[go: up one dir, main page]

EP3257923B1 - Automatic dishwashing detergent composition - Google Patents

Automatic dishwashing detergent composition Download PDF

Info

Publication number
EP3257923B1
EP3257923B1 EP16175139.1A EP16175139A EP3257923B1 EP 3257923 B1 EP3257923 B1 EP 3257923B1 EP 16175139 A EP16175139 A EP 16175139A EP 3257923 B1 EP3257923 B1 EP 3257923B1
Authority
EP
European Patent Office
Prior art keywords
composition
weight
surfactant
acid
composition according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16175139.1A
Other languages
German (de)
French (fr)
Other versions
EP3257923A1 (en
Inventor
Lindsay Suzanne Bewick
Alan Thomas Brooker
Philip Frank Souter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Priority to EP16175139.1A priority Critical patent/EP3257923B1/en
Priority to US15/619,563 priority patent/US10214707B2/en
Priority to JP2017117691A priority patent/JP2018028056A/en
Publication of EP3257923A1 publication Critical patent/EP3257923A1/en
Priority to JP2019153091A priority patent/JP2019214738A/en
Application granted granted Critical
Publication of EP3257923B1 publication Critical patent/EP3257923B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/008Polymeric surface-active agents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/74Carboxylates or sulfonates esters of polyoxyalkylene glycols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/825Mixtures of compounds all of which are non-ionic
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/04Detergent materials or soaps characterised by their shape or physical properties combined with or containing other objects
    • C11D17/041Compositions releasably affixed on a substrate or incorporated into a dispensing means
    • C11D17/042Water soluble or water disintegrable containers or substrates containing cleaning compositions or additives for cleaning compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/04Detergent materials or soaps characterised by their shape or physical properties combined with or containing other objects
    • C11D17/041Compositions releasably affixed on a substrate or incorporated into a dispensing means
    • C11D17/042Water soluble or water disintegrable containers or substrates containing cleaning compositions or additives for cleaning compositions
    • C11D17/043Liquid or thixotropic (gel) compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/04Detergent materials or soaps characterised by their shape or physical properties combined with or containing other objects
    • C11D17/041Compositions releasably affixed on a substrate or incorporated into a dispensing means
    • C11D17/042Water soluble or water disintegrable containers or substrates containing cleaning compositions or additives for cleaning compositions
    • C11D17/044Solid compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/04Detergent materials or soaps characterised by their shape or physical properties combined with or containing other objects
    • C11D17/041Compositions releasably affixed on a substrate or incorporated into a dispensing means
    • C11D17/042Water soluble or water disintegrable containers or substrates containing cleaning compositions or additives for cleaning compositions
    • C11D17/045Multi-compartment
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0047Other compounding ingredients characterised by their effect pH regulated compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2075Carboxylic acids-salts thereof
    • C11D3/2086Hydroxy carboxylic acids-salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/36Organic compounds containing phosphorus
    • C11D3/361Phosphonates, phosphinates or phosphonites
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3715Polyesters or polycarbonates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/378(Co)polymerised monomers containing sulfur, e.g. sulfonate
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/395Bleaching agents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/43Solvents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols

