EP3265735B1 - Shell and tube heat exchanger - Google Patents
Shell and tube heat exchanger Download PDFInfo
- Publication number
- EP3265735B1 EP3265735B1 EP16759296.3A EP16759296A EP3265735B1 EP 3265735 B1 EP3265735 B1 EP 3265735B1 EP 16759296 A EP16759296 A EP 16759296A EP 3265735 B1 EP3265735 B1 EP 3265735B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- shell
- effluent
- tube
- feed
- inlet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/22—Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/16—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G47/00—Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/06—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits having a single U-bend
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
- F28D2021/0075—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for syngas or cracked gas cooling systems
Definitions
- hydroprocessing units such as kerosene, diesel, gas oil, resid hydrotreating and hydrocracking units
- hydrogen rich recycle gas and fresh hydrocarbon feed are preheated in a series of heat exchangers utilizing heat available from the reactor effluent.
- the hot hydrocarbon feed and recycle gas are mixed together to form a combined feed stream at the inlet of the charge heater.
- the charge heater provides the necessary heat to the combined stream to obtain the desired reactor inlet temperature.
- This particular flow scheme is known as a separate heat exchanger scheme.
- the separate heat exchanger flow scheme is used for units that require more than two passes for the charge heater. This flow scheme increases the equipment count and required plot space.
- Fig. 1 is an illustration of one embodiment of an arrangement for pre-heating a fresh hydrocarbon feed and hydrogen rich recycle gas using the reactor effluent.
- the hydrocarbon feed 105 is pre-heated in first reactor effluent-feed heat exchanger 110 and second reactor effluent-feed heat exchanger 115 to form pre-heated hydrocarbon feed stream 120.
- the hydrogen rich recycle gas 125 is pre-heated in first reactor effluent-recycle gas heat exchanger 130, second reactor effluent-recycle gas heat exchanger 135, and third reactor effluent-recycle gas heat exchanger 140 to form pre-heated recycle gas stream 145.
- Pre-heated hydrocarbon feed stream 120 and pre-heated recycle gas stream 145 are combined to form pre-heated combined feed stream 150.
- Pre-heated combined feed stream 150 is heated in charge heater 155 to form heated feed stream 160.
- Heated feed stream 160 is sent to reactor 165.
- the reactor effluent stream 170 from reactor 165 is successively sent to third reactor effluent-recycle gas heat exchanger 140, second reactor effluent-feed heat exchanger 115, second reactor effluent-recycle gas heat exchanger 135, first reactor effluent-feed heat exchanger 110, and first reactor effluent-recycle gas heat exchanger 130.
- the cooled reactor effluent stream 175 can then be sent for separation between the gas and the liquid (not shown).
- the multiple heat exchangers (five in this example) increase the equipment cost and the space required. Therefore, there is a need for a heat exchanger design which allows the use of a single exchanger train for the scheme which requires more than two heater passes.
- the shell and tube heat exchanger includes a shell side having a separation plate dividing the shell into at least two compartments, each of the compartments having a feed inlet and a feed outlet; and a tube side comprising a plurality of tubes in the shell, at least one tube in each compartment, and the tube side having an effluent inlet and an effluent outlet. at the same end of the shell and separated by a plate, and whereby the tubes are U-shaped.
- Another aspect of the invention is method of heating a feed and gas stream for a reaction zone using reactor effluent.
- the method includes providing a shell and tube heat exchanger as described.
- the feed stream is divided into at least two portions.
- the two portions of the feed stream are passed from the feed inlets to the feed outlets of each compartment, and the reactor effluent is passed from the effluent inlet to the effluent outlet to pre-heat the two portions of the feed stream.
- the two pre-heated portions of the feed stream are heated in a charge heater.
- the two heated portions of the feed stream from the charge heater are introduced into the reaction zone.
- the shell and tube heat exchanger has a split shell design.
- the shell side has a separation plate dividing the shell into at least two separate compartments. Each of the compartments has a feed inlet and a feed outlet.
- the tube side has a plurality of tubes, and there is at least one tube in each compartment.
- the tube side has an effluent inlet and an effluent outlet.
