the volume flow of the flowing first medium must be taken into account, among other things. At a temperature of T 2 M1 = 19 ° C, the volume flow can be in a range of 140 m 3 per hour, at a temperature of T 2 M1 = 50 ° C, the volume flow can be in a range of 25 m 3 per hour. The mixed water cooled in the first heat exchanger 12 leaves the first heat exchanger 12 via a first outlet 14 with a temperature of T 2 acc. Water = 15 ° C. This cooled mixed water is passed through a second filter 17 and fed to the recycling water reservoir 3, so that this recycled water can be fed back into the cascade of the bottle washing machine, whereby the amount of fresh water that would otherwise be required can be reduced accordingly.

Der erste Wärmetauscher 12 ist Teil eines Zwischenkreislaufs, der für die zweistufige Hochtemperaturwärmepumpe 38 erforderlich ist. Der Zwischenkreislauf umfasst den ersten Wärmetauscher 12, einen zweiten Wärmetauscher 18 und eine Pumpe 19, die für den Transport des ersten Mediums in dem Zwischenkreislauf vorgesehen und die durch ein Stellventil und ein Manometer einstellbar ist. Das erste Medium gelangt über einen ersten Eingang 20 in den zweiten Wärmetauscher 18 mit einer Temperatur von T2 M1 = 19 - 50°. In dem zweiten Wärmetauscher 18 fließt ein zweites Medium mit einer Temperatur T1 M2 von einem zweiten Eingang 22 gegenläufig zu dem ersten Medium. Das erste Medium verlässt nach Abkühlung den zweiten Wärmetauscher 18 über einen ersten Ausgang 21 mit einer Temperatur von T1 M1 = 10 - 12°C.The first heat exchanger 12 is part of an intermediate circuit which is required for the two-stage high-temperature heat pump 38. The intermediate circuit comprises the first heat exchanger 12, a second heat exchanger 18 and a pump 19 which is provided for the transport of the first medium in the intermediate circuit and which is adjustable by means of a control valve and a pressure gauge. The first medium reaches the second heat exchanger 18 via a first inlet 20 at a temperature of T 2 M1 = 19-50 °. In the second heat exchanger 18, a second medium with a temperature T 1 M2 flows from a second inlet 22 in the opposite direction to the first medium. After cooling, the first medium leaves the second heat exchanger 18 via a first outlet 21 with a temperature of T 1 M1 = 10-12 ° C.

Das zweite Medium verlässt den zweiten Wärmetauscher 18 nach Erwärmung über einen zweiten Ausgang 23 mit einer Temperatur von T2 M2. Das zweite Medium wird durch einen ersten Verdichter 24 geleitet, um seinen Druck und seine Temperatur auf T3 M2 zu erhöhen. Danach gelangt das zweite Medium in den dritten Wärmetauscher 25 über einen ersten Eingang 26 und verlässt ihn wieder über einen ersten Ausgang 27 mit einer Temperatur von T4 M2. Dieser dritte Wärmetauscher 25 dient als Verdampfer für das zweite Medium, und von dort gelangt das kondensierte zweite Medium mit der Temperatur T4 M2. zu einer ersten Entspannungsdrossel 28. Von dort aus wird das zweite Medium mit der Temperatur T1 M2 wieder dem zweiten Wärmetauscher 18 über den zweiten Eingang 22 zugeführt. Somit dient der dritte Wärmetauscher 25 als Verflüssiger für das zweite Medium. Als zweites Medium kann das Kältemittel R134a verwendet werden.The second medium leaves the second heat exchanger 18 after heating via a second outlet 23 with a temperature of T 2 M2 . The second medium is passed through a first compressor 24 to increase its pressure and temperature to T 3 M2 . The second medium then enters the third heat exchanger 25 via a first inlet 26 and leaves it again via a first outlet 27 at a temperature of T 4 M2 . This third heat exchanger 25 serves as an evaporator for the second medium, and from there the condensed second medium arrives at the temperature T 4 M2 . to a first expansion throttle 28. From there, the second medium with the temperature T 1 M2 is fed back to the second heat exchanger 18 via the second inlet 22. The third heat exchanger 25 thus serves as a condenser for the second medium. The refrigerant R134a can be used as the second medium.