Definitions

  • the present invention is in the field of automatic dishwashing.
  • a composition that is able to provide effective cleaning and reduce or eliminate the spots that can be generated during automatic dishwashing.
  • the aim of a dishwashing composition is twofold: to clean soiled items and to leave them free of spots and shiny.
  • water-marks smears or spots are left behind.
  • These water-marks may be due to the evaporation of water from the surface leaving behind deposits of minerals which were present as dissolved solids in the water, for example calcium, magnesium and sodium ions and salts thereof or may be deposits of water-carried soils, or even remnants from a cleaning product, for example soap scum.
  • This problem is often exacerbated by some cleaning compositions which modify the surface during the cleaning process in such a way that after rinsing, water forms discrete droplets or beads on the surface instead of draining off.
  • the object of the present invention is to provide a dishwashing composition that leaves the washed items clean and free of spots and shiny, after the dishware has been exposed to a single cycle and to a plurality of cycles (multi-cycles).
  • an automatic dishwashing composition according to claim 1 that is able to provide effective cleaning and reduce or eliminate the spots that can be generated during automatic dishwashing.
  • ishware encompasses tableware, cookware and any food-holding/handling items used for cooking and/or eating.
  • Typical automatic dishwashing products are formulated such that a 1% solution of the product has a pH of between 9 and 11.5 at 25°C. This is because in order to effectively clean the items found within the dishwasher and minimize the number of residues found in the machine filter, an automatic dishwashing product is formulated at high pH in order to effectively hydrate and swell soils, provide a pH range in which bleaches are effective (the hydroperoxide anion is a valuable bleaching species, either on its own or as a means to perhydrolyze a bleach activator such as TAED) and a pH in which triglyceride grease soils are effectively hydrolyzed.
  • Such compositions are well optimized to provide cleaning and lack of film on the washes items but still the washed items can present spots that can connote lack of cleaning.
  • a neutral or acidic automatic dishwashing detergent composition comprising a specific esterified alkyl alkoxylated surfactant, the composition provides good cleaning and good finishing (including filming and spotting reduction) under single cycle and multi-cycles conditions.
  • neutral or acidic composition a composition that in a 1% solution in distilled water has a pH of from 5 to 7.5, preferably from 5.5 to 7, more preferably from 5.5 to 6.6.
  • the composition provides good cleaning and shine.
  • the detergent composition of the invention comprises an esterified alkyl alkoxylated of general formula (I) wherein
  • R has from 12 to 15, preferably 13 carbon atoms
  • R3 and R1 are hydrogen
  • 1 is from
  • l is 5
  • n is 1
  • m is from 15 to 25, preferably 22
  • R2 has from 6 to 14 carbon atoms.
  • the detergent composition of the invention is especially good in spotting reduction when the esterified alkyl akoxylated surfactant is as follows: R has from 12 to 15, preferably 13 carbon atoms, R3 is hydrogen, R1 is hydrogen, 1 is from, l is 5, n is 1, m is from 15 to 25, preferably 22 and R2 has from 6 to 14 carbon atoms.
  • the composition of the invention comprises less than 10%, preferably less than 5%, more preferably less than 1% and especially less than 0.1% by weight of the composition of builder wherein the builder is not a polycarboxylic acid or its salt.
  • Builders are cleaning actives widely used in automatic dishwashing detergents, in particular in alkaline compositions. Most, if not all, of the automatic dishwashing detergents available in the market are alkaline and comprise builders. Compounds that would act as builder under alkaline conditions would probably not be good builders under the low pH conditions of the composition of the invention. Builders can sequester calcium and other ions, from soils and from water greatly contributing to cleaning.
  • the downside of using builders is that they can precipitate and give rise to filming and spotting on the washed items.
  • the formulation approach used in the composition of the present invention overcomes the filming and spotting issues. The washed items, in particular, glass items are left clear and shiny.
  • the soils brought into the wash liquor during the automatic dishwashing process can greatly alter the pH of the wash liquor.
  • the pH of the wash liquor should not vary too much. This is achieved with the composition of the present invention by the presence of a pH regulator system that helps to keep the pH of the wash liquor within a desired range.
  • the composition of the invention comprises a pH regulator system.
  • the pH regulator system provides the right pH and maintains the pH of the wash liquor within a narrow range.
  • narrow range is herein meant that the pH changes by less than 2 pH units, more preferably by less than 1 pH unit.
  • the pH regulator system comprises an organic acid and its salt, preferably a carboxylic acid more preferably a polycarboxylic acid and its salt.
  • a specially preferred pH regulator system for use herein comprises citric acid and citrate.
  • composition further comprises non-ionic surfactant in addition to the esterified alkyl alkoxylated surfactant, especially when the non-ionic surfactant is selected from the group consisting of:
  • the non-ionic surfactant and the esterified alkyl alkoxylated surfactant are in a weight ratio of from about 1:1 to about 10:1, preferably from about 1:1 to about 4:1.
  • bleach presents in the composition of the invention provides a bleaching benefit much greater than expected. It has also been found that the bleaching occurs faster and at lower temperatures than using conventional alkaline detergents. Without being bound by theory, it is believed that the iron ions present into the wash liquor (brought by soils, such as tea, beef, etc ., impurities in detergent components and/or water) act as catalyst for the bleach to generate bleaching radicals. This effect is most pronounced when an iron chelant is used and it is believed that this is the case because the iron chelant binds the iron to generate metal catalysts in situ that when combined with the bleach are able to drive excellent bleach cleaning.
  • compositions comprising an iron chelant provide good cleaning of bleachable stains, even in the absence of bleach or with low level of bleach. Without being bound by theory, it is believed that the iron chelant removes heavy metals that form part of bleachable stains, thereby contributing to the loosening of the stain. The stain tends to detach itself from the soiled substrate. The cleaning can be further helped by the presence of a performance polymer, preferably a soil suspension polymer that would help with the suspension of the stain. Under the low pH conditions provided by the compositions of the invention, when the heavy metals are taken from the bleachable stain, the stain can become more particulate in nature and the polymer can help with suspension of the stain.
  • Preferred iron chelants for use herein have been found to be disodium catecholdisulfonate and hydroxypyridine N-Oxides, in particular disodium catecholdisulfonate.
  • the composition of the invention preferably comprises an amylase and a protease, more preferably the amylase is a low temperature amylase.
  • the composition further comprises a soil suspension polymer. It seems that the amylase, the esterified alkyl alkoxylated surfactant, the non-ionic surfactant and the soil suspension polymer work in synergy to provide very good cleaning and shine. Without being bound by theory it is believed that the non-ionic surfactant and the soil suspension polymer keep the soil, especially greasy soils, suspended leaving the starchy part of soils exposed this facilitate the access of the amylase to the starch.
  • Preferred soil suspension polymer for use herein is an alkoxylated polyalkyleneimine.
  • composition of the invention comprises a crystal growth inhibitor, in particular HEDP.
  • composition further comprises a dispersant polymer, more preferably a carboxylated/sulfaonted polymer that further contributes to filming reduction.
  • composition further comprises a surface-modification surface-substantive polymer that further contributes to spotting reduction.
  • composition of the invention comprises a non-ionic surfactant, more preferably a mixture of:
  • automatic dishwashing detergents comprising a mixture of these two surfactants (a) and b)) provide better spotting reduction than compositions comprising any of the two surfactants on their own.
  • compositions further comprise proteases.
  • proteases selected from the group consisting of:
  • proteases perform well in the low pH composition of the invention. Some of the proteases present in conventional alkaline detergents do not perform well at the pH of the composition of the invention. Also preferred are endoproteases, preferably those with an isoelectric point of from about 4 to about 9 and more preferably from about 4.5 to about 6.5. Compositions comprising proteases having these isoelectric points perform very well in the low pH compositions of the invention.
  • compositions according to the invention comprises:
  • bleaching should be performed under alkaline conditions.
  • the composition of the invention is the combination of the bleach with the enzyme, surfactant and soil suspending polymer what greatly contributes to the good cleaning performance.
  • the cleaning mechanism seems to be different from cleaning under alkaline conditions. Stains are removed by means of the surfactants in combination with the enzymes and the bleach.
  • the surfactant, the soil suspending polymer and the enzymes seem to contribute to the break down and suspension of the soils and the bleach seems to work on the broken down soil.
  • compositions of the invention is so effective that only a low level needs to be used in the dishwasher to provide outstanding results thereby allowing for very compact compositions.
  • the composition of the invention is preferably used in a weight per wash of from about 5 to about 25 grams, more preferably from about 7 to about 20 grams and especially from about 7 to about 15 grams.
  • the second aspect of the invention there is provided a method of reducing spotting on dishware in automatic dishwashing using the composition of the invention.
  • the method provides very good results even under multi-cycles conditions.
  • the composition according to the first aspect of the invention applies mutatis mutandis to the second and third aspects.
  • the present invention envisages a neutral or acidic automatic dishwashing detergent composition according to claim 1.
  • the composition provides good cleaning and shine (reduced filming and spotting).
  • the present invention also provides a method of reducing spotting in automatic dishwashing and the use of the composition of the invention to reduce spotting in automatic dishwashing
  • the detergent composition of the invention comprises an esterified alkyl alkoxylated of general formula (I) wherein
  • the radical R is a branched alkyl radical having 9 to 16, more preferably having 10 to 13, carbon atoms.
  • the degree of branching is preferably 1-3.
  • degree of branching is understood as meaning the number of methyl groups reduced by 1.
  • Ra, R1 independently of one another, are hydrogen, methyl and ethyl. If R3, R1 occur more frequently, then each can be chosen independently of a further R3 or R1. Thus Ra, R1 can occur blockwise or in random distribution.
  • R2 is preferably a branched or unbranched alkyl radical having 5 to 13 carbon atoms.
  • the average molecular weight is in a range from 950 to 2300 g/mol. Particularly preferably, the average molecular weight is in a range from 1200 to 1900 g/mol.
  • the esterified alkyl alkoxylated surfactant of the invention is a low foaming surfactant.
  • the esterified surfactant is stable in an alkaline environment.
  • the esterified surfactant has a melting point above 25°C, more preferably above 35°C.
  • esterified surfactant of the invention can be synthesized as described in US2008/0167215 , paragraphs [0036] to [0042].
  • composition of the invention has a neutral or acid pH. In addition to good cleaning and shine in automatic-dishwashing, this pH is quite gentle on the washed items, it is not as aggressive as commonly used alkaline compositions and therefore keep washed items such as glasses, patterned ware, etc looking new for longer.
  • composition of the invention can be in any physical form including solid, liquid and gel form.
  • the composition of the invention is very well suited to be presented in unit-dose form, in particular in the form of a multi-compartment pack, more in particular a multi-compartment pack comprising compartments with compositions in different physical forms, for example a compartment comprising a composition in solid form and another compartment comprising a composition in liquid form. Due to the efficacy of the composition, the packs can be compact.
  • composition of the invention are linked to the low pH of the wash liquor. It is not sufficient to provide a composition presenting a low pH when dissolved in deionised water what is important is that the low pH of the composition is maintained during the duration of the wash.
  • a pH regulator system capable of maintaining the low pH during the wash is needed.
  • the pH regulator system provides the right pH and it has buffering capacity to maintain this pH.
  • a pH regulator system can be created either by using a mixture of an acid and its anion, such as a citrate salt and citric acid, or by using a mixture of the acid form (citric acid) with a source of alkalinity (such as a hydroxide, bicarbonate or carbonate salt) or by using the anion (sodium citrate) with a source of acidity (such as sodium bisulphate).
  • Suitable pH regulator systems comprise mixtures of organic acids, preferably polycarboxylic acids and their salts, more preferably citric acid and citrate.
  • composition of the invention comprises from 15% to 55%, more preferably from about 10% to about 40% by weight of the composition of a pH regulator system, preferably selected from citric acid, citrate and mixtures thereof.
  • composition of the invention is substantially builder free, i.e. comprises less than 10%, preferably less than about 5%, more preferably less than about 1% and especially less than about 0.1% of builder by weight of the composition.
  • Builders are materials that sequester hardness ions, particularly calcium and/or magnesium. Strong calcium builders are species that are particularly effective at binding calcium and exhibit strong calcium binding constants, particularly at high pHs.
  • a strong calcium builder is a strong calcium builder.
  • a strong calcium builder can consist of a builder that when present at 0.5mM in a solution containing 0.05mM of Fe(III) and 2.5mM of Ca(II) will selectively bind the calcium ahead of the iron at one or more of pHs 6.5 or 8 or 10.5.
  • the builder when present at 0.5mM in a solution containing 0.05mM of Fe(III) and 2.5mM of Ca(II) will bind less than 50%, preferably less than 25%, more preferably less than 15%, more preferably less than 10%, more preferably less than 5%, more preferably less than 2% and specially less than 1% of the Fe(III) at one or preferably more of pHs 6.5 or 8 as measured at 25°C.
  • the builder will also preferably bind at least 0.25mM of the calcium, preferably at least 0.3mM, preferably at least 0.4mM, preferably at least 0.45mM, preferably at least 0.49mM of calcium at one or more of pHs 6.5 or 8 or 10.5 as measured at 25°C.
  • the most preferred strong calcium builders are those that will bind calcium with a molar ratio (builder:calcium) of less than 2.5:1, preferably less than 2:1, preferably less than 1.5:1 and most preferably as close as possible to 1:1, when equal quantities of calcium and builder are mixed at a concentration of 0.5mM at one or more of pHs 6.5 or 8 or 10.5 as measured at 25°C.
  • strong calcium builders examples include phosphate salts such as sodium tripolyphosphate, amino acid-based builders such as amino acid based compounds, in particular MGDA (methyl-glycine-diacetic acid), and salts and derivatives thereof, GLDA (glutamic-N,N-diacetic acid) and salts and derivatives thereof, IDS (iminodisuccinic acid) and salts and derivatives thereof, carboxy methyl inulin and salts and derivatives thereof and mixtures thereof.
  • phosphate salts such as sodium tripolyphosphate
  • amino acid-based builders such as amino acid based compounds, in particular MGDA (methyl-glycine-diacetic acid), and salts and derivatives thereof
  • GLDA glycolutamic-N,N-diacetic acid
  • IDS aminodisuccinic acid
  • suitable builders include amino acid based compound or a succinate based compound.
  • suitable builders are described in USP 6,426,229 .
  • suitable builders include; for example, aspartic acid-N-monoacetic acid (ASMA), aspartic acid- , -diacetic acid (ASDA), aspartic acid-N- monopropionic acid (ASMP), iminodisuccinic acid (IDA), N- (2-sulfomethyl) aspartic acid (SMAS), N- (2-sulfoethyl) aspartic acid (SEAS), N- (2- sulfomethyl) glutamic acid (SMGL), N- (2- sulfoethyl) glutamic acid (SEGL), N- methyliminodiacetic acid (MID A), alpha-alanine-N,N-diacetic acid (alpha -ALDA), serine- , -diacetic acid (SEDA), isoserine-N,N-diacetic acid (
  • Polycarboxylic acids and their salts do not act as builders at the pH of the present invention and therefore are not to be considered as builder within the meaning of the invention. Polycarboxylic acids and their salts are considered a pH regulator system within the meaning of the invention.
  • the composition of the invention preferably comprises an iron chelant at a level of from about 0.1% to about 5%, preferably from about 0.2% to about 2%, more preferably from about 0.4% to about 1% by weight of the composition.
  • chelation means the binding or complexation of a bi- or multi-dentate ligand.
  • ligands which are often organic compounds, are called chelants, chelators, chelating agents, and/or sequestering agent.
  • Chelating agents form multiple bonds with a single metal ion.
  • Chelants form soluble, complex molecules with certain metal ions, inactivating the ions so that they cannot normally react with other elements or ions to produce precipitates or scale.
  • the ligand forms a chelate complex with the substrate. The term is reserved for complexes in which the metal ion is bound to two or more atoms of the chelant.
  • composition of the present invention is preferably substantially free of builders and preferably comprises an iron chelant.
  • An iron chelant has a strong affinity (and high binding constant) for Fe(III).
  • chelants are to be distinguished from builders.
