EP3257596B1 - Method for producing plug - Google Patents
Method for producing plug Download PDFInfo
- Publication number
- EP3257596B1 EP3257596B1 EP15881895.5A EP15881895A EP3257596B1 EP 3257596 B1 EP3257596 B1 EP 3257596B1 EP 15881895 A EP15881895 A EP 15881895A EP 3257596 B1 EP3257596 B1 EP 3257596B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- plug
- base metal
- end side
- divided
- peripheral surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 19
- 239000010953 base metal Substances 0.000 claims description 74
- 238000005096 rolling process Methods 0.000 claims description 52
- 230000002093 peripheral effect Effects 0.000 claims description 47
- 238000005507 spraying Methods 0.000 claims description 41
- 229910000831 Steel Inorganic materials 0.000 claims description 19
- 239000010959 steel Substances 0.000 claims description 19
- 229910052742 iron Inorganic materials 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 2
- 238000012360 testing method Methods 0.000 description 45
- 230000015572 biosynthetic process Effects 0.000 description 38
- 238000012545 processing Methods 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 15
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 15
- 239000000843 powder Substances 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 229910000851 Alloy steel Inorganic materials 0.000 description 5
- 229910000975 Carbon steel Inorganic materials 0.000 description 5
- 239000010962 carbon steel Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 239000002245 particle Substances 0.000 description 4
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 239000010963 304 stainless steel Substances 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000717 Hot-working tool steel Inorganic materials 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910000589 SAE 304 stainless steel Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- -1 and in such case Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
- C23C4/131—Wire arc spraying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B25/00—Mandrels for metal tube rolling mills, e.g. mandrels of the types used in the methods covered by group B21B17/00; Accessories or auxiliary means therefor ; Construction of, or alloys for, mandrels or plugs
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/06—Metallic material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/10—Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B17/00—Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling
- B21B17/02—Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling with mandrel, i.e. the mandrel rod contacts the rolled tube over the rod length
Definitions
- the present invention relates to a method for producing a plug that is used in a piercing-rolling mill when producing a seamless steel pipe.
- a seamless steel pipe can be produced by the Mannesmann pipe making process.
- This production process includes the following steps:
- the piercing-rolling mill includes: a pair of skew rolls that are each inclined with respect to a pass line; a bullet-shaped plug that is disposed on the pass line; and a mandrel connected to the rear end of the plug.
- the billet In the piercing-rolling, in a state in which the axial directions of the pass line and the billet are matched, the billet is fed in the axial direction while being rotated in the circumferential direction by the skew rolls. Then, a central portion of the billet is pushed against the plug, and as a result the billet is pierced and rolled into a hollow shell.
- a film hereunder, also referred to as "arc-sprayed film”
- the arc-sprayed film blocks the transfer of heat from the billet to the plug base metal, and can also prevent seizing between the billet and the plug.
- Patent Literature 1 a method is proposed in which the surface of the base metal of a plug is divided into a plurality of regions along an axial direction of the plug, and arc-spraying is performed separately in succession in each of the plurality of regions. Further, when performing the arc spraying, an intersection angle between the center line of a spray stream from the arc-sprayer and the surface of the base metal of the plug is maintained within a range of 35° to 90°. In this way, the adhesiveness of the arc-sprayed film formed on the surface of the plug can be made firm, and as a result the lifetime of the plug can be further increased.
- a plug proposed in Patent Literature 2 has a front end rolling portion, a work portion and a reeling portion. Further, various dimensions, such as the outer diameter, of the plug satisfy a predetermined relational expression.
- the front end rolling portion includes a columnar portion and a hemispherical portion that is provided at the front end of the columnar portion.
- the work portion connects to the rear end of the front end rolling portion, and the cross-sectional shape of the work portion is a circular arc shape.
- the reeling portion connects to the rear end of the work portion, and the cross-sectional shape of the reeling portion is a linear tapered shape.
- Patent Literature 2 by performing piercing-rolling using the above described plug, defective bite of a billet can be prevented and the occurrence of inner surface flaws can also be suppressed.
- a plug proposed in Patent Literature 3 has a rolling portion, a reeling portion and a relief portion.
- the rolling portion is divided into a preceding stage rolling portion and a succeeding stage rolling portion.
- the cross-sectional shape of the outer peripheral surface of the preceding stage rolling portion is a circular arc shape, and a front end of the preceding stage rolling portion is a hemispherical shape.
- the succeeding stage rolling portion connects to the rear end of the outer peripheral surface of the preceding stage rolling portion, and the cross-sectional shape of the succeeding stage rolling portion is a linear tapered shape.
- the reeling portion connects to the rear end of the succeeding stage rolling portion, and the cross-sectional shape of the reeling portion is a linear tapered shape.
- the relief portion connects to the rear end of the reeling portion, and the diameter of the relief portion progressively decreases as the distance from the front end increases.
- dimensions such as the radius of curvature of the front end satisfy a predetermined relational expression.
- Patent Literature 5 discloses a plug 2 which includes: a front portion 21 having a convex curvature; a column portion 22 having approximately a columnar shape; a trunk portion 23 having an outside diameter which is enlarged gradually toward the rear end; a mandrel connecting portion 26 provided in the rear end portion of the plug 2 and a lubricant jetting hole 24 which penetrates the trunk portion 23 from the mandrel connecting portion 26 and opened on the surface of the column portion 22.
- a coating film 27 which is composed of oxides and Fe is formed by arc spraying method using an iron wire.
- the plug 2 pierces a base stock while jetting the lubricant from the jetting hole 24.
- Patent Literature 6 discloses a plug for hot tube-making includes: a plug main body; a build-up layer formed around an axis of the plug main body on a surface of the plug, main body, and a sprayed coating formed on a surface of the build-up layer.
- Patent Literature 1 proposes a method in which the surface of the base metal of the plug is divided into a plurality of regions along the axial direction of the plug, and arc spraying is then performed separately in succession in each of the plurality of regions.
- arc spraying is performed separately in each region in this manner, films are connected together at the boundaries of the regions.
- FIG. 1 is a SEM image that shows arc-sprayed films at a boundary between regions in a case where arc spraying was performed separately in respective regions.
- a plug base metal 10 and arc-sprayed films 20a and 20b are illustrated, with the arc-sprayed films being composed of the film 20b that is on the front-end side and the film 20a that is on the rear-end side.
- the term "front-end side” means the front-end side of the plug
- the term “rear-end side” means the rear-end side of the plug.
- the film 20b on the front-end side and the film 20a on the rear-end side are connected at a portion that is surrounded by a chain double-dashed line in FIG. 1 . In this case, a portion of the film 20b on the front-end side is formed on the film 20a on the rear-end side without coming in contact with the plug base metal 10.
- the spraying direction for the film 20b on the front-end side and the spraying direction for the film 20a on the rear-end side are indicated by solid-line arrows, respectively.
- connection portion At a portion at which the arc-sprayed films are connected together (hereunder, also referred to simply as "connecting portion"), because another film is formed on a certain film, the adherence of the films decreases in comparison to other portions of the films. Further, a range in which another film is formed on a certain film as well as the thicknesses of the respective films and the like change in the circumferential direction of the plug, and for this reason also the adherence of the films at the connecting portion decreases. Consequently, peeling of a film is liable to occur at the connecting portion (see FIG. 9 of Examples as described later). When peeling of a film occurs on a plug, it is the end of the lifetime of the plug and the plug is not used for piercing-rolling again. Therefore, in a case where arc spraying is performed separately in respective regions, it is desirable to suppress peeling of a film at a connecting portion and thereby increase the lifetime of the plug.
- high alloy steel corresponds to, for example, high Cr steel containing 9% or more of Cr, an Ni-based alloy, and stainless steel.
- Patent Literatures 2 and 3 propose the use of plugs that each have a predetermined shape and satisfy a predetermined relational expression, there is no description in Patent Literatures 2 and 3 regarding formation and peeling of a film.
- An objective of the present invention is to provide a method for producing a plug that can prevent peeling of a film at a connecting portion and thereby increase the lifetime of the plug.
- a method for producing a plug according to the present invention is a method for producing a plug that is used in a piercing-rolling mill when producing a seamless steel pipe according to claim 1.
- the method for producing a plug includes: a step of preparing a plug base metal having a concave portion along a circumferential direction in an outer peripheral surface; and an arc spraying step of spraying a spraying wire rod material onto the outer peripheral surface of the plug base metal by arc spraying to form films containing Fe and Fe oxides on the outer peripheral surface of the plug base metal.
- the arc spraying step includes: a separating step of separating the outer peripheral surface of the plug base metal into a plurality of regions along an axial direction; and a step of performing arc spraying separately in each of the regions.
- a boundary between the regions is set at the concave portion.
- the outer peripheral surface is formed by connecting a plurality of divided faces successively in the axial direction, and has the concave portion at a joint between the divided faces.