In dem dritten Wärmetauscher 25 fließt gegenläufig zu dem zweiten Medium ein drittes Medium. Das dritte Medium gelangt über einen zweiten Eingang 29 mit einer Temperatur T1 M3 in den dritten Wärmetauscher 25 und verlässt diesen wieder über einen zweiten Ausgang 30 mit einer Temperatur T2 M3. Von dort gelangt das dritte Medium zu einem zweiten Verdichter 31. Nach der Verdichtung des dritten Mediums gelangt dieses mit einer Temperatur T3 M3 = 85°C zu einem vierten Wärmetauscher 32. Das verdichtete dritte Medium wird über einen ersten Eingang 33 in den vierten Wärmetauscher 32 eingebracht, wird in dem vierten Wärmetauscher 32 verflüssigt und verlässt diesen über einen ersten Ausgang 34 mit einer Temperatur T4 M3. Von dort gelangt das dritte Medium zu einer zweiten Entspannungsdrossel 35 und von dort mit der Temperatur T1 M3 wieder zu dem dritten Wärmetauscher 25.In the third heat exchanger 25, a third medium flows in the opposite direction to the second medium. The third medium enters the third heat exchanger 25 via a second inlet 29 with a temperature T 1 M3 and leaves it again via a second outlet 30 with a temperature T 2 M3 . From there, the third medium reaches a second compressor 31. After the third medium has been compressed, it reaches a fourth heat exchanger 32 at a temperature T 3 M3 = 85 ° C. The compressed third medium is fed into the fourth heat exchanger via a first inlet 33 32 introduced, is liquefied in the fourth heat exchanger 32 and leaves this via a first outlet 34 with a temperature T 4 M3 . From there the third medium reaches a second expansion throttle 35 and from there with the temperature T 1 M3 to the third heat exchanger 25.

In dem vierten Wärmetauscher 32 fließt gegenläufig zu dem dritten Medium die Lauge aus dem Laugenreservoir 8. Die Lauge gelangt mit einer Temperatur T1 Lauge = 78 - 80°C über einen zweiten Eingang 36 in den vierten Wärmetauscher 32, nimmt dort Wärme von dem dritten Medium auf und verlässt den vierten Wärmetauscher 32 mit einer Temperatur T2 Lauge = 80 - 85°C wieder über einen zweiten Ausgang 37. Von dort wird die Lauge zurück zum Laugenreservoir 8 geführt.In the fourth heat exchanger 32, the liquor flows from the liquor reservoir 8 in the opposite direction to the third medium. The liquor reaches the fourth heat exchanger 32 at a temperature T 1 liquor = 78-80 ° C. via a second inlet 36, where it takes heat from the third Medium and leaves the fourth heat exchanger 32 with a temperature T 2 lye = 80-85 ° C again via a second outlet 37. From there, the lye is led back to the lye reservoir 8.

Somit dient der dritte Wärmetauscher 25 als Verdampfer für das dritte Medium und der vierte Wärmetauscher 32 als Verflüssiger für das dritte Medium. Als drittes Medium kann das Kältemittel ÖKO 1 verwendet werden.The third heat exchanger 25 thus serves as an evaporator for the third medium and the fourth heat exchanger 32 as a condenser for the third medium. The refrigerant ÖKO 1 can be used as the third medium.