  • chelants are exclusively organic and can bind to metals through their N,P,O coordination sites or mixtures thereof while builders can be organic or inorganic and, when organic, generally bind to metals through their O coordination sites.
  • the chelants typically bind to transition metals much more strongly than to calcium and magnesium; that is to say, the ratio of their transition metal binding constants to their calcium/magnesium binding constants is very high.
  • builders herein exhibit much less selectivity for transition metal binding, the above-defined ratio being generally lower.
  • the chelant in the composition of the invention is a selective strong iron chelant that will preferentially bind with iron (III) versus calcium in a typical wash environment where calcium will be present in excess versus the iron, by a ratio of at least 10:1, preferably greater than 20:1.
  • the iron chelant when present at 0.5mM in a solution containing 0.05mM of Fe(III) and 2.5mM of Ca(II) will fully bind at least 50%, preferably at least 75%, more preferably at least 85%,more preferably at least 90%, more preferably at least 95%, more preferably at least 98% and specially at least 99% of the Fe(III) at one or preferably more of pHs 6.5 or 8 as measured at 25°C.
  • the amount of Fe(III) and Ca(II) bound by a builder or chelant is determined as explained herein below
  • the binding constants of the metal ion-ligand complex are obtained via reference tables if available, otherwise they are determined experimentally. A speciation modeling simulation can then be performed to quantitatively determine what metal ion-ligand complex will result under a specific set of conditions.
  • binding constant is a measurement of the equilibrium state of binding, such as binding between a metal ion and a ligand to form a complex.
  • the binding constant K bc 25°C and an ionic strength (I) of 0.1 mol/L
  • K bc ML x / M L x
  • [L] is the concentration of ligand in mol/L
  • x is the number of ligands that bond to the metal
  • [M] is the concentration of metal ion in mol/L
  • [ML x ] is the concentration of the metal/ligand complex in mol/L.
  • binding constants are obtained from the public database of the National Institute of Standards and Technology ("NIST"), R.M. Smith, and A.E. Martell, NIST Standard Reference Database 46, NIST Critically Selected Stability Constants of Metal Complexes: Version 8.0, May 2004, U.S. Department of Commerce, Technology Administration, NIST, Standard Reference Data Program, Gaithersburg, MD . If the binding constants for a specific ligand are not available in the database then they are measured experimentally.
  • a speciation modeling simulation can be performed to quantitatively determine what metal ion-ligand complex will result under a specific set of conditions including ligand concentrations, metal ion concentrations, pH, temperature and ionic strength.
  • NIST values at 25°C and an ionic strength (I) of 0.1 mol/L with sodium as the background electrolyte are used. If no value is listed in NIST the value is measured experimentally.
  • PHREEQC from the US Geological Survey, http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/. PHREEQC is used for speciation modeling simulation.
  • Iron chelants include those selected from siderophores, catechols, enterobactin, hydroxamates and hydroxypyridinones or hydroxypyridine N-Oxides.
  • Preferred chelants include anionic catechols, particularly catechol sulphonates, hydroxamates and hydroxypyridine N-Oxides.
  • Preferred strong chelants include hydroxypridine N-Oxide (HPNO), Octopirox, and/or Tiron (disodium 4,5-dihydroxy-1,3-benzenedisulfonate), with Tiron, HPNO and mixtures thereof as the most preferred for use in the composition of the invention.
  • HPNO within the context of this invention can be substituted or unsubstituted. Numerous potential and actual resonance structures and tautomers can exist. It is to be understood that a particular structure includes all of the reasonable resonance structures and tautomers.
  • composition of the invention preferably comprises from 1% to 40% by weight of the composition of bleach, more preferably from 5 to 15% by weight of the composition of bleach.
  • Socium percarbonate is the preferred bleach for use herein.
  • Inorganic and organic bleaches are suitable for use herein.
  • Inorganic bleaches include perhydrate salts such as perborate, percarbonate, perphosphate, persulfate and persilicate salts.
  • the inorganic perhydrate salts are normally the alkali metal salts.
  • the inorganic perhydrate salt may be included as the crystalline solid without additional protection.
  • the salt can be coated. Suitable coatings include sodium sulphate, sodium carbonate, sodium silicate and mixtures thereof. Said coatings can be applied as a mixture applied to the surface or sequentially in layers.
  • Alkali metal percarbonates particularly sodium percarbonate is the preferred bleach for use herein.
  • the percarbonate is most preferably incorporated into the products in a coated form which provides in-product stability.
  • Potassium peroxymonopersulfate is another inorganic perhydrate salt of utility herein.
  • Typical organic bleaches are organic peroxyacids, especially diperoxydodecanedioc acid, diperoxytetradecanedioc acid, and diperoxyhexadecanedioc acid. Mono- and diperazelaic acid, mono- and diperbrassylic acid are also suitable herein. Diacyl and Tetraacylperoxides, for instance dibenzoyl peroxide and dilauroyl peroxide, are other organic peroxides that can be used in the context of this invention.
  • organic bleaches include the peroxyacids, particular examples being the alkylperoxy acids and the arylperoxy acids.
  • Preferred representatives are (a) peroxybenzoic acid and its ring-substituted derivatives, such as alkylperoxybenzoic acids, but also peroxy- ⁇ -naphthoic acid and magnesium monoperphthalate, (b) the aliphatic or substituted aliphatic peroxy acids, such as peroxylauric acid, peroxystearic acid, ⁇ -phthalimidoperoxycaproic acid[phthaloiminoperoxyhexanoic acid (PAP)], o-carboxybenzamidoperoxycaproic acid, N-nonenylamidoperadipic acid and N-nonenylamidopersuccinates, and (c) aliphatic and araliphatic peroxydicarboxylic acids, such as 1,12-diperoxycarboxylic acid, 1,9-diperoxyazelaic acid, dip
  • Crystal growth inhibitors are materials that can bind to calcium carbonate crystals and prevent further growth of species such as aragonite and calcite.
  • crystal growth inhibitors examples include phosphonates, polyphosphonates, inulin derivatives and cyclic polycarboxylates.
  • Suitable crystal growth inhibitors may be selected from the group comprising HEDP (1-hydroxyethylidene 1,1-diphosphonic acid), carboxymethylinulin (CMI), tricarballylic acid and cyclic carboxylates.
  • CMI carboxymethylinulin
  • carboxylate covers both the anionic form and the protonated carboxylic acid form.
  • Cyclic carboxylates contain at least two, preferably three or preferably at least four carboxylate groups and the cyclic structure is based on either a mono- or bi-cyclic alkane or a heterocycle.
  • Suitable cyclic structures include cyclopropane, cyclobutane, cyclohexane or cyclopentane or cycloheptane, bicyclo-heptane or bicyclo-octane and/or tetrhaydrofuran.
  • One preferred crystal growth inhibitor is cyclopentane tetracarboxylate.
  • Cyclic carboxylates having at least 75%, preferably 100% of the carboxylate groups on the same side, or in the "cis" position of the 3D-structure of the cycle are preferred for use herein.
  • Preferred crystal growth inhibitors include HEDP, tricarballylic acid, tetrahydrofurantetracarboxylic acid (THFTCA) and cyclopentanetetracarboxylic acid (CPTCA).
  • THFTCA tetrahydrofurantetracarboxylic acid
  • CPTCA cyclopentanetetracarboxylic acid
  • the THFTCA is preferably in the 2c,3t,4t,5c-configuration, and the CPTCA in the cis,cis,cis,cis-configuration.
  • the crystal growth inhibitors are present preferably in a quantity from about 0.01 to about 10 %, particularly from about 0.02 to about 5 % and in particular from 0.05 to 3 % by weight of the composition.
  • the composition of the invention comprises from 0.1% to about 5%, preferably from about 0.2% to about 3% by weight of the composition of a performance polymer.
  • Suitable polymers include soil suspension polymers, preferably alkoxylated polyalkyleneimines, dispersant polymers, preferably carboxylated/sulfonated polymers, surface-modification surface-substantive polymers and mixtures thereof.
  • the performance polymers may be included to provide benefits in one or more of the areas of spotting and filming, dispersancy, cleaning and bleachable stain cleaning.
  • a preferred performance polymer for use herein, in terms of cleaning of bleachable stains enhancing is an alkoxylated polyalkyleneimine.
  • the alkoxylated polyalkyleneimine has a polyalkyleneimine backbone and alkoxy chains.
  • the polyalkyleneimine is polyethyleneimine.
  • the alkoxylated polyalkyleneimine is not quaternized.
  • the alkoxy chains have an average of from about 1 to about 50, more preferably from about 2 to about 40, more preferably from about 3 to about 30 and especially from about 3 to about 20 and even more especially from about 4 to about 15 alkoxy units preferably ethoxy units.
  • the alkoxy chains have an average of from about 0 to 30, more preferably from about 1 to about 12, especially from about 1 to about 10 and even more especially from about 1 to about 8 propoxy units.
  • alkoxylated polyethyleneimines wherein the alkoxy chains comprise a combination of ethoxy and propoxy chains, in particular polyethyleneimines comprising chains of from 4 to 20 ethoxy units and from 0 to 6 propoxy units.
  • the alkoxylated polyalkyleneimine is obtained from alkoxylation wherein the starting polyalkyleneimine has a weight-average molecular weight of from about 100 to about 60,000, preferably from about 200 to about 40,000, more preferably from about 300 to about 10,000 g/mol.
  • a preferred example is 600 g/mol polyethyleneimine core ethoxylated to 20 EO groups per NH and is available from BASF.
  • Suitable carboxylated/ sulfonated polymers described herein may have a weight average molecular weight of less than or equal to about 100,000 Da, preferably less than or equal to about 75,000 Da, more preferably less than or equal to about 50,000 Da, more preferably from about 3,000 Da to about 50,000, and specially from about 5,000 Da to about 45,000 Da.
  • Preferred carboxylic acid monomers include one or more of the following: acrylic acid, maleic acid, itaconic acid, methacrylic acid, or ethoxylate esters of acrylic acids, acrylic and methacrylic acids being more preferred.
  • Preferred sulfonated monomers include one or more of the following: sodium (meth) allyl sulfonate, vinyl sulfonate, sodium phenyl (meth) allyl ether sulfonate, or 2-acrylamido-methyl propane sulfonic acid.
  • Preferred non-ionic monomers include one or more of the following: methyl (meth) acrylate, ethyl (meth) acrylate, t-butyl (meth) acrylate, methyl (meth) acrylamide, ethyl (meth) acrylamide, t-butyl (meth) acrylamide, styrene, or ⁇ -methyl styrene.
  • all or some of the carboxylic or sulfonic acid groups can be present in neutralized form, i.e. the acidic hydrogen atom of the carboxylic and/or sulfonic acid group in some or all acid groups can be replaced with metal ions, preferably alkali metal ions and in particular with sodium ions.
  • Preferred commercial available polymers include: Alcosperse 240, Aquatreat AR 540 and Aquatreat MPS supplied by Alco Chemical; Acumer 3100, Acumer 2000, Acusol 587G and Acusol 588G supplied by Rohm & Haas; Goodrich K-798, K-775 and K-797 supplied by BF Goodrich; and ACP 1042 supplied by ISP technologies Inc.
  • Particularly preferred polymers are Acusol 587G and Acusol 588G supplied by Rohm & Haas, Versaflex SiTM (sold by Alco Chemical, Tennessee, USA) and those described in USP 5,308,532 and in WO 2005/090541 .
  • Suitable styrene co-polymers may be selected from the group comprising, styrene co-polymers with acrylic acid and optionally sulphonate groups, having average molecular weights in the range 1,000 - 50,000, or even 2,000 - 10,000 such as those supplied by Alco Chemical Tennessee, USA, under the tradenames Alcosperse® 729 and 747.
  • non-ionic surfactants Suitable for use herein are non-ionic surfactants, they can acts as anti-redeposition agents.
  • the composition comprises a non-ionic surfactant or a non-ionic surfactant system having a phase inversion temperature, as measured at a concentration of 1% in distilled water, between 40 and 70°C, preferably between 45 and 65°C.
  • a non-ionic surfactant system is meant herein a mixture of two or more non-ionic surfactants.
  • Preferred for use herein are non-ionic surfactant systems. They seem to have improved cleaning and finishing properties and stability in product than single non-ionic surfactants.
  • Phase inversion temperature is the temperature below which a surfactant, or a mixture thereof, partitions preferentially into the water phase as oil-swollen micelles and above which it partitions preferentially into the oil phase as water swollen inverted micelles. Phase inversion temperature can be determined visually by identifying at which temperature cloudiness occurs.
  • phase inversion temperature of a non-ionic surfactant or system can be determined as follows: a solution containing 1% of the corresponding surfactant or mixture by weight of the solution in distilled water is prepared. The solution is stirred gently before phase inversion temperature analysis to ensure that the process occurs in chemical equilibrium. The phase inversion temperature is taken in a thermostable bath by immersing the solutions in 75 mm sealed glass test tube. To ensure the absence of leakage, the test tube is weighed before and after phase inversion temperature measurement. The temperature is gradually increased at a rate of less than 1°C per minute, until the temperature reaches a few degrees below the pre-estimated phase inversion temperature. Phase inversion temperature is determined visually at the first sign of turbidity.
  • Suitable nonionic surfactants include: i) ethoxylated non-ionic surfactants prepared by the reaction of a monohydroxy alkanol or alkyphenol with 6 to 20 carbon atoms with preferably at least 12 moles particularly preferred at least 16 moles, and still more preferred at least 20 moles of ethylene oxide per mole of alcohol or alkylphenol; ii) alcohol alkoxylated surfactants having a from 6 to 20 carbon atoms and at least one ethoxy and propoxy group. Preferred for use herein are mixtures of surfactants i) and ii).
  • R 1 O[CH 2 CH(CH 3 )O] x [CH 2 CH 2 O] y [CH 2 CH(OH)R 2 ] (I) wherein R 1 is a linear or branched, aliphatic hydrocarbon radical having from 4 to 18 carbon atoms; R 2 is a linear or branched aliphatic hydrocarbon radical having from 2 to 26 carbon atoms; x is an integer having an average value of from 0.5 to 1.5, more preferably about 1; and y is an integer having a value of at least 15, more preferably at least 20.
  • non-ionic surfactants and/or system to use as anti-redeposition agents herein have a Draves wetting time of less than 360 seconds, preferably less than 200 seconds, more preferably less than 100 seconds and especially less than 60 seconds as measured by the Draves wetting method (standard method ISO 8022 using the following conditions; 3-g hook, 5-g cotton skein, 0.1% by weight aqueous solution at a temperature of 25°C).
  • Preferred non-ionic surfactants for use herein are selected from the group consisting of:
  • a mixture of a) and b) is especially preferred for use herein.
  • Amine oxides surfactants are also useful in the present invention as anti-redeposition surfactants include linear and branched compounds having the formula: wherein R 3 is selected from an alkyl, hydroxyalkyl, acylamidopropoyl and alkyl phenyl group, or mixtures thereof, containing from 8 to 26 carbon atoms, preferably 8 to 18 carbon atoms; R 4 is an alkylene or hydroxyalkylene group containing from 2 to 3 carbon atoms, preferably 2 carbon atoms, or mixtures thereof; x is from 0 to 5, preferably from 0 to 3; and each R 5 is an alkyl or hydroxyalkyl group containing from 1 to 3, preferably from 1 to 2 carbon atoms, or a polyethylene oxide group containing from 1 to 3, preferable 1, ethylene oxide groups.
  • the R 5 groups can be attached to each other, e.g., through an oxygen or nitrogen atom, to form a ring structure.
  • amine oxide surfactants in particular include C 10 -C 18 alkyl dimethyl amine oxides and C 8 -C 18 alkoxy ethyl dihydroxyethyl amine oxides.
  • examples of such materials include dimethyloctylamine oxide, diethyldecylamine oxide, bis-(2-hydroxyethyl)dodecylamine oxide, dimethyldodecylamine oxide, dipropyltetradecylamine oxide, methylethylhexadecylamine oxide, dodecylamidopropyl dimethylamine oxide, cetyl dimethylamine oxide, stearyl dimethylamine oxide, tallow dimethylamine oxide and dimethyl-2-hydroxyoctadecylamine oxide.
  • Preferred are C 10 -C 18 alkyl dimethylamine oxide, and C 10-18 acylamido alkyl dimethylamine oxide.
  • Non-ionic surfactants may be present in amounts from 0 to 20%, preferably from 1% to 15%, and most preferably from 2% to 12% by weight of the composition.
  • Anionic surfactants include, but are not limited to, those surface-active compounds that contain an organic hydrophobic group containing generally 8 to 22 carbon atoms or generally 8 to 18 carbon atoms in their molecular structure and at least one water-solubilizing group preferably selected from sulfonate, sulfate, and carboxylate so as to form a water-soluble compound.
  • the hydrophobic group will comprise a C8-C 22 alkyl, or acyl group.
  • Such surfactants are employed in the form of water-soluble salts and the salt-forming cation usually is selected from sodium, potassium, ammonium, magnesium and mono-, di- or tri-alkanolammonium, with the sodium cation being the usual one chosen.
  • the anionic surfactant can be a single surfactant or a mixture of anionic surfactants.
  • the anionic surfactant comprises a sulphate surfactant, more preferably a sulphate surfactant selected from the group consisting of alkyl sulphate, alkyl alkoxy sulphate and mixtures thereof.
  • Preferred alkyl alkoxy sulphates for use herein are alkyl ethoxy sulphates.
  • the alkyl ether sulphate surfactant has the general formula (I) having an average alkoxylation degree (n) of from about 0.1 to about 8, 0.2 to about 5, even more preferably from about 0.3 to about 4, even more preferably from about 0.8 to about 3.5 and especially from about 1 to about 3.
  • the alkoxy group (R 2 ) could be selected from ethoxy, propoxy, butoxy or even higher alkoxy groups and mixtures thereof. Preferably, the alkoxy group is ethoxy.
  • x1, x2 are the weights in grams of each alkyl ether sulphate surfactant of the mixture and alkoxylation degree is the number of alkoxy groups in each alkyl ether sulphate surfactant.
  • the hydrophobic alkyl group (R 1 ) can be linear or branched.