- a slope ⁇ 1 (°) of a divided face located on a front-end side of the plug and a slope ⁇ 2 (°) of a divided face located on a rear-end side of the plug satisfy the following Formula (1).
- the method for producing a plug of the present invention uses a plug base metal which has a concave portion along a circumferential direction on the outer peripheral surface thereof. Further, a boundary between regions is set at the concave portion to divide the outer peripheral surface into a plurality of regions, and an arc-sprayed film is formed in each region.
- a connecting portion between the films is located at the concave portion, and the amount of reduction in wall-thickness of a billet when performing piercing-rolling is comparatively low at the concave portion. Consequently, peeling of the films can be suppressed and the lifetime of the plug can be increased.
- FIG. 2(a) to FIG. 2(c) are schematic diagrams illustrating an example of a processing flow according to the method for producing a plug of the present invention, in which FIG. 2(a) is a view illustrating the shape of a plug base metal, FIG. 2(b) is a cross-sectional view illustrating a state after the end of film formation in a first region, and FIG. 2(c) is a cross-sectional view illustrating a state after the end of film formation in a second region.
- a plug base metal 10 and arc-sprayed films 20a and 20b are shown.
- a front-end side of the plug is denoted by reference character T
- a rear-end side thereof is denoted by reference character B.
- An outer peripheral surface 11 of the plug base metal 10 shown in FIG. 2(a) is formed by connecting first to fifth divided faces 11a to 11e successively in the axial direction.
- the outer peripheral surface 11 is divided into a plurality of sections at a face that is perpendicular to the axial direction.
- the first divided face 11a and the second divided face 11b each have a cross-sectional shape that is curved, and in which a slope changes in the axial direction.
- the term "slope" refers to an angle formed by the divided face and a center line of the plug base metal (see ⁇ 1 and ⁇ 2 in FIG. 2(a) ).
- the third divided face 11c has a cross-sectional shape that is linear, in which the slope is constant.
- the outer diameters of the first to third divided faces 11a to 11c each increase progressively from the front-end side T toward the rear-end side B.
- the fourth divided face 11d is a cylindrical portion whose outer diameter is constant. Further, the outer diameter of the fifth divided face 11e decreases toward the rear end.
- the fifth divided face 11e is called a "relief portion".
- the first to third divided faces 11a to 11c contribute to the piercing-rolling. In other words, the first to third divided faces 11a to 11c strongly contact against the billet, and a high surficial pressure at a high temperature is imposed on these divided faces.
- a joint between the first divided face 11a and the second divided face 11b is a concave portion 11z.
- a plug base metal having a concave portion along the circumferential direction as illustrated in FIG. 2(a) is prepared.
- the method for producing a plug of the present embodiment includes a step of preparing the plug base metal as described above, and an arc spraying step.
- a spraying wire rod for example, steel wire
- the Fe particles are sprayed onto the outer peripheral surface 11 of the base metal of the plug.
- Fe particles build up on the outer peripheral surface 11 of the base metal of the plug, and the films 20a and 20b are formed.
- some of the Fe particles undergo an oxidation reaction with atmospheric air and form Fe oxides. Consequently, the films 20a and 20b contain Fe and Fe oxides.
- the outer peripheral surface 11 of the base metal of the plug is divided into a plurality of regions in the axial direction, and a film is formed in each of the regions, respectively.
- the adhesiveness of the arc-sprayed films formed on the surface of the plug can be made firm.
- the outer peripheral surface 11 of the base metal of the plug is divided into a first region S1 on the rear-end side B and a second region S2 of a front-end side T, and a film is first formed in the first region S1, and thereafter a film is formed in the second region S2.
- the boundary between the regions is set at the concave portion 11z.
- a connecting portion between the arc-sprayed films as shown in the aforementioned FIG. 1 is located at the concave portion 11z.
- the amount of reduction in wall-thickness of the billet at the concave portion 11z is low in comparison to other portions, and the surficial pressure imposed on the concave portion 11z is also partially lower.
- the surficial pressure imposed on the connecting portion 20z of the films is also moderated. Because the connecting portion is located at the concave portion 11z, as described above, although the adherence of the films at the connecting portion decreases similarly to the prior art, by moderating the surficial pressure that is interposed on the connecting portion 20z of the films, peeling of the films can be suppressed and the lifetime of the plug can be thereby increased.
- the term "concave portion” refers to a portion at which, among the entire outer peripheral surface of the plug base metal, the amount of reduction in wall-thickness of the billet is lower than at other portions.
- a closed curve is formed along the circumferential direction by the following points A, and the vicinity of the closed curve is the concave portion.
- the points A are points on the outer peripheral surface of the plug base metal, and a slope ⁇ 1 (°) on the front-end side of the points, and a slope ⁇ 2 (°) on the rear-end side of the points satisfy the relation in the following Formula (1).
- the amount of reduction in wall-thickness of the billet is less than at other portions.
- the slope ⁇ 1 on the front-end side of a point is taken as an angle that is formed between the center line of the plug base metal and a tangential line of the outer peripheral surface on the front-end side relative to the relevant point among the entire tangential line of the outer peripheral surface at the relevant point
- the slope ⁇ 2 on the rear-end side of the point is taken as an angle that is formed between the center line of the plug base metal and a tangential line of the outer peripheral surface on the rear-end side relative to the relevant point among the entire tangential line of the outer peripheral surface at the relevant point.
- a plug base metal in which the outer peripheral surface 11 is formed by connecting a plurality of divided faces successively in the axial direction as shown in the above described FIG. 2 is adopted as the plug base metal.
- the concave portion 11z is disposed at a joint at which the slope ⁇ 1 (see FIG. 2 , unit is "°") of the divided face on the front-end side T and the slope ⁇ 2 (see FIG. 2 , unit is "°") of the divided face on the rear-end side B satisfy the relation in the above described Formula (1).
- the slopes ⁇ 1 and ⁇ 2 of the divided faces are taken as angles formed between the respective divided faces and the center line of the plug base metal.
- the respective slopes ⁇ 1 and ⁇ 2 of the divided faces are taken as the slope of a tangential line at the relevant joint.
- d ⁇ is 0.5° or more at the concave portion 11z at which the boundary between the regions is set.
- d ⁇ is the difference ( ⁇ 2- ⁇ 1) between ⁇ 2 and ⁇ 1. If d ⁇ is 0.5° or more, the amount of reduction in wall-thickness of the billet at the concave portion is low, and peeling of the films can be suppressed. On the other hand, if d ⁇ exceeds 20°, because there will also be a large change in the amount of reduction in wall-thickness, there is a risk that the dimension accuracy of an obtained hollow shell will deteriorate. Therefore, d ⁇ is preferably made 20° or less.
- the order of the regions in which arc spraying is performed is not particularly limited, and peeling of the films can be suppressed if the boundary between the regions is set at the concave portion. From the viewpoint of suppressing peeling of films to a greater degree, it is preferable that the arc spraying for the respective regions is first performed in the region on the rear-end side of the concave portion, and thereafter is performed in the region on the front-end side of the concave portion. This is because, at the connecting portion, since the film on the front-end side will be formed on the film on the rear-end side, the film on the rear-end side will be covered by the film on the front-end side.
- Separating the outer peripheral surface into regions is not limited to separating the outer peripheral surface into two regions as illustrated in the above described FIG. 2 , and the outer peripheral surface may be separated into three or more regions. In such a case, it is preferable that boundaries between the plurality of regions are each set at a concave portion.
- the plug base metal is not limited to the plug base metal illustrated in the above described FIG. 2 , and various plug base metals can be used as long as the plug base metal fulfills the requirements of claim 1.
- plugs described in the aforementioned Patent Literatures 2 and 3 may be adopted as the plug base metal.
- the plug described in the aforementioned Patent Literature 2 has a concave portion at a joint between the front end rolling portion and the work portion.
- the plug described in the aforementioned Patent Literature 3 has a concave portion at a joint between the preceding stage rolling portion and the succeeding stage rolling portion.
- the plug base metal illustrated in the above described FIG. 2 has the cylindrical portion 11d whose outer diameter is constant, a plug base metal that does not have a cylindrical portion may also be adopted.
- the rear-end side of the portions 11a to 11c which mainly contribute to piercing-rolling is connected to the relief portion 11e.
- a front end 11t of the outer peripheral surface 11 of the plug base metal is not limited to a case where the front end extends as far as a center line as in the plug base metal shown in the aforementioned FIG. 2 , and the front end 11t may connect to a planar front end face.
- FIG. 3(a) to FIG. 3(d) are schematic diagrams illustrating an example of a processing flow according to the present invention in a case of using a plug in which the front end of the outer peripheral surface is connected to a planar front end face
- FIG. 3(a) is a view illustrating the shape of the plug base metal
- FIG. 3(b) is a cross-sectional view illustrating a state after the end of film formation in a first region
- FIG. 3(c) is a cross-sectional view illustrating a state after the end of film formation in a second region
- FIG. 3(d) is a cross-sectional view illustrating a state after the end of film formation on the front end face.