- the feed inlet, feed outlet, effluent inlet, and effluent outlet are typically nozzles.
- the compartments are substantially equal in size (for example, within ⁇ 10%).
- the shell includes at least one baffle.
- each compartment contains at least one baffle.
- the baffles are typically arranged to create turbulence for efficient indirect heat transfer between the tube side reactor effluent stream and the shell side combined feed stream. For example, one baffle could contact the bottom (or one side) of the compartment leaving an opening at the top (or opposite side) of the compartment, and the next baffle could contact the top (or the opposite side) leaving an opening at the bottom (or the first side).
- the shell, tubes, separation plate, and baffles can be made of any suitable material.
- the shell side inlet and outlet are at opposite ends of the shell. In some embodiments, the tube side inlet and outlet are at the same end of the exchanger.
- the tube side inlet and outlet are at the same end of the exchanger as the feed outlet.
- the tubes are U-shaped tubes.
- the split shell and tube heat exchanger can be used to heat the feed stream entering a reaction zone, for example, a hydrotreating or hydrocracking zone.
- the feed stream can be heated using the effluent from the same reaction zone.
- the effluent from one reaction zone could be used to heat the feed for another reaction zone.
- the feed stream can be a mixture of liquid hydrocarbons and hydrogen rich gaseous hydrocarbons.
- the liquid hydrocarbon stream could be a fresh hydrocarbon feed stream
- the gaseous hydrocarbon feed stream could be a hydrogen rich recycle hydrocarbon stream.
- the combined feed stream is split into two (or more) streams which enter the two (or more) compartments of the shell side of the heat exchanger through the feed stream inlets.
- the effluent from the reaction zone enters the tube side of the heat exchanger.
- the effluent can be a two phase mixture of liquid and gaseous hydrocarbons.
- the heat from the effluent is used to pre-heat the combined feed stream in the two compartments of the shell side.
- the pre-heated combined feed streams exit the two compartments of the shell side through the shell side outlet nozzles for each compartment.
- the two pre-heated streams are sent to a charge heater to be further heated to the inlet temperature of the reaction zone.
- the heated streams are sent from the charge heater to the reaction zone where the reaction occurs.
- the combined heat exchanger scheme is more energy efficient and requires fewer heat exchangers than the separate heat exchanger scheme.
- the split shell and tube heat exchanger allows a combined feed heat exchanger scheme when the number of charge heater passes is two or more.
- a hydrogen rich gaseous hydrocarbon stream can be mixed with the feed stream after the feed stream is divided. Alternatively, it could be mixed with the feed stream after the feed stream is divided.
- the heated streams from the charge heater can be combined before they are introduced into the reaction zone. Alternatively, they can be introduced into the reaction zone separately.
- More than one split shell and tube heat exchanger could be used in the process.
- two or more heat exchangers could be used.
- the feed stream will be divided into two (or more) streams for each heat exchanger.
- the number of feed streams per heat exchanger depends on the number of compartments in each heat exchanger.
- Fig. 2 illustrates one embodiment of a shell and tube heat exchanger 200.
- the shell and tube heat exchanger 200 includes a shell 205 and tubes 210.
- the shell 205 has a separation plate 215 which divides the shell 205 into two separate compartments 220, 225.
- feed inlet 230 and a feed outlet 235 for compartment 220 There is a feed inlet 230 and a feed outlet 235 for compartment 220, and a feed inlet 240 and a feed outlet 245 for compartment 225.
- One portion of the feed flows through compartment 220 from the feed inlet 230 to the feed outlet 235, and another portion flows through compartment 225 from the feed inlet 240 to the feed outlet 245.
- reactor effluent inlet 250 There is a reactor effluent inlet 250 and a reactor effluent outlet 255.
- the reactor effluent inlet 250 is in fluid communication with the tube inlets 260.
- the reactor effluent outlet 255 is in fluid communication with the tube outlets 265.
- the reactor effluent flows from the reactor effluent inlet 250 into the tube inlets 260 through the tubes 210 to the tube outlets 265 and out though the reactor effluent outlet 255.
- a plate 270 separates the tube inlets 260 from the tube outlets 265.