  • the alkyl ether sulphate surfactant to be used in the detergent of the present invention is a branched alkyl ether sulphate surfactant having a level of branching of from about 5% to about 40%, preferably from about 10% to about 35% and more preferably from about 20% to about 30%.
  • the branching group is an alkyl.
  • the alkyl is selected from methyl, ethyl, propyl, butyl, pentyl, cyclic alkyl groups and mixtures thereof.
  • Single or multiple alkyl branches could be present on the main hydrocarbyl chain of the starting alcohol(s) used to produce the alkyl ether sulpahte surfactant used in the detergent of the invention.
  • the branched alkyl ether sulphate surfactant can be a single sulphate surfactant or a mixture of sulphate surfactants.
  • the percentage of branching refers to the weight percentage of the hydrocarbyl chains that are branched in the original alcohol from which the sulphate surfactant is derived.
  • the anionic surfactant of this invention is not purely based on a linear alcohol, but has some alcohol content that contains a degree of branching. Without wishing to be bound by theory it is believed that branched surfactant drives stronger starch cleaning, particularly when used in combination with an ⁇ -amylase, based on its surface packing.
  • Alkyl ether sulphates are commercially available with a variety of chain lengths, ethoxylation and branching degrees, examples are those based on Neodol alcohols ex the Shell company, Lial - Isalchem and Safol ex the Sasol company, natural alcohols ex The Procter & Gamble Chemicals company.
  • the alkyl ether sulfate is present from about 0.05% to about 20%, preferably from about 0.1% to about 8%, more preferably from about 1% to about 6%, and most preferably from about 2% to about 5% by weight of the composition.
  • Suds suppressors suitable for use herein include an alkyl phosphate ester suds suppressor, a silicone suds suppressor, or combinations thereof. Suds suppressor technology and other defoaming agents useful herein are documented in " Defoaming, Theory and Industrial Applications,” Ed., P.R. Garrett, Marcel Dekker, N.Y., 1973 .
  • Suds suppressors are preferably included in the composition of the invention, especially when the composition comprises anionic surfactant.
  • the suds suppressor is included in the composition at a level of from about 0.0001% to about 10%, preferably from about 0.001% to about 5%, more preferably from about 0.01% to about 1.5% and especially from about 0.01% to about 0.5%, by weight of the composition.
  • a preferred suds suppressor is a silicone based suds suppressor.
  • Silicone suds suppressor technology and other defoaming agents useful herein are extensively documented in " Defoaming, Theory and Industrial Applications", Ed., P.R. Garrett, Marcel Dekker, N.Y., 1973, ISBN 0-8247-8770-6 . See especially the chapters entitled “Foam control in Detergent Products” (Ferch et al) and “Surfactant Antifoams” (Blease et al). See also U.S. Patents 3,933,672 and 4,136,045 .
  • a preferred silicone based suds suppressors is polydimethylsiloxanes having trimethylsilyl, or alternate end blocking units as the silicone.
  • a suds suppressor comprising 12% silicone/silica, 18% stearyl alcohol and 70% starch in granular form.
  • a suitable commercial source of the silicone active compounds is Dow Corning Corp. Silicone based suds suppressors are useful in that the silica works well to suppress the foam generated by the soils and surfactant
  • Another suitable silicone based suds suppressor comprises solid silica, a silicone fluid or a a silicone resin.
  • the silicone based suds suppressor can be in the form of a granule or a liquid.
  • Another silicone based suds suppressor comprises dimethylpolysiloxane, a hydrophilic polysiloxane compound having polyethylenoxy-propylenoxy group in the side chain, and a micro-powdery silica.
  • a phosphate ester suds suppressor may also be used.
  • Suitable alkyl phosphate esters contain from 16-20 carbon atoms.
  • Such phosphate ester suds suppressors may be monostearyl acid phosphate or monooleyl acid phosphate or salts thereof, preferably alkali metal salts.
  • Suitable suds suppressors are calcium precipitating fatty acid soaps.
  • fatty acid based soaps are not entirely free of such problems and the formulator will generally choose to minimize the content of potentially depositing antifoams in the instant composition.
  • composition of the invention comprises enzymes, more preferably amylases and proteases.
  • the relatedness between two amino acid sequences is described by the parameter "identity".
  • the alignment of two amino acid sequences is determined by using the Needle program from the EMBOSS package (http://emboss.org) version 2.8.0.
  • the Needle program implements the global alignment algorithm described in Needleman, S. B. and Wunsch, C. D. (1970) J. Mol. Biol. 48, 443-453 .
  • the substitution matrix used is BLOSUM62, gap opening penalty is 10, and gap extension penalty is 0.5.
  • invention sequence The degree of identity between an amino acid sequence of an enzyme used herein
  • foreign sequence is calculated as the number of exact matches in an alignment of the two sequences, divided by the length of the "invention sequence” or the length of the "foreign sequence", whichever is the shortest. The result is expressed in percent identity.
  • An exact match occurs when the "invention sequence” and the “foreign sequence” have identical amino acid residues in the same positions of the overlap.
  • the length of a sequence is the number of amino acid residues in the sequence.
  • Preferred proteases for use herein have an isoelectric point of from about 4 to about 9, preferably from about 4 to about 8, most preferably from about 4.5 to about 6.5. Proteases with this isoelectric point present good activity in the wash liquor provided by the composition of the invention.
  • isoelectric point refers to electrochemical properties of an enzyme such that the enzyme has a net charge of zero as calculated by the method described below.
  • the protease of the composition of the invention is an endoprotease, by "endoprotease” is herein understood a protease that breaks peptide bonds of non-terminal amino acids, in contrast with exoproteases that break peptide bonds from their end-pieces.
  • endoprotease a protease that breaks peptide bonds of non-terminal amino acids, in contrast with exoproteases that break peptide bonds from their end-pieces.
  • the isoelectric point (referred to as IEP or pI) of an enzyme as used herein refers to the theoretical isoelectric point as measured according to the online pI tool available from ExPASy server at the following web address: http://web.expasy.org/compute_pi/ The method used on this site is described in the below reference:
  • Metalloproteases can be derived from animals, plants, bacteria or fungi. Suitable metalloprotease can be selected from the group of neutral metalloproteases and Myxobacter metalloproteases. Suitable metalloproteases can include collagenases, hemorrhagic toxins from snake venoms and thermolysin from bacteria. Preferred thermolysin enzyme variants include an M4 peptidase, more preferably the thermolysin enzyme variant is a member of the PepSY ⁇ Peptidase_M4 ⁇ Peptidase_M4_C family.
  • Preferred metalloproteases include thermolysin, matrix metalloproteinases and those metalloproteases derived from Bacillus subtilis, Bacillus thermoproteolyticus, Geobacillus stearothermophilus or Geobacillus sp ., or Bacillus amyloliquefaciens, as described in US PA 2008/0293610A1 .
  • a specially preferred metalloprotease belongs to the family EC3.4.24.27.
  • metalloproteases are the thermolysin variants described in WO2014/71410 .
  • the metalloprotease is a variant of a parent protease, said parent protease having at least 50% or 60%, or 80%, or 85% or 90% or 95% or 96% or 97% or 98% or 99% or even 100% identity to SEQ ID NO: 3 of WO 2014/071410 including those with substitutions at one or more of the following sets of positions versus SEQ ID NO: 3 of WO 2014/071410 :
  • Another suitable metalloprotease is a variant of a parent protease, said parent protease having at least 60%, or 80%, or 85% or 90% or 95% or 96% or 97% or 98% or 99% or even 100% identity to SEQ ID NO:3 of US 2014/0315775 including those with substitutions at one or more of the following sets of positions versus SEQ ID NO:3 of US 2014/0315775 : Q45E, T59P, 566E, S129I, S129V, F130L, M138I, V190I, S199E, D220P, D220E, K211V, K214Q, G222C, M138L/D220P, F130L/D220P, S129I/D220P, V190I/D220P, M138L/V190I/D220P, S129I/V190I, S129V/V190I, S129V/V190I, S129V/D220P, S129I/F130L/D2
  • Especially preferred metalloproteases for use herein belong belong to EC classes EC 3.4.22 or EC3.4.24, more preferably they belong to EC classes EC3.4.22.2, EC3.4.24.28 or EC3.4.24.27.
  • the most preferred metalloprotease for use herein belong to EC3.4.24.27.
  • Suitable commercially available metalloprotease enzymes include those sold under the trade names Neutrase® by Novozymes A/S (Denmark), the Corolase® range including Corolase® 2TS, Corolase® N, Corolase® L10, Corolase® LAP and Corolase® 7089 from AB Enzymes, Protex 14L and Protex 15L from DuPont (Palo Alto, California), those sold as thermolysin from Sigma and the Thermoase range (PC10F and C100) and thermolysin enzyme from Amano enzymes.
  • composition of the invention preferably comprises from 0.001 to 2%, more preferably from 0.003 to 1%, more preferably from 0.007 to 0.3% and especially from 0.01 to 0.1% by weight of the composition of active protease.
  • Amylases for use herein are preferably low temperature amylases.
  • Compositions comprising low temperature amylases allow for a more energy efficient dishwashing processes without compromising in cleaning.
  • low temperature amylase is an amylase that demonstrates at least 1.2, preferably at least 1.5 and more preferably at least 2 times the relative activity of the reference amylase at 25°C.
  • the "reference amylase” is the wild-type amylase of Bacillus licheniformis, commercially available under the tradename of TermamylTM (Novozymes A/S).
  • “relative activity” is the fraction derived from dividing the activity of the enzyme at the temperature assayed versus its activity at its optimal temperature measured at a pH of 9.
  • Amylases include, for example, ⁇ -amylases obtained from Bacillus. Amylases of this invention preferably display some ⁇ -amylase activity. Preferably said amylases belong to EC Class 3.2.1.1.
  • Amylases for use herein are amylases possessing at least 60%, or 70%, or 80%, or 85%, or 90%, preferably 95%, more preferably 98%, even more preferably 99% and especially 100% identity, with those derived from Bacillus Licheniformis, Bacillus amyloliquefaciens, Bacillus sp. NCIB 12289, NCIB 12512, NCIB 12513, DSM 9375 ( US 7,153,818 ) DSM 12368, DSMZ no. 12649, KSM AP1378 ( WO 97/00324 ), KSM K36 or KSM K38 ( EP 1 ,022,334 ).
  • Suitable amylases include those derived from the sp. 707, sp. 722 or AA560 parent wild-types.
  • Preferred amylases include the variants of a parent amylase, said parent amylase having at least 60%, preferably 80%, more preferably 85%, more preferably 90%, more preferably 95%, more preferably 96%, more preferably 97%, more preferably 98%, more preferably 99% and specially 100% identity to SEQ ID NO:12 of WO2006/002643 .
  • the variant amylase preferably further comprises one or more substitutions and/or deletions in the following positions versus SEQ ID NO:12 of WO2006/002643 : 9, 26, 30, 33, 82, 37, 106, 118, 128, 133, 149, 150, 160, 178, 182, 186, 193, 195, 202, 203, 214, 231, 256, 257, 258, 269, 270, 272, 283, 295, 296, 298, 299, 303, 304, 305, 311, 314, 315, 318, 319, 320, 323, 339, 345, 361, 378, 383, 419, 421, 437, 441, 444, 445, 446, 447, 450, 458, 461, 471, 482, 484 and preferably the variant amylase comprises the deletions in one or both of the 183 and 184 positions.
  • Preferred amylases comprise one or both deletions in positions equivalent to positions 183 and 184 of SEQ ID NO:12 of WO2006/002643 .
  • Preferred commercially available amylases for use herein are STAINZYME®, STAINZYME PLUS®, STAINZYME ULTRA®, EVEREST® and NATALASE® (Novozymes A/S) and RAPIDASE, POWERASE® and the PREFERENZ S® series, including PREFERENZ S100® (DuPont).
  • composition of the invention preferably comprises from 0.001 to 2%, more preferably from 0.003 to 1%, more preferably from 0.007 to 0.3% and especially from 0.01 to 0.1% by weight of the composition of active amylase.
  • composition of the invention further comprises one or more enzymes selected from the group consisting of an ⁇ -amylase, a ⁇ -amylase, a pullulanase, a protease, a lipase, a cellulase, an oxidase, a phospholipase, a perhydrolase, a xylanase , a pectate lyase, a pectinase, a galacturanase, a hemicellulase, a xyloglucanase, a mannanase and a mixture thereof.
  • enzymes selected from the group consisting of an ⁇ -amylase, a ⁇ -amylase, a pullulanase, a protease, a lipase, a cellulase, an oxidase, a phospholipase, a perhydrolase, a xy
  • composition of the invention is suitable to be presented in unit-dose form.
  • Products in unit dose form include tablets, capsules, sachets, pouches, injection moulded containers, etc.
  • Preferred for use herein are tablets and detergents wrapped with a water-soluble film (including wrapped tablets, capsules, sachets, pouches) and injection moulded containers.
  • the water-soluble film is a polyvinyl alcohol, preferably comprising a bittering agent.
  • the detergent composition of the invention is preferably in the form of a water-soluble multi-compartment pack.
  • Preferred packs comprise at least two side-by-side compartments superposed onto another compartment. This disposition contributes to the compactness, robustness and strength of the pack and additionally, it minimises the amount of water-soluble packing material required. It only requires three pieces of material to form three compartments.
  • the robustness of the pack allows also for the use of very thin films (less than 150 micron, preferably less than 100 micron) without compromising the physical integrity of the pack.
  • the pack is also very easy to use because the compartments do not need to be folded to be used in machine dispensers of fixed geometry. At least two of the compartments of the pack contain two different compositions.
  • different compositions herein is meant compositions that differ in at least one ingredient.
  • At least one of the compartments contains a solid composition, preferably in powder form and another compartment an aqueous liquid composition
  • the compositions are preferably in a solid to liquid weight ratio of from about 20:1 to about 1:20, more preferably from about 18:1 to about 2:1 and even more preferably from about 15:1 to about 5:1.
  • This kind of pack is very versatile because it can accommodate compositions having a broad spectrum of values of solid:liquid ratio.
  • Particularly preferred have been found to be pouches having a high solid:liquid ratio because many of the detergent ingredients are most suitable for use in solid form, preferably in powder form.
  • the ratio solid:liquid defined herein refers to the relationship between the weight of all the solid compositions and the weight of all the liquid compositions in the pack.
  • the two side-by-side compartments contain liquid compositions, which can be the same but preferably are different and another compartment contains a solid composition, preferably in powder form, more preferably a densified powder.
  • the solid composition contributes to the strength and robustness of the pack.
  • the unit dose form products herein preferably have a square or rectangular base and a height of from about 1 to about 5 cm, more preferably from about 1 to about 4 cm.
  • the weight of the solid composition is from about 5 to about 20 grams, more preferably from about 10 to about 15 grams and the total weight of the liquid compositions is from about 0.5 to about 5 grams, more preferably from about 1.5 to about 4 grams.
  • At least two of the films which form different compartments have different solubility, under the same conditions, releasing the content of the compositions which they partially or totally envelope at different times.
  • Controlled release of the ingredients of a multi-compartment pouch can be achieved by modifying the thickness of the film and/or the solubility of the film material.
  • the solubility of the film material can be delayed by for example cross-linking the film as described in WO 02/102,955 at pages 17 and 18.
  • Other water-soluble films designed for rinse release are described in US 4,765,916 and US 4,972,017 .
  • Waxy coating (see WO 95/29982 ) of films can help with rinse release. pH controlled release means are described in WO 04/111178 , in particular amino-acetylated polysaccharide having selective degree of acetylation.
  • the dissolution of the liquid compartments can be delayed by modification of the liquid that is contained within the film.
  • anionic surfactants particularly anionic surfactant mixtures that pass through a highly structured phase (such as hexagonal or lamellar) upon addition of water retards the dissolution of the surfactant containing compartment.
  • one or more compartments comprise anionic surfactant and their release is delayed versus other compartments.
  • compositions of the invention are extremely useful for dosing elements to be used in an auto-dosing device.
  • the dosing elements comprising the composition of the present invention can be placed into a delivery cartridge as that described in WO 2007/052004 and WO 2007/0833141 .
  • the dosing elements can have an elongated shape and set into an array forming a delivery cartridge which is the refill for an auto-dosing dispensing device as described in case WO 2007/051989 .
  • the delivery cartridge is to be placed in an auto-dosing delivery device, such as that described in WO 2008/053191 .
  • Solid Composition 1 Ingredient wt % Methylglycine diacetic acid (Trilon® M) 50 Sodium carbonate 26 Sodium percarbonate 13 AcusolTM 588GF (sulfonated polymer supplied by DowChemical) 3 Protease granule (10% active) 2 Amylase granule (1.4% active) 2 Sodium 1-hydroxyethyidene-1,1-diphosphonate 1 Processing Aids, minors and fillers Up to 100 A 1% solution of Composition 1 in deionsed water at room temperature had a pH of 10.5 Solid composition 2 Ingredient wt% Sodium citrate 23 2-pyridinol-1-oxide 3 Citric acid 19 Sodium 1-hydroxyethyidene-1,1-diphosphonate 4 Sodium percarbonate 21 Protease granule (8.8% active) 4 Amylase granule (Trilon® M) 50 Sodium carbonate 26 Sodium percarbonate 13 AcusolTM 588GF (sulfonated polymer supplied by DowC
  • a dishwasher was loaded with the items as detailed above which were washed using Formulas A, B and C respectively.
  • the items were washed 5 times repetitively as detailed above with the same detergent and the items were then graded using an Image Analysis System for spot count.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Dispersion Chemistry (AREA)
  • Detergent Compositions (AREA)