- the plug base metal 10 and the arc-sprayed films 20a and 20b are illustrated.
- the front end 11t of the outer peripheral surface 11 is connected to a planar front end face 12. Further, the outer peripheral surface 11 is formed by successively connecting the first to fifth divided faces 11a to 11e in the axial direction. Further, in the first to third divided faces 11a to 11c, the outer diameter progressively increases from the front-end side T toward the rear-end side B.
- the first divided face 11a has a cross-sectional shape that is a curved shape, and the slope thereof changes in the axial direction. Further, the slopes of the second divided face 11b and the third divided face 11c are constant, and the cross-sectional shape of these divided faces is a linear tapered shape.
- the fourth divided face 11d is a cylindrical portion
- the fifth divided face 11e is a relief portion.
- the first to third divided faces 11a to 11c contribute to piercing-rolling. Further, among the joints of the divided faces, the joint between the second divided face 11b and the third divided face 11c is the concave portion 11z along the circumferential direction.
- the outer peripheral surface of the plug base metal is separated into a first region S1 on the rear-end side B and a second region S2 on the front-end side T.
- the boundary between the first region S1 and the second region S2 is set at the concave portion 11z.
- the film 20b is formed in the second region S2 after the film 20a is formed in the first region S1, and thereafter a film 20c is formed on the front end face 12.
- the concave portion 11z is disposed at a portion that mainly contributes to piercing-rolling among the entire outer peripheral surface of the plug base metal, in other words, at a portion excluding the cylindrical portion and relief portion. This is because peeling of films is liable to occur if a connecting portion between the films is located at a portion that mainly contributes to piercing-rolling.
- steel wire can be used as the spraying wire rod.
- a cored wire as described in Patent Literature 4 can also be used as the spraying wire rod.
- the cored wire includes a steel sheath tube, and powder that is filled inside the steel sheath tube.
- ZrO 2 powder or BN powder can be adopted as the powder that is filled inside the tube.
- Iron oxide powder can also be adopted as the powder, and in such case, steel powder may be additionally filled inside the tube.
- the steel wire is, for example, a wire rod formed of carbon steel (common steel)
- the steel sheath tube is, for example, a tube formed of carbon steel (common steel)
- the steel powder is, for example, carbon steel (common steel) powder.
- the carbon steel typically includes Fe as a principal component, and also includes carbon (C), silicon (Si), manganese (Mn) and impurities.
- the carbon steel is also referred to as "common steel", and may contain optional elements such as tungsten (W).
- plugs were produced and piercing-rolling was performed using the plugs.
- a plug base metal made of hot working tool steel as defined by the JIS was prepared.
- a steel wire was atomized and sprayed by an arc-sprayer onto the outer peripheral surface of the plug base metal, and films composed of Fe and Fe oxides were formed.
- the outer peripheral surface of the plug base metal was separated into a region on the rear-end side and a region on the front-end side, and a film was first formed in the region on the rear-end side and thereafter a film was formed in the region on the front-end side.
- Test Nos. 1 to 7 were conducted as the present tests, and the shape of the plug base metal as well as a boundary position between the first region and the second region were changed for the respective tests.
- FIG. 4(a) to FIG. 4(c) are schematic diagrams illustrating the processing flow with respect to Test No. 1 (Comparative Example), in which FIG. 4(a) is a view illustrating the shape of the plug base metal, FIG. 4(b) is a cross-sectional view illustrating a state after the end of film formation in the first region, and FIG. 4(c) is a cross-sectional view illustrating a state after the end of film formation in the second region.
- the outer peripheral surface 11 of the plug base metal was constituted by first to third divided faces 11a to 11c.
- the cross-sectional shape of the first divided face 11a was a curved shape.
- the second divided face 11b was a cylindrical portion, and the third divided face 11c was a relief portion.
- the first divided face 11a contributes to piercing-rolling.
- Test No. 1 a plug base metal that did not have a concave portion was used, and a boundary between the region S1 and S2 was set on the first divided face 11a.
- the target values for the thickness of the films were set as 300 ⁇ m in the first region S1 and 800 ⁇ m in the second region S2.
- films were formed in accordance with the processing flow example illustrated in the above described FIG. 2 .
- a plug base metal having the concave portion 11z at a joint between the first divided face 11a and the second divided face 11b was used, and the boundary between the regions S1 and S2 was set at the concave portion 11z.
- the slope ⁇ 1 of the first divided face 11a was 10° and the slope ⁇ 2 of the second divided face 11b was 23.5°.
- the target values for the thickness of the films were set as 300 ⁇ m in the first region S1 and 800 ⁇ m in the second region S2.
- FIG. 5(a) and FIG. 5(b) are cross-sectional views that schematically illustrate the processing flow with respect to Test No. 3 (Comparative Example), in which FIG. 5(a) illustrates a state after the end of film formation in the first region, and FIG. 5(b) illustrates a state after the end of film formation in the second region.
- the plug base metal of Test No. 3 had the concave portion 11z, similarly to Test No. 2.
- the boundary between the regions S1 and S2 was not set at the concave portion 11z, and was instead set on the second divided face 11b.
- the target values for the thickness of the films were set to the same values as in Test No. 2.
- Test No. 4 (Inventive Example of the present invention), films were formed in accordance with the processing flow example illustrated in the above described FIG. 3(b) to FIG. 3(d) .
- the plug base metal had the concave portion 11z at a joint between the first divided face 11a and the second divided face 11b, and the front end 11t of the outer peripheral surface was connected to the planar front end face 12.
- the boundary between the regions S1 and S2 was set at the concave portion 11z.
- the slope ⁇ 1 of the first divided face 11a was 6.5°
- the slope ⁇ 2 of the second divided face 11b was 7.5°.
- the target values for the thickness of the films were set as 300 ⁇ m in the first region S1, 600 ⁇ m in the second region S2, and 800 ⁇ m at the front end face 12.
- FIG. 6(a) to FIG. 6(c) are cross-sectional views that schematically illustrate the processing flow with respect to Test No. 5 (Comparative Example), in which FIG. 6(a) illustrates a state after the end of film formation in a first region, FIG. 6(b) illustrates a state after the end of film formation in a second region, and FIG. 6(c) illustrates a state after the end of film formation on a front end face.
- the plug base metal of Test No. 5 had the concave portion 11z, similarly to Test No. 4.
- Test No. 5 unlike Test No. 4, the boundary between the regions S1 and S2 was not set at the concave portion 11z, and was instead set in the first divided face 11a.
- the target values for the thickness of the films were set to the same values as in Test No. 4.
- FIG. 7(a) to FIG. 7(d) are schematic diagrams that illustrate the processing flow with respect to Test No. 6 (Inventive Example of the present invention), in which FIG. 7(a) is a view illustrating the shape of a plug base metal, FIG. 7(b) is a cross-sectional view illustrating a state after the end of film formation in a first region, FIG. 7(c) is a cross-sectional view illustrating a state after the end of film formation in a second region, and FIG. 7(d) is a cross-sectional view illustrating a state after the end of film formation on a front end face.
- a plug base metal was used in which the outer peripheral surface 11 was composed of first to sixth divided faces 11a to 11f.
- the front end 11t of the outer peripheral surface 11 was connected to the planar front end face 12.
- the first to fourth divided faces 11a to 11d contributed to piercing-rolling
- the fifth divided face 11e was a cylindrical portion
- the sixth divided face 11f was a relief portion.
- the joint between the second divided face 11b and the third divided face 11c was the concave portion 11z.
- the slope ⁇ 1 of the second divided face 11b was 5°
- the slope ⁇ 2 of the third divided face 11c was 8°.
- the boundary between the regions S1 and S2 to undergo arc spraying was set at the concave portion 11z.
- the target values for the thickness of the films was set as 300 ⁇ m for the first region S1, 600 ⁇ m for the second region S2, and 800 ⁇ m for the front end face 12.
- FIG. 8(a) to FIG. 8(c) are cross-sectional views that illustrate a processing flow with respect to Test No. 7 (Comparative Example), in which FIG. 8(a) illustrates a state after the end of film formation in a first region, FIG. 8(b) illustrates a state after the end of film formation in a second region, and FIG. 8(c) illustrates a state after the end of film formation on a front end face.
- the plug base metal of Test No. 7 had the concave portion 11z, similarly to Test No. 6.
- the boundary between the regions S1 and S2 was set at the joint between the first divided face 11a and the second divided face 11b, and not at the concave portion 11z.
- the target values for the thickness of the films were set to the same values as in Test No. 6.
- the maximum diameter of the plug was set to 57 mm, and the length of the plug was set to 114 mm as the total length of the divided faces that mainly contribute to piercing-rolling.
- Each plug was repeatedly used three times in piercing-rolling utilizing a model mill.