- the tubes 210 are U-shaped, and the reactor effluent inlet 250 and reactor effluent outlet 255 are at the same end of the shell.
- reactor effluent inlet 250 and reactor effluent outlet 255 are at the same end of the shell 205 as the feed outlets 235, 245 for compartments 220, 225.
- Compartments 220, 225 have at least one baffle 275. Typically, there are at least two baffles 275 in each compartment 220, 225.
- the baffles 275 fill the space around the tubes 210 with an opening 280 for the feed to flow around the baffles 275.
- the baffles 275 are typically arranged so that the feed flows over one baffle 275 and under the next in an S-shaped path to provide maximum heat exchange of the feed with the effluent from the reaction zone flowing through the tubes 210.
- Fig. 3 is an illustration of a process 300 for heating a feed 305.
- the feed stream 305 is split into two portions 305A and 305B.
- a gas stream 310 is also split into two portions 310A and 310B.
- the feed portions 305A and 305 B are mixed with the gas portions 310A and 310B to form combined feeds 315A and 315B.
- Combined feeds 315A and 315B are sent to a shell and tube heat exchanger 320 with a split shell such as the one illustrated in Fig. 2 .
- the effluent 325 from reaction zone 330 is used to pre-heat the combined feeds 315A and 315B.
- Pre-heated combined feeds 335A and 335B are sent to the same charge heater 340 for further heating. Heated combined feeds 345A and 345B are then combined into stream 350 and sent to the reaction zone 330, such as a hydro processing reaction zone.
- the effluent 325 from the reaction zone 330 is sent to the split shell heat exchanger 320 to heat the combined feeds 315A and 315B.
- the effluent 355 from the shell and tube heat exchanger 320 with the split shell can be sent to a downstream separator (not shown) for further separation between the gas and the liquid.
- Fig. 4 is another illustration of a process 400 in which two shell and tube heat exchangers 420A and 420B with split shells are used to heat a feed 405.
- the feed 405 is split into four portions 405A, 405B, 405C, and 405D.
- a gas 410 is also split into four portions 410A, 410B, 410C, and 410D.
- the feed portions 405A, 405B, 405C, and 405D are mixed with the gas portions 410A, 410B, 410C, and 410D to form combined feed 415A, 415B, 415C, and 415D.
- Combined feeds 415A, 415B, 415C, and 415D are sent to the shell and tube heat exchangers 420A and 420B with the split shells.
- the effluent 425 from reaction zone 430 is used to pre-heat the combined feeds 415A, 415B, 415C, and 415D in the shell and tube heat exchangers 420A and 420B with the split shells.
- Pre-heated combined feeds 435A, 435B, 435C, and 435D are sent to the same charge heater 440 for further heating. Heated combined feeds 445A, 445B, 445C, and 445D are then combined into stream 450 and sent to reaction zone 430, such as a hydroprocessing reaction zone.
- reaction zone 430 such as a hydroprocessing reaction zone.
- the effluent 425 from reaction zone 430 is sent to the split shell heat exchangers 420A and 420B to heat the combined feeds 415A, 415B, 415C, and 415D.
- the effluent 455 from the shell and tube heat exchangers 420A and 420B with the split shells can be sent to a downstream separator (not shown) for further separation between the gas and the liquid.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Description
- Traditionally, in hydroprocessing units such as kerosene, diesel, gas oil, resid hydrotreating and hydrocracking units, hydrogen rich recycle gas and fresh hydrocarbon feed are preheated in a series of heat exchangers utilizing heat available from the reactor effluent. The hot hydrocarbon feed and recycle gas are mixed together to form a combined feed stream at the inlet of the charge heater. The charge heater provides the necessary heat to the combined stream to obtain the desired reactor inlet temperature. This particular flow scheme is known as a separate heat exchanger scheme. The separate heat exchanger flow scheme is used for units that require more than two passes for the charge heater. This flow scheme increases the equipment count and required plot space.