Die zweistufige Hochtemperaturwärmepumpe 38 umfasst den zweiten Wärmetauscher 18, den dritten Wärmetauscher 25, den vierten Wärmetauscher 32, den ersten Verdichter 24, den zweiten Verdichter 31, die erste Entspannungsdrossel 28 und die zweite Entspannungsdrossel 35. Da die zweistufige Hochtemperaturwärmepumpe 38 im Allgemeinen mit verschiedenen, umlaufenden Medien betrieben wird und auch der Volumenstrom in den jeweiligen Kreisläufen verschieden sein und/oder Anlagenbedingungen angepasst werden kann, ist es vorteilhaft für die zweistufige Hochtemperaturwärmepumpe 38 Randbedingungen anzugeben, wie beispielsweise T1 Lauge = 78 - 80°C, T2 Lauge = 80 - 85°C und T1 M1 = 10 - 12°C, um dann entsprechend Eigenschaften des zweiten 18, des dritten 25 und des vierten Wärmetauschers 32, des ersten und des zweiten Verdichters 31, der ersten 28 und der zweiten Entspannungsdrossel 35 vorzusehen.The two-stage high-temperature heat pump 38 comprises the second heat exchanger 18, the third heat exchanger 25, the fourth heat exchanger 32, the first compressor 24, the second compressor 31, the first expansion throttle 28 and the second expansion throttle 35. Since the two-stage high-temperature heat pump 38 generally has different, circulating media and the volume flow in the respective circuits can be different and / or system conditions can be adapted, it is advantageous to specify 38 boundary conditions for the two-stage high-temperature heat pump, such as T 1 lye = 78 - 80 ° C, T 2 lye = 80 - 85 ° C and T 1 M1 = 10 - 12 ° C, um then to be provided in accordance with properties of the second 18, the third 25 and the fourth heat exchanger 32, the first and the second compressor 31, the first 28 and the second expansion throttle 35.

Figur 2 zeigt ein Flussdiagramm eines Verfahrens für einen Prozesswasserkreislauf. Um den Prozess zu starten, wird in einem ersten Schritt 100 zunächst Frischwasser in die Flaschenreinigungsmaschine eingespeist, um die Kaskade aufeinanderfolgender Wasserreservoirs zu füllen. Nach der Füllung mit Wasser und wenn die verschiedenen Wasserreservoirs die erforderlichen Wassertemperaturen erreicht haben, wird in einem zweiten Schritt 101 Wasser aus dem Kaltreservoir 4 und dem ersten Warmwasserreservoir 7 abgezweigt und einem Mischventil 10 zugeführt. Figure 2 shows a flow diagram of a method for a process water cycle. In order to start the process, in a first step 100 fresh water is first fed into the bottle cleaning machine in order to fill the cascade of successive water reservoirs. After filling with water and when the various water reservoirs have reached the required water temperatures, in a second step 101 water is branched off from the cold reservoir 4 and the first hot water reservoir 7 and fed to a mixing valve 10.

In einem dritten Schritt 102 wird dieses Wasser unterschiedlicher Temperatur mittels des Mischventils 10 mit einem temperaturgesteuerten Stellmotor gemischt.In a third step 102, this water of different temperatures is mixed by means of the mixing valve 10 with a temperature-controlled servomotor.

In einem vierten Schritt 103 wird das gemischte Wasser über einen ersten Filter 11 einem ersten Wärmetauscher 12 zugeführt und in dem ersten Wärmetauscher 12 abgekühlt. Gleichzeitig wird ein gegenströmendes erstes Medium in dem ersten Wärmetauscher 12 erhitzt.In a fourth step 103, the mixed water is fed to a first heat exchanger 12 via a first filter 11 and cooled in the first heat exchanger 12. At the same time, a counter-flowing first medium is heated in the first heat exchanger 12.

In einem fünften Schritt 104 wird das abgekühlte gemischte Wasser über einen zweiten Filter 17 einem Recyclewasserreservoir 2 zugeführt. Das abgekühlte gemischte Wasser steht somit der Kaskade der Flaschenreinigungsmaschine wieder zur Verfügung.In a fifth step 104, the cooled mixed water is fed to a recycling water reservoir 2 via a second filter 17. The cooled, mixed water is then available to the cascade of the bottle washer again.