- the billets that were used were made of SUS 304 stainless steel. Table 1 shows the piercing-rolling conditions, the billet dimensions, and the dimensions of the obtained hollow shell.
- Test Nos., test categories, and film states are shown in Table 2.
- FIG. 9 is a photograph showing peeling of a film.
- FIG. 9 shows the plug used in Test No. 1 (Comparative Example) after piercing-rolling was performed three times.
- a portion of a region at which a film peeled is surrounded by a chain double-dashed line.
- the film 20a on the rear-end side partially peeled in a manner in which the starting point of the peeling was the connecting portion 20z between the film 20a on the rear-end side and the film 20b on the front-end side.
- the present invention can be effectively utilized in the production of seamless steel pipes made from high alloy steel.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Coating By Spraying Or Casting (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
Description
- The present invention relates to a method for producing a plug that is used in a piercing-rolling mill when producing a seamless steel pipe.
- A seamless steel pipe can be produced by the Mannesmann pipe making process. This production process, for example, includes the following steps:
- (1) piercing-rolling a starting material (round billet) heated to a predetermined temperature using a piercing-rolling mill (piercer) to form a hollow shell;
- (2) elongation-rolling the hollow shell using a elongation-rolling mill (for example, a mandrel mill); and
- (3) carrying out diameter adjusting rolling on the elongation-rolled hollow shell, so as to have a predetermined outer diameter and wall thickness using a sizing mill (for example, a stretch reducer).
- The piercing-rolling mill includes: a pair of skew rolls that are each inclined with respect to a pass line; a bullet-shaped plug that is disposed on the pass line; and a mandrel connected to the rear end of the plug. In the piercing-rolling, in a state in which the axial directions of the pass line and the billet are matched, the billet is fed in the axial direction while being rotated in the circumferential direction by the skew rolls. Then, a central portion of the billet is pushed against the plug, and as a result the billet is pierced and rolled into a hollow shell.
- In the piercing-rolling, because the plug pierces the billet that is heated to a high temperature (for example, 1200°C), a high surficial pressure at a high temperature is imposed on the plug. In order to protect the plug that is exposed to such harsh conditions, a film (hereunder, also referred to as "arc-sprayed film") may be formed by arc spraying on the surface of the plug (base metal). The arc-sprayed film blocks the transfer of heat from the billet to the plug base metal, and can also prevent seizing between the billet and the plug. As a result, the number of times (number of passes) piercing-rolling of a starting material can be performed with a single plug can be increased, that is, the lifetime of the plug can be increased.
- Plugs that are used in a piercing-rolling mill are disclosed, for example, in
Patent Literatures 1 to 3. InPatent Literature 1, a method is proposed in which the surface of the base metal of a plug is divided into a plurality of regions along an axial direction of the plug, and arc-spraying is performed separately in succession in each of the plurality of regions. Further, when performing the arc spraying, an intersection angle between the center line of a spray stream from the arc-sprayer and the surface of the base metal of the plug is maintained within a range of 35° to 90°. In this way, the adhesiveness of the arc-sprayed film formed on the surface of the plug can be made firm, and as a result the lifetime of the plug can be further increased. - A plug proposed in
Patent Literature 2 has a front end rolling portion, a work portion and a reeling portion. Further, various dimensions, such as the outer diameter, of the plug satisfy a predetermined relational expression. The front end rolling portion includes a columnar portion and a hemispherical portion that is provided at the front end of the columnar portion. The work portion connects to the rear end of the front end rolling portion, and the cross-sectional shape of the work portion is a circular arc shape. The reeling portion connects to the rear end of the work portion, and the cross-sectional shape of the reeling portion is a linear tapered shape. - According to
Patent Literature 2, by performing piercing-rolling using the above described plug, defective bite of a billet can be prevented and the occurrence of inner surface flaws can also be suppressed. - A plug proposed in Patent Literature 3 has a rolling portion, a reeling portion and a relief portion. The rolling portion is divided into a preceding stage rolling portion and a succeeding stage rolling portion. The cross-sectional shape of the outer peripheral surface of the preceding stage rolling portion is a circular arc shape, and a front end of the preceding stage rolling portion is a hemispherical shape. The succeeding stage rolling portion connects to the rear end of the outer peripheral surface of the preceding stage rolling portion, and the cross-sectional shape of the succeeding stage rolling portion is a linear tapered shape. The reeling portion connects to the rear end of the succeeding stage rolling portion, and the cross-sectional shape of the reeling portion is a linear tapered shape. The relief portion connects to the rear end of the reeling portion, and the diameter of the relief portion progressively decreases as the distance from the front end increases. In the plug having the above described shape, dimensions such as the radius of curvature of the front end satisfy a predetermined relational expression.
- According to the method described in Patent Literature 3, defective bite, end clogging and an uneven wall thickness of a hollow shell can be prevented by using the aforementioned plug, even when performing piercing-rolling with a high expansion ratio of 1.15 or more and a low piercing ratio of less than 2.0.
- Patent Literature 5 discloses a
plug 2 which includes: a front portion 21 having a convex curvature; a column portion 22 having approximately a columnar shape; atrunk portion 23 having an outside diameter which is enlarged gradually toward the rear end; a mandrel connecting portion 26 provided in the rear end portion of theplug 2 and alubricant jetting hole 24 which penetrates thetrunk portion 23 from the mandrel connecting portion 26 and opened on the surface of the column portion 22. On the surface of the base metal of the front portion 21 and of thetrunk portion 23, a coating film 27 which is composed of oxides and Fe is formed by arc spraying method using an iron wire. During piercing/rolling, theplug 2 pierces a base stock while jetting the lubricant from thejetting hole 24. - Patent Literature 6 discloses a plug for hot tube-making includes: a plug main body; a build-up layer formed around an axis of the plug main body on a surface of the plug, main body, and a sprayed coating formed on a surface of the build-up layer.
-
- Patent Literature 1:
JP5365723B - Patent Literature 2:
JP3823762B - Patent Literature 3:
JP3119160B - Patent Literature 4:
JP5339016B - Patent Literature 5:
JP2010-227999A1 EP2404680A1 - Patent Literature 6:
JP5610101B1 US2015/258591A1 - As described in the foregoing,
Patent Literature 1 proposes a method in which the surface of the base metal of the plug is divided into a plurality of regions along the axial direction of the plug, and arc spraying is then performed separately in succession in each of the plurality of regions. When arc spraying is performed separately in each region in this manner, films are connected together at the boundaries of the regions. -
FIG. 1 is a SEM image that shows arc-sprayed films at a boundary between regions in a case where arc spraying was performed separately in respective regions. InFIG. 1 , aplug base metal 10 and arc-sprayedfilms film 20b that is on the front-end side and thefilm 20a that is on the rear-end side. In this case, the term "front-end side" means the front-end side of the plug, and the term "rear-end side" means the rear-end side of the plug. Thefilm 20b on the front-end side and thefilm 20a on the rear-end side are connected at a portion that is surrounded by a chain double-dashed line inFIG. 1 . In this case, a portion of thefilm 20b on the front-end side is formed on thefilm 20a on the rear-end side without coming in contact with theplug base metal 10. - Further, in the formation of the arc-sprayed
films FIG. 1 , thin layers are stacked on each other by moving the arc-sprayer back and forth. In this case, an angle that is formed by the built-up layers of film and the surface of theplug base metal 10 differs between thefilm 20b on the front-end side and thefilm 20a on the rear-end side. This is because the spraying direction (direction of spraying by the arc-sprayer) for thefilm 20b on the front-end side and the spraying direction for thefilm 20a on the rear-end side are different. InFIG. 1 , the spraying direction for thefilm 20b on the front-end side and the spraying direction for thefilm 20a on the rear-end side are indicated by solid-line arrows, respectively. - At a portion at which the arc-sprayed films are connected together (hereunder, also referred to simply as "connecting portion"), because another film is formed on a certain film, the adherence of the films decreases in comparison to other portions of the films. Further, a range in which another film is formed on a certain film as well as the thicknesses of the respective films and the like change in the circumferential direction of the plug, and for this reason also the adherence of the films at the connecting portion decreases. Consequently, peeling of a film is liable to occur at the connecting portion (see
FIG. 9 of Examples as described later). When peeling of a film occurs on a plug, it is the end of the lifetime of the plug and the plug is not used for piercing-rolling again. Therefore, in a case where arc spraying is performed separately in respective regions, it is desirable to suppress peeling of a film at a connecting portion and thereby increase the lifetime of the plug. - Peeling of a film at a connecting portion is liable to occur, in particular, during piercing-rolling of a billet that is made from high alloy steel. This is because high alloy steel has high strength. Note that, the term "high alloy steel" corresponds to, for example, high Cr steel containing 9% or more of Cr, an Ni-based alloy, and stainless steel.