-
Fig. 1 is an illustration of one embodiment of an arrangement for pre-heating a fresh hydrocarbon feed and hydrogen rich recycle gas using the reactor effluent. - The
hydrocarbon feed 105 is pre-heated in first reactor effluent-feed heat exchanger 110 and second reactor effluent-feed heat exchanger 115 to form pre-heatedhydrocarbon feed stream 120. - The hydrogen
rich recycle gas 125 is pre-heated in first reactor effluent-recyclegas heat exchanger 130, second reactor effluent-recyclegas heat exchanger 135, and third reactor effluent-recyclegas heat exchanger 140 to form pre-heatedrecycle gas stream 145. - Pre-heated
hydrocarbon feed stream 120 and pre-heatedrecycle gas stream 145 are combined to form pre-heated combinedfeed stream 150. Pre-heated combinedfeed stream 150 is heated incharge heater 155 to form heatedfeed stream 160. - Heated
feed stream 160 is sent toreactor 165. Thereactor effluent stream 170 fromreactor 165 is successively sent to third reactor effluent-recyclegas heat exchanger 140, second reactor effluent-feed heat exchanger 115, second reactor effluent-recyclegas heat exchanger 135, first reactor effluent-feed heat exchanger 110, and first reactor effluent-recyclegas heat exchanger 130. - The cooled
reactor effluent stream 175 can then be sent for separation between the gas and the liquid (not shown). - The multiple heat exchangers (five in this example) increase the equipment cost and the space required. Therefore, there is a need for a heat exchanger design which allows the use of a single exchanger train for the scheme which requires more than two heater passes.
- One aspect of the invention is a shell and tube heat exchanger which reduces the equipment count, capital cost, and plot space requirement significantly. In one embodiment, the shell and tube heat exchanger includes a shell side having a separation plate dividing the shell into at least two compartments, each of the compartments having a feed inlet and a feed outlet; and a tube side comprising a plurality of tubes in the shell, at least one tube in each compartment, and the tube side having an effluent inlet and an effluent outlet. at the same end of the shell and separated by a plate, and whereby the tubes are U-shaped.
- Another aspect of the invention is method of heating a feed and gas stream for a reaction zone using reactor effluent. In one embodiment, the method includes providing a shell and tube heat exchanger as described. The feed stream is divided into at least two portions. The two portions of the feed stream are passed from the feed inlets to the feed outlets of each compartment, and the reactor effluent is passed from the effluent inlet to the effluent outlet to pre-heat the two portions of the feed stream. The two pre-heated portions of the feed stream are heated in a charge heater. The two heated portions of the feed stream from the charge heater are introduced into the reaction zone.
-
-
Fig. 1 is an illustration of a prior art separate heat exchanger configuration for pre-heating a feed and hydrogen rich recycle gas using reactor effluent. -
Fig. 2 is an illustration of one embodiment of a shell and tube heat exchanger of the present invention. -
Fig. 3 is an illustration of one embodiment of a configuration for pre-heating a combined feed stream using reactor effluent and employing the shell and tube heat exchanger of the present invention for a two charge heater pass configuration. -
Fig. 4 is an illustration of another embodiment of a configuration for pre-heating a combined feed stream using reactor effluent and employing the shell and tube heat exchanger of the present invention for a four charge heater pass configuration. - The shell and tube heat exchanger has a split shell design. The shell side has a separation plate dividing the shell into at least two separate compartments. Each of the compartments has a feed inlet and a feed outlet. The tube side has a plurality of tubes, and there is at least one tube in each compartment. The tube side has an effluent inlet and an effluent outlet. The feed inlet, feed outlet, effluent inlet, and effluent outlet are typically nozzles.
- Typically, the compartments are substantially equal in size (for example, within ±10%).
- In some embodiments, the shell includes at least one baffle. Typically, each compartment contains at least one baffle. There are typically two or more baffles in each compartment. The baffles are typically arranged to create turbulence for efficient indirect heat transfer between the tube side reactor effluent stream and the shell side combined feed stream. For example, one baffle could contact the bottom (or one side) of the compartment leaving an opening at the top (or opposite side) of the compartment, and the next baffle could contact the top (or the opposite side) leaving an opening at the bottom (or the first side).
- The shell, tubes, separation plate, and baffles can be made of any suitable material.