In einem sechsten Schritt 105 wird das erhitzte erste Medium einem zweiten Wärmetauscher 18 zugeführt, in dem es abgekühlt wird. Gleichzeitig wird ein gegenströmendes zweites Medium in dem zweiten Wärmetauscher 18 erhitzt. Das abgekühlte erste Medium wird danach wieder dem ersten Wärmetauscher 12 zugeführt.In a sixth step 105, the heated first medium is fed to a second heat exchanger 18, in which it is cooled. At the same time, a counter-flowing second medium is heated in the second heat exchanger 18. The cooled first medium is then fed back to the first heat exchanger 12.

In einem siebten Schritt 106 wird das erhitzte zweite Medium durch einen ersten Verdichter 24 einem dritten Wärmetauscher 25 zugeführt, in dem das zweite Medium abgekühlt wird. Gleichzeitig wird ein gegenströmendes drittes Medium in dem dritten Wärmetauscher 25 erhitzt. Das abgekühlte zweite Medium wird über eine erste Entspannungsdrossel 28 wieder dem zweiten Wärmetauscher 18 zugeführt.In a seventh step 106, the heated second medium is fed through a first compressor 24 to a third heat exchanger 25, in which the second medium is cooled. At the same time, a counter-flowing third medium is heated in the third heat exchanger 25. The cooled second medium is fed back to the second heat exchanger 18 via a first expansion throttle 28.

In einem achten Schritt 107 wird das erhitzte dritte Medium durch einen zweiten Verdichter 31 einem vierten Wärmetauscher 32 zugeführt und dort abgekühlt. Gleichzeitig wird gegenströmende Lauge aus dem Laugenbad 8 in dem vierten Wärmetauscher erhitzt und danach wieder dem Laugenbad 8 zugeführt. Das abgekühlte dritte Medium wird über eine zweite Entspannungsdrossel 35 wieder dem dritten Wärmetauscher 25 zugeführt.In an eighth step 107, the heated third medium is fed through a second compressor 31 to a fourth heat exchanger 32 and cooled there. At the same time, countercurrent lye from the lye bath 8 is heated in the fourth heat exchanger and then fed back to the lye bath 8. The cooled third medium is fed back to the third heat exchanger 25 via a second expansion throttle 35.

Claims (11)