- Although
Patent Literatures 2 and 3 propose the use of plugs that each have a predetermined shape and satisfy a predetermined relational expression, there is no description inPatent Literatures 2 and 3 regarding formation and peeling of a film. - An objective of the present invention is to provide a method for producing a plug that can prevent peeling of a film at a connecting portion and thereby increase the lifetime of the plug.
- A method for producing a plug according to the present invention is a method for producing a plug that is used in a piercing-rolling mill when producing a seamless steel pipe according to
claim 1. The method for producing a plug includes: a step of preparing a plug base metal having a concave portion along a circumferential direction in an outer peripheral surface; and an arc spraying step of spraying a spraying wire rod material onto the outer peripheral surface of the plug base metal by arc spraying to form films containing Fe and Fe oxides on the outer peripheral surface of the plug base metal. The arc spraying step includes: a separating step of separating the outer peripheral surface of the plug base metal into a plurality of regions along an axial direction; and a step of performing arc spraying separately in each of the regions. In the separating step, a boundary between the regions is set at the concave portion. - In the plug base metal, the outer peripheral surface is formed by connecting a plurality of divided faces successively in the axial direction, and has the concave portion at a joint between the divided faces. At the joint which is the concave portion, a slope θ1 (°) of a divided face located on a front-end side of the plug and a slope θ2 (°) of a divided face located on a rear-end side of the plug satisfy the following Formula (1).
- The method for producing a plug of the present invention uses a plug base metal which has a concave portion along a circumferential direction on the outer peripheral surface thereof. Further, a boundary between regions is set at the concave portion to divide the outer peripheral surface into a plurality of regions, and an arc-sprayed film is formed in each region. In this case, a connecting portion between the films is located at the concave portion, and the amount of reduction in wall-thickness of a billet when performing piercing-rolling is comparatively low at the concave portion. Consequently, peeling of the films can be suppressed and the lifetime of the plug can be increased.
-
-
FIG. 1 is a SEM image showing arc-sprayed films at a boundary between regions in a case where arc spraying is performed separately for respective regions. -
FIG. 2(a) to FIG. 2(c) are schematic diagrams illustrating an example of a processing flow according to the method for producing a plug of the present invention, in whichFIG. 2(a) is a view illustrating the shape of a plug base metal, -
FIG. 2(b) is a cross-sectional view illustrating a state after the end of film formation in a first region, andFIG. 2(c) is a cross-sectional view illustrating a state after the end of film formation in a second region. -
FIG. 3(a) to FIG. 3(d) are schematic diagrams illustrating an example of a processing flow according to the present invention when using a plug in which a front end of the outer peripheral surface is connected to a planar front end face, in whichFIG. 3(a) is a view illustrating the shape of a plug base metal,FIG. 3(b) is a cross-sectional view illustrating a state after the end of film formation in a first region,FIG. 3(c) is a cross-sectional view illustrating a state after the end of film formation in a second region, andFIG. 3(d) is a cross-sectional view illustrating a state after the end of film formation on the front end face. -
FIG. 4(a) to FIG. 4(c) are schematic diagrams illustrating a processing flow with respect to a Test No. 1 (Comparative Example), in whichFIG. 4(a) is a view illustrating the shape of a plug base metal,FIG. 4(b) is a cross-sectional view illustrating a state after the end of film formation in a first region, andFIG. 4(c) is a cross-sectional view illustrating a state after the end of film formation in a second region. -
FIG. 5(a) and FIG. 5(b) are cross-sectional views that schematically illustrate a processing flow with respect to a Test No. 3 (Comparative Example), in whichFIG. 5(a) illustrates a state after the end of film formation in a first region, and -
FIG. 5(b) illustrates a state after the end of film formation in a second region. -
FIG. 6(a) to FIG. 6(c) are cross-sectional views that schematically illustrate a processing flow with respect to a Test No. 5 (Comparative Example), in whichFIG. 6(a) illustrates a state after the end of film formation in a first region,FIG. 6(b) illustrates a state after the end of film formation in a second region, andFIG. 6(c) illustrates a state after the end of film formation on a front end face. -
FIG. 7(a) to FIG. 7(d) are schematic diagrams that illustrate a processing flow with respect to a Test No. 6 (Inventive Example of the present invention), in whichFIG. 7(a) is a view illustrating the shape of a plug base metal,FIG. 7(b) is a cross-sectional view illustrating a state after the end of film formation in a first region,FIG. 7(c) is a cross-sectional view illustrating a state after the end of film formation in a second region, andFIG. 7(d) is a cross-sectional view illustrating a state after the end of film formation on a front end face. -
FIG. 8(a) to FIG. 8(c) are cross-sectional views that illustrate a processing flow with respect to a Test No. 7 (Comparative Example), in whichFIG. 8(a) illustrates a state after the end of film formation in a first region,FIG. 8(b) illustrates a state after the end of film formation in a second region, andFIG. 8(c) illustrates a state after the end of film formation on a front end face. -
FIG. 9 is a photograph that shows peeling of a film. - Hereunder, a method for producing a plug according to the invention is described while referring to the accompanying drawings.
-
FIG. 2(a) to FIG. 2(c) are schematic diagrams illustrating an example of a processing flow according to the method for producing a plug of the present invention, in whichFIG. 2(a) is a view illustrating the shape of a plug base metal,FIG. 2(b) is a cross-sectional view illustrating a state after the end of film formation in a first region, andFIG. 2(c) is a cross-sectional view illustrating a state after the end of film formation in a second region. InFIG. 2 , aplug base metal 10 and arc-sprayedfilms - An outer
peripheral surface 11 of theplug base metal 10 shown inFIG. 2(a) is formed by connecting first to fifth divided faces 11a to 11e successively in the axial direction. In other words, the outerperipheral surface 11 is divided into a plurality of sections at a face that is perpendicular to the axial direction. The first dividedface 11a and the second dividedface 11b each have a cross-sectional shape that is curved, and in which a slope changes in the axial direction. Note that, in this case the term "slope" refers to an angle formed by the divided face and a center line of the plug base metal (see θ1 and θ2 inFIG. 2(a) ). The third dividedface 11c has a cross-sectional shape that is linear, in which the slope is constant. The outer diameters of the first to third divided faces 11a to 11c each increase progressively from the front-end side T toward the rear-end side B. - The fourth divided
face 11d is a cylindrical portion whose outer diameter is constant. Further, the outer diameter of the fifth dividedface 11e decreases toward the rear end. The fifth dividedface 11e is called a "relief portion". In piercing-rolling that uses such a plug, because the outer diameters of the first to third divided faces 11a to 11c progressively increase, mainly the first to third divided faces 11a to 11c contribute to the piercing-rolling. In other words, the first to third divided faces 11a to 11c strongly contact against the billet, and a high surficial pressure at a high temperature is imposed on these divided faces. - Among the joints between the divided faces 11a to 11e, a joint between the first divided
face 11a and the second dividedface 11b is aconcave portion 11z. In the method for producing a plug of the present embodiment, a plug base metal having a concave portion along the circumferential direction as illustrated inFIG. 2(a) is prepared. - The method for producing a plug of the present embodiment includes a step of preparing the plug base metal as described above, and an arc spraying step. In the arc spraying step, a spraying wire rod (for example, steel wire) is heated by arc spraying to produce Fe particles, and the Fe particles are sprayed onto the outer
peripheral surface 11 of the base metal of the plug. In this way, Fe particles build up on the outerperipheral surface 11 of the base metal of the plug, and thefilms films films - In the arc spraying step, the outer
peripheral surface 11 of the base metal of the plug is divided into a plurality of regions in the axial direction, and a film is formed in each of the regions, respectively. In this way, similarly to theaforementioned Patent Literature 1, the adhesiveness of the arc-sprayed films formed on the surface of the plug can be made firm. In the processing flow example illustrated inFIG. 2 , the outerperipheral surface 11 of the base metal of the plug is divided into a first region S1 on the rear-end side B and a second region S2 of a front-end side T, and a film is first formed in the first region S1, and thereafter a film is formed in the second region S2. - In addition, in the method for producing a plug of the present embodiment, when separating the outer
peripheral surface 11 into the plurality of regions S1 and S2, the boundary between the regions is set at theconcave portion 11z. In this case, in the obtained plug, a connecting portion between the arc-sprayed films as shown in the aforementionedFIG. 1 is located at theconcave portion 11z. - At the time of piercing-rolling, the amount of reduction in wall-thickness of the billet at the
concave portion 11z is low in comparison to other portions, and the surficial pressure imposed on theconcave portion 11z is also partially lower. As a result, the surficial pressure imposed on the connectingportion 20z of the films is also moderated. Because the connecting portion is located at theconcave portion 11z, as described above, although the adherence of the films at the connecting portion decreases similarly to the prior art, by moderating the surficial pressure that is interposed on the connectingportion 20z of the films, peeling of the films can be suppressed and the lifetime of the plug can be thereby increased. - In the present invention, the term "concave portion" refers to a portion at which, among the entire outer peripheral surface of the plug base metal, the amount of reduction in wall-thickness of the billet is lower than at other portions. In other words, a closed curve is formed along the circumferential direction by the following points A, and the vicinity of the closed curve is the concave portion. The points A are points on the outer peripheral surface of the plug base metal, and a slope θ1 (°) on the front-end side of the points, and a slope θ2 (°) on the rear-end side of the points satisfy the relation in the following Formula (1). At the closed curve formed by the points A, because the slope on the front-end side thereof is smaller, the amount of reduction in wall-thickness of the billet is less than at other portions.