- In some embodiments, the shell side inlet and outlet are at opposite ends of the shell. In some embodiments, the tube side inlet and outlet are at the same end of the exchanger.
- In some embodiments, the tube side inlet and outlet are at the same end of the exchanger as the feed outlet. The tubes are U-shaped tubes.
- Other arrangements of feed inlets and outlets, effluent inlet and outlet, and tube shape could be used, as would be understood by those of skill in the art.
- Typically, there are the same numbers of tubes in each compartment so that the heat exchange is uniform in the compartments.
- The split shell and tube heat exchanger can be used to heat the feed stream entering a reaction zone, for example, a hydrotreating or hydrocracking zone. The feed stream can be heated using the effluent from the same reaction zone. Alternatively, the effluent from one reaction zone could be used to heat the feed for another reaction zone.
- In some embodiments, the feed stream can be a mixture of liquid hydrocarbons and hydrogen rich gaseous hydrocarbons. For example, the liquid hydrocarbon stream could be a fresh hydrocarbon feed stream, and the gaseous hydrocarbon feed stream could be a hydrogen rich recycle hydrocarbon stream.
- In these embodiments, the combined feed stream is split into two (or more) streams which enter the two (or more) compartments of the shell side of the heat exchanger through the feed stream inlets. The effluent from the reaction zone enters the tube side of the heat exchanger. The effluent can be a two phase mixture of liquid and gaseous hydrocarbons. The heat from the effluent is used to pre-heat the combined feed stream in the two compartments of the shell side. The pre-heated combined feed streams exit the two compartments of the shell side through the shell side outlet nozzles for each compartment.
- The two pre-heated streams are sent to a charge heater to be further heated to the inlet temperature of the reaction zone. The heated streams are sent from the charge heater to the reaction zone where the reaction occurs.
- The combined heat exchanger scheme is more energy efficient and requires fewer heat exchangers than the separate heat exchanger scheme. The split shell and tube heat exchanger allows a combined feed heat exchanger scheme when the number of charge heater passes is two or more.
- In some embodiments, a hydrogen rich gaseous hydrocarbon stream can be mixed with the feed stream after the feed stream is divided. Alternatively, it could be mixed with the feed stream after the feed stream is divided.
- The heated streams from the charge heater can be combined before they are introduced into the reaction zone. Alternatively, they can be introduced into the reaction zone separately.
- More than one split shell and tube heat exchanger could be used in the process. For example, two or more heat exchangers could be used. The feed stream will be divided into two (or more) streams for each heat exchanger. The number of feed streams per heat exchanger depends on the number of compartments in each heat exchanger.
-
Fig. 2 illustrates one embodiment of a shell andtube heat exchanger 200. The shell andtube heat exchanger 200 includes ashell 205 andtubes 210. Theshell 205 has aseparation plate 215 which divides theshell 205 into twoseparate compartments - There is a
feed inlet 230 and afeed outlet 235 forcompartment 220, and afeed inlet 240 and afeed outlet 245 forcompartment 225. One portion of the feed flows throughcompartment 220 from thefeed inlet 230 to thefeed outlet 235, and another portion flows throughcompartment 225 from thefeed inlet 240 to thefeed outlet 245. - There is a
reactor effluent inlet 250 and areactor effluent outlet 255. Thereactor effluent inlet 250 is in fluid communication with thetube inlets 260. Thereactor effluent outlet 255 is in fluid communication with thetube outlets 265. The reactor effluent flows from thereactor effluent inlet 250 into thetube inlets 260 through thetubes 210 to thetube outlets 265 and out though thereactor effluent outlet 255. Aplate 270 separates thetube inlets 260 from thetube outlets 265. - As illustrated, the
tubes 210 are U-shaped, and thereactor effluent inlet 250 andreactor effluent outlet 255 are at the same end of the shell. - Also as illustrated, the
reactor effluent inlet 250 andreactor effluent outlet 255 are at the same end of theshell 205 as thefeed outlets compartments -