Description

    TECHNICAL FIELD
  • The present invention is in the field of automatic dishwashing. In particular it relates to a composition that is able to provide effective cleaning and reduce or eliminate the spots that can be generated during automatic dishwashing.
  • BACKGROUND OF THE INVENTION
  • The aim of a dishwashing composition is twofold: to clean soiled items and to leave them free of spots and shiny. Typically when water dries from surfaces water-marks, smears or spots are left behind. These water-marks may be due to the evaporation of water from the surface leaving behind deposits of minerals which were present as dissolved solids in the water, for example calcium, magnesium and sodium ions and salts thereof or may be deposits of water-carried soils, or even remnants from a cleaning product, for example soap scum. This problem is often exacerbated by some cleaning compositions which modify the surface during the cleaning process in such a way that after rinsing, water forms discrete droplets or beads on the surface instead of draining off. These droplets or beads dry to leave noticeable spots or marks known as water-marks. This problem is particularly apparent on ceramic, steel, plastic, glass or painted surfaces. The problem is further exacerbated after the dishware is exposed multi-cycles, in some occasions the filming or spotting might not look bad when the dishware has been subjected to automatic dishwashing just once or a couple of times but it becomes worse after the dishware has been subjected to a large number of cycles.
  • Some automatic dishwashing compositions are disclosed in EP 2 333 039 , US 2015/275137 and WO 2014/071410 .
  • The object of the present invention is to provide a dishwashing composition that leaves the washed items clean and free of spots and shiny, after the dishware has been exposed to a single cycle and to a plurality of cycles (multi-cycles).
  • SUMMARY OF THE INVENTION
  • According to a first aspect of the invention there is provided an automatic dishwashing composition according to claim 1 that is able to provide effective cleaning and reduce or eliminate the spots that can be generated during automatic dishwashing.
  • For the purpose of this invention "dishware" encompasses tableware, cookware and any food-holding/handling items used for cooking and/or eating.
  • Typical automatic dishwashing products are formulated such that a 1% solution of the product has a pH of between 9 and 11.5 at 25°C. This is because in order to effectively clean the items found within the dishwasher and minimize the number of residues found in the machine filter, an automatic dishwashing product is formulated at high pH in order to effectively hydrate and swell soils, provide a pH range in which bleaches are effective (the hydroperoxide anion is a valuable bleaching species, either on its own or as a means to perhydrolyze a bleach activator such as TAED) and a pH in which triglyceride grease soils are effectively hydrolyzed. Such compositions are well optimized to provide cleaning and lack of film on the washes items but still the washed items can present spots that can connote lack of cleaning.
  • It has surprisingly been found that by formulating a neutral or acidic automatic dishwashing detergent composition comprising a specific esterified alkyl alkoxylated surfactant, the composition provides good cleaning and good finishing (including filming and spotting reduction) under single cycle and multi-cycles conditions.
  • By neutral or acidic composition is herein understood a composition that in a 1% solution in distilled water has a pH of from 5 to 7.5, preferably from 5.5 to 7, more preferably from 5.5 to 6.6. The composition provides good cleaning and shine.
  • The detergent composition of the invention comprises an esterified alkyl alkoxylated of general formula (I)
    Figure imgb0001
    wherein
    • R is a branched or unbranched alkyl radical having 8 to 16 carbon atoms, preferably from 10 to 16 and more preferably from 12 to 15;
    • R3, R1 independently of one another, are hydrogen or a branched or unbranched alkyl radical having 1 to 5 carbon atoms; preferably Ra and R1 are hydrogen
    • R2 is an unbranched alkyl radical having 5 to 17 carbon atoms; preferably from 6 to 14 carbon atoms
    • 1, n independently of one another, are a number from 1 to 5 and
    • m is a number from 13 to 35.
  • Preferably, R has from 12 to 15, preferably 13 carbon atoms, R3 and R1 are hydrogen, 1 is from, l is 5, n is 1, m is from 15 to 25, preferably 22 and R2 has from 6 to 14 carbon atoms.
  • The detergent composition of the invention is especially good in spotting reduction when the esterified alkyl akoxylated surfactant is as follows: R has from 12 to 15, preferably 13 carbon atoms, R3 is hydrogen, R1 is hydrogen, 1 is from, l is 5, n is 1, m is from 15 to 25, preferably 22 and R2 has from 6 to 14 carbon atoms.
  • The composition of the invention comprises less than 10%, preferably less than 5%, more preferably less than 1% and especially less than 0.1% by weight of the composition of builder wherein the builder is not a polycarboxylic acid or its salt. Builders are cleaning actives widely used in automatic dishwashing detergents, in particular in alkaline compositions. Most, if not all, of the automatic dishwashing detergents available in the market are alkaline and comprise builders. Compounds that would act as builder under alkaline conditions would probably not be good builders under the low pH conditions of the composition of the invention. Builders can sequester calcium and other ions, from soils and from water greatly contributing to cleaning. The downside of using builders is that they can precipitate and give rise to filming and spotting on the washed items. The formulation approach used in the composition of the present invention overcomes the filming and spotting issues. The washed items, in particular, glass items are left clear and shiny.
  • The soils brought into the wash liquor during the automatic dishwashing process can greatly alter the pH of the wash liquor. In order to provide optimum cleaning the pH of the wash liquor should not vary too much. This is achieved with the composition of the present invention by the presence of a pH regulator system that helps to keep the pH of the wash liquor within a desired range.
  • The composition of the invention comprises a pH regulator system. The pH regulator system provides the right pH and maintains the pH of the wash liquor within a narrow range. By a "narrow range" is herein meant that the pH changes by less than 2 pH units, more preferably by less than 1 pH unit.
  • The pH regulator system comprises an organic acid and its salt, preferably a carboxylic acid more preferably a polycarboxylic acid and its salt. A specially preferred pH regulator system for use herein comprises citric acid and citrate.
  • Good spotting reduction can be obtained when the composition further comprises non-ionic surfactant in addition to the esterified alkyl alkoxylated surfactant, especially when the non-ionic surfactant is selected from the group consisting of:
    1. a) a non-ionic surfactant of formula RO(CH2CH2O)xH wherein where R is iso-C13H27 and x is 7;
    2. b) a non-ionic surfactant of formula RO(CH2CH2O)x(CH2CH2CH2O)yH wherein where R is a C6-C14 alkyl and x and y are from 5 to 20; and
    3. c) mixtures thereof.
    More especially when the non-ionic surfactant is a mixture of a) and b).
  • Preferably, the non-ionic surfactant and the esterified alkyl alkoxylated surfactant are in a weight ratio of from about 1:1 to about 10:1, preferably from about 1:1 to about 4:1.
  • It has also been found that bleach presents in the composition of the invention provides a bleaching benefit much greater than expected. It has also been found that the bleaching occurs faster and at lower temperatures than using conventional alkaline detergents. Without being bound by theory, it is believed that the iron ions present into the wash liquor (brought by soils, such as tea, beef, etc., impurities in detergent components and/or water) act as catalyst for the bleach to generate bleaching radicals. This effect is most pronounced when an iron chelant is used and it is believed that this is the case because the iron chelant binds the iron to generate metal catalysts in situ that when combined with the bleach are able to drive excellent bleach cleaning.
  • The composition of the invention can comprise an iron chelant. Compositions comprising an iron chelant provide good cleaning of bleachable stains, even in the absence of bleach or with low level of bleach. Without being bound by theory, it is believed that the iron chelant removes heavy metals that form part of bleachable stains, thereby contributing to the loosening of the stain. The stain tends to detach itself from the soiled substrate. The cleaning can be further helped by the presence of a performance polymer, preferably a soil suspension polymer that would help with the suspension of the stain. Under the low pH conditions provided by the compositions of the invention, when the heavy metals are taken from the bleachable stain, the stain can become more particulate in nature and the polymer can help with suspension of the stain. Preferred iron chelants for use herein have been found to be disodium catecholdisulfonate and hydroxypyridine N-Oxides, in particular disodium catecholdisulfonate.
  • The composition of the invention preferably comprises an amylase and a protease, more preferably the amylase is a low temperature amylase. Preferably, the composition further comprises a soil suspension polymer. It seems that the amylase, the esterified alkyl alkoxylated surfactant, the non-ionic surfactant and the soil suspension polymer work in synergy to provide very good cleaning and shine. Without being bound by theory it is believed that the non-ionic surfactant and the soil suspension polymer keep the soil, especially greasy soils, suspended leaving the starchy part of soils exposed this facilitate the access of the amylase to the starch. Preferred soil suspension polymer for use herein is an alkoxylated polyalkyleneimine.
  • The cleaning provided by the composition of the invention is further improved when the composition comprises a crystal growth inhibitor, in particular HEDP. Preferably the composition further comprises a dispersant polymer, more preferably a carboxylated/sulfaonted polymer that further contributes to filming reduction. Preferably the composition further comprises a surface-modification surface-substantive polymer that further contributes to spotting reduction.
  • Preferably the composition of the invention comprises a non-ionic surfactant, more preferably a mixture of:
    1. a) a non-ionic surfactant of formula RO(CH2CH2O)xH wherein where R is iso-C13H27 and x is 7; and
    2. b) a non-ionic surfactant of formula RO(CH2CH2O)x(CH2CH2CH2O)yH wherein where R is a C6-C14 alkyl and x and y are from 5 to 20alcohol alkoxylated surfactant.
  • It has been surprisingly found that automatic dishwashing detergents comprising a mixture of these two surfactants (a) and b)) provide better spotting reduction than compositions comprising any of the two surfactants on their own.
  • Preferred compositions further comprise proteases. In particular proteases selected from the group consisting of:
    1. (i) a metalloprotease;
    2. (ii) a cysteine protease;
    3. (iii) a neutral serine protease;
    4. (iv) an aspartate protease, and
    5. (v) mixtures thereof.
  • These proteases perform well in the low pH composition of the invention. Some of the proteases present in conventional alkaline detergents do not perform well at the pH of the composition of the invention. Also preferred are endoproteases, preferably those with an isoelectric point of from about 4 to about 9 and more preferably from about 4.5 to about 6.5. Compositions comprising proteases having these isoelectric points perform very well in the low pH compositions of the invention.
  • Preferred compositions according to the invention comprises:
    1. (i) from 1 to 10% by weight of the composition of the esterified alkyl alkoxylated surfactant;
    2. (ii) from 15% to 55% by weight of the composition of a pH regulator system wherein the pH regulator system comprises a mixture of citric acid and citrate;
    3. (iii) from 5% to 20% by weight of the composition of bleach, preferably sodium percarbonate;
    4. (iv)from 0.1% to 10% by weight of the composition of HEDP;
    5. (v) from 5 to 15% of surfactant, preferably non-ionic surfactant;
    6. (vi) optionally but preferably from 0.5 to 15% of a carboxylated/sulfonated polymer;
    7. (vii) optionally but preferably from 0.5 to 10% from 5 to 15% of a soil suspension polymer, preferably an alkoxylated polyalkyleneimine.
    8. (viii) an amylase and a protease, preferably a metalloprotease; and
    wherein the composition is free or essentially free of builder.
  • It is commonly believed that bleaching should be performed under alkaline conditions. Without wishing to be bound by theory, it is believed that in the composition of the invention is the combination of the bleach with the enzyme, surfactant and soil suspending polymer what greatly contributes to the good cleaning performance. The cleaning mechanism seems to be different from cleaning under alkaline conditions. Stains are removed by means of the surfactants in combination with the enzymes and the bleach. The surfactant, the soil suspending polymer and the enzymes seem to contribute to the break down and suspension of the soils and the bleach seems to work on the broken down soil.
  • The compositions of the invention is so effective that only a low level needs to be used in the dishwasher to provide outstanding results thereby allowing for very compact compositions. The composition of the invention is preferably used in a weight per wash of from about 5 to about 25 grams, more preferably from about 7 to about 20 grams and especially from about 7 to about 15 grams.
  • According to the second aspect of the invention, there is provided a method of reducing spotting on dishware in automatic dishwashing using the composition of the invention. The method provides very good results even under multi-cycles conditions. There is also provided the use of the composition of the invention to reduce spotting on dishware, preferably under multi-cycle conditions, i.e, the dishware is subjected to more than two cycles, more preferably more than 10 and specially more than 20 cycles. The composition according to the first aspect of the invention applies mutatis mutandis to the second and third aspects.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention envisages a neutral or acidic automatic dishwashing detergent composition according to claim 1. The composition provides good cleaning and shine (reduced filming and spotting). The present invention also provides a method of reducing spotting in automatic dishwashing and the use of the composition of the invention to reduce spotting in automatic dishwashing
  • Automatic dishwashing detergent composition Esterified alkyl alkoxylated surfactant
  • The detergent composition of the invention comprises an esterified alkyl alkoxylated of general formula (I)
    Figure imgb0002
    wherein
    • R is a branched or unbranched alkyl radical having 8 to 16 carbon atoms;
    • R3, R1 independently of one another, are hydrogen or a branched or unbranched alkyl radical having 1 to 5 carbon atoms;
    • R2 is an unbranched alkyl radical having 5 to 17 carbon atoms;
    • 1, n independently of one another, are a number from 1 to 5 and
    • m is a number from 13 to 35;
  • Preferably, the radical R is a branched alkyl radical having 9 to 16, more preferably having 10 to 13, carbon atoms. The degree of branching is preferably 1-3. For the purposes of the present invention, the term "degree of branching" is understood as meaning the number of methyl groups reduced by 1.
  • Further preferably, Ra, R1 independently of one another, are hydrogen, methyl and ethyl. If R3, R1 occur more frequently, then each can be chosen independently of a further R3 or R1. Thus Ra, R1 can occur blockwise or in random distribution.
  • R2 is preferably a branched or unbranched alkyl radical having 5 to 13 carbon atoms.
  • Preferably n=1, l=5 and m is preferably a number from 13 to 34, more preferably 13 to 33, even more preferably 13 to 30, most preferably 17 to 27.
  • Further preferably, the average molecular weight is in a range from 950 to 2300 g/mol. Particularly preferably, the average molecular weight is in a range from 1200 to 1900 g/mol.
  • The esterified alkyl alkoxylated surfactant of the invention is a low foaming surfactant. The esterified surfactant is stable in an alkaline environment. Preferably the esterified surfactant has a melting point above 25°C, more preferably above 35°C.
  • The esterified surfactant of the invention can be synthesized as described in US2008/0167215 , paragraphs [0036] to [0042].
  • The composition of the invention has a neutral or acid pH. In addition to good cleaning and shine in automatic-dishwashing, this pH is quite gentle on the washed items, it is not as aggressive as commonly used alkaline compositions and therefore keep washed items such as glasses, patterned ware, etc looking new for longer.
  • The composition of the invention can be in any physical form including solid, liquid and gel form. The composition of the invention is very well suited to be presented in unit-dose form, in particular in the form of a multi-compartment pack, more in particular a multi-compartment pack comprising compartments with compositions in different physical forms, for example a compartment comprising a composition in solid form and another compartment comprising a composition in liquid form. Due to the efficacy of the composition, the packs can be compact.
  • pH regulator system
  • The benefits provided by the composition of the invention are linked to the low pH of the wash liquor. It is not sufficient to provide a composition presenting a low pH when dissolved in deionised water what is important is that the low pH of the composition is maintained during the duration of the wash.
  • In the process of dishwashing, the water and the different ions coming from the soils can destabilise the pH of the composition. In order to maintain the composition at low pH a pH regulator system capable of maintaining the low pH during the wash is needed. The pH regulator system provides the right pH and it has buffering capacity to maintain this pH. A pH regulator system can be created either by using a mixture of an acid and its anion, such as a citrate salt and citric acid, or by using a mixture of the acid form (citric acid) with a source of alkalinity (such as a hydroxide, bicarbonate or carbonate salt) or by using the anion (sodium citrate) with a source of acidity (such as sodium bisulphate). Suitable pH regulator systems comprise mixtures of organic acids, preferably polycarboxylic acids and their salts, more preferably citric acid and citrate.
  • The composition of the invention comprises from 15% to 55%, more preferably from about 10% to about 40% by weight of the composition of a pH regulator system, preferably selected from citric acid, citrate and mixtures thereof.
  • Builder
  • The composition of the invention is substantially builder free, i.e. comprises less than 10%, preferably less than about 5%, more preferably less than about 1% and especially less than about 0.1% of builder by weight of the composition. Builders are materials that sequester hardness ions, particularly calcium and/or magnesium. Strong calcium builders are species that are particularly effective at binding calcium and exhibit strong calcium binding constants, particularly at high pHs.