- Here, the slope θ1 on the front-end side of a point is taken as an angle that is formed between the center line of the plug base metal and a tangential line of the outer peripheral surface on the front-end side relative to the relevant point among the entire tangential line of the outer peripheral surface at the relevant point, and the slope θ2 on the rear-end side of the point is taken as an angle that is formed between the center line of the plug base metal and a tangential line of the outer peripheral surface on the rear-end side relative to the relevant point among the entire tangential line of the outer peripheral surface at the relevant point.
- A plug base metal in which the outer
peripheral surface 11 is formed by connecting a plurality of divided faces successively in the axial direction as shown in the above describedFIG. 2 is adopted as the plug base metal. Theconcave portion 11z is disposed at a joint at which the slope θ1 (seeFIG. 2 , unit is "°") of the divided face on the front-end side T and the slope θ2 (seeFIG. 2 , unit is "°") of the divided face on the rear-end side B satisfy the relation in the above described Formula (1). Here, the slopes θ1 and θ2 of the divided faces are taken as angles formed between the respective divided faces and the center line of the plug base metal. Further, in a case where the slope changes in the axial direction, the respective slopes θ1 and θ2 of the divided faces are taken as the slope of a tangential line at the relevant joint. - In the present invention, wherein the plug base metal has a concave portion at a joint between the divided faces, it is preferable that dθ is 0.5° or more at the
concave portion 11z at which the boundary between the regions is set. In this case, dθ is the difference (θ2-θ1) between θ2 and θ1. If dθ is 0.5° or more, the amount of reduction in wall-thickness of the billet at the concave portion is low, and peeling of the films can be suppressed. On the other hand, if dθ exceeds 20°, because there will also be a large change in the amount of reduction in wall-thickness, there is a risk that the dimension accuracy of an obtained hollow shell will deteriorate. Therefore, dθ is preferably made 20° or less. - The order of the regions in which arc spraying is performed is not particularly limited, and peeling of the films can be suppressed if the boundary between the regions is set at the concave portion. From the viewpoint of suppressing peeling of films to a greater degree, it is preferable that the arc spraying for the respective regions is first performed in the region on the rear-end side of the concave portion, and thereafter is performed in the region on the front-end side of the concave portion. This is because, at the connecting portion, since the film on the front-end side will be formed on the film on the rear-end side, the film on the rear-end side will be covered by the film on the front-end side.
- Separating the outer peripheral surface into regions is not limited to separating the outer peripheral surface into two regions as illustrated in the above described
FIG. 2 , and the outer peripheral surface may be separated into three or more regions. In such a case, it is preferable that boundaries between the plurality of regions are each set at a concave portion. - The plug base metal is not limited to the plug base metal illustrated in the above described
FIG. 2 , and various plug base metals can be used as long as the plug base metal fulfills the requirements ofclaim 1. For example, plugs described in theaforementioned Patent Literatures 2 and 3 may be adopted as the plug base metal. The plug described in theaforementioned Patent Literature 2 has a concave portion at a joint between the front end rolling portion and the work portion. Further, the plug described in the aforementioned Patent Literature 3 has a concave portion at a joint between the preceding stage rolling portion and the succeeding stage rolling portion. - Although the plug base metal illustrated in the above described
FIG. 2 has thecylindrical portion 11d whose outer diameter is constant, a plug base metal that does not have a cylindrical portion may also be adopted. In this case, the rear-end side of theportions 11a to 11c which mainly contribute to piercing-rolling is connected to therelief portion 11e. - A
front end 11t of the outerperipheral surface 11 of the plug base metal is not limited to a case where the front end extends as far as a center line as in the plug base metal shown in the aforementionedFIG. 2 , and thefront end 11t may connect to a planar front end face. -
FIG. 3(a) to FIG. 3(d) are schematic diagrams illustrating an example of a processing flow according to the present invention in a case of using a plug in which the front end of the outer peripheral surface is connected to a planar front end face, in whichFIG. 3(a) is a view illustrating the shape of the plug base metal,FIG. 3(b) is a cross-sectional view illustrating a state after the end of film formation in a first region,FIG. 3(c) is a cross-sectional view illustrating a state after the end of film formation in a second region, andFIG. 3(d) is a cross-sectional view illustrating a state after the end of film formation on the front end face. InFIG. 3(a) to FIG. 3(d) , theplug base metal 10 and the arc-sprayedfilms - In the plug base metal illustrated in
FIG. 3(a) , thefront end 11t of the outerperipheral surface 11 is connected to a planarfront end face 12. Further, the outerperipheral surface 11 is formed by successively connecting the first to fifth divided faces 11a to 11e in the axial direction. Further, in the first to third divided faces 11a to 11c, the outer diameter progressively increases from the front-end side T toward the rear-end side B. Among these divided faces, the first dividedface 11a has a cross-sectional shape that is a curved shape, and the slope thereof changes in the axial direction. Further, the slopes of the second dividedface 11b and the third dividedface 11c are constant, and the cross-sectional shape of these divided faces is a linear tapered shape. The fourth dividedface 11d is a cylindrical portion, and the fifth dividedface 11e is a relief portion. - Among these divided faces, mainly the first to third divided faces 11a to 11c contribute to piercing-rolling. Further, among the joints of the divided faces, the joint between the second divided
face 11b and the third dividedface 11c is theconcave portion 11z along the circumferential direction. - In the processing flow example illustrated in
FIG. 3(b) to FIG. 3(d) , the outer peripheral surface of the plug base metal is separated into a first region S1 on the rear-end side B and a second region S2 on the front-end side T. At such time, the boundary between the first region S1 and the second region S2 is set at theconcave portion 11z. When performing arc spraying, thefilm 20b is formed in the second region S2 after thefilm 20a is formed in the first region S1, and thereafter afilm 20c is formed on thefront end face 12. - When the boundary between regions for the arc spraying step is set at the concave portion in this way, even in a case where the
front end 11t of the outer peripheral surface is connected to the planarfront end face 12, peeling of a film at the connectingportion 20z can be suppressed, and the lifetime of the plug can thus be increased. - The
concave portion 11z is disposed at a portion that mainly contributes to piercing-rolling among the entire outer peripheral surface of the plug base metal, in other words, at a portion excluding the cylindrical portion and relief portion. This is because peeling of films is liable to occur if a connecting portion between the films is located at a portion that mainly contributes to piercing-rolling. - For example, steel wire can be used as the spraying wire rod. A cored wire as described in Patent Literature 4 can also be used as the spraying wire rod. The cored wire includes a steel sheath tube, and powder that is filled inside the steel sheath tube. For example, ZrO2 powder or BN powder can be adopted as the powder that is filled inside the tube. Iron oxide powder can also be adopted as the powder, and in such case, steel powder may be additionally filled inside the tube.
- In this case, the steel wire is, for example, a wire rod formed of carbon steel (common steel), the steel sheath tube is, for example, a tube formed of carbon steel (common steel), and the steel powder is, for example, carbon steel (common steel) powder. The carbon steel typically includes Fe as a principal component, and also includes carbon (C), silicon (Si), manganese (Mn) and impurities. The carbon steel is also referred to as "common steel", and may contain optional elements such as tungsten (W).
- For the purpose of verifying the effects obtained by the method for producing a plug of the present invention, plugs were produced and piercing-rolling was performed using the plugs.
- To produce the respective plugs, first a plug base metal made of hot working tool steel as defined by the JIS was prepared. A steel wire was atomized and sprayed by an arc-sprayer onto the outer peripheral surface of the plug base metal, and films composed of Fe and Fe oxides were formed. At such time, the outer peripheral surface of the plug base metal was separated into a region on the rear-end side and a region on the front-end side, and a film was first formed in the region on the rear-end side and thereafter a film was formed in the region on the front-end side.
- Test Nos. 1 to 7 were conducted as the present tests, and the shape of the plug base metal as well as a boundary position between the first region and the second region were changed for the respective tests.