Compartments baffle 275. Typically, there are at least twobaffles 275 in eachcompartment baffles 275 fill the space around thetubes 210 with anopening 280 for the feed to flow around thebaffles 275. Thebaffles 275 are typically arranged so that the feed flows over onebaffle 275 and under the next in an S-shaped path to provide maximum heat exchange of the feed with the effluent from the reaction zone flowing through thetubes 210. -
Fig. 3 is an illustration of aprocess 300 for heating afeed 305. Thefeed stream 305 is split into twoportions gas stream 310 is also split into twoportions feed portions gas portions feeds - Combined feeds 315A and 315B are sent to a shell and
tube heat exchanger 320 with a split shell such as the one illustrated inFig. 2 . The effluent 325 fromreaction zone 330 is used to pre-heat the combined feeds 315A and 315B. - Pre-heated
combined feeds same charge heater 340 for further heating. Heatedcombined feeds stream 350 and sent to thereaction zone 330, such as a hydro processing reaction zone. The effluent 325 from thereaction zone 330 is sent to the splitshell heat exchanger 320 to heat the combined feeds 315A and 315B. The effluent 355 from the shell andtube heat exchanger 320 with the split shell can be sent to a downstream separator (not shown) for further separation between the gas and the liquid. -
Fig. 4 is another illustration of aprocess 400 in which two shell andtube heat exchangers feed 405. Thefeed 405 is split into fourportions gas 410 is also split into fourportions feed portions gas portions feed - Combined feeds 415A, 415B, 415C, and 415D are sent to the shell and
tube heat exchangers reaction zone 430 is used to pre-heat the combined feeds 415A, 415B, 415C, and 415D in the shell andtube heat exchangers - Pre-heated
combined feeds same charge heater 440 for further heating. Heatedcombined feeds stream 450 and sent toreaction zone 430, such as a hydroprocessing reaction zone. The effluent 425 fromreaction zone 430 is sent to the splitshell heat exchangers tube heat exchangers - Without further elaboration, it is believed that using the preceding description that one skilled in the art can utilize the present invention to its fullest extent and easily ascertain the essential characteristics of this invention, without departing from the scope thereof, to make various changes and modifications of the invention and to adapt it to various usages and conditions. The preceding preferred specific embodiments are, therefore, to be construed as merely illustrative, and not limiting the remainder of the disclosure in any way whatsoever, and that it is intended to cover various modifications and equivalent arrangements included within the scope of the appended claims.
- In the foregoing, all temperatures are set forth in degrees Celsius and, all parts and percentages are by weight, unless otherwise indicated.
Claims (10)
- A shell and tube heat exchanger (200) comprising:a shell side having a separation plate (215) dividing the shell (205) into at least two compartments (220, 225), each of the compartments having a feed inlet (230, 240) and a feed outlet (235, 245); anda tube side comprising a plurality of tubes (210) in the shell (205), at least one tube (210) in each compartment, the tube side having an effluent inlet (250) and an effluent outlet (255);wherein the effluent inlet (250) is in fluid communication with the tube inlets (260) and the effluent outlet (255) is in fluid communication with the tube outlets (265); and wherein a plate (270) separates the tube inlets (260) from the tube outlets (265); and wherein the tubes (210) are U-shaped, and the effluent inlet (250) and effluent outlet (255) are at the same end of the shell.
- The shell and tube heat exchanger of claim 1 further comprising at least one baffle (275) in the shell (205).
- The shell and tube heat exchanger of any of claims 1-2 wherein at least one of: the feed inlet (230, 240) of at least one compartment comprises a nozzle; the feed outlet (235, 245) of at least one compartment comprises a nozzle; the effluent inlet (250) of the tube side comprises a nozzle; and the effluent outlet (255) of the tube side comprises a nozzle.
- The shell and tube heat exchanger of any of claims 1-2 wherein the feed inlets (230, 240) of each compartment are at a first end of the shell (205) and the feed outlets (235, 245) of each compartment are at a second end of the shell (205).
- The shell and tube heat exchanger of any of claims 1-2 wherein the effluent inlet (250) and the effluent outlet (255) are at the same end of the shell (205).