  • For the purposes of this patent a "builder" is a strong calcium builder. A strong calcium builder can consist of a builder that when present at 0.5mM in a solution containing 0.05mM of Fe(III) and 2.5mM of Ca(II) will selectively bind the calcium ahead of the iron at one or more of pHs 6.5 or 8 or 10.5. Specifically, the builder when present at 0.5mM in a solution containing 0.05mM of Fe(III) and 2.5mM of Ca(II) will bind less than 50%, preferably less than 25%, more preferably less than 15%, more preferably less than 10%, more preferably less than 5%, more preferably less than 2% and specially less than 1% of the Fe(III) at one or preferably more of pHs 6.5 or 8 as measured at 25°C. The builder will also preferably bind at least 0.25mM of the calcium, preferably at least 0.3mM, preferably at least 0.4mM, preferably at least 0.45mM, preferably at least 0.49mM of calcium at one or more of pHs 6.5 or 8 or 10.5 as measured at 25°C.
  • The most preferred strong calcium builders are those that will bind calcium with a molar ratio (builder:calcium) of less than 2.5:1, preferably less than 2:1, preferably less than 1.5:1 and most preferably as close as possible to 1:1, when equal quantities of calcium and builder are mixed at a concentration of 0.5mM at one or more of pHs 6.5 or 8 or 10.5 as measured at 25°C.
  • Examples of strong calcium builders include phosphate salts such as sodium tripolyphosphate, amino acid-based builders such as amino acid based compounds, in particular MGDA (methyl-glycine-diacetic acid), and salts and derivatives thereof, GLDA (glutamic-N,N-diacetic acid) and salts and derivatives thereof, IDS (iminodisuccinic acid) and salts and derivatives thereof, carboxy methyl inulin and salts and derivatives thereof and mixtures thereof.
  • Other builders include amino acid based compound or a succinate based compound. Other suitable builders are described in USP 6,426,229 . In one aspect, suitable builders include; for example, aspartic acid-N-monoacetic acid (ASMA), aspartic acid- , -diacetic acid (ASDA), aspartic acid-N- monopropionic acid (ASMP), iminodisuccinic acid (IDA), N- (2-sulfomethyl) aspartic acid (SMAS), N- (2-sulfoethyl) aspartic acid (SEAS), N- (2- sulfomethyl) glutamic acid (SMGL), N- (2- sulfoethyl) glutamic acid (SEGL), N- methyliminodiacetic acid (MID A), alpha-alanine-N,N-diacetic acid (alpha -ALDA), serine- , -diacetic acid (SEDA), isoserine-N,N-diacetic acid (ISDA), phenylalanine-N,N-diacetic acid (PHDA), anthranilic acid- N,N - diacetic acid (ANDA), sulfanilic acid-N, N-diacetic acid (SLDA), taurine-N, N-diacetic acid (TUDA) and sulfomethyl-N,N-diacetic acid (SMDA) and alkali metal salts or ammonium salts thereof.
  • Polycarboxylic acids and their salts do not act as builders at the pH of the present invention and therefore are not to be considered as builder within the meaning of the invention. Polycarboxylic acids and their salts are considered a pH regulator system within the meaning of the invention.
  • Iron chelant
  • The composition of the invention preferably comprises an iron chelant at a level of from about 0.1% to about 5%, preferably from about 0.2% to about 2%, more preferably from about 0.4% to about 1% by weight of the composition.
  • As commonly understood in the detergent field, chelation herein means the binding or complexation of a bi- or multi-dentate ligand. These ligands, which are often organic compounds, are called chelants, chelators, chelating agents, and/or sequestering agent. Chelating agents form multiple bonds with a single metal ion. Chelants form soluble, complex molecules with certain metal ions, inactivating the ions so that they cannot normally react with other elements or ions to produce precipitates or scale. The ligand forms a chelate complex with the substrate. The term is reserved for complexes in which the metal ion is bound to two or more atoms of the chelant.
  • The composition of the present invention is preferably substantially free of builders and preferably comprises an iron chelant. An iron chelant has a strong affinity (and high binding constant) for Fe(III).
  • It is to be understood that chelants are to be distinguished from builders. For example, chelants are exclusively organic and can bind to metals through their N,P,O coordination sites or mixtures thereof while builders can be organic or inorganic and, when organic, generally bind to metals through their O coordination sites. Moreover, the chelants typically bind to transition metals much more strongly than to calcium and magnesium; that is to say, the ratio of their transition metal binding constants to their calcium/magnesium binding constants is very high. By contrast, builders herein exhibit much less selectivity for transition metal binding, the above-defined ratio being generally lower.
  • The chelant in the composition of the invention is a selective strong iron chelant that will preferentially bind with iron (III) versus calcium in a typical wash environment where calcium will be present in excess versus the iron, by a ratio of at least 10:1, preferably greater than 20:1. The iron chelant when present at 0.5mM in a solution containing 0.05mM of Fe(III) and 2.5mM of Ca(II) will fully bind at least 50%, preferably at least 75%, more preferably at least 85%,more preferably at least 90%, more preferably at least 95%, more preferably at least 98% and specially at least 99% of the Fe(III) at one or preferably more of pHs 6.5 or 8 as measured at 25°C. The amount of Fe(III) and Ca(II) bound by a builder or chelant is determined as explained herein below
  • Method for determining competitive binding
  • To determine the selective binding of a specific ligand to specific metal ions, such as iron(III) and calcium (II), the binding constants of the metal ion-ligand complex are obtained via reference tables if available, otherwise they are determined experimentally. A speciation modeling simulation can then be performed to quantitatively determine what metal ion-ligand complex will result under a specific set of conditions.
  • As used herein, the term "binding constant" is a measurement of the equilibrium state of binding, such as binding between a metal ion and a ligand to form a complex. The binding constant Kbc (25°C and an ionic strength (I) of 0.1 mol/L) is calculated using the following equation: K bc = ML x / M L x
    Figure imgb0003
    where [L] is the concentration of ligand in mol/L, x is the number of ligands that bond to the metal, [M] is the concentration of metal ion in mol/L, and [MLx] is the concentration of the metal/ligand complex in mol/L.
  • Specific values of binding constants are obtained from the public database of the National Institute of Standards and Technology ("NIST"), R.M. Smith, and A.E. Martell, NIST Standard Reference Database 46, NIST Critically Selected Stability Constants of Metal Complexes: Version 8.0, May 2004, U.S. Department of Commerce, Technology Administration, NIST, Standard Reference Data Program, Gaithersburg, MD. If the binding constants for a specific ligand are not available in the database then they are measured experimentally.
  • Once the appropriate binding constants have been obtained, a speciation modeling simulation can be performed to quantitatively determine what metal ion-ligand complex will result under a specific set of conditions including ligand concentrations, metal ion concentrations, pH, temperature and ionic strength. For simulation purposes, NIST values at 25°C and an ionic strength (I) of 0.1 mol/L with sodium as the background electrolyte are used. If no value is listed in NIST the value is measured experimentally. PHREEQC from the US Geological Survey, http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/. PHREEQC is used for speciation modeling simulation.
  • Iron chelants include those selected from siderophores, catechols, enterobactin, hydroxamates and hydroxypyridinones or hydroxypyridine N-Oxides. Preferred chelants include anionic catechols, particularly catechol sulphonates, hydroxamates and hydroxypyridine N-Oxides. Preferred strong chelants include hydroxypridine N-Oxide (HPNO), Octopirox, and/or Tiron (disodium 4,5-dihydroxy-1,3-benzenedisulfonate), with Tiron, HPNO and mixtures thereof as the most preferred for use in the composition of the invention. HPNO within the context of this invention can be substituted or unsubstituted. Numerous potential and actual resonance structures and tautomers can exist. It is to be understood that a particular structure includes all of the reasonable resonance structures and tautomers.
  • Bleach
  • The composition of the invention preferably comprises from 1% to 40% by weight of the composition of bleach, more preferably from 5 to 15% by weight of the composition of bleach. Socium percarbonate is the preferred bleach for use herein.
  • Inorganic and organic bleaches are suitable for use herein. Inorganic bleaches include perhydrate salts such as perborate, percarbonate, perphosphate, persulfate and persilicate salts. The inorganic perhydrate salts are normally the alkali metal salts. The inorganic perhydrate salt may be included as the crystalline solid without additional protection. Alternatively, the salt can be coated. Suitable coatings include sodium sulphate, sodium carbonate, sodium silicate and mixtures thereof. Said coatings can be applied as a mixture applied to the surface or sequentially in layers.
  • Alkali metal percarbonates, particularly sodium percarbonate is the preferred bleach for use herein. The percarbonate is most preferably incorporated into the products in a coated form which provides in-product stability.
    Potassium peroxymonopersulfate is another inorganic perhydrate salt of utility herein.
  • Typical organic bleaches are organic peroxyacids, especially diperoxydodecanedioc acid, diperoxytetradecanedioc acid, and diperoxyhexadecanedioc acid. Mono- and diperazelaic acid, mono- and diperbrassylic acid are also suitable herein. Diacyl and Tetraacylperoxides, for instance dibenzoyl peroxide and dilauroyl peroxide, are other organic peroxides that can be used in the context of this invention.
  • Further typical organic bleaches include the peroxyacids, particular examples being the alkylperoxy acids and the arylperoxy acids. Preferred representatives are (a) peroxybenzoic acid and its ring-substituted derivatives, such as alkylperoxybenzoic acids, but also peroxy-α-naphthoic acid and magnesium monoperphthalate, (b) the aliphatic or substituted aliphatic peroxy acids, such as peroxylauric acid, peroxystearic acid, ε-phthalimidoperoxycaproic acid[phthaloiminoperoxyhexanoic acid (PAP)], o-carboxybenzamidoperoxycaproic acid, N-nonenylamidoperadipic acid and N-nonenylamidopersuccinates, and (c) aliphatic and araliphatic peroxydicarboxylic acids, such as 1,12-diperoxycarboxylic acid, 1,9-diperoxyazelaic acid, diperoxysebacic acid, diperoxybrassylic acid, the diperoxyphthalic acids, 2-decyldiperoxybutane-1,4-dioic acid, N,N-terephthaloyldi(6-aminopercaproic acid).
    Preferably, the level of bleach in the composition of the invention is from about 0 to about 10%, more preferably from about 0.1 to about 5%, even more preferably from about 0.5 to about 3% by weight of the composition
  • Crystal growth inhibitor
  • Crystal growth inhibitors are materials that can bind to calcium carbonate crystals and prevent further growth of species such as aragonite and calcite.
  • Examples of effective crystal growth inhibitors include phosphonates, polyphosphonates, inulin derivatives and cyclic polycarboxylates.
  • Suitable crystal growth inhibitors may be selected from the group comprising HEDP (1-hydroxyethylidene 1,1-diphosphonic acid), carboxymethylinulin (CMI), tricarballylic acid and cyclic carboxylates. For the purposes of this invention the term carboxylate covers both the anionic form and the protonated carboxylic acid form.
  • Cyclic carboxylates contain at least two, preferably three or preferably at least four carboxylate groups and the cyclic structure is based on either a mono- or bi-cyclic alkane or a heterocycle. Suitable cyclic structures include cyclopropane, cyclobutane, cyclohexane or cyclopentane or cycloheptane, bicyclo-heptane or bicyclo-octane and/or tetrhaydrofuran. One preferred crystal growth inhibitor is cyclopentane tetracarboxylate.
  • Cyclic carboxylates having at least 75%, preferably 100% of the carboxylate groups on the same side, or in the "cis" position of the 3D-structure of the cycle are preferred for use herein.
  • It is preferred that the two carboxylate groups, which are on the same side of the cycle are in directly neighbouring or "ortho" positions
  • Preferred crystal growth inhibitors include HEDP, tricarballylic acid, tetrahydrofurantetracarboxylic acid (THFTCA) and cyclopentanetetracarboxylic acid (CPTCA). The THFTCA is preferably in the 2c,3t,4t,5c-configuration, and the CPTCA in the cis,cis,cis,cis-configuration.
  • The crystal growth inhibitors are present preferably in a quantity from about 0.01 to about 10 %, particularly from about 0.02 to about 5 % and in particular from 0.05 to 3 % by weight of the composition.
  • Performance polymer
  • Preferably the composition of the invention comprises from 0.1% to about 5%, preferably from about 0.2% to about 3% by weight of the composition of a performance polymer. Suitable polymers include soil suspension polymers, preferably alkoxylated polyalkyleneimines, dispersant polymers, preferably carboxylated/sulfonated polymers, surface-modification surface-substantive polymers and mixtures thereof.
  • The performance polymers may be included to provide benefits in one or more of the areas of spotting and filming, dispersancy, cleaning and bleachable stain cleaning. A preferred performance polymer for use herein, in terms of cleaning of bleachable stains enhancing is an alkoxylated polyalkyleneimine.
  • Alkoxylated polyalkyleneimine
  • The alkoxylated polyalkyleneimine has a polyalkyleneimine backbone and alkoxy chains. Preferably the polyalkyleneimine is polyethyleneimine. Preferably, the alkoxylated polyalkyleneimine is not quaternized.
  • In a preferred alkoxylated polyalkyleneimine for use in the composition of the invention:
    1. i) the polyalkyleneimine backbone represents from 0.5% to 40%, preferably from 1% to 30% and especially from 2% to 20% by weight of the alkoxylated polyalkyleneimine; and
    2. ii) the alkoxy chains represent from 60% to 99%, preferably from 50% to about 95%, more preferably from 60% to 90% by weight of the alkoxylated polyalkyleneimine.
  • Preferably, the alkoxy chains have an average of from about 1 to about 50, more preferably from about 2 to about 40, more preferably from about 3 to about 30 and especially from about 3 to about 20 and even more especially from about 4 to about 15 alkoxy units preferably ethoxy units. In other suitable polyalkyleneimine for use herein, the alkoxy chains have an average of from about 0 to 30, more preferably from about 1 to about 12, especially from about 1 to about 10 and even more especially from about 1 to about 8 propoxy units. Especially preferred are alkoxylated polyethyleneimines wherein the alkoxy chains comprise a combination of ethoxy and propoxy chains, in particular polyethyleneimines comprising chains of from 4 to 20 ethoxy units and from 0 to 6 propoxy units.
  • Preferably, the alkoxylated polyalkyleneimine is obtained from alkoxylation wherein the starting polyalkyleneimine has a weight-average molecular weight of from about 100 to about 60,000, preferably from about 200 to about 40,000, more preferably from about 300 to about 10,000 g/mol. A preferred example is 600 g/mol polyethyleneimine core ethoxylated to 20 EO groups per NH and is available from BASF.
  • Other suitable polyalkyleneimines for use herein includes compounds having the following general structure: bis((C2H5O)(C2H4O)n)(CH3)-N+-CxH2x-N+-(CH3)-bis((C2H5O)(C2H4O)n), wherein n = from 20 to 30, and x = from 3 to 8, or sulphated or sulphonated variants thereof.
  • Carboxylated/Sulfonated polymers
  • Suitable carboxylated/ sulfonated polymers described herein may have a weight average molecular weight of less than or equal to about 100,000 Da, preferably less than or equal to about 75,000 Da, more preferably less than or equal to about 50,000 Da, more preferably from about 3,000 Da to about 50,000, and specially from about 5,000 Da to about 45,000 Da. Preferred carboxylic acid monomers include one or more of the following: acrylic acid, maleic acid, itaconic acid, methacrylic acid, or ethoxylate esters of acrylic acids, acrylic and methacrylic acids being more preferred. Preferred sulfonated monomers include one or more of the following: sodium (meth) allyl sulfonate, vinyl sulfonate, sodium phenyl (meth) allyl ether sulfonate, or 2-acrylamido-methyl propane sulfonic acid. Preferred non-ionic monomers include one or more of the following: methyl (meth) acrylate, ethyl (meth) acrylate, t-butyl (meth) acrylate, methyl (meth) acrylamide, ethyl (meth) acrylamide, t-butyl (meth) acrylamide, styrene, or α-methyl styrene.
  • In the polymers, all or some of the carboxylic or sulfonic acid groups can be present in neutralized form, i.e. the acidic hydrogen atom of the carboxylic and/or sulfonic acid group in some or all acid groups can be replaced with metal ions, preferably alkali metal ions and in particular with sodium ions.
  • Preferred commercial available polymers include: Alcosperse 240, Aquatreat AR 540 and Aquatreat MPS supplied by Alco Chemical; Acumer 3100, Acumer 2000, Acusol 587G and Acusol 588G supplied by Rohm & Haas; Goodrich K-798, K-775 and K-797 supplied by BF Goodrich; and ACP 1042 supplied by ISP technologies Inc. Particularly preferred polymers are Acusol 587G and Acusol 588G supplied by Rohm & Haas, Versaflex Si™ (sold by Alco Chemical, Tennessee, USA) and those described in USP 5,308,532 and in WO 2005/090541 . Suitable styrene co-polymers may be selected from the group comprising, styrene co-polymers with acrylic acid and optionally sulphonate groups, having average molecular weights in the range 1,000 - 50,000, or even 2,000 - 10,000 such as those supplied by Alco Chemical Tennessee, USA, under the tradenames Alcosperse® 729 and 747.
  • Non-ionic surfactants
  • Suitable for use herein are non-ionic surfactants, they can acts as anti-redeposition agents. Preferably, the composition comprises a non-ionic surfactant or a non-ionic surfactant system having a phase inversion temperature, as measured at a concentration of 1% in distilled water, between 40 and 70°C, preferably between 45 and 65°C. By a "non-ionic surfactant system" is meant herein a mixture of two or more non-ionic surfactants. Preferred for use herein are non-ionic surfactant systems. They seem to have improved cleaning and finishing properties and stability in product than single non-ionic surfactants.
  • Phase inversion temperature is the temperature below which a surfactant, or a mixture thereof, partitions preferentially into the water phase as oil-swollen micelles and above which it partitions preferentially into the oil phase as water swollen inverted micelles. Phase inversion temperature can be determined visually by identifying at which temperature cloudiness occurs.
  • The phase inversion temperature of a non-ionic surfactant or system can be determined as follows: a solution containing 1% of the corresponding surfactant or mixture by weight of the solution in distilled water is prepared. The solution is stirred gently before phase inversion temperature analysis to ensure that the process occurs in chemical equilibrium. The phase inversion temperature is taken in a thermostable bath by immersing the solutions in 75 mm sealed glass test tube. To ensure the absence of leakage, the test tube is weighed before and after phase inversion temperature measurement. The temperature is gradually increased at a rate of less than 1°C per minute, until the temperature reaches a few degrees below the pre-estimated phase inversion temperature. Phase inversion temperature is determined visually at the first sign of turbidity.
  • Suitable nonionic surfactants include: i) ethoxylated non-ionic surfactants prepared by the reaction of a monohydroxy alkanol or alkyphenol with 6 to 20 carbon atoms with preferably at least 12 moles particularly preferred at least 16 moles, and still more preferred at least 20 moles of ethylene oxide per mole of alcohol or alkylphenol; ii) alcohol alkoxylated surfactants having a from 6 to 20 carbon atoms and at least one ethoxy and propoxy group. Preferred for use herein are mixtures of surfactants i) and ii).
  • Another suitable non-ionic surfactants are epoxy-capped poly(oxyalkylated) alcohols represented by the formula:

            R1O[CH2CH(CH3)O]x[CH2CH2O]y[CH2CH(OH)R2]     (I)

    wherein R1 is a linear or branched, aliphatic hydrocarbon radical having from 4 to 18 carbon atoms; R2 is a linear or branched aliphatic hydrocarbon radical having from 2 to 26 carbon atoms; x is an integer having an average value of from 0.5 to 1.5, more preferably about 1; and y is an integer having a value of at least 15, more preferably at least 20.
  • Preferably non-ionic surfactants and/or system to use as anti-redeposition agents herein have a Draves wetting time of less than 360 seconds, preferably less than 200 seconds, more preferably less than 100 seconds and especially less than 60 seconds as measured by the Draves wetting method (standard method ISO 8022 using the following conditions; 3-g hook, 5-g cotton skein, 0.1% by weight aqueous solution at a temperature of 25°C).
  • Preferred non-ionic surfactants for use herein are selected from the group consisting of:
    1. a) a non-ionic surfactant of formula RO(CH2CH2O)xH wherein where R is iso-C13H27 and x is 7;
    2. b) a non-ionic surfactant of formula RO(CH2CH2O)x(CH2CH2CH2O)yH wherein where R is a C6-C14 alkyl and x and y are from 5 to 20; and
    3. c) mixtures thereof.
  • A mixture of a) and b) is especially preferred for use herein.
  • Amine oxides surfactants are also useful in the present invention as anti-redeposition surfactants include linear and branched compounds having the formula:
    Figure imgb0004
    wherein R3 is selected from an alkyl, hydroxyalkyl, acylamidopropoyl and alkyl phenyl group, or mixtures thereof, containing from 8 to 26 carbon atoms, preferably 8 to 18 carbon atoms; R4 is an alkylene or hydroxyalkylene group containing from 2 to 3 carbon atoms, preferably 2 carbon atoms, or mixtures thereof; x is from 0 to 5, preferably from 0 to 3; and each R5 is an alkyl or hydroxyalkyl group containing from 1 to 3, preferably from 1 to 2 carbon atoms, or a polyethylene oxide group containing from 1 to 3, preferable 1, ethylene oxide groups. The R5 groups can be attached to each other, e.g., through an oxygen or nitrogen atom, to form a ring structure.
  • These amine oxide surfactants in particular include C10-C18 alkyl dimethyl amine oxides and C8-C18 alkoxy ethyl dihydroxyethyl amine oxides. Examples of such materials include dimethyloctylamine oxide, diethyldecylamine oxide, bis-(2-hydroxyethyl)dodecylamine oxide, dimethyldodecylamine oxide, dipropyltetradecylamine oxide, methylethylhexadecylamine oxide, dodecylamidopropyl dimethylamine oxide, cetyl dimethylamine oxide, stearyl dimethylamine oxide, tallow dimethylamine oxide and dimethyl-2-hydroxyoctadecylamine oxide. Preferred are C10-C18 alkyl dimethylamine oxide, and C10-18 acylamido alkyl dimethylamine oxide.
  • Non-ionic surfactants may be present in amounts from 0 to 20%, preferably from 1% to 15%, and most preferably from 2% to 12% by weight of the composition.
  • Anionic surfactant
  • Anionic surfactants include, but are not limited to, those surface-active compounds that contain an organic hydrophobic group containing generally 8 to 22 carbon atoms or generally 8 to 18 carbon atoms in their molecular structure and at least one water-solubilizing group preferably selected from sulfonate, sulfate, and carboxylate so as to form a water-soluble compound. Usually, the hydrophobic group will comprise a C8-C 22 alkyl, or acyl group. Such surfactants are employed in the form of water-soluble salts and the salt-forming cation usually is selected from sodium, potassium, ammonium, magnesium and mono-, di- or tri-alkanolammonium, with the sodium cation being the usual one chosen.
  • The anionic surfactant can be a single surfactant or a mixture of anionic surfactants. Preferably the anionic surfactant comprises a sulphate surfactant, more preferably a sulphate surfactant selected from the group consisting of alkyl sulphate, alkyl alkoxy sulphate and mixtures thereof. Preferred alkyl alkoxy sulphates for use herein are alkyl ethoxy sulphates.
  • Alkyl ether sulphate (AES) surfactants
  • The alkyl ether sulphate surfactant has the general formula (I)
    Figure imgb0005
    having an average alkoxylation degree (n) of from about 0.1 to about 8, 0.2 to about 5, even more preferably from about 0.3 to about 4, even more preferably from about 0.8 to about 3.5 and especially from about 1 to about 3.
  • The alkoxy group (R2) could be selected from ethoxy, propoxy, butoxy or even higher alkoxy groups and mixtures thereof. Preferably, the alkoxy group is ethoxy. When the alkyl ether sulphate surfactant is a mixture of surfactants, the alkoxylation degree is the weight average alkoxylation degree of all the components of the mixture (weight average alkoxylation degree). In the weight average alkoxylation degree calculation the weight of alkyl ether sulphate surfactant components not having alkoxylated groups should also be included. Weight average alkoxylation degree n = x 1 alkoxylation degree of surfactant 1 + x 2 alkoxylation degree of surfactant 2 + .... / x 1 + x 2 + ....
    Figure imgb0006
    wherein x1, x2, are the weights in grams of each alkyl ether sulphate surfactant of the mixture and alkoxylation degree is the number of alkoxy groups in each alkyl ether sulphate surfactant.
  • The hydrophobic alkyl group (R1) can be linear or branched. Most suitable the alkyl ether sulphate surfactant to be used in the detergent of the present invention is a branched alkyl ether sulphate surfactant having a level of branching of from about 5% to about 40%, preferably from about 10% to about 35% and more preferably from about 20% to about 30%. Preferably, the branching group is an alkyl. Typically, the alkyl is selected from methyl, ethyl, propyl, butyl, pentyl, cyclic alkyl groups and mixtures thereof. Single or multiple alkyl branches could be present on the main hydrocarbyl chain of the starting alcohol(s) used to produce the alkyl ether sulpahte surfactant used in the detergent of the invention.
  • The branched alkyl ether sulphate surfactant can be a single sulphate surfactant or a mixture of sulphate surfactants. In the case of a single sulphate surfactant the percentage of branching refers to the weight percentage of the hydrocarbyl chains that are branched in the original alcohol from which the sulphate surfactant is derived.
  • In the case of a sulphate surfactant mixture the percentage of branching is the weight average and it is defined according to the following formula: Weight average of branching % = x 1 wt % branched alcohol 1 in alcohol 1 + x 2 wt % branched alcohol 2 in alcohol 2 + .... / x 1 + x 2 + .... 100
    Figure imgb0007
    wherein x1, x2, are the weight in grams of each alcohol in the total alcohol mixture of the alcohols which were used as starting material for the AES surfactant for the detergent of the invention. In the weight average branching degree calculation the weight of AES surfactant components not having branched groups should also be included.
  • Preferably the anionic surfactant of this invention is not purely based on a linear alcohol, but has some alcohol content that contains a degree of branching. Without wishing to be bound by theory it is believed that branched surfactant drives stronger starch cleaning, particularly when used in combination with an α-amylase, based on its surface packing.
  • Alkyl ether sulphates are commercially available with a variety of chain lengths, ethoxylation and branching degrees, examples are those based on Neodol alcohols ex the Shell company, Lial - Isalchem and Safol ex the Sasol company, natural alcohols ex The Procter & Gamble Chemicals company.
  • Preferably, the alkyl ether sulfate is present from about 0.05% to about 20%, preferably from about 0.1% to about 8%, more preferably from about 1% to about 6%, and most preferably from about 2% to about 5% by weight of the composition.
  • Suds suppressor
  • Suds suppressors suitable for use herein include an alkyl phosphate ester suds suppressor, a silicone suds suppressor, or combinations thereof. Suds suppressor technology and other defoaming agents useful herein are documented in "Defoaming, Theory and Industrial Applications," Ed., P.R. Garrett, Marcel Dekker, N.Y., 1973.
  • Suds suppressors are preferably included in the composition of the invention, especially when the composition comprises anionic surfactant. The suds suppressor is included in the composition at a level of from about 0.0001% to about 10%, preferably from about 0.001% to about 5%, more preferably from about 0.01% to about 1.5% and especially from about 0.01% to about 0.5%, by weight of the composition.
  • A preferred suds suppressor is a silicone based suds suppressor. Silicone suds suppressor technology and other defoaming agents useful herein are extensively documented in "Defoaming, Theory and Industrial Applications", Ed., P.R. Garrett, Marcel Dekker, N.Y., 1973, ISBN 0-8247-8770-6. See especially the chapters entitled "Foam control in Detergent Products" (Ferch et al) and "Surfactant Antifoams" (Blease et al). See also U.S. Patents 3,933,672 and 4,136,045 . A preferred silicone based suds suppressors is polydimethylsiloxanes having trimethylsilyl, or alternate end blocking units as the silicone. These may be compounded with silica and/or with surface-active non-silicon components, as illustrated by a suds suppressor comprising 12% silicone/silica, 18% stearyl alcohol and 70% starch in granular form. A suitable commercial source of the silicone active compounds is Dow Corning Corp. Silicone based suds suppressors are useful in that the silica works well to suppress the foam generated by the soils and surfactant
  • Another suitable silicone based suds suppressor comprises solid silica, a silicone fluid or a a silicone resin. The silicone based suds suppressor can be in the form of a granule or a liquid. Another silicone based suds suppressor comprises dimethylpolysiloxane, a hydrophilic polysiloxane compound having polyethylenoxy-propylenoxy group in the side chain, and a micro-powdery silica.
  • A phosphate ester suds suppressor may also be used. Suitable alkyl phosphate esters contain from 16-20 carbon atoms. Such phosphate ester suds suppressors may be monostearyl acid phosphate or monooleyl acid phosphate or salts thereof, preferably alkali metal salts.
  • Other suitable suds suppressors are calcium precipitating fatty acid soaps. However, it has been found to avoid the use of simple calcium-precipitating soaps as antifoams in the present composition as they tend to deposit on dishware. Indeed, fatty acid based soaps are not entirely free of such problems and the formulator will generally choose to minimize the content of potentially depositing antifoams in the instant composition.
  • Preferably the composition of the invention comprises enzymes, more preferably amylases and proteases.
  • Enzyme-related terminology Nomenclature for amino acid modifications
  • In describing enzyme variants herein, the following nomenclature is used for ease of reference: Original amino acid(s):position(s):substituted amino acid(s).
  • According to this nomenclature, for instance the substitution of glutamic acid for glycine in position 195 is shown as G195E. A deletion of glycine in the same position is shown as G195*, and insertion of an additional amino acid residue such as lysine is shown as G195GK. Where a specific enzyme contains a "deletion" in comparison with other enzyme and an insertion is made in such a position this is indicated as *36D for insertion of an aspartic acid in position 36. Multiple mutations are separated by pluses, i.e.: S99G+V102N, representing mutations in positions 99 and 102 substituting serine and valine for glycine and asparagine, respectively. Where the amino acid in a position (e.g. 102) may be substituted by another amino acid selected from a group of amino acids, e.g. the group consisting of N and I, this will be indicated by V102N/I.
  • In all cases, the accepted IUPAC single letter or triple letter amino acid abbreviation is employed.
  • Where multiple mutations are employed they are shown with either using a "+" or a "/", so for instance either S126C + P127R + S128D or S126C/P127R/S128D would indicate the specific mutations shown are present in each of positions 126, 127 and 128.
  • Amino acid identity
  • The relatedness between two amino acid sequences is described by the parameter "identity". For purposes of the present invention, the alignment of two amino acid sequences is determined by using the Needle program from the EMBOSS package (http://emboss.org) version 2.8.0. The Needle program implements the global alignment algorithm described in Needleman, S. B. and Wunsch, C. D. (1970) J. Mol. Biol. 48, 443-453. The substitution matrix used is BLOSUM62, gap opening penalty is 10, and gap extension penalty is 0.5.
  • The degree of identity between an amino acid sequence of an enzyme used herein ("invention sequence") and a different amino acid sequence ("foreign sequence") is calculated as the number of exact matches in an alignment of the two sequences, divided by the length of the "invention sequence" or the length of the "foreign sequence", whichever is the shortest. The result is expressed in percent identity. An exact match occurs when the "invention sequence" and the "foreign sequence" have identical amino acid residues in the same positions of the overlap. The length of a sequence is the number of amino acid residues in the sequence.
  • Protease
  • Preferred proteases for use herein have an isoelectric point of from about 4 to about 9, preferably from about 4 to about 8, most preferably from about 4.5 to about 6.5. Proteases with this isoelectric point present good activity in the wash liquor provided by the composition of the invention. As used herein, the term "isoelectric point" refers to electrochemical properties of an enzyme such that the enzyme has a net charge of zero as calculated by the method described below.
  • Preferably the protease of the composition of the invention is an endoprotease, by "endoprotease" is herein understood a protease that breaks peptide bonds of non-terminal amino acids, in contrast with exoproteases that break peptide bonds from their end-pieces.
  • Isoelectric Point
  • The isoelectric point (referred to as IEP or pI) of an enzyme as used herein refers to the theoretical isoelectric point as measured according to the online pI tool available from ExPASy server at the following web address:
    http://web.expasy.org/compute_pi/
    The method used on this site is described in the below reference:
    • Gasteiger E., Hoogland C., Gattiker A., Duvaud S., Wilkins M.R., Appel R.D., Bairoch A.; Protein Identification and Analysis Tools on the ExPASy Server; (In) John M. Walker (ed): The Proteomics Protocols Handbook, Humana Press (2005). Preferred proteases for use herein are selected from the group consisting of a metalloprotease, a cysteine protease, a neutral serine protease, an aspartate protease and mixtures thereof.
    Metalloproteases
  • Metalloproteases can be derived from animals, plants, bacteria or fungi. Suitable metalloprotease can be selected from the group of neutral metalloproteases and Myxobacter metalloproteases. Suitable metalloproteases can include collagenases, hemorrhagic toxins from snake venoms and thermolysin from bacteria. Preferred thermolysin enzyme variants include an M4 peptidase, more preferably the thermolysin enzyme variant is a member of the PepSY∼Peptidase_M4∼Peptidase_M4_C family.
  • Preferred metalloproteases include thermolysin, matrix metalloproteinases and those metalloproteases derived from Bacillus subtilis, Bacillus thermoproteolyticus, Geobacillus stearothermophilus or Geobacillus sp., or Bacillus amyloliquefaciens, as described in US PA 2008/0293610A1 . A specially preferred metalloprotease belongs to the family EC3.4.24.27.
  • Further suitable metalloproteases are the thermolysin variants described in WO2014/71410 . In one aspect the metalloprotease is a variant of a parent protease, said parent protease having at least 50% or 60%, or 80%, or 85% or 90% or 95% or 96% or 97% or 98% or 99% or even 100% identity to SEQ ID NO: 3 of WO 2014/071410 including those with substitutions at one or more of the following sets of positions versus SEQ ID NO: 3 of WO 2014/071410 :
    1. (a) 2, 26, 47, 53, 87, 91,96, 108, 118, 154, 179, 197, 198, 199, 209, 211, 217, 219, 225, 232, 256, 257, 259, 261, 265, 267, 272,276, 277, 286, 289, 290, 293, 295, 298, 299, 300, 301, 303, 305, 308, 311 and 316;
    2. (b) 1, 4, 17, 25, 40, 45, 56, 58, 61, 74, 86, 97, 101, 109, 149, 150 , 158, 159, 172, 181, 214, 216, 218, 221, 222, 224, 250, 253, 254, 258, 263, 264, 266, 268, 271, 273, 275, 278, 279, 280, 282, 283, 287, 288, 291, 297, 302, 304, 307 and 312;
    3. (c) 5, 9, 11, 19, 27, 31, 33, 37, 46, 64, 73, 76, 79, 80, 85, 89, 95, 98, 99, 107, 127, 129, 131, 137, 141, 145, 148, 151, 152, 155, 156, 160, 161, 164, 168 , 171, 176, 180, 182, 187, 188, 205, 206, 207, 210, 212, 213, 220, 227, 234 , 235, 236, 237, 242, 244, 246, 248, 249, 252, 255, 270, 274, 284, 294, 296, 306, 309, 310, 313, 314 and 315;
    4. (d) 3, 6, 7, 20, 23, 24, 44, 48, 50, 57, 63, 72, 75, 81, 92, 93, 94, 100, 102, 103, 104, 110, 117, 120, 134, 135, 136, 140, 144, 153, 173, 174, 175, 178, 183, 185, 189, 193, 201, 223, 230, 238, 239, 241, 247, 251, 260, 262, 269, and 285;
    5. (e) 17, 19, 24, 25, 31, 33, 40, 48, 73, 79, 80, 81, 85, 86, 89, 94, 109, 117, 140, 141, 150, 152, 153, 158, 159, 160, 161, 168, 171, 174, 175, 176, 178, 180, 181, 182, 183, 189, 205, 206, 207, 210, 212, 213, 214, 218, 223, 224,227, 235, 236, 237, 238, 239, 241, 244, 246, 248, 249, 250, 251, 252, 253, 254, 255, 258, 259, 260, 261, 262, 266, 268, 269, 270, 271, 272, 273, 274, 276, 278, 279, 280, 282, 283, 294, 295, 296, 297, 300, 302, 306, 310 and 312;
    6. (f) 1, 2, 127, 128, 180, 181, 195, 196, 197, 198, 199, 211, 223, 224, 298, 299, 300, and 316 all relative to SEQ ID NO: 3 of WO 2014/071410 .
    Further suitable metalloproteases are the NprE variants described in WO2007/044993 , WO2009/058661 and US 2014/0315775 . In one aspect the protease is a variant of a parent protease, said parent protease having at least 45%, or 60%, or 80%, or 85% or 90% or 95% or 96% or 97% or 98% or 99% or even 100% identity to SEQ ID NO:3 of US 2014/0315775 including those with substitutions at one or more of the following sets of positions versus said sequence:
    S23, Q45, T59, S66, S129, F130, M138, V190, S199, D220, K211, and G222,
  • Another suitable metalloprotease is a variant of a parent protease, said parent protease having at least 60%, or 80%, or 85% or 90% or 95% or 96% or 97% or 98% or 99% or even 100% identity to SEQ ID NO:3 of US 2014/0315775 including those with substitutions at one or more of the following sets of positions versus SEQ ID NO:3 of US 2014/0315775 :
    Q45E, T59P, 566E, S129I, S129V, F130L, M138I, V190I, S199E, D220P, D220E, K211V, K214Q, G222C, M138L/D220P, F130L/D220P, S129I/D220P, V190I/D220P, M138L/V190I/D220P, S129I/V190I, S129V/V190I, S129V/D220P, S129I/F130L/D220P, T004V/S023N, T059K/S66Q/S129I, T059R/S66N/S129I, S129I/F130L/M138L/V190I/D220P and T059K/S66Q/S129V.
  • Especially preferred metalloproteases for use herein belong belong to EC classes EC 3.4.22 or EC3.4.24, more preferably they belong to EC classes EC3.4.22.2, EC3.4.24.28 or EC3.4.24.27. The most preferred metalloprotease for use herein belong to EC3.4.24.27.
  • Suitable commercially available metalloprotease enzymes include those sold under the trade names Neutrase® by Novozymes A/S (Denmark), the Corolase® range including Corolase® 2TS, Corolase® N, Corolase® L10, Corolase® LAP and Corolase® 7089 from AB Enzymes, Protex 14L and Protex 15L from DuPont (Palo Alto, California), those sold as thermolysin from Sigma and the Thermoase range (PC10F and C100) and thermolysin enzyme from Amano enzymes.
  • The composition of the invention preferably comprises from 0.001 to 2%, more preferably from 0.003 to 1%, more preferably from 0.007 to 0.3% and especially from 0.01 to 0.1% by weight of the composition of active protease.
  • Amylase
  • Amylases for use herein are preferably low temperature amylases. Compositions comprising low temperature amylases allow for a more energy efficient dishwashing processes without compromising in cleaning.
  • As used herein, "low temperature amylase" is an amylase that demonstrates at least 1.2, preferably at least 1.5 and more preferably at least 2 times the relative activity of the reference amylase at 25°C. As used herein, the "reference amylase" is the wild-type amylase of Bacillus licheniformis, commercially available under the tradename of Termamyl™ (Novozymes A/S). As used herein, "relative activity" is the fraction derived from dividing the activity of the enzyme at the temperature assayed versus its activity at its optimal temperature measured at a pH of 9.
  • Amylases include, for example, α-amylases obtained from Bacillus. Amylases of this invention preferably display some α-amylase activity. Preferably said amylases belong to EC Class 3.2.1.1.
  • Amylases for use herein, including chemically or genetically modified mutants (variants), are amylases possessing at least 60%, or 70%, or 80%, or 85%, or 90%, preferably 95%, more preferably 98%, even more preferably 99% and especially 100% identity, with those derived from Bacillus Licheniformis, Bacillus amyloliquefaciens, Bacillus sp. NCIB 12289, NCIB 12512, NCIB 12513, DSM 9375 ( US 7,153,818 ) DSM 12368, DSMZ no. 12649, KSM AP1378 ( WO 97/00324 ), KSM K36 or KSM K38 ( EP 1 ,022,334 ). Suitable amylases include those derived from the sp. 707, sp. 722 or AA560 parent wild-types.
  • Preferred amylases include the variants of a parent amylase, said parent amylase having at least 60%, preferably 80%, more preferably 85%, more preferably 90%, more preferably 95%, more preferably 96%, more preferably 97%, more preferably 98%, more preferably 99% and specially 100% identity to SEQ ID NO:12 of WO2006/002643 . The variant amylase preferably further comprises one or more substitutions and/or deletions in the following positions versus SEQ ID NO:12 of WO2006/002643 :
    9, 26, 30, 33, 82, 37, 106, 118, 128, 133, 149, 150, 160, 178, 182, 186, 193, 195, 202, 203, 214, 231, 256, 257, 258, 269, 270, 272, 283, 295, 296, 298, 299, 303, 304, 305, 311, 314, 315, 318, 319, 320, 323, 339, 345, 361, 378, 383, 419, 421, 437, 441, 444, 445, 446, 447, 450, 458, 461, 471, 482, 484 and preferably the variant amylase comprises the deletions in one or both of the 183 and 184 positions.
  • Preferred amylases comprise one or both deletions in positions equivalent to positions 183 and 184 of SEQ ID NO:12 of WO2006/002643 .
  • Preferred commercially available amylases for use herein are STAINZYME®, STAINZYME PLUS®, STAINZYME ULTRA®, EVEREST® and NATALASE® (Novozymes A/S) and RAPIDASE, POWERASE® and the PREFERENZ S® series, including PREFERENZ S100® (DuPont).
  • The composition of the invention preferably comprises from 0.001 to 2%, more preferably from 0.003 to 1%, more preferably from 0.007 to 0.3% and especially from 0.01 to 0.1% by weight of the composition of active amylase.
  • Other enzymes
  • Preferably the composition of the invention further comprises one or more enzymes selected from the group consisting of an α-amylase, a β-amylase, a pullulanase, a protease, a lipase, a cellulase, an oxidase, a phospholipase, a perhydrolase, a xylanase , a pectate lyase, a pectinase, a galacturanase, a hemicellulase, a xyloglucanase, a mannanase and a mixture thereof.
  • Unit dose form
  • The composition of the invention is suitable to be presented in unit-dose form. Products in unit dose form include tablets, capsules, sachets, pouches, injection moulded containers, etc. Preferred for use herein are tablets and detergents wrapped with a water-soluble film (including wrapped tablets, capsules, sachets, pouches) and injection moulded containers. Preferably the water-soluble film is a polyvinyl alcohol, preferably comprising a bittering agent. The detergent composition of the invention is preferably in the form of a water-soluble multi-compartment pack.
  • Preferred packs comprise at least two side-by-side compartments superposed onto another compartment. This disposition contributes to the compactness, robustness and strength of the pack and additionally, it minimises the amount of water-soluble packing material required. It only requires three pieces of material to form three compartments. The robustness of the pack allows also for the use of very thin films (less than 150 micron, preferably less than 100 micron) without compromising the physical integrity of the pack. The pack is also very easy to use because the compartments do not need to be folded to be used in machine dispensers of fixed geometry. At least two of the compartments of the pack contain two different compositions. By "different compositions" herein is meant compositions that differ in at least one ingredient.
  • Preferably, at least one of the compartments contains a solid composition, preferably in powder form and another compartment an aqueous liquid composition, the compositions are preferably in a solid to liquid weight ratio of from about 20:1 to about 1:20, more preferably from about 18:1 to about 2:1 and even more preferably from about 15:1 to about 5:1. This kind of pack is very versatile because it can accommodate compositions having a broad spectrum of values of solid:liquid ratio. Particularly preferred have been found to be pouches having a high solid:liquid ratio because many of the detergent ingredients are most suitable for use in solid form, preferably in powder form. The ratio solid:liquid defined herein refers to the relationship between the weight of all the solid compositions and the weight of all the liquid compositions in the pack.
  • Preferably the two side-by-side compartments contain liquid compositions, which can be the same but preferably are different and another compartment contains a solid composition, preferably in powder form, more preferably a densified powder. The solid composition contributes to the strength and robustness of the pack.
  • For dispenser fit reasons the unit dose form products herein preferably have a square or rectangular base and a height of from about 1 to about 5 cm, more preferably from about 1 to about 4 cm. Preferably the weight of the solid composition is from about 5 to about 20 grams, more preferably from about 10 to about 15 grams and the total weight of the liquid compositions is from about 0.5 to about 5 grams, more preferably from about 1.5 to about 4 grams.
  • In preferred embodiments, at least two of the films which form different compartments have different solubility, under the same conditions, releasing the content of the compositions which they partially or totally envelope at different times.
  • Controlled release of the ingredients of a multi-compartment pouch can be achieved by modifying the thickness of the film and/or the solubility of the film material. The solubility of the film material can be delayed by for example cross-linking the film as described in WO 02/102,955 at pages 17 and 18. Other water-soluble films designed for rinse release are described in US 4,765,916 and US 4,972,017 . Waxy coating (see WO 95/29982 ) of films can help with rinse release. pH controlled release means are described in WO 04/111178 , in particular amino-acetylated polysaccharide having selective degree of acetylation.
  • Other means of obtaining delayed release by multi-compartment pouches with different compartments, where the compartments are made of films having different solubility are taught in WO 02/08380 .
  • Alternatively the dissolution of the liquid compartments can be delayed by modification of the liquid that is contained within the film. Use of anionic surfactants, particularly anionic surfactant mixtures that pass through a highly structured phase (such as hexagonal or lamellar) upon addition of water retards the dissolution of the surfactant containing compartment. In one aspect of this invention, one or more compartments comprise anionic surfactant and their release is delayed versus other compartments.
  • Auto-dosing delivery device
  • The compositions of the invention are extremely useful for dosing elements to be used in an auto-dosing device. The dosing elements comprising the composition of the present invention can be placed into a delivery cartridge as that described in WO 2007/052004 and WO 2007/0833141 . The dosing elements can have an elongated shape and set into an array forming a delivery cartridge which is the refill for an auto-dosing dispensing device as described in case WO 2007/051989 . The delivery cartridge is to be placed in an auto-dosing delivery device, such as that described in WO 2008/053191 .
  • EXAMPLES
  • Three automatic dishwashing compositions were made, one high pH automatic dishwashing solid composition (Solid Composition 1) and one low pH automatic dishwashing solid composition (Solid Composition 2).
    Solid Composition 1
    Ingredient wt %
    Methylglycine diacetic acid (Trilon® M) 50
    Sodium carbonate 26
    Sodium percarbonate 13
    Acusol™ 588GF (sulfonated polymer supplied by DowChemical) 3
    Protease granule (10% active) 2
    Amylase granule (1.4% active) 2
    Sodium 1-hydroxyethyidene-1,1-diphosphonate 1
    Processing Aids, minors and fillers Up to 100
    A 1% solution of Composition 1 in deionsed water at room temperature had a pH of 10.5
    Solid composition 2
    Ingredient wt%
    Sodium citrate 23
    2-pyridinol-1-oxide 3
    Citric acid 19
    Sodium 1-hydroxyethyidene-1,1-diphosphonate 4
    Sodium percarbonate 21
    Protease granule (8.8% active) 4
    Amylase granule (1.4% active) 4
    Processing Aids, fillers & minors Up to 100%
    A 1% solution of compositions 2, 3 and 4 in deionsed water at room temperature had a pH of 6.5
    Liquid composition 1 2 3
    Ingredient %wt %wt %wt
    Lutensol® TO 7 (non-ionic surfactant supplied by BASF) 41 36 36
    Plurafac® SLF180 (non-ionic surfactant supplied by BASF) 34 30 0
    Plurafac® LF7319 (non-ionic surfactant supplied by BASF) 0 0 30
    Lutensol® FP 620 0 10 10
    Processing Aids, fillers & minors Up to 100% Up to 100% Up to 100%
  • Multi Cycle Spotting Prevention Test
  • The following test items were used:
    Supplier Brand    Item
    Libbey (or retailers) Libbey Heavy Base 11oz Collins Glass Collins Glass
    US Acrylic (or retailers) US Acrylic Heavy Base 18oz Water Glass Plastic Tumbler
  • Additional Ballast Soil 1
  • To add extra soil stress to the test, a blend of soils is added to the dishwasher, as prepared by the procedure described below
    Ingredient % content
    Potato Starch 5.6
    Wheat Flour 4.5
    Vegetable oil 4.4
    Margarine 4.4
    Lard 4.4
    Single Cream 9.0
    Baking Spread 4.4
    Large Eggs 9.0
    Whole Milk 9.0
    Ketchup 3.0
    Mustard 4.0
    Benzoic acid >99% 0.8
    Water (257-308 ppm (15-18 grains per US gallon)) 37.5
    Total 100
  • Soil Preparation
    1. 1. Add water to the potato starch and leave to soak overnight. Then heat in a pan until the gel formed is properly inflated. Leave the pan to cool at room temperature overnight.
    2. 2. Weigh out the appropriate amounts of each ingredient.
    3. 3. Add the Ketchup and mustard to a bowl and mix vigorously until fully combined, 1 minute.
    4. 4. Melt Margarine, lard and baking spread individually in a microwave and allow to cool to room temperature then mix together.
    5. 5. Add Wheat Flour and Benzoic acid to a bowl and mix vigorously.
    6. 6. Break eggs into a bowl and mix vigorously.
    7. 7. Add vegetable oil to the eggs and stir using a hand blender.
    8. 8. Mix the cream and milk in a bowl.
    9. 9. Add all of the ingredients together into a large container and mix using a blender for ten minutes.
    10. 10. Weigh out 50g batches of this mixture into plastic pots and freeze.
    Test wash procedure
  • Automatic Dishwasher: Miele, model GSL
    Wash volume: 5000 ml
    Water temperature: 50°C
    Water hardness: 3 mmol
    Detergent addition: Added into the bottom of the automatic dishwasher after the initial pre-wash is complete.
    Positioning of test items: 3x Collins glasses on top rack
    2x Heavy Base Plastic Tumblers on top rack
    Additional soil stress: 2x 50g pots of Additional ballast soil 1 added to top rack.
  • Spotting Prevention Test
  • One dose of detergent, comprising 14.7g of solid composition 1 and 14g of solid composition 2, and 2.2g of liquid composition 1 or 4g of liquid compositions 2 and 3, was added to the automatic dishwasher.
    Example Composition
    Formula A Solid composition 1 + liquid composition 1
    Formula B Solid composition 2 + liquid composition 2
    Formula C Solid composition 2 + liquid composition 3
  • A dishwasher was loaded with the items as detailed above which were washed using Formulas A, B and C respectively. The items were washed 5 times repetitively as detailed above with the same detergent and the items were then graded using an Image Analysis System for spot count.
    Spot Count
    Collins Glass Heavy Base Plastic Tumbler
    Formula A (comparative) 54 206
    Formula B (comparative) 54 136
    Formula C 11 13
    Error ± 13 ±23
  • As can be seen from the above spot count data Formula C of this invention drives significantly reduced spotting on both glass and plastic.
  • The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as "40 mm" is intended to mean "about 40 mm".