-
FIG. 4(a) to FIG. 4(c) are schematic diagrams illustrating the processing flow with respect to Test No. 1 (Comparative Example), in whichFIG. 4(a) is a view illustrating the shape of the plug base metal,FIG. 4(b) is a cross-sectional view illustrating a state after the end of film formation in the first region, andFIG. 4(c) is a cross-sectional view illustrating a state after the end of film formation in the second region. In Test No. 1, the outerperipheral surface 11 of the plug base metal was constituted by first to third divided faces 11a to 11c. The cross-sectional shape of the first dividedface 11a was a curved shape. The second dividedface 11b was a cylindrical portion, and the third dividedface 11c was a relief portion. Among these divided faces, mainly the first dividedface 11a contributes to piercing-rolling. - In Test No. 1 as described above, a plug base metal that did not have a concave portion was used, and a boundary between the region S1 and S2 was set on the first divided
face 11a. The target values for the thickness of the films were set as 300 µm in the first region S1 and 800 µm in the second region S2. - In Test No. 2 (Inventive Example of the present invention), films were formed in accordance with the processing flow example illustrated in the above described
FIG. 2 . Specifically, a plug base metal having theconcave portion 11z at a joint between the first dividedface 11a and the second dividedface 11b was used, and the boundary between the regions S1 and S2 was set at theconcave portion 11z. At theconcave portion 11z, the slope θ1 of the first dividedface 11a was 10° and the slope θ2 of the second dividedface 11b was 23.5°. The target values for the thickness of the films were set as 300 µm in the first region S1 and 800 µm in the second region S2. -
FIG. 5(a) and FIG. 5(b) are cross-sectional views that schematically illustrate the processing flow with respect to Test No. 3 (Comparative Example), in whichFIG. 5(a) illustrates a state after the end of film formation in the first region, andFIG. 5(b) illustrates a state after the end of film formation in the second region. As illustrated inFIGS. 5(a) and 5(b) , the plug base metal of Test No. 3 had theconcave portion 11z, similarly to Test No. 2. In Test No. 3, unlike Test No. 2, the boundary between the regions S1 and S2 was not set at theconcave portion 11z, and was instead set on the second dividedface 11b. The target values for the thickness of the films were set to the same values as in Test No. 2. - In Test No. 4 (Inventive Example of the present invention), films were formed in accordance with the processing flow example illustrated in the above described
FIG. 3(b) to FIG. 3(d) . Specifically, the plug base metal had theconcave portion 11z at a joint between the first dividedface 11a and the second dividedface 11b, and thefront end 11t of the outer peripheral surface was connected to the planarfront end face 12. In Test No. 4, the boundary between the regions S1 and S2 was set at theconcave portion 11z. At theconcave portion 11z, the slope θ1 of the first dividedface 11a was 6.5°, and the slope θ2 of the second dividedface 11b was 7.5°. The target values for the thickness of the films were set as 300 µm in the first region S1, 600 µm in the second region S2, and 800 µm at thefront end face 12. -
FIG. 6(a) to FIG. 6(c) are cross-sectional views that schematically illustrate the processing flow with respect to Test No. 5 (Comparative Example), in whichFIG. 6(a) illustrates a state after the end of film formation in a first region,FIG. 6(b) illustrates a state after the end of film formation in a second region, andFIG. 6(c) illustrates a state after the end of film formation on a front end face. As illustrated inFIGS. 6(a) to 6(c) , the plug base metal of Test No. 5 had theconcave portion 11z, similarly to Test No. 4. In Test No. 5, unlike Test No. 4, the boundary between the regions S1 and S2 was not set at theconcave portion 11z, and was instead set in the first dividedface 11a. The target values for the thickness of the films were set to the same values as in Test No. 4. -
FIG. 7(a) to FIG. 7(d) are schematic diagrams that illustrate the processing flow with respect to Test No. 6 (Inventive Example of the present invention), in whichFIG. 7(a) is a view illustrating the shape of a plug base metal,FIG. 7(b) is a cross-sectional view illustrating a state after the end of film formation in a first region,FIG. 7(c) is a cross-sectional view illustrating a state after the end of film formation in a second region, andFIG. 7(d) is a cross-sectional view illustrating a state after the end of film formation on a front end face. In Test No. 6, a plug base metal was used in which the outerperipheral surface 11 was composed of first to sixth divided faces 11a to 11f. Thefront end 11t of the outerperipheral surface 11 was connected to the planarfront end face 12. Mainly the first to fourth divided faces 11a to 11d contributed to piercing-rolling, the fifth dividedface 11e was a cylindrical portion, and the sixth dividedface 11f was a relief portion. Among the joints between these divided faces, the joint between the second dividedface 11b and the third dividedface 11c was theconcave portion 11z. The slope θ1 of the second dividedface 11b was 5°, and the slope θ2 of the third dividedface 11c was 8°. - In Test No. 6, the boundary between the regions S1 and S2 to undergo arc spraying was set at the
concave portion 11z. The target values for the thickness of the films was set as 300 µm for the first region S1, 600 µm for the second region S2, and 800 µm for thefront end face 12. -
FIG. 8(a) to FIG. 8(c) are cross-sectional views that illustrate a processing flow with respect to Test No. 7 (Comparative Example), in whichFIG. 8(a) illustrates a state after the end of film formation in a first region,FIG. 8(b) illustrates a state after the end of film formation in a second region, andFIG. 8(c) illustrates a state after the end of film formation on a front end face. As illustrated inFIGS. 8(a) to 8(c) , the plug base metal of Test No. 7 had theconcave portion 11z, similarly to Test No. 6. In Test No. 7, unlike Test No. 6, the boundary between the regions S1 and S2 was set at the joint between the first dividedface 11a and the second dividedface 11b, and not at theconcave portion 11z. The target values for the thickness of the films were set to the same values as in Test No. 6. - In each of the tests, the maximum diameter of the plug was set to 57 mm, and the length of the plug was set to 114 mm as the total length of the divided faces that mainly contribute to piercing-rolling.
- Each plug was repeatedly used three times in piercing-rolling utilizing a model mill. The billets that were used were made of SUS 304 stainless steel. Table 1 shows the piercing-rolling conditions, the billet dimensions, and the dimensions of the obtained hollow shell.
-
Table 1 Item Details Piercing-rolling conditions Billet heating temperature: 1200°C Roll gap: 60 mm Number of roll revolutions: 80 rpm Plug lead: 51mm Billet dimensions Outer diameter: 70 mm Length: 300 mm Hollow shell dimensions Outer diameter: 74 mm Wall thickness: 6 mm Length: 900 mm - After the end of three rounds of piercing-rolling, the state of the films on the relevant plug was visually inspected. The meaning of the symbols in the "Film State" column in Table 2 below is as follows.
○: Indicates there was no peeling of a film at the connecting portion, and the state of the films was good.
×: Indicates there was peeling of a film at the connecting portion, and the state of the films was regarded as failed. - The Test Nos., test categories, and film states are shown in Table 2.
-
Table 2 Test No. Category Film State No. 1 Comparative Example × No. 2 Inventive Example ○ No. 3 Comparative Example × No. 4 Inventive Example ○ No. 5 Comparative Example × No. 6 Inventive Example ○ No. 7 Comparative Example × - The results in Table 2 show that, with respect to Test No. 1 (Comparative Example), when the plug which did not have a concave portion was used, peeling of a film occurred. Further, with respect to Test Nos. 3, 5 and 7 as Comparative Examples, in each test a plug having a concave portion was used, and arc spraying was performed separately in the respective regions without setting a boundary between the regions at the concave portion. As a result, peeling of a film occurred.
-
FIG. 9 is a photograph showing peeling of a film.FIG. 9 shows the plug used in Test No. 1 (Comparative Example) after piercing-rolling was performed three times. InFIG. 9 , a portion of a region at which a film peeled is surrounded by a chain double-dashed line. As illustrated inFIG. 9 , thefilm 20a on the rear-end side partially peeled in a manner in which the starting point of the peeling was the connectingportion 20z between thefilm 20a on the rear-end side and thefilm 20b on the front-end side. - On the other hand, with respect to Test Nos. 2, 4 and 6 as Inventive Examples of the present invention, a plug having a concave portion was used, and arc spraying was performed separately in each region in a manner in which the concave portion was set as the boundary between the regions. As a result, peeling of a film did not occur. Based on these results, it was clarified that peeling of films at a connecting portion can be suppressed by using a base metal that has a concave portion along the circumferential direction and performing arc spraying separately in each region in a manner in which the concave portion is set as the boundary between the regions.
- The present invention can be effectively utilized in the production of seamless steel pipes made from high alloy steel.