  1. Bottle cleaning device comprising:
    - a fresh water reservoir (2) being connected with a recycle water reservoir (3), the recycle water reservoir (3) being connected with a cold water reservoir (4), the cold water reservoir (4) being connected with a second warm water reservoir (5), the second warm water reservoir (5) being connected with a first warm water reservoir (6), the first warm water reservoir (6) being connected with an post-lye reservoir (7), the post-lye reservoir (7) being connected with a lye bath (8) or with a pre-treatment zone (9) in such a way, respectively, that water from the fresh water reservoir (2) can pass into the recycle water reservoir (3), from the recycle water reservoir (3) in the cold water reservoir (4), from the cold water reservoir (4) in the second warm water reservoir (5), from the second warm water reservoir (5) in the first warm water reservoir (6), from the first warm water reservoir (6) for refilling or diluting in the post-lye reservoir (7) and from the post-lay reservoir (7) for refilling in the lye bath (8) or the pre-treatment zone (9),
    - mixing valve (10) being connected via feed pipes with the first warm water reservoir (6) and the cold water reservoir (4), and being adapted to mix water being infeed form the first warm water reservoir (6) and the cold water reservoir (4) to mixed water,
    - a first heat exchanger (12) being adapted to cool the mixed water and at the same time heat a first medium,
    - a second heat exchanger (18) being adapted to cool the first medium and at the same time heat a second medium,
    - a third heat exchanger (25) being adapted to cool the second medium and at the same time heat a third medium,
    - a fourth heat exchanger (32) being adapted to cool the third medium and at the same time heat lye of the lye bath (8) and
    - a return pipe being adapted to feed the mixed water that has been cooled in the first heat exchanger to the recycle water reservoir (3) .
  2. Bottle cleaning device according to claim 1, further comprising:
    - a first condenser (24) being located in a first flow direction of the second medium after the second heat exchanger (18) and a first release choke (28) being located in the first flow direction of the second medium after the third heat exchanger (25) and
    - a second condenser (31) being located in a second flow direction of the third medium after the third heat exchanger (25) and a second release choke (35) being located in the second flow direction of the third medium after the fourth heat exchanger (32).
  3. Bottle cleaning device according to claim 1 or 2, wherein the mixing valve (10) comprises a temperature controlled servomotor.
  4. Bottle cleaning device according to one of claims 1 to 3, wherein the first condenser (24) and/or the second condenser (31) each comprise a screw compressor.
  5. Bottle cleaning device according to one of claims 1 to 4, wherein the first heat exchanger (12) comprises a plate heat exchanger.
  6. Bottle cleaning device according to one of claims 1 to 5, wherein the second heat exchanger (18) and/or the third heat exchanger (25) and/or the fourth heat exchanger (32) each comprise a tube bundle heat exchanger.
  7. Method for a process water circuit using a bottle cleaning device according to one of claims 1 to 6 with the steps:
    - diverting (101) water from the cold water reservoir (4) and water from the first warm water reservoir (6) and infeeding (101) this water to the mixing valve (10),
    - mixing (102) this water by means of the mixing valve (10) with a temperature controlled servomotor,
    - infeeding (103) the mixed water via the first filter (11) to the first heat exchanger (12) and cooling (103) of the mixed water in the first heat exchanger (12) and at the same time heating (103) of a counter flowing first medium in the first heat exchanger (12) and
    - infeeding (104) of the cooled mixed water via a second filter (17) to the recycle water reservoir (3).
  8. Method according to claim 7 with the further steps:
    - infeeding (105) the heated first medium to the second heat exchanger (18) and cooling (105) the first medium in the second heat exchanger (18) and at the same time heating (105) of a counterflowing second medium in the second heat exchanger (18) and infeeding (105) the cooled first medium to the first heat exchanger (12).
  9. Method according to claim 8 with the further steps:
    - infeeding (106) the heated second medium via the first condenser (24) to the third heat exchanger (25) and cooling (106) the second medium in the third heat exchanger (25) and at the same time heating (106) the counterflowing third medium in the third heat exchanger (25) and infeeding (106) the cooled second medium via the first release choke (28) to the second heat exchanger (18).
  10. Method according to claim 9 with the further steps:
    - infeeding (107) the heated third medium via the second condenser (31) to a fourth heat exchanger (32) and cooling (107) the third medium in the fourth heat exchanger (32) and at the same time heating (107) counterflowing lye of the lye bath (8) in the fourth heat exchanger, afterwards infeeding (107) of the heated lye to the lye bath (8), infeeding the cooled third medium via the second release choke (35) to the third heat exchanger (25).
  11. Method according to one of claims 7 to 11, wherein in a first step (100) an infeed of fresh water in the bottle cleaning device takes place.
EP17162514.8A 2016-04-13 2017-03-23 Bottle cleaning device and method for a process water circuit using the bottle cleaning device Active EP3269460B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016206185.2A DE102016206185A1 (en) 2016-04-13 2016-04-13 Bottle cleaning apparatus and method for a process water cycle using the bottle washer

Publications (2)

Publication Number Publication Date
EP3269460A1 EP3269460A1 (en) 2018-01-17
EP3269460B1 true EP3269460B1 (en) 2020-03-18

Family

ID=58412920

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17162514.8A Active EP3269460B1 (en) 2016-04-13 2017-03-23 Bottle cleaning device and method for a process water circuit using the bottle cleaning device