- The shell and tube heat exchanger of claim 5 wherein the feed outlets (235, 245) of each compartment are at the same end of the shell (205) as the effluent inlet (250) and the effluent outlet (255).
- A method of heating a feed stream for a reaction zone using reactor effluent comprising:
providing a shell and tube heat exchanger (320) comprising:a shell side having a separation plate (215) dividing the shell (205) into at least two compartments (220, 225), each of the compartments having a feed inlet (230, 240) and a feed outlet (235, 245); anda tube side comprising a plurality of tubes (210) in the shell (205), at least one tube (210) in each compartment, the tube side having an effluent inlet (250) and an effluent outlet (255);wherein the effluent inlet (250) is in fluid communication with the tube inlets (260) and the effluent outlet (255) is in fluid communication with the tube outlets (265);wherein the reactor effluent flows from the effluent inlet (250) into the tube inlets (260) through the tubes (210) to the tube outlets (265) and out though the effluent outlet (255); andwherein a plate (270) separates the tube inlets (260) from the tube outlets (265); andwherein the tubes (210) are U-shaped, and the effluent inlet (250) and effluent outlet (255) are at the same end of the shell;dividing the feed stream (305) into at least two portions (305A, 305B);passing the two portions (305A, 305B) of the feed stream (305) from the feed inlets (230, 240) to the feed outlets (235, 245) of each compartment and passing the reactor effluent (325) from the effluent inlet (250) to the effluent outlet (255) to pre-heat the two portions (305A, 305B) of the feed stream (305);heating the two pre-heated portions (335A, 335B) of the feed stream (305) in a charge heater (340); andintroducing the two heated portions (345A, 345B) of the feed stream (305) from the charge heater (340) into the reaction zone (330). - The method of claim 7 further comprising mixing a hydrogen rich gaseous hydrocarbon stream (310) with the feed stream (305).
- The method of any of claims 7-8 wherein the reactor effluent (325) comprises a liquid hydrocarbon phase and a gaseous hydrocarbon phase.
- The method of any of claims 7-8 wherein the two heated portions (345A, 345B) of the feed stream (305) from the charge heater (340) are combined before introducing the two heated portions (345A, 345B) of the feed stream (305) from the charge heater (340) into the reaction zone (330).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/635,446 US20160258690A1 (en) | 2015-03-02 | 2015-03-02 | Shell and tube heat exchanger with split shell and method of using |
PCT/US2016/019683 WO2016140868A1 (en) | 2015-03-02 | 2016-02-26 | Shell and tube heat exchanger |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3265735A1 EP3265735A1 (en) | 2018-01-10 |
EP3265735A4 EP3265735A4 (en) | 2018-08-01 |
EP3265735B1 true EP3265735B1 (en) | 2020-04-15 |
Family
ID=56848413
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16759296.3A Not-in-force EP3265735B1 (en) | 2015-03-02 | 2016-02-26 | Shell and tube heat exchanger |
Country Status (4)
Country | Link |
---|---|
US (1) | US20160258690A1 (en) |
EP (1) | EP3265735B1 (en) |
CN (1) | CN107250703A (en) |
WO (1) | WO2016140868A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10436525B2 (en) * | 2016-05-12 | 2019-10-08 | Golden Renewable Energy, LLC | Cyclonic cooling system |
CN113260601B (en) * | 2018-12-12 | 2025-03-28 | 沙特基础全球技术有限公司 | Cyclopentadiene dimerization using shell and tube heat exchangers |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2340138A (en) * | 1941-12-31 | 1944-01-25 | Lummus Co | Heat exchanger |
US2819882A (en) * | 1953-10-01 | 1958-01-14 | Westinghouse Electric Corp | Heat exchange apparatus |
AU529228B2 (en) * | 1977-07-13 | 1983-06-02 | Nippon Shokubai Kagaku Kogyo Co. Ltd. | Catalytic vapour phase oxidation |
SU920346A1 (en) * | 1978-12-13 | 1982-04-15 | Производственное объединение "Красный котельщик" | Condenser |
DE3302304A1 (en) * | 1983-01-25 | 1984-07-26 | Borsig Gmbh, 1000 Berlin | HEAT EXCHANGER FOR COOLING HOT GASES, ESPECIALLY FROM THE AMMONIA SYNTHESIS |
DE4431957A1 (en) * | 1994-09-08 | 1995-03-16 | Basf Ag | Process for the catalytic gas-phase oxidation of propene to acrolein |
US6276442B1 (en) * | 1998-06-02 | 2001-08-21 | Electric Boat Corporation | Combined condenser/heat exchanger |
US7384539B2 (en) * | 2004-07-28 | 2008-06-10 | Conocophillips Company | Optimized preheating of hydrogen/hydrocarbon feed streams |
-
2015
- 2015-03-02 US US14/635,446 patent/US20160258690A1/en not_active Abandoned