-
- 10:
- plug base metal
- 11:
- outer peripheral surface
- 11a to 11f:
- divided face
- 11t:
- front end of outer peripheral surface
- 11z:
- concave portion
- 12:
- front end face
- 20a to 20c:
- film
- 20z:
- connecting portion
- S1, S2:
- separated region
- θ1, θ2:
- slope of divided face
Claims (2)
- A method for producing a plug that is used in a piercing-rolling mill when producing a seamless steel pipe, the method comprising:a step of preparing a plug base metal (10) having a concave portion (11z) along a circumferential direction in an outer peripheral surface (11), andan arc spraying step of spraying a spraying wire rod material onto the outer peripheral surface (11) of the plug base metal (10) by arc spraying to form films (20a, 20b) containing Fe and Fe oxides on the outer peripheral surface (11) of the plug base metal (10);wherein:
the arc spraying step includes:a separating step of separating the outer peripheral surface (11) of the plug base metal (10) into a plurality of regions (S1, S2) along an axial direction, anda step of performing arc spraying separately in each of the regions; andin the separating step, a boundary between the regions is set at the concave portion (11z),in the plug base metal (10), the outer peripheral surface (11) is formed by connecting a plurality of divided faces (11a, ..., 11f) successively in the axial direction,the plurality of divided faces (11a, ..., 11f) includes two or more divided faces which are successively connected and of which outer diameters each increase progressively from a front-end side toward a rear-end side, andthe concave portion (11z) is disposed at a joint between the divided faces of which outer diameters each increase progressively from a front-end side toward a rear-end side, and wherein,at the joint which is the concave portion (11z), a slope θ1 (°) of a divided face located on a front-end side (11a - Figs. 2 and 3; 11b - Fig. 7) of the plug and a slope θ2 (°) of a divided face located on a rear-end side (11b - Figs. 2 and 3; 11c - Fig. 7) of the plug satisfy the following Formula (1) - The method for producing a plug according claim 1, wherein:
the difference dθ between the slope θ2 and the slope θ1 is in a range of 0.5° to 20°.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015023282 | 2015-02-09 | ||
PCT/JP2015/005772 WO2016129019A1 (en) | 2015-02-09 | 2015-11-18 | Method for manufacturing plug |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3257596A4 EP3257596A4 (en) | 2017-12-20 |
EP3257596A1 EP3257596A1 (en) | 2017-12-20 |
EP3257596B1 true EP3257596B1 (en) | 2019-10-02 |
Family
ID=56614370
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15881895.5A Active EP3257596B1 (en) | 2015-02-09 | 2015-11-18 | Method for producing plug |
Country Status (6)
Country | Link |
---|---|
US (1) | US20180023179A1 (en) |
EP (1) | EP3257596B1 (en) |
JP (1) | JP6380562B2 (en) |
CN (1) | CN107206443B (en) |
BR (1) | BR112017015320B1 (en) |
WO (1) | WO2016129019A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7493161B2 (en) | 2019-12-27 | 2024-05-31 | Jfeスチール株式会社 | Plug for manufacturing seamless steel pipe, piercing mill for manufacturing seamless steel pipe, and manufacturing method for seamless steel pipe |
JP7583271B2 (en) | 2021-03-22 | 2024-11-14 | 日本製鉄株式会社 | Piercer Plug |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4207356A (en) * | 1976-12-09 | 1980-06-10 | The D. L. Auld Company | Method for coating glass containers |
US5592927A (en) * | 1995-10-06 | 1997-01-14 | Ford Motor Company | Method of depositing and using a composite coating on light metal substrates |
JPH09276908A (en) * | 1996-04-18 | 1997-10-28 | Nippon Steel Corp | Plugs for seamless steel pipe drilling |
JP3119160B2 (en) * | 1996-05-15 | 2000-12-18 | 住友金属工業株式会社 | Manufacturing method of seamless pipe |
GB0014087D0 (en) * | 2000-06-10 | 2000-08-02 | Plascoat Systems Limited | Composition and method of coating automotive underbodies |
JP3823762B2 (en) * | 2001-06-13 | 2006-09-20 | 住友金属工業株式会社 | Seamless metal pipe manufacturing method |
FR2906078B1 (en) * | 2006-09-19 | 2009-02-13 | Commissariat Energie Atomique | METHOD FOR MANUFACTURING A MIXED MICRO-TECHNOLOGICAL STRUCTURE AND A STRUCTURE THUS OBTAINED |
JP5169982B2 (en) * | 2009-03-03 | 2013-03-27 | 新日鐵住金株式会社 | Plug, piercing and rolling mill, and seamless pipe manufacturing method using the same |
JP2011115816A (en) * | 2009-12-02 | 2011-06-16 | Sumitomo Metal Ind Ltd | Method for coating lubricant and equipment row of regenerating plug used for the same |
DE102011010646A1 (en) * | 2010-03-02 | 2011-09-08 | Sms Meer Gmbh | Hot tool and method for its production |
JP5650971B2 (en) * | 2010-09-30 | 2015-01-07 | 矢崎総業株式会社 | Switch device |
AR088498A1 (en) * | 2011-11-01 | 2014-06-11 | Nippon Steel & Sumitomo Metal Corp | PUNCHING DEVICE, PUNCH USED FOR THE PUNCHING DEVICE, AND METHOD FOR THE PRODUCTION OF WELDED STEEL PIPES |
MX351407B (en) * | 2012-04-24 | 2017-10-12 | Nippon Steel & Sumitomo Metal Corp | Plug used in piercing machine. |
JP5365724B2 (en) * | 2012-04-24 | 2013-12-11 | 新日鐵住金株式会社 | Equipment for manufacturing piercing and rolling plugs |
JP5365723B2 (en) * | 2012-04-24 | 2013-12-11 | 新日鐵住金株式会社 | Manufacturing method of piercing and rolling plug |
JP5339016B1 (en) * | 2012-06-05 | 2013-11-13 | 新日鐵住金株式会社 | Manufacturing method of piercing and rolling plug |
JP5435184B1 (en) * | 2012-07-20 | 2014-03-05 | 新日鐵住金株式会社 | Perforated plug |
WO2014109180A1 (en) * | 2013-01-11 | 2014-07-17 | 新日鐵住金株式会社 | Plug for hot pipe manufacturing |
-
2015
- 2015-11-18 JP JP2016574529A patent/JP6380562B2/en active Active
- 2015-11-18 WO PCT/JP2015/005772 patent/WO2016129019A1/en active Application Filing
- 2015-11-18 EP EP15881895.5A patent/EP3257596B1/en active Active
- 2015-11-18 US US15/549,480 patent/US20180023179A1/en not_active Abandoned
- 2015-11-18 BR BR112017015320-3A patent/BR112017015320B1/en active IP Right Grant
- 2015-11-18 CN CN201580075519.9A patent/CN107206443B/en active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP3257596A4 (en) | 2017-12-20 |
BR112017015320B1 (en) | 2022-12-06 |
WO2016129019A1 (en) | 2016-08-18 |
BR112017015320A2 (en) | 2018-01-09 |
JPWO2016129019A1 (en) | 2017-10-12 |
EP3257596A1 (en) | 2017-12-20 |
CN107206443A (en) | 2017-09-26 |
US20180023179A1 (en) | 2018-01-25 |
JP6380562B2 (en) | 2018-08-29 |
CN107206443B (en) | 2019-07-09 |
BR112017015320A8 (en) | 2022-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8544306B2 (en) | Plug, piercing-rolling mill, and method of producing seamless tube by using the same | |
EP1593441B2 (en) | Seamless metal tube producing method | |
EP2842645A1 (en) | Plug used in piercing machine | |
EP2944387B1 (en) | Plug for hot pipe manufacturing | |
JP4315155B2 (en) | Seamless pipe manufacturing method | |
EP3257596B1 (en) | Method for producing plug | |
WO2008062752A1 (en) | Manufacturing method for seamless pipe | |
EP2650060B1 (en) | Method for manufacturing seamless pipe | |
EP2839890B1 (en) | Use of a round billet for being produced into seamless metal tube and method for producing seamless metal tube | |
JP4196991B2 (en) | Method of piercing and rolling in the manufacture of seamless pipes | |
JP4888252B2 (en) | Seamless pipe cold rolling method | |
EP2060334A1 (en) | METHOD OF USING Cr-PLATED MANDREL BAR FOR HOT ROLLING | |
JPH0586287B2 (en) | ||
EP2837435B1 (en) | Cold rolling method for seamless pipe | |
JP6225893B2 (en) | Inclined rolling method for seamless metal pipe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20170829 |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20171113 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20180906 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C23C 4/06 20160101ALI20190418BHEP Ipc: B21B 25/00 20060101AFI20190418BHEP Ipc: C23C 4/12 20160101ALI20190418BHEP Ipc: C23C 4/10 20160101ALI20190418BHEP Ipc: C23C 4/131 20160101ALI20190418BHEP Ipc: B21B 17/00 20060101ALI20190418BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190523 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: NIPPON STEEL CORPORATION |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1185624 Country of ref document: AT Kind code of ref document: T Effective date: 20191015 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602015039298 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20191002 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1185624 Country of ref document: AT Kind code of ref document: T Effective date: 20191002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200103 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200102 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200203 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200102 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200224 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602015039298 Country of ref document: DE |
|
PG2D | Information on lapse in contracting state deleted |
Ref country code: IS |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191130 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191130 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191118 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200202 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20191130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 |
|
26N | No opposition filed |
Effective date: 20200703 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20200102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200102 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191130 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20151118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20241001 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20241001 Year of fee payment: 10 |