Country Status (3)

Country Link
EP (1) EP3269460B1 (en)
CN (1) CN207254880U (en)
DE (1) DE102016206185A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102023112140A1 (en) 2023-05-09 2024-11-14 Krones Aktiengesellschaft filling line and method for supplying heat and/or cold to a washing machine and a pasteurizer of the filling line

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2510927A1 (en) 1974-03-19 1975-09-25 Cenzad Management Ag METHOD AND DEVICE FOR PURIFYING OBJECTS
DE2454100A1 (en) 1974-11-14 1976-05-20 Orthmann & Herbst Container cleaning machine with multiple stage cleaning system - has central stage externally heated and heat exchanger units connecting initial and final process stages
DE3118647A1 (en) 1981-05-11 1982-11-25 Holstein Und Kappert Gmbh, 4600 Dortmund Apparatus for cleaning bottles
DE3205956A1 (en) 1982-02-19 1983-09-15 Robert 6141 Einhausen Becker Bottle-cleaning device, in which heat is recovered and fresh water saved
DE3512463A1 (en) 1985-04-04 1986-10-16 Holstein Und Kappert Gmbh, 4600 Dortmund METHOD FOR REDUCING HEAT CONSUMPTION ON BOTTLE CLEANING MACHINES
DE20321071U1 (en) 2003-05-05 2005-11-10 Krones Ag Assembly for treating objects with a liquid, and especially a bottle washing machine, has separate heat exchangers for the washing stages to give the required temperatures for cleaning and killing germs
JP2010022943A (en) 2008-07-18 2010-02-04 Mayekawa Mfg Co Ltd Bottle washing method and bottle washing machine
WO2011023352A2 (en) 2009-08-31 2011-03-03 Karsten Uitz Heat pump
DE102013000522A1 (en) 2013-01-15 2014-07-17 Khs Gmbh Method and plant for the treatment of KEGs
DE102013114607A1 (en) 2013-12-20 2015-06-25 Khs Gmbh Method for cleaning containers and container cleaning machine

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2510927A1 (en) 1974-03-19 1975-09-25 Cenzad Management Ag METHOD AND DEVICE FOR PURIFYING OBJECTS
DE2454100A1 (en) 1974-11-14 1976-05-20 Orthmann & Herbst Container cleaning machine with multiple stage cleaning system - has central stage externally heated and heat exchanger units connecting initial and final process stages
DE3118647A1 (en) 1981-05-11 1982-11-25 Holstein Und Kappert Gmbh, 4600 Dortmund Apparatus for cleaning bottles
DE3205956A1 (en) 1982-02-19 1983-09-15 Robert 6141 Einhausen Becker Bottle-cleaning device, in which heat is recovered and fresh water saved
DE3512463A1 (en) 1985-04-04 1986-10-16 Holstein Und Kappert Gmbh, 4600 Dortmund METHOD FOR REDUCING HEAT CONSUMPTION ON BOTTLE CLEANING MACHINES
DE20321071U1 (en) 2003-05-05 2005-11-10 Krones Ag Assembly for treating objects with a liquid, and especially a bottle washing machine, has separate heat exchangers for the washing stages to give the required temperatures for cleaning and killing germs
JP2010022943A (en) 2008-07-18 2010-02-04 Mayekawa Mfg Co Ltd Bottle washing method and bottle washing machine
WO2011023352A2 (en) 2009-08-31 2011-03-03 Karsten Uitz Heat pump
DE102013000522A1 (en) 2013-01-15 2014-07-17 Khs Gmbh Method and plant for the treatment of KEGs
DE102013114607A1 (en) 2013-12-20 2015-06-25 Khs Gmbh Method for cleaning containers and container cleaning machine