-
2016
- 2016-02-26 WO PCT/US2016/019683 patent/WO2016140868A1/en active Application Filing
- 2016-02-26 CN CN201680011829.9A patent/CN107250703A/en active Pending
- 2016-02-26 EP EP16759296.3A patent/EP3265735B1/en not_active Not-in-force
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
US20160258690A1 (en) | 2016-09-08 |
WO2016140868A1 (en) | 2016-09-09 |
EP3265735A1 (en) | 2018-01-10 |
EP3265735A4 (en) | 2018-08-01 |
CN107250703A (en) | 2017-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10267574B2 (en) | Heat exchanger | |
US10350566B2 (en) | Reactor apparatus for dehydrogenating a carrier medium | |
CN110267912B (en) | A scalable heat exchanger reborner for synthesis gas production | |
CN107001955A (en) | Thermal cracking crude oil and heavy feedstocks are to generate alkene in pyrolysis reactor | |
EP3265735B1 (en) | Shell and tube heat exchanger | |
EP3160632B1 (en) | Steam methane reformer system and method of performing a steam methane reforming process | |
CN104245891A (en) | Steam cracking process and system with integral vapor-liquid separation | |
TW200530390A (en) | Cracking furnace | |
CN108369030B (en) | Combustion heater apparatus and method of selecting arrangement form of apparatus | |
US10982905B2 (en) | Separating device for coiled heat exchangers for separating a gaseous phase from a liquid phase of a two-phase medium conveyed on the jacket side | |
NO116715B (en) | ||
CN206069784U (en) | A kind of carbon five raffinate oil and coker gasoline mixed hydrogenation system | |
US7384539B2 (en) | Optimized preheating of hydrogen/hydrocarbon feed streams | |
US20130274531A1 (en) | Convection zone of a cracking furnace | |
WO2011134630A1 (en) | Heat exchanger for rapidly heating and cooling fluids | |
US7204966B2 (en) | Method and apparatus for improved fired heaters | |
WO2019210239A1 (en) | Process and apparatus for a convection charge heater | |
US10272406B2 (en) | Reactor and heater configuration synergies in paraffin dehydrogenation process | |
US2114544A (en) | Thermal decomposition of hydrocarbons | |
EP3153464A1 (en) | Steam reformer for the production of synthesis gas | |
US20250136531A1 (en) | Heating integration with fired heaters | |
US2094913A (en) | Heating of fluids | |
US11105500B2 (en) | Film temperature optimizer for fired process heaters | |
KR101647237B1 (en) | Heater for a hydrocarbon stream | |
RU2769704C2 (en) | Heat-removing catalyst cluster and tube design |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20170817 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20180628 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C10G 47/00 20060101ALI20180622BHEP Ipc: F28D 7/06 20060101AFI20180622BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190624 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTC | Intention to grant announced (deleted) | ||
INTG | Intention to grant announced |
Effective date: 20191113 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602016034101 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1257808 Country of ref document: AT Kind code of ref document: T Effective date: 20200515 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20200415 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200817 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200716 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200715 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200815 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1257808 Country of ref document: AT Kind code of ref document: T Effective date: 20200415 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200715 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602016034101 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 |
|
26N | No opposition filed |
Effective date: 20210118 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20210223 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20210225 Year of fee payment: 6 Ref country code: SE Payment date: 20210219 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20210226 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210228 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210228 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210226 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210228 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602016034101 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220227 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20160226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 |