Claims (16)

  1. An automatic dishwashing detergent composition having a pH as measured in 1% weight aqueous solution at 25°C of from 5 to 7.5, the composition comprising from 15% to 55% by weight of the composition of a pH regulator system wherein the pH regulator system comprises a mixture of an acid and a conjugate salt and an esterified alkyl alkoxylated surfactant of general formula (I)
    Figure imgb0008
    wherein
    R is a branched or unbranched alkyl radical having 8 to 16 carbon atoms;
    R3, R1 independently of one another, are hydrogen or a branched or unbranched alkyl radical having 1 to 5 carbon atoms;
    R2 is an unbranched alkyl radical having 5 to 17 carbon atoms;
    l, n independently of one another, are a number from 1 to 5 and
    m is a number from 13 to 35;
    wherein the composition comprises less than 10% of builder by weight of the composition and wherein the builder is not a polycarboxylic acid or its salt.
  2. A composition according to claim 1 wherein the composition comprises a non-ionic surfactant system wherein the non-ionic surfactant system is a mixture of two or more non-ionic surfactants.
  3. A composition according to any of the preceding claims wherein the level of total surfactant is from 5% to 20% by weight of the composition.
  4. A composition according to the preceding claim comprising a non-ionic surfactant selected from the group consisting of:
    a) a non-ionic surfactant of formula RO(CH2CH2O)xH wherein where R is iso-C13H27 and x is 7;
    b) a non-ionic surfactant of formula RO(CH2CH2O)x(CH2CH2CH2O)yH wherein where R is a C6-C14 alkyl and x and y are from 5 to 20; and
    c) mixtures thereof.
  5. A composition according to any of the preceding claims comprising bleach wherein the level of bleach is from 1% to 40% by weight of the composition.
  6. A composition according to claim 1 wherein the composition comprises a metalloprotease.
  7. A composition according to any of the preceding claims further comprising 1-hydroxyethylidene 1,1-diphosphonic acid (HEDP).
  8. A composition according to any of the preceding claims further comprising an alkoxylated polyalkyleneimine.
  9. A composition according to any of the preceding claims further comprising a carboxylated sulfonated polymer.
  10. A composition according to any of the preceding claims further comprises an iron chelant wherein the iron chelant is selected from the group consisting of siderophores, catechols, enterobactin, hydroxamates, hydroxypyridinones, or hydroxypyridine N-Oxides, and mixtures thereof.
  11. A composition according to any of the preceding claims comprising:
    (i) from 1 to 10% by weight of the composition of the esterified alkyl alkoxylated surfactant;
    (ii) from 15% to 55% by weight of the composition of a pH regulator system wherein the pH regulator system comprises a mixture of citric acid and citrate;
    (iii) from 5% to 20% by weight of the composition of bleach, preferably sodium percarbonate;
    (iv) from 0.1% to 10% by weight of the composition of HEDP;
    (v) from 5 to 15% of surfactant, preferably non-ionic surfactant;
    (vi) preferably from 0.5 to 15% of a carboxylated/sulfonated polymer;
    (vii) an amylase and protease, preferably a metalloprotease; and
    wherein the composition comprises less than 10 % of builder by weight of the composition and wherein the builder is not a polycarboxylic acid or its salt.
  12. A single or multi-compartment water-soluble pouch comprising a composition according to any of the preceding claims preferably the pouch comprises a compartment comprising a powder composition and a compartment comprising a liquid composition and wherein the liquid composition comprises the esterified alkyl alkoxylated surfactant.
  13. A method of reducing spotting on dishware in automatic dishwashing comprising the step of delivering into a dishwasher a composition according to any of claims 1 to 11.
  14. A method according to the preceding claim wherein the dishware is subjected to multi-cycles.
  15. Use of a composition according to any of claims 1 to 11 to reduce spotting on dishware in automatic dishwashing.
  16. Use of a composition according to claim 15 wherein the dishware is subjected to multi-cycles.
EP16175139.1A 2016-06-17 2016-06-17 Automatic dishwashing detergent composition Active EP3257923B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16175139.1A EP3257923B1 (en) 2016-06-17 2016-06-17 Automatic dishwashing detergent composition
US15/619,563 US10214707B2 (en) 2016-06-17 2017-06-12 Automatic dishwashing detergent composition
JP2017117691A JP2018028056A (en) 2016-06-17 2017-06-15 Automatic dishwashing detergent composition
JP2019153091A JP2019214738A (en) 2016-06-17 2019-08-23 Automatic dishwashing detergent composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP16175139.1A EP3257923B1 (en) 2016-06-17 2016-06-17 Automatic dishwashing detergent composition

Publications (2)

Publication Number Publication Date
EP3257923A1 EP3257923A1 (en) 2017-12-20
EP3257923B1 true EP3257923B1 (en) 2020-04-08

Family

ID=56137215

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16175139.1A Active EP3257923B1 (en) 2016-06-17 2016-06-17 Automatic dishwashing detergent composition

Country Status (3)

Country Link
US (1) US10214707B2 (en)
EP (1) EP3257923B1 (en)
JP (2) JP2018028056A (en)

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1407997A (en) 1972-08-01 1975-10-01 Procter & Gamble Controlled sudsing detergent compositions
US4136045A (en) 1976-10-12 1979-01-23 The Procter & Gamble Company Detergent compositions containing ethoxylated nonionic surfactants and silicone containing suds suppressing agents
US4972017A (en) 1987-03-24 1990-11-20 The Clorox Company Rinse soluble polymer film composition for wash additives
US4765916A (en) 1987-03-24 1988-08-23 The Clorox Company Polymer film composition for rinse release of wash additives
US5308532A (en) 1992-03-10 1994-05-03 Rohm And Haas Company Aminoacryloyl-containing terpolymers
US5536438A (en) * 1992-11-26 1996-07-16 The Procter & Gamble Company Multi-purpose liquid cleaning composition comprising nonionic surfactants of different HLB values
US5453216A (en) 1994-04-28 1995-09-26 Creative Products Resource, Inc. Delayed-release encapsulated warewashing composition and process of use
JP3025627B2 (en) 1995-06-14 2000-03-27 花王株式会社 Liquefied alkaline α-amylase gene
EP0783034B1 (en) 1995-12-22 2010-08-18 Mitsubishi Rayon Co., Ltd. Chelating agent and detergent comprising the same
US6403355B1 (en) 1998-12-21 2002-06-11 Kao Corporation Amylases
GB2365018A (en) 2000-07-24 2002-02-13 Procter & Gamble Water soluble pouches
JP2004504837A (en) 2000-07-28 2004-02-19 ヘンケル・コマンディットゲゼルシャフト・アウフ・アクチエン A novel amylolytic enzyme extracted from Bacillus sp. A7-7 (DSM12368) and a washing and cleaning agent containing the novel amylolytic enzyme
GB0114847D0 (en) 2001-06-18 2001-08-08 Unilever Plc Water soluble package and liquid contents thereof
JP3828007B2 (en) 2001-12-18 2006-09-27 ライオン株式会社 Quick-drying imparting agent, quick-drying detergent, and quick-drying finish
ES2299682T3 (en) 2003-05-23 2008-06-01 THE PROCTER & GAMBLE COMPANY CLEANING COMPOSITION FOR USE IN A WASHER OR DISHWASHER.
JP4303155B2 (en) 2003-10-31 2009-07-29 ディバーシー・アイピー・インターナショナル・ビー・ヴイ Detergent composition for automatic dishwasher
US20050202995A1 (en) 2004-03-15 2005-09-15 The Procter & Gamble Company Methods of treating surfaces using surface-treating compositions containing sulfonated/carboxylated polymers
EP3620523A3 (en) 2004-07-05 2020-08-19 Novozymes A/S Alpha-amylase variants with altered properties
JP5073938B2 (en) 2004-11-05 2012-11-14 ライオン株式会社 Cleaning composition for automatic dishwasher
DE102005011608A1 (en) 2005-03-14 2006-09-21 Basf Ag Esterified alkyl alkoxylates as low-foaming surfactants
BRPI0617392A2 (en) 2005-10-12 2011-07-26 Genencor Int use and production of storage stable neutral metalloprotease
BRPI0618262A2 (en) 2005-11-07 2011-08-23 Reckitt Benckiser Nv dosing element
GB0522659D0 (en) 2005-11-07 2005-12-14 Reckitt Benckiser Nv Delivery cartridge
JP2009523668A (en) 2006-01-21 2009-06-25 レキット ベンキサー ナムローゼ フェンノートシャップ Single dose element and chamber
JP4907327B2 (en) 2006-02-07 2012-03-28 花王株式会社 Detergent composition for dishwasher
GB0621574D0 (en) 2006-10-30 2006-12-06 Reckitt Benckiser Nv Multi-dosing detergent delivery device
US20110081454A1 (en) 2007-10-31 2011-04-07 Hommes Ronaldus W J Use and production of citrate-stable neutral metalloproteases
US9096817B2 (en) 2007-11-06 2015-08-04 Rhodia Operations Copolymer for processing or modifying surfaces
CA2755982A1 (en) * 2009-03-20 2010-09-23 Ciba Corporation Fast drying ampholytic polymers for cleaning compositions
ES2423580T5 (en) * 2009-12-10 2021-06-17 Procter & Gamble Method and use of a dishwashing composition
WO2013025742A1 (en) * 2011-08-15 2013-02-21 The Procter & Gamble Company Detergent compositions containing pyridinol-n-oxide compounds
US8623806B2 (en) 2012-05-11 2014-01-07 The Procter & Gamble Company Liquid detergent composition for improved shine
CN112553012A (en) * 2012-08-31 2021-03-26 宝洁公司 Laundry detergent and cleaning compositions comprising polymers containing carboxyl groups
BR112015010104A2 (en) 2012-11-05 2017-08-22 Danisco Us Inc THERMOLYSIN ENZYME VARIANT, COMPOSITION AND CLEANING METHOD
DE102012223339A1 (en) * 2012-12-17 2014-06-18 Henkel Ag & Co. Kgaa Surfactant combination for improved drying

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US10214707B2 (en) 2019-02-26
US20170362538A1 (en) 2017-12-21
JP2018028056A (en) 2018-02-22
JP2019214738A (en) 2019-12-19
EP3257923A1 (en) 2017-12-20

Similar Documents

Publication Publication Date Title
CA2969458C (en) Low ph automatic dishwashing detergent composition
CA2969457C (en) Low ph dishwashing detergent composition
CA2969465C (en) Low ph automatic dishwashing detergent composition
US20160177230A1 (en) Method of automatic dishwashing
WO2016100324A1 (en) Method of automatic dishwashing
US10435648B2 (en) Automatic dishwashing detergent composition
WO2017105825A1 (en) Automatic dishwashing detergent composition
US20160177231A1 (en) Method of automatic dishwashing
EP3257928B1 (en) Automatic dishwashing detergent composition
WO2017105826A1 (en) Automatic dishwashing detergent composition
EP3257923B1 (en) Automatic dishwashing detergent composition
WO2017105827A1 (en) Automatic dishwashing detergent composition

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180620

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20181008

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602016033390

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C11D0001660000

Ipc: C11D0001720000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C11D 3/00 20060101ALI20191028BHEP

Ipc: C11D 1/825 20060101ALI20191028BHEP

Ipc: C11D 1/72 20060101AFI20191028BHEP

Ipc: C11D 17/04 20060101ALI20191028BHEP

Ipc: C11D 1/74 20060101ALI20191028BHEP

Ipc: C11D 3/20 20060101ALI20191028BHEP

INTG Intention to grant announced

Effective date: 20191114

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1254387

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016033390

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200408

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200817

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200808

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200709

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1254387

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602016033390

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

26N No opposition filed

Effective date: 20210112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200617

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200617

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210101

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230429

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240502

Year of fee payment: 9