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Heiße Sache - Hochtemperatur-Wärmepumpen erschließen neue Einsatzbereiche in Industrie und Gewerbe | IKZ", 5 June 2013 (2013-06-05), XP093002025, Retrieved from the Internet <URL:https://www.ikz.de/detail/news/detail/heisse-sache-hochtemperatur-waermepumpen-erschliessen-neue-einsatzbereiche-in-industrie-und-gewerbe/>
OSTER PATRIK: "Untersuchungen zur Nutzung des Wärmepumpenprozesses in modernen Flaschenreinigungsmaschinen als Beitrag zur Schonung von Energieresourcen ", DIPLOMARBEIT FACHHOCHSCHULE KOBLENZ, 1 March 2009 (2009-03-01), pages 1 - 108, XP093002009

Also Published As

Publication number Publication date
CN207254880U (en) 2018-04-20
EP3269460A1 (en) 2018-01-17
DE102016206185A1 (en) 2017-10-19

Similar Documents

Publication Publication Date Title
DE2908927C2 (en)
DE1778068A1 (en) Method and device for the alternate pickling and cooling of vulcanizing and pressing devices
EP3068237B1 (en) Method and system for pasteurization of products in containers
DE3029113A1 (en) METHOD AND ARRANGEMENT FOR SAVING ENERGY IN PASTEURIZING SYSTEMS
EP2630230B1 (en) Method and device for controlling the generation of hot water when brewing beer in a brewery
EP4068984B1 (en) Plant for pasteurizing foodstuffs or beverages filled into closed containers by way of a process liquid
EP3269460B1 (en) Bottle cleaning device and method for a process water circuit using the bottle cleaning device
DE2533150C2 (en)
DE1298505B (en) Process for preheating a liquid, which is produced as condensate of a multi-stage flash evaporation, and device for carrying out this process
DE2943797A1 (en) METHOD AND SYSTEM FOR ALTERNATIVE HEATING AND COOLING A HEAT EXCHANGER
DE3245391C2 (en) Process for the continuous dissolution of material finely divided in liquid
EP0070797A2 (en) Installation using a loop-type reactor and process by which a liquid educt is subjected to a chemical reaction in a circulatory manner
DE3225403C2 (en) Process for the step-by-step heating of an item in a treatment device and subsequent cooling
DE102013000522A1 (en) Method and plant for the treatment of KEGs
DE1501101B2 (en) Device for generating cold and / or for liquefying gases
DE2538730A1 (en) COOLING HEAT RECOVERY SYSTEM
EP2786811A1 (en) Device for supplying cleaning devices with cleaning and/or desinfecting fluid
DE102010002408A1 (en) Cleaning system for containers and process for their operation
DE102011002721B4 (en) container cleaning system
CH636829A5 (en) DEVICES AND METHOD FOR THE OPERATION OF DEVICES FOR THE REGENERATION OF ION EXCHANGE AND ADSORPTION MEASURES, IN PARTICULAR IN WATER TREATMENT PLANTS.
DE2454100A1 (en) Container cleaning machine with multiple stage cleaning system - has central stage externally heated and heat exchanger units connecting initial and final process stages
DE2558936C2 (en) Sterilization device with at least one sterilization chamber
WO2004098800A1 (en) Device for treating objects with liquids
EP2650622A1 (en) Method for the thermal use of fluids and plant for the treatment of items
EP4335298A1 (en) Method and apparatus for direct heating of liquid food products

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180216

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

INTG Intention to grant announced

Effective date: 20190705

INTG Intention to grant announced

Effective date: 20190716

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191009

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ADAMSKI, LUCAS

Inventor name: ZWEIGARDT, ANNA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017004247

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1245322

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200415

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200618

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200618

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200619

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200718

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502017004247

Country of ref document: DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200331

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200323

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: KHS GMBH

Effective date: 20201218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200323

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 502017004247

Country of ref document: DE

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20221024

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1245322

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220323

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220323

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240130

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240212

Year of fee payment